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Abstract

Electromechanical resonant de-icing systems provide a low-energy solution against ice accumulation on aircraft.
Recent researches show a growing interest towards these systems in the context of more electrical aircraft. Electrome-
chanical de-icing systems consists in electric actuators producing stress within the ice, through micro-vibrations of
the surface to be protected, leading to bulk or adhesive failure and, ultimately, ice shedding. The understanding of the
mechanisms at play is of prime importance in order to design efficient ice protection systems. Despite a large number
of studies in the literature, there is still a lack when dealing with fracture propagation phenomena in this context. In
this work the authors propose a model based on the well established phase-field variational approach to fracture. The
approach is applied to the study of crack propagation and debonding of ice under the effect of an electromechanical
resonant de-icing system. Numerical experiments are performed in order to assess possible ice shedding mechanisms.

Keywords: Electromechanical de-icing, Numerical modelling, Phase-field methods, Fracture mechanics, Adhesive
debonding

1. Introduction

Icing has been identified as a severe issue since the beginning of aviation [1, 2]. It can occur both during flight and
on ground. In flight, ice accretion is caused by supercooled droplets suspended in clouds. They impact the aircraft
surfaces and freeze. Ice then accumulates on the surface which may lead to an increase of mass, the degradation of
aerodynamic performances or engine damage/flameout due to ice ingestion.

Ice protection systems are then required to ensure aircraft safety [3]. Current strategies for anti-icing or de-icing
can be chemical, thermal, mechanical or a combination of them [4, 5]. Of course, each of these strategies possesses
their own drawbacks and advantages [6, Tab. 1] and the choice depends on the targeted applications. In the context of
more electrical aircraft, electromechanical solutions are especially interesting for their potential in terms of weight,
durability and energy savings. The basic idea consists in feeding the protected surface with vibrations by means of
electric actuators. These vibrations generate stress within the ice leading to cohesive (bulk fracture) and adhesive
(delamination) failures.

A large amount of work has been carried out to study the efficiency of electromechanical ice protection systems.
In the low frequency range (Hertz), Venna et al. focused on energy and weight considerations either by using smart
structures [7, 8] or by combining shear and impulse forces [9]. The de-icing power of waves in the megaHertz range
has been addressed by Ramanathan ef al. [10] or by Kalkowski ef al. [11] through semi-analytical models and
experiments. However, most of the studies and the main focus of the present work lie within the kiloHertz range.
Experiments together with finite elements modeling—mainly conducted by Palacios, Overmeyer et al. [12—-18] but
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Figure 1: Electromechanical de-icing systems: (a) the analytic beam studied in [20, 22] and re-used in this paper as a test case; and (b) position A,
of the neutral line where the mode shape W(x) is applied as a Dirichlet boundary condition.

also by Villeneuve et al. [19] or Strobl et al. [4] for an hybrid approach—showed the efficiency of ultrasonic de-icing
at low-energy costs both on plates and helicopter rotor blades.

Nevertheless, there is still a lack of understanding concerning the mechanisms leading to the fracture and debond-
ing of ice. Using beam theory, modal analysis and numerical tools, Budinger et al. provided a first step in this direction
[20-22]. The resulting information was integrated into the design phase and guided the choice of vibrational modes.
However, in their numerical analysis, Budinger et al. assumed a priori crack propagation and debonding mechanisms.

The goal of this paper is to assess the fracture mechanisms introduced by Budinger ef al. [22]. To do so, a
phase-field variational approach to fracture and adhesive debonding is used in order to fully simulate the shedding
mechanism. The method allows to remove a priori assumptions on initation and propagation direction of fracture
made in [22]. Our algorithm is tested on the analytical beam model of [22]. Knowing the variability of ice character-
istics in literature, these results are only used to identify trends in the ice shedding process.

The paper is organized as follows: (i) Section 2 provides some details on electromechanical de-icing systems and
re-introduces the analytical beam model and fracture mechanisms of [22]; (ii) Section 3 describes the mechanical
modelling of cohesive and adhesive failure; (iii) Section 4 deals with the mechanical properties of ice and related
issues; (iv) Section 5 is dedicated to the numerical results and related discussions; and (v) Section 6 concludes this
paper and presents ongoing work.

2. Ice shedding mechanisms in electromechanical de-icing systems

2.1. Set up and assumptions

Budinger et al. [20, 22] modelled an electromechanical de-icing system by the configuration displayed in Figure
1(a), which is re-used in this paper as a test case. The aluminium support of length a = 154 mm, with simply supported
boundary conditions, is covered by a layer of freezer ice—both of constant thicknesses h,;, = 1.5 mm and A;., = 2
mm. Anti-icing mode of ice protection systems [23] or ice accretion models [24, 25] are thus not discussed here.
Both the aluminium and the ice are considered as an elastic isotropic homogeneous material. Elastic coefficients for
aluminium are set to ¢y, = 69 GPa and v,;, = 0.334. Ice characterization is a more complex task and this is discussed
in Section 4. Macroscopically, fracture is assumed to be: (i) brittle, which is justified for high strain rate [26]; and (ii)
instantaneous. Shreurs [27] estimates the fracture propagation velocity in ice to be about 20 to 40 % of the speed of
sound vy = +/Cice / p, yielding v = 1000 m / s.

Mode shapes are supposed to be identical to that of a uniform beam which undergoes in-plane extensional and
out-of-plane flexural modes, essentially used in the literature. Investigation of the available analytical formulas in [22,
Tab. 3]—derived from [28]—shows that pure extensional modes generate, at given frequency and magnitude, lower
tensile stress at the top of the ice surface and lower shear stress at the ice / aluminium interface. Extensional modes
also generally appear at higher frequencies (over 15 kHz) and thus: (i) require more energy; and (ii) may involve
three-dimensional effects. Consequently, excitation of flexural modes—up to approximately 15 kHz—is privileged in
this work. These modes write [22, Tab. 3]

w(x, ) = W(x) sin(w1) = W, sin(%f) sin(w?). (1)
2



Cohesive fracture Adhesive fracture

Mechanism No. 1 — Initiation of fracture by tensile stress Mechanism No. 2 — Initiation of fracture by shear stress

State 1 - -

Cohesive fracture

Adhesive fracture

r
E

Figure 2: The two possible kinds of fracture: cohesive in the ice layer or adhesive (delamination) at the ice-substrate interface. Corresponding
mechanisms postulated in [22] for delamination.

Adhesive fracture

Refering to the estimation of the fracture propagation velocity, the characteristic time of fracture is negligible against
the vibratory amplitude of modes under 40 kHz. Therefore, only the spatial part W(x)—i.e. the maximum amplitude
of w(x, t) in time—is retained here. According to the beam assumption, the flexural mode shape W(x) is applied on
the neutral line given by [22, Tab. 3]
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as described in Figure 1(b). This work is technology-independant and technology considerations [3] are not discussed
in this paper.

The problem considered in this paper reduces to find a steady-state (fractured or not) compatible with the external
load W(x).

2.2. Postulated ice shedding mechanisms

Two ice shedding mechanisms are postulated by Budinger er al. in [22]. They are depicted in Figure 2 for
flexural modes: maximum shear (resp. tensile) stress region is called a node (resp. an antinode) and is colored in
blue (resp. red). Mechanism 1 corresponds to a cohesive fracture initiated by tensile stress at the top of the ice
surface, propagating through the thickness and causing delamination thanks to a re-distribution of the stress at the
ice/aluminium interface. In mechanism 2, the shear stress at the interface is sufficient to delaminate the ice, without
cohesive failures. The energy balance approach for fracture propagation considered in [22] allows discriminating
between the two mechanisms when flexural modes are applied: (i) initiation of a cohesive fracture and propagation
through the entire ice thickness is possible at low frequencies but an adhesive damage (delamination) generally not
follows and often requires higher magnitude (i.e. voltage); and (ii) mechanism 2 is unlikely to occur.

3. Mechanical modelling

This section presents the mechanical modelling considered in this paper, building upon previous work [29-31].
It includes both brittle fracture and adhesive debonding. These two phenomena are firstly discussed and modelled
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Figure 3: Illustration of a cracked material.

separately. The different terms involved in the model along with equations are introduced and justified. In a final step,
all these terms are gathered and the full coupled model is derived. The resolution method closes the section.

3.1. Brittle fracture model

Modelling fracture mechanics is not an easy task. Several methods are available in the literature, e.g. XFEM [32-
34], remeshing [35-37], Cohesive Zone Models [38—40] or Variational Approach [41, 42]. Concerning applications to
ice, all these methods have been applied: both XFEM [43] and remeshing [44, 45] are used for modeling ice-floe/sea-
ice fractures; Cohesive Zone Model have been successfully applied for sea-ice and structure interactions [46—48]
but also for aircraft (or similar) applications [49, 50]; cohesive and adhesive failures of ice on an aluminium airfoil
have been investigated thanks to a variational approach in the context of electrothermal de-icing systems [29-31].
Regarding electromechanical ice protection systems, Budinger et al. compared a computed energy release rate to a
given fracture toughness, according to Griffith’s theory [27], to determine if a fracture is unstable or not [22]. To the
authors’ knowledge, it is the only attempt to numerically study fracture propagation in this context. As an energy
balance approach, the work of Budinger et al. took the same flavor as in [31] but assumed fracture mechanisms to be
known.

The method described here falls into the concept of variationnal approaches [41, 42] and phase-field models [51-
56]. Note that some authors combined this approach with other fracture methods such as remeshing [57]. The problem
is formulated with an energy functional and relies on an energy conservation principle. The energy conservation
principle translates the interplay between elastic energy E,; and crack surface energy Er [58]. We consider a material
Q, cracked on the surface I', clamped on I'; and undergoing an external force fy,,r onI'y such as in Figure 3. The model
targets the balance between E,; and Er for this particular configuration and thus predicts a steady state compatible
with external loads applied on I'; and I'5. As a phase-field model, the crack surface energy Er—written in the form of
a surface integral—is approximated by a volume integral E ., through the introduction of a smooth scalar damage
variable d € [0, 1] [52]

Er = f g.dl ~ f #(d, Vd)dV = Eruer.
r Q

The variable d smoothly interpolates between broken states (d = 1) and unbroken states (d = 0), the width of the
regularized crack being measured by a parameter ¢.
The starting point of the model is elastic energy E,; and regularized crack surface energy E,qcx

Eel = f lﬁ(é 5 d) dV and Ecmck = f ¢(d’ Vd) dVv. (3)
Q Q

According to [52, 59], the crack surface density function ¢—approximating the Griffith’s surface energy—is expressed
as

1
o(d, Vd) = f—o (% a(d) + €Vd - Vd) where ¢y = 4[ Va(s)ds. (@]
0



The “so-called” I'-convergence [60—67] guarantees that the volume integral E,,x—Wwith the crack density function
¢ given by (4)—actually converges toward the Griffith’s surface energy Er as the parameter £ goes to zero. If some
difficulties can arise in practice [68], ['-convergence results hold at least numerically [51, 59, 69]. Miehe et al. [51]
propose to split the elastic density function into purely tensile " and compressive i~ parts defined by using the
eigenvalues of € (e, and ¢ in two dimensions) and a positive/negative part function noted < . >.

UT(€) =4 <€ +6 > Hu(< & >5 + <6 >7) (5)
l,b(6):5<e*+eD>_+y(<e*>_+<eD>_). (6)

Only the tensile part contributes to crack nucleation or propagation. Consequently, ¥* is multiplied by a function
f1(d) representing the degradation of this tensile part into crack surface energy

Y(e, d) = fildy" (&) + ¢ (e). @)

It now remains to define the geometric function @ and the degradation function f;, which have to satisfy the
following requirements [52]

20)=0, aH)=1, fHO)=1, fi1)=0, f(1H=0 and f(d)<O.

Many expressions exist for @ and fi: see for example [29-31, 51, 52, 70-72]. This choice greatly influences the
model behavior but, in the general case, the strain-stress relation takes the following form: (i) an elastic phase from
(e,0) =(0,0) to (e, o) = (€., 0.), Where the damage remains 0 everywhere; (ii) an homogeneous damage phase
from (e, o) = (¢, o) to (€, o) = (€, 0.), where the damage increases but remains homogeneous in the domain;
(iii) a damage localization phase from (e, o) = (€., o) to (e, o) = (+co, 0), where cracks appear and develop.
Following [59, 73], the two functions @ and f;

a(d) =d[+ (1 -8 d], ®)

d) = (L-ay dP(d)=1+ad+ d )
D=ty v aar@ PO = 1 redrand,

are adopted in this paper with

2§Cice 8¢
= =2 et 10
@ cola? (10)
s 2 2/3 Co We O 2
£=05. p=2 = g[(—“cf Sk) +1|-D w=LH(32E) -ara|.  ap
where ko = —2—2 and w, = 2g‘ are respectively the initial slope (B.7) and the ultimate crack opening (B.8) of a linear

softening law. For this ch01ce there is no homogeneous damage phase—i.e. €, = €, and o, = o, denoted ¢, and o,
in all the following. Cracks thus appear just after the elastic phase. Constitutive relations (8)-(9)-(10)-(11) present
some advantages: (i) the presence of an elastic phase where d = 0 everywhere; (ii) a finite crack support in which
d > 0 in the damage localization phase; and (iii) an £-independant critical stress o.. Concerning the latter point, £
can be considered as a constant material parameter [70, 72] but the I'-convergence is lost. Here, an {-independant
critical stress o is achieved through Relation (10)—see Appendix B and [73] for more details. In this case, one can
let the parameter ¢ go to zero in order to obtain sharper crack topology while maintaning the crack nucleation at the
constant critical stress o.. The notion of I'-convergence is retrieved and the parameter £ keeps its numerical role.
Parameters & = 0.5 and p = 2 are related to the numerical stability of the proposed algorithm in Subsection 3.3 and
to the boundedness of the damage variable d (Appendix A). Expressions for a; and a3 are justified in Section 4. Now,
the model only requires the material parameters g. and o to be fully determined, which are also discussed in Section
4.
Using variational arguments, one may show that

—div(o(€e, d)) = fio in Q

o-n= fur onT’

u=uy onl» (12)
M,a (d) 2 g’ Ad = —f{(d)y"(€) inQ

Vd-n= on 0Q



where the stress tensor o is given by o = ‘Zie’. Note that o is a non-linear function of € but also of the bulk damage d
since Y = Y(e, d)
o= ‘;—'ﬁ =fild[A<tr(e) >, 1 +2ue | +[A<tr(e)>- 1 +2ue]. (13)

In addition, the right hand side — f](d) ¥*(€) of the bulk damage equation that drives the damage growth is also non-
linear here with respect to d. It represents an additional difficulty compared to many similar works where the choice
fitd)=(01- d)z—leading to a linear expression for f](d)—is commonly made: see for example [29-31]. This will
be discussed in the Subsection 3.3.

3.2. Adhesive debonding model

The model developped in this section is built upon [31, 74] with an approach akin to the bulk damage model
of Subsection 3.1. The adhesive interface I'; between two solids € and Q, is modelled by microscopic bonds as
depicted in Figure 4. An adhesive damage variable S is introduced and plays the role of the bulk damage d: 8 = 0
means that the interface is intact while 8 = 1 means that the interface is completely broken. Considering no bulk
damage both in Q; and €, the total energy of the system is composed of the elastic energy EZI in Q;, the elastic

energy ESZ in €, the elastic energy stored in microscopic bonds E,;.,, and the surface energy E,4, associated with
the debonding process. These energies are defined by

ES = f vi(e)dV, E =f Y2(€)dV, Enicro = f YB, ur, uz)dl, and Egan = | Gaan(B, w1, uz)dl'. (14)
Q Q0

I I

As in the bulk damage model, energy accumulates in microscopic bonds and can be converted to surface energy in
order to increase the adhesive damage 8. The total work of external forces W,,; is written as the sum of the work of
external forces acting on each part of the system taking seperately, i.e. W,y = Wg‘, + ng, + Werj,. The work Werj,
takes into account that the block Q; produces a force reaction —R; while Q, produces the force reaction —R, on
the adhesive interface I';. Equivalently, Wg‘, (resp. Wfff) includes the effect produced by I'; on Q; (resp. €),) since
I, € 0Q (resp. I, € 0€),). This effect reads oy - n; = R; and 0, - n, = R, on I'; by the action-reaction principle.

The total work of external forces is thus expressed as

Wen = fvol ~our dvV + fvurf ~ouy dl + fvol “oup dV + fxurf - ouy dI
Q1 an Qz 392

Q . Q .
W,,}: external forces acting on Q, W, 2: external forces acting on Q,

+ | (=R))-6u1dT + | (=Ry)-Surdl’. (15)

I I

. .
W, 2: external forces acting on I'>

Again, for the configuration described in Figure 4, variational arguments lead to

~div(o((€1)) = fral in Q
o1 -1 = furf onT’
o i
o -n =R, =—(0771 g’u‘l’h) onl,
—div(02(&)) = frol in (16)
U, =uy onlj
o i
0'2-n2=R2=—(aTyz %) onl"z
Obaan _ Oy
T onl’»
where stress tensors o-; and o, are related to elastic energies through o) = W and o, = N Above, the outward
g g € e

normal with respect to Q; (resp. ;) is denoted n; (resp. ny).

As a first attempt using variational approaches in the context of electromechanical de-icing systems and knowing
identification difficulties, the adhesive modelling is here firstly simplified and then improved step by step. Three
adhesive models are considered and summarized in Tab. 1. The first one only takes into account Mode I failure.
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Figure 4: Two solids Q; and Q, with a common adhesive interface I', modelled by microscopic bonds.

However, according to Rice and Sih [75], the local stress at an interface between dissimilar materials presents both
tensile and shear components, even when far-field loads are pure uniaxial tension (Mode I) or shear (Mode II). The
consideration of pure Mode I failure seems therefore questionable [76] and models 2 and 3 presented below gradually
include Mode II failure.

Model 1. The adhesive surface energy ¢4 is defined by analogy with the bulk damage model [31]
Gaan(B w1 w2) = uan(B) = 8¢ 7. a7

The microscopic density energy y writes [31]

YB.ur, ) = HB) 4 < [uly >% + % [< [u], >2 +[u]?] (18)
—————
Vs Yo

In the above relation, f£2(8) = (1 — ,8)2 is the adhesive degradation function, [u] = u, — u; is the displacement jump
across I'; and [u],, (resp. [u],) its normal (resp. tangential) component. The microscopic density function (18) shares
some similarities with the bulk elastic energy : (i) its decomposition into two parts ¥z and yo; (i) only one part—
yp—participates to the debonding process; and (iii) the multiplication of this part by the degradation function f,. Only
Mode I failure is here taken into account: only the positive part of [u], can be degraded into crack surface energy.
The negative part of [u], and the tangential part [u]. are strongly penalized thanks to a numerically infinite stiffness
ke setting to ko, = 10'7 Pa / m in this paper. The penalization of < [u], >_ with a strong—or infinite—stiffness is a
simple but common practice [77-81] to avoid inter-penetration. Note that in that case where ¢4, (58, u; , u2) = Puan(B),
adhesive boundary conditions on I';,—see Eqs (16)—simplify into 0;- n; = R; = —%, i = 1,2. Model 1 only requires
a normal stiffness k as parameter. It will be related to an adhesive critical stress 0¥ for its computation in Section 4.

Model 2. Stored elastic energy y through shear displacements jump [u], can now feed the crack surface energy dqn
and is therefore incorporated into yg. The adhesive crack energy ¢4, is kept isotropic. Model 2 consists in taking

baan (B> w1, 42) = baan(B) = 8" B, (19)
YB, ur, w) = HB) 5 [< [l >3 +or [W]2] + % < [u], >2, (20)
——
VB Yo

where a; = % Again, an isotropic adhesive critical energy g% simplifies adhesive boundary conditions on I'y. The

introduced tangential stiffness k; is much more difficult to calibrate than the normal one and its computation requires
additional modelisation choices coming with additional uncertainties—see for example mixed-mode modelling in
Cohesive Zone Model [82-85]. For that reason, the effect of the tangential component [u], will be investigated by a
sensitivity study on the parameter @, in Section 5.



Adhesive

model Stored energy y in microscopic bonds Fracture energy ¢,
Eq. (18):
Model 1 — Penalized tangential disp. jump for Mode II Eq. (17): isotropic

— Only the positive part of disp. jump participates
to debonding: only Mode I failure
Eq. (20):

Model 2 — Tangential disp. jump including in the debonding Eq. (19): isotropic
process: Mode I and II failure

Eq. (22): Eq. (21): anisotropic
Model 3 — Tangential disp. jump including in the debonding — Mode I and II distinction
process: Mode I and II failure through [u]

Table 1: Summary of the three different adhesive models considered in this paper.

Model 3. Model 3 adds the possibility of a different adhesion energy, denoted gf.dh’", for Mode 1II failure. The adhesive
energy release rate g“dh in ¢,4, now depends on displacements #; and u, in order to split the source term 7s/g« for

the adheswe damage £ into two contributions [86]. In other words g% = g“¥"(u, , u,) is chosen so that afj,, becomes
gjﬁh + M,h,, where yﬁ 4 < [u],>2 and yﬁ = £ ; [u]?. Model 3 is obtained by
Gaan(B, w1, u2) = gLy, w2) B, @1
Y@, u, u) = (B [< [u], > +a- [[u]]i] +E < [u], >2, (22)
| —
VB Yo
with B
s, ) =y ) (2 + o). 23)

The microscopic energy y (22) is left unchanged with respect to Model 2 and a sensitivity study on a, will also be
performed in Section 5. The question of the computation of the new introduced adhesion energy g2 s raised and
we are facing the same issue as for .. In this paper, as an illustration and to provide numerical results, the adhesive
critical energy release rate g"dh s computed with g"dh =10 g% as in [86].

It seems finally useful to recall the expression of the adhesive damage 8 holding on the adhesive interface I'; [31].
Whatever the adhesive model chosen, the last relation of (16) allows the direct computation of 5

-’ 24)
8¢ TV
Since g% and y; are positive, the boundedness of B s trivial, i.e. 0 < 8 < 1. For Model 3, the dependance g% (u, , u)

is omitted in Eq. (24) and in all the following for simplicity but it has to be kept in mind. Appendix C details the
computation of adhesive boundary conditions on I'; in Eqgs (16).

3.3. Coupled adhesive / brittle failure model

At this stage, all energies have been introduced and the complete coupled adhesive / brittle failure model can be
derived. This derivation is briefly detailed in Appendix D to highlight that the coupling is only done through the
variational principle.

Restarting from the configuration of Figure 4, we consider this time Dirichlet and Neumann boundary conditions
both in Q; and Q, for generality. The block Q; can undergo brittle failures while no bulk damage is considered in
Q,. The boundary 9Q, is decomposed into 9Q; = F?‘ ulu F?‘ where 1“?1 supports Neumann boundary condition



o1 -1 = farr, 1"?1 supports Dirichlet boundary condition #; = u, and I'; is the common adhesive interface with Q.
Of course, the same is done for 0Q,: 9Q; = I“?z ul,u l"?z. The total energy of the system writes

Emz=f lﬁl(fl,d)dv'*'f ¢(d,Vd)dV+f zﬁz(ez)dV+f¢adh([3,u1,u2)dl"+fy(ﬂ,ul,uz)dr. (25)
Q Q Q I

I

E%l Ecrack Esiz Eqan Emicro
e o

Using variational arguments on the energy E,,, (25), one gets the complete set of equations to be solved

—div(o(€1, d) = fro in Q
n = fsurf on F?l
U =uy on 1"?1
o —Rlz—(%+6g7”‘:h) on I
L a'(d)-25 Ad = —f{(d)yie) in Q
vd - n1 =0 on 00 (26)
B= uthryﬂ on Iy
—div(2(€)) = frol in
oy = fof on 1"?2
U, = uy on 1"?2
02-n2=R2=—(§Ty2+aa¢—;Zh) on 1"2

Before we proceed to the algorithm description, the bulk damage equation in (26) is modified. First of all, one can
introduce the expression of @’ coming from (8)

2(1- &) £5d - 2500d = — fl(d) Y (e) — L5, 27)

As remarked in Subsection 3.1, f] is here non-linear. Anticipating the linearization of the system (26), f] is written
under the form f{(d) = K(d) (d — 1) where K(d) > 0. Eq. (27) becomes

[200-8) & + K@) yi(e)|d -2 4E0d = K@) i (e)) - 25 (28)
_,—/
A B

The iterative Algorithm 1 is implemented to solve the system (26). In this paper, the difference between two
successive iterations for both the adhesive and cohesive damages serves as a stopping criterion. Tolerances ez and
€, are set to 1073, It should be noted that equilibrium equations cannot be solved independently in Q; and in Q;:
displacements u; and u, are coupled through the boundary condition on I'; since ;uy , a;‘l"l’h, ;:2 and a"’“‘”’ depend both
on displacements u; and u,. Following Miehe et al. [51], the irreversibility is 1ntroduced through the history fields
H, and Hg—respectively retaining the maximum of stored energies ; and y; throughout iterations. Non-linear
terms are linearized taking advantage of the iterative resolution. For an iteration i: (i) the function K(d) coming from
f{—see Eq. (28)—depends on d'='; (ii) stress tensors oy and 0, also depend on €~!—see [31, Appendix B]; and (iii)
the current displacement jump [u] is replaced by the old one [u'~'] for the computation of F in adhesive boundary
conditions on I, [31]. Computation of the damage, the mechanical equilibrium and adhesive boundary conditions
through Egs. (31) and (32) are therefore not equivalent to their counterpart in Eqs (26). Function F is given in
Appendix C by Eq. (C.2) and has to be simplified depending on the considered adhesive modelling. It should be
noted that Eq. (28) does not guarantee the boundedness of the damage variable d, i.e. 0 < d < 1. Following Appendix
A, a theoritical sufficient condition for 0 < d < 1 is given by (A.4):

2(1—;“) S+ KHg > >

ﬁ_/
Term A Term B

Term A is always positive with & = 0.5 since K H,; > 0 and C‘i—"{, > 0. Term B—playing the role of the damage source
term—is slightly modified to stay positive. The bulk damage variable d' for the iteration i is thus computed as follows

[2 (-6 L+ K(d"-l)ﬂg] d'—2%Ad" = max (0, K(d™)H) - £5¢). (29)
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Numerically, in addition with conditions (A.4), one also needs that meshes do not present angles superior to 90°
[30, 31]. In all numerical results of Section 5, mesh’s quality is not checked and the damage variable d is observed to
stay strictly positive but exceeds the upper bound only very slightly (effect on the third decimal).

Algorithm 1: Adhesive / brittle failure computation

initialization : perform a purely elastic computation (no adhesive or bulk damage);
while |8 - 87| < € and ||d' — d"" ||, < €; do
Compute history fields;

H', = max (7—[(’;1 , ;lrg(e{")) in Q; and 7—(/’; = max (7—(1’;" , 75([[ui"]])) onT, (30)
Solve the bulk damage Eq. (29) in ©; and compute the adhesive damage on I'; with (24) ;

[20 -8 25 + K@) H|d' -2 £5Ad = max (0, K@) H) - £5¢)  inQ,
Vdi-n =0 on Q) G1)
;)

i _
B = P onl»

Solve the mechanical equilibrium in Q; and Qj;

~div(oi(€. e d)) = frg inQ ~div(oa&. &)= fru  in

o = fur onT ol m = fur on [¥»
u =uy onT$ ul=uy on 3"
o -n =-F (ﬁi, [[ui‘lﬂ) [u] and ol om = F(,Bi, [[u"lﬂ) [u] onT,

(32)

end

The two full linear problems (31) and (32) can now be solved by classical finite element methods [29, 31]. In
particular, P; Lagrange shape functions are considered on unstructured triangular meshes and a direct LU solver is
applied on resulting linear systems.

In Algorithm 1, cohesive and adhesive damages are coupled: the damage state d near the adhesive interface
influences the adhesive damage 3 and, conversely, so does 8 on d. It couples cohesive and adhesive variables d and 8
only through displacements u—more precisely through displacement jumps [u] across the adhesive interface I';. In
particular, the adhesive interface keeps the same energy release rates g, g™ and the same stiffnesses k, a; = k/k
whatever the damage state d. It would be very interesting to discuss the influence of d and 8 on each other together
with more sophisticated coupling. However, such studies are beyond the scope of the present paper and postponed to
later publications.

To close this section, it seems relevant to discuss the parameters & and p for brittle fracture summarized in Section
3.1. Our choice strongly relies on the resolution method described here. The value p = 2 is not only largely used
in literature [59, Remark 2.3], it is also the choice that leads to a better numerical stability for (31). Wu shows in
[59] that this parameter heavily affects the stress softening behavior in the damage localization phase. Once p is
fixed, a, and a3 therefore follow to fit the classical corresponding softening law (see Section 4 and Appendix B). The
geometric parameter é—restricted to & €]0, 2] [59, 73]—is finally constrained by £ < 1 as it guarantees that term
A in (A.4) is positive for the boundedness of d—see Appendix A. Note that the value & = 0, discussed for example
in [29-31, 42, 51, 52, 59, 70, 72, 87], is excluded since it lacks an initial elastic phase [73]. Among choices already
considered in literature, it thus only remains & = 0.5 [42, 59, 70] and ¢ = 1 [59, 70-72, 87]. A lower numerical stability
of (31) is observed for & = 1 compared to ¢ = 0.5, with p = 2, justifying the choice ¢ = 0.5. The recommendation
of Wu [59] to take the larger value £ = 2 is therefore not followed in this paper. This value ¢ = 2 allows satisfying
an irreversibility condition on the crack bandwidth in a 1D homogeneous framework: the crack bandwidth cannot
shrink. Here, the irreversibility is forced by the history function whatever the value of ¢ and the crack bandwidth
cannot effectively shrink.
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Parameter Value Parameter Cohesive  Adhesive (ice/aluminium)
Young’s modulus ¢;.. 9.3 GPa Strength o, 3 MPa 1 MPa
Poisson’s ratio v;., 0.325 Critical energy release rate g.  1J/m? 0.5J/m?

Table 2: Elastic coefficients, cohesive and adhesive properties for freezer ice [22] used in this paper.

4. Mechanical properties of ice

Our proposed mechanical modelling requires the knowledge of ice characteristics. As mentioned in Section 2,
macroscopically, a brittle behaviour is observed for high strain rate [26]. To provide numerical results, the following
classical parameters are needed: ice Young’s modulus c;.., ice Poisson’s ratio v, cohesive critical energy release rate
2. adhesive energy g%, cohesive critical strength o and adhesive critical strength 0%, These parameters may vary
considerably in literature [24, 25, 50, 88—-94] depending on the type of ice (glaze or rime), the means to obtain this
ice (freezer or wind tunnel), the type of degradation (cohesive or adhesive) and the interface material. Identification
is a huge area of research in itself and uncertainties related to these parameters are beyond the scope of this paper,
although the authors are fully aware of them. As an example, a recent review of ice adhesion on solid substrates [94]
gathered 113 papers and concluded that results agreed within two or three order of magnitude on the adhesive critical
strength 04" at given temperature—other critical values such as roughness are more poorly determined. A similar
issue arises for the cohesive critical material strength o, which is introduced in the brittle fracture model through the
Relation (10) in Subsection 3.1, derived in a uniaxial homogeneous case. Ideally, the value of o, should be identified
on a test where an accurate measurement of the local stress in the nucleation zone can be performed: see for example
the PIED (Pour Identifier I'Endommagement Diffus) test for concrete [95], reproducing uniaxial and homogeneous
conditions. To the author’s knowledge, such tests for the ice do not exist yet in the literature and we use the critical
material strength o, given by Budinger et al. [22]. The other parameters previously mentioned are also provided
in [22]: see Tab. 2. Keeping in mind the high scattering of materials’ parameters in literature, values of Tab. 2
are no exception but it should be mentioned that results given in Section 5 are only used to highlight ice shedding
trends. Then, these trends are only compared with postulated fracture mechanisms of [22]. Close comparisons with
experimental results are excluded in this paper. Now, all parameters required by the model are not directly given by
Budinger et al. in [22]. Some of them need to be related with the values of Tab. 2.

Brittle fracture parameters. In addition with ice parameters already given in Tab. 2, the model described in Subsection
3.1 needs the computation of ¢, p, &, ay, a; and az. Values of £, p, &, and a, are already justified in Subsections 3.1 and
3.3. The focus is here on a; and a3 which are related to the classical ice properties of Tab. 2. To that end, the approach
of Wu [59] is followed and briefly described in Appendix B: (i) the equivalent Cohesive Zone Model of the phase-field
variational approach to brittle fracture is formulated; (ii) the initial slope kq and the ultimate crack opening w, of the
Cohesive Zone Model are expressed; (iii) parameters a, and a; are deduced from ky and w,; and (iv) a softening law
is chosen (depending on the parameter p) fixing the pair (ko , w.) and thus (a, , a3). For p = 2, we get Relations (B.6)

2 %3
a, = é |:(—4ﬂ§ g—(,k()) +1

¢ o7

—-(p+1), and a3=-<L1

az

L(ger) - (+a),

2
[

where ky = ~35
softening law.

and w, = i—g are respectively the initial slope (B.7) and the ultimate crack opening (B.8) of a linear

c

Adhesive parameters. Whatever the adhesive modelling, the normal stiffness k of microscopic bonds and the adhesive
energy g%/ for Mode I failure are needed. Models 2 and 3 respectively add the ratio a, = l% and the adhesive energy

g™ for Mode 11 failure. A sensitivity study is performed on a,. Mode I adhesion energy g% is given in Tab. 2
while gfdh’H =10 g?dh =57/ m? is chosen [86] as an illustration in order to provide numerical results. Finally, the
computation of the normal stiffness & is performed thanks to a pure one-dimensional adhesive traction test such as in
Figure 4 and described in Appendix E. Adhesive Model 1 is considered. In that case, adhesive boundary conditions

explicited in Appendix C simplify into
o([ul) =R = -5~ =Ry = 3~ = k(1 - p)* [u]. (33)
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Figure 5: Considered mode n = 6 with Wy = 15 um applied on the configuration Figure 1: (a) spatial component W and the simulated “cut” zone;
and (b) aluminium substrate warped by 1000 X u and colored by ||u||.

Eq. (33) is used to relate the normal stiffness k to the classic adhesive strength 0?". Cancellation of the derivative

d‘f[‘;]] yields

adh adh
k= %ng where the critical opening is here  w, = 3 £ 34)

o

Values g%" = 0.5 J / m? and 0“¥" = 1 MPa of Tab. 2 imply k = 9.48 x 10> Pa/ m thanks to Eq. (34).

c

5. Numerical simulations

5.1. Generalities
First of all, sanity checks are performed seperately on a cohesive and adhesive case in order to verify our imple-
mentation. They are presented in Appendix E.

Selected mode. The coupled adhesive / brittle failure method described in Section 3 is now applied to the configuration
of Figure 1. It is recalled that the load W(x) is a flexural mode given by

W(x) = W sin (222). (35)

The sixth mode of the structure n = 6 together with the spatial amplitude Wy = 15 um are chosen. This mode is
displayed in Figure 5 and corresponds to the resonance frequency f =~ 8.4 kHz [22, Tab. 3] (w =~ 53300 rad / s). This
resonance frequency is high enough to observe fractures while staying below 15 kHz as recommended in Subsection
2.1.

Computational settings. A progressive load is adopted for all tests: the mode amplitude is increased at each iteration
until reaching Wy = 15 um. For computational cost considerations, simulations are performed only on one wave
length of the mode thanks to periodic boundary conditions applied on right and left boundaries. The simulated wave
length is indicated by the “cut” shaded zone in Figure 5(a). The ice layer (€2;) is discretized into 1208 220 triangular
cells of maximum size Ay, =~ 24.8 um generated by GMSH [96]. Only the upper part, with respect to the neutral
line A, of the aluminium substrate (€2,) is meshed with 283 386 triangular cells of maximum size h,,,, ~ 23.2 um.
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