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Abstract

Electromechanical resonant de-icing systems provide a low-energy solution against ice accumulation on aircraft.
Recent researches show a growing interest towards these systems in the context of more electrical aircraft. Electrome-
chanical de-icing systems consists in electric actuators producing stress within the ice, through micro-vibrations of
the surface to be protected, leading to bulk or adhesive failure and, ultimately, ice shedding. The understanding of the
mechanisms at play is of prime importance in order to design efficient ice protection systems. Despite a large number
of studies in the literature, there is still a lack when dealing with fracture propagation phenomena in this context. In
this work the authors propose a model based on the well established phase-field variational approach to fracture. The
approach is applied to the study of crack propagation and debonding of ice under the effect of an electromechanical
resonant de-icing system. Numerical experiments are performed in order to assess possible ice shedding mechanisms.

Keywords: Electromechanical de-icing, Numerical modelling, Phase-field methods, Fracture mechanics, Adhesive
debonding

1. Introduction

Icing has been identified as a severe issue since the beginning of aviation [1, 2]. It can occur both during flight and
on ground. In flight, ice accretion is caused by supercooled droplets suspended in clouds. They impact the aircraft
surfaces and freeze. Ice then accumulates on the surface which may lead to an increase of mass, the degradation of
aerodynamic performances or engine damage/flameout due to ice ingestion.

Ice protection systems are then required to ensure aircraft safety [3]. Current strategies for anti-icing or de-icing
can be chemical, thermal, mechanical or a combination of them [4, 5]. Of course, each of these strategies possesses
their own drawbacks and advantages [6, Tab. 1] and the choice depends on the targeted applications. In the context of
more electrical aircraft, electromechanical solutions are especially interesting for their potential in terms of weight,
durability and energy savings. The basic idea consists in feeding the protected surface with vibrations by means of
electric actuators. These vibrations generate stress within the ice leading to cohesive (bulk fracture) and adhesive
(delamination) failures.

A large amount of work has been carried out to study the efficiency of electromechanical ice protection systems.
In the low frequency range (Hertz), Venna et al. focused on energy and weight considerations either by using smart
structures [7, 8] or by combining shear and impulse forces [9]. The de-icing power of waves in the megaHertz range
has been addressed by Ramanathan et al. [10] or by Kalkowski et al. [11] through semi-analytical models and
experiments. However, most of the studies and the main focus of the present work lie within the kiloHertz range.
Experiments together with finite elements modeling—mainly conducted by Palacios, Overmeyer et al. [12–18] but
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Figure 1: Electromechanical de-icing systems: (a) the analytic beam studied in [20, 22] and re-used in this paper as a test case; and (b) position hn
of the neutral line where the mode shape W(x) is applied as a Dirichlet boundary condition.

also by Villeneuve et al. [19] or Strobl et al. [4] for an hybrid approach—showed the efficiency of ultrasonic de-icing
at low-energy costs both on plates and helicopter rotor blades.

Nevertheless, there is still a lack of understanding concerning the mechanisms leading to the fracture and debond-
ing of ice. Using beam theory, modal analysis and numerical tools, Budinger et al. provided a first step in this direction
[20–22]. The resulting information was integrated into the design phase and guided the choice of vibrational modes.
However, in their numerical analysis, Budinger et al. assumed a priori crack propagation and debonding mechanisms.

The goal of this paper is to assess the fracture mechanisms introduced by Budinger et al. [22]. To do so, a
phase-field variational approach to fracture and adhesive debonding is used in order to fully simulate the shedding
mechanism. The method allows to remove a priori assumptions on initation and propagation direction of fracture
made in [22]. Our algorithm is tested on the analytical beam model of [22]. Knowing the variability of ice character-
istics in literature, these results are only used to identify trends in the ice shedding process.

The paper is organized as follows: (i) Section 2 provides some details on electromechanical de-icing systems and
re-introduces the analytical beam model and fracture mechanisms of [22]; (ii) Section 3 describes the mechanical
modelling of cohesive and adhesive failure; (iii) Section 4 deals with the mechanical properties of ice and related
issues; (iv) Section 5 is dedicated to the numerical results and related discussions; and (v) Section 6 concludes this
paper and presents ongoing work.

2. Ice shedding mechanisms in electromechanical de-icing systems

2.1. Set up and assumptions
Budinger et al. [20, 22] modelled an electromechanical de-icing system by the configuration displayed in Figure

1(a), which is re-used in this paper as a test case. The aluminium support of length a = 154 mm, with simply supported
boundary conditions, is covered by a layer of freezer ice—both of constant thicknesses halu = 1.5 mm and hice = 2
mm. Anti-icing mode of ice protection systems [23] or ice accretion models [24, 25] are thus not discussed here.
Both the aluminium and the ice are considered as an elastic isotropic homogeneous material. Elastic coefficients for
aluminium are set to calu = 69 GPa and νalu = 0.334. Ice characterization is a more complex task and this is discussed
in Section 4. Macroscopically, fracture is assumed to be: (i) brittle, which is justified for high strain rate [26]; and (ii)
instantaneous. Shreurs [27] estimates the fracture propagation velocity in ice to be about 20 to 40 % of the speed of
sound vs =

√
cice / ρ, yielding v ' 1000 m / s.

Mode shapes are supposed to be identical to that of a uniform beam which undergoes in-plane extensional and
out-of-plane flexural modes, essentially used in the literature. Investigation of the available analytical formulas in [22,
Tab. 3]—derived from [28]—shows that pure extensional modes generate, at given frequency and magnitude, lower
tensile stress at the top of the ice surface and lower shear stress at the ice / aluminium interface. Extensional modes
also generally appear at higher frequencies (over 15 kHz) and thus: (i) require more energy; and (ii) may involve
three-dimensional effects. Consequently, excitation of flexural modes—up to approximately 15 kHz—is privileged in
this work. These modes write [22, Tab. 3]

w(x, t) = W(x) sin (ω t) = W0 sin
(

n π x
a

)
sin (ω t) . (1)
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Figure 2: The two possible kinds of fracture: cohesive in the ice layer or adhesive (delamination) at the ice-substrate interface. Corresponding
mechanisms postulated in [22] for delamination.

Refering to the estimation of the fracture propagation velocity, the characteristic time of fracture is negligible against
the vibratory amplitude of modes under 40 kHz. Therefore, only the spatial part W(x)—i.e. the maximum amplitude
of w(x, t) in time—is retained here. According to the beam assumption, the flexural mode shape W(x) is applied on
the neutral line given by [22, Tab. 3]

hn = 1
2

calu h2
alu − cice h2

ice

calu halu + cice hice
, (2)

as described in Figure 1(b). This work is technology-independant and technology considerations [3] are not discussed
in this paper.

The problem considered in this paper reduces to find a steady-state (fractured or not) compatible with the external
load W(x).

2.2. Postulated ice shedding mechanisms

Two ice shedding mechanisms are postulated by Budinger et al. in [22]. They are depicted in Figure 2 for
flexural modes: maximum shear (resp. tensile) stress region is called a node (resp. an antinode) and is colored in
blue (resp. red). Mechanism 1 corresponds to a cohesive fracture initiated by tensile stress at the top of the ice
surface, propagating through the thickness and causing delamination thanks to a re-distribution of the stress at the
ice/aluminium interface. In mechanism 2, the shear stress at the interface is sufficient to delaminate the ice, without
cohesive failures. The energy balance approach for fracture propagation considered in [22] allows discriminating
between the two mechanisms when flexural modes are applied: (i) initiation of a cohesive fracture and propagation
through the entire ice thickness is possible at low frequencies but an adhesive damage (delamination) generally not
follows and often requires higher magnitude (i.e. voltage); and (ii) mechanism 2 is unlikely to occur.

3. Mechanical modelling

This section presents the mechanical modelling considered in this paper, building upon previous work [29–31].
It includes both brittle fracture and adhesive debonding. These two phenomena are firstly discussed and modelled
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Figure 3: Illustration of a cracked material.

separately. The different terms involved in the model along with equations are introduced and justified. In a final step,
all these terms are gathered and the full coupled model is derived. The resolution method closes the section.

3.1. Brittle fracture model

Modelling fracture mechanics is not an easy task. Several methods are available in the literature, e.g. XFEM [32–
34], remeshing [35–37], Cohesive Zone Models [38–40] or Variational Approach [41, 42]. Concerning applications to
ice, all these methods have been applied: both XFEM [43] and remeshing [44, 45] are used for modeling ice-floe/sea-
ice fractures; Cohesive Zone Model have been successfully applied for sea-ice and structure interactions [46–48]
but also for aircraft (or similar) applications [49, 50]; cohesive and adhesive failures of ice on an aluminium airfoil
have been investigated thanks to a variational approach in the context of electrothermal de-icing systems [29–31].
Regarding electromechanical ice protection systems, Budinger et al. compared a computed energy release rate to a
given fracture toughness, according to Griffith’s theory [27], to determine if a fracture is unstable or not [22]. To the
authors’ knowledge, it is the only attempt to numerically study fracture propagation in this context. As an energy
balance approach, the work of Budinger et al. took the same flavor as in [31] but assumed fracture mechanisms to be
known.

The method described here falls into the concept of variationnal approaches [41, 42] and phase-field models [51–
56]. Note that some authors combined this approach with other fracture methods such as remeshing [57]. The problem
is formulated with an energy functional and relies on an energy conservation principle. The energy conservation
principle translates the interplay between elastic energy Eel and crack surface energy EΓ [58]. We consider a material
Ω, cracked on the surface Γ, clamped on Γ3 and undergoing an external force fsur f on Γ1 such as in Figure 3. The model
targets the balance between Eel and EΓ for this particular configuration and thus predicts a steady state compatible
with external loads applied on Γ1 and Γ3. As a phase-field model, the crack surface energy EΓ—written in the form of
a surface integral—is approximated by a volume integral Ecrack through the introduction of a smooth scalar damage
variable d ∈ [0, 1] [52]

EΓ =

∫
Γ

gc dΓ '

∫
Ω

φ(d , ∇d) dV = Ecrack.

The variable d smoothly interpolates between broken states (d = 1) and unbroken states (d = 0), the width of the
regularized crack being measured by a parameter `.

The starting point of the model is elastic energy Eel and regularized crack surface energy Ecrack

Eel =

∫
Ω

ψ(ε , d) dV and Ecrack =

∫
Ω

φ(d , ∇d) dV. (3)

According to [52, 59], the crack surface density function φ—approximating the Griffith’s surface energy—is expressed
as

φ(d , ∇d) =
gc
c0

(
1
`
α(d) + `∇d · ∇d

)
where c0 = 4

∫ 1

0

√
α(s) ds. (4)
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The “so-called” Γ-convergence [60–67] guarantees that the volume integral Ecrack—with the crack density function
φ given by (4)—actually converges toward the Griffith’s surface energy EΓ as the parameter ` goes to zero. If some
difficulties can arise in practice [68], Γ-convergence results hold at least numerically [51, 59, 69]. Miehe et al. [51]
propose to split the elastic density function into purely tensile ψ+ and compressive ψ− parts defined by using the
eigenvalues of ε (ε? and ε� in two dimensions) and a positive/negative part function noted < . >±

ψ+(ε) = λ
2 < ε? + ε� >

2
+ +µ (< ε? >2

+ + < ε� >
2
+) (5)

ψ−(ε) = λ
2 < ε? + ε� >

2
− +µ (< ε? >2

− + < ε� >
2
−). (6)

Only the tensile part contributes to crack nucleation or propagation. Consequently, ψ+ is multiplied by a function
f1(d) representing the degradation of this tensile part into crack surface energy

ψ(ε , d) = f1(d)ψ+(ε) + ψ−(ε). (7)

It now remains to define the geometric function α and the degradation function f1, which have to satisfy the
following requirements [52]

α(0) = 0, α(1) = 1, f1(0) = 1, f1(1) = 0, f ′1(1) = 0 and f ′1(d) < 0.

Many expressions exist for α and f1: see for example [29–31, 51, 52, 70–72]. This choice greatly influences the
model behavior but, in the general case, the strain-stress relation takes the following form: (i) an elastic phase from
(ε , σ) = (0, 0) to (ε , σ) = (εe , σe), where the damage remains 0 everywhere; (ii) an homogeneous damage phase
from (ε , σ) = (εe , σe) to (ε , σ) = (εc , σc), where the damage increases but remains homogeneous in the domain;
(iii) a damage localization phase from (ε , σ) = (εc , σc) to (ε , σ) = (+∞ , 0), where cracks appear and develop.
Following [59, 73], the two functions α and f1

α(d) = d
[
ξ + (1 − ξ) d

]
, (8)

f1(d) =
(1 − d)p

(1 − d)p + a1 d P(d)
and P(d) = 1 + a2 d + a2 a3 d2, (9)

are adopted in this paper with

a1 =
2 ξ cice gc

c0 ` σ2
c
, (10)

ξ = 0.5, p = 2, a2 = 1
ξ

[(
−

4 π ξ2

c0

gc

σ2
c

k0

)2/3

+ 1
]
− (p + 1), a3 = 1

a2

[
1
ξ

(
c0 ωc σc

2 π gc

)2
− (1 + a2)

]
, (11)

where k0 = −
σ2

c
2 gc

and ωc =
2 gc
σc

are respectively the initial slope (B.7) and the ultimate crack opening (B.8) of a linear
softening law. For this choice, there is no homogeneous damage phase—i.e. εe = εc and σe = σc denoted εc and σc

in all the following. Cracks thus appear just after the elastic phase. Constitutive relations (8)-(9)-(10)-(11) present
some advantages: (i) the presence of an elastic phase where d = 0 everywhere; (ii) a finite crack support in which
d > 0 in the damage localization phase; and (iii) an `-independant critical stress σc. Concerning the latter point, `
can be considered as a constant material parameter [70, 72] but the Γ-convergence is lost. Here, an `-independant
critical stress σc is achieved through Relation (10)—see Appendix B and [73] for more details. In this case, one can
let the parameter ` go to zero in order to obtain sharper crack topology while maintaning the crack nucleation at the
constant critical stress σc. The notion of Γ-convergence is retrieved and the parameter ` keeps its numerical role.
Parameters ξ = 0.5 and p = 2 are related to the numerical stability of the proposed algorithm in Subsection 3.3 and
to the boundedness of the damage variable d (Appendix A). Expressions for a2 and a3 are justified in Section 4. Now,
the model only requires the material parameters gc and σc to be fully determined, which are also discussed in Section
4.

Using variational arguments, one may show that

−div (σ(ε , d)) = fvol in Ω

σ · n = fsur f on Γ1
u = ud on Γ2
gc

c0 `
α′(d) − 2 gc `

c0
∆d = − f ′1(d)ψ+(ε) in Ω

∇d · n = 0 on ∂Ω

(12)
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where the stress tensor σ is given by σ =
∂ψ
∂ε . Note that σ is a non-linear function of ε but also of the bulk damage d

since ψ = ψ(ε , d)
σ =

∂ψ
∂ε = f1(d)

[
λ < tr(ε) >+ 1 + 2 µ ε+

]
+

[
λ < tr(ε) >− 1 + 2 µ ε−

]
. (13)

In addition, the right hand side − f ′1(d)ψ+(ε) of the bulk damage equation that drives the damage growth is also non-
linear here with respect to d. It represents an additional difficulty compared to many similar works where the choice
f1(d) = (1 − d)2—leading to a linear expression for f ′1(d)—is commonly made: see for example [29–31]. This will
be discussed in the Subsection 3.3.

3.2. Adhesive debonding model

The model developped in this section is built upon [31, 74] with an approach akin to the bulk damage model
of Subsection 3.1. The adhesive interface Γ2 between two solids Ω1 and Ω2 is modelled by microscopic bonds as
depicted in Figure 4. An adhesive damage variable β is introduced and plays the role of the bulk damage d: β = 0
means that the interface is intact while β = 1 means that the interface is completely broken. Considering no bulk
damage both in Ω1 and Ω2, the total energy of the system is composed of the elastic energy EΩ1

el in Ω1, the elastic
energy EΩ2

el in Ω2, the elastic energy stored in microscopic bonds Emicro and the surface energy Eadh associated with
the debonding process. These energies are defined by

EΩ1
el =

∫
Ω1

ψ1(ε1) dV, EΩ2
el =

∫
Ω2

ψ2(ε2) dV, Emicro =

∫
Γ2

γ(β , u1 , u2) dΓ, and Eadh =

∫
Γ2

φadh(β , u1 , u2) dΓ. (14)

As in the bulk damage model, energy accumulates in microscopic bonds and can be converted to surface energy in
order to increase the adhesive damage β. The total work of external forces Wext is written as the sum of the work of
external forces acting on each part of the system taking seperately, i.e. Wext = WΩ1

ext + WΩ2
ext + WΓ2

ext. The work WΓ2
ext

takes into account that the block Ω1 produces a force reaction −R1 while Ω2 produces the force reaction −R2 on
the adhesive interface Γ2. Equivalently, WΩ1

ext (resp. WΩ2
ext) includes the effect produced by Γ2 on Ω1 (resp. Ω2) since

Γ2 ⊂ ∂Ω1 (resp. Γ2 ⊂ ∂Ω2). This effect reads σ1 · n1 = R1 and σ2 · n2 = R2 on Γ2 by the action-reaction principle.
The total work of external forces is thus expressed as

Wext =

∫
Ω1

fvol · δu1 dV +

∫
∂Ω1

fsur f · δu1 dΓ︸                                           ︷︷                                           ︸
WΩ1

ext : external forces acting on Ω1

+

∫
Ω2

fvol · δu2 dV +

∫
∂Ω2

fsur f · δu2 dΓ︸                                           ︷︷                                           ︸
WΩ2

ext : external forces acting on Ω2

+

∫
Γ2

(−R1) · δu1 dΓ +

∫
Γ2

(−R2) · δu2 dΓ︸                                             ︷︷                                             ︸
WΓ2

ext : external forces acting on Γ2

. (15)

Again, for the configuration described in Figure 4, variational arguments lead to

−div (σ1(ε1)) = fvol in Ω1
σ1 · n1 = fsur f on Γ1

σ1 · n1 = R1 = −
(
∂γ
∂u1

+
∂φadh
∂u1

)
on Γ2

−div (σ2(ε2)) = fvol in Ω2
u2 = ud on Γ3

σ2 · n2 = R2 = −
(
∂γ
∂u2

+
∂φadh
∂u2

)
on Γ2

∂φadh
∂β

= −
∂γ
∂β

on Γ2

(16)

where stress tensors σ1 and σ2 are related to elastic energies through σ1 =
∂ψ1
∂ε1

and σ2 =
∂ψ2
∂ε2

. Above, the outward
normal with respect to Ω1 (resp. Ω2) is denoted n1 (resp. n2).

As a first attempt using variational approaches in the context of electromechanical de-icing systems and knowing
identification difficulties, the adhesive modelling is here firstly simplified and then improved step by step. Three
adhesive models are considered and summarized in Tab. 1. The first one only takes into account Mode I failure.
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Figure 4: Two solids Ω1 and Ω2 with a common adhesive interface Γ2 modelled by microscopic bonds.

However, according to Rice and Sih [75], the local stress at an interface between dissimilar materials presents both
tensile and shear components, even when far-field loads are pure uniaxial tension (Mode I) or shear (Mode II). The
consideration of pure Mode I failure seems therefore questionable [76] and models 2 and 3 presented below gradually
include Mode II failure.

Model 1. The adhesive surface energy φadh is defined by analogy with the bulk damage model [31]

φadh(β , u1 , u2) = φadh(β) = gadh
c β2. (17)

The microscopic density energy γ writes [31]

γ(β , u1 , u2) = f2(β) k
2 < JuKn >

2
+︸         ︷︷         ︸

γβ

+ k∞
2

[
< JuKn >

2
− +JuK2

τ

]︸                      ︷︷                      ︸
γ0

. (18)

In the above relation, f2(β) = (1 − β)2 is the adhesive degradation function, JuK = u2 − u1 is the displacement jump
across Γ2 and JuKn (resp. JuKτ) its normal (resp. tangential) component. The microscopic density function (18) shares
some similarities with the bulk elastic energy ψ: (i) its decomposition into two parts γβ and γ0; (ii) only one part—
γβ—participates to the debonding process; and (iii) the multiplication of this part by the degradation function f2. Only
Mode I failure is here taken into account: only the positive part of JuKn can be degraded into crack surface energy.
The negative part of JuKn and the tangential part JuKτ are strongly penalized thanks to a numerically infinite stiffness
k∞ setting to k∞ = 1017 Pa / m in this paper. The penalization of < JuKn >− with a strong—or infinite—stiffness is a
simple but common practice [77–81] to avoid inter-penetration. Note that in that case where φadh(β , u1 , u2) = φadh(β),
adhesive boundary conditions on Γ2—see Eqs (16)—simplify into σi · ni = Ri = −

∂γ
∂ui

, i = 1, 2. Model 1 only requires
a normal stiffness k as parameter. It will be related to an adhesive critical stress σadh

c for its computation in Section 4.

Model 2. Stored elastic energy γ through shear displacements jump JuKτ can now feed the crack surface energy φadh

and is therefore incorporated into γβ. The adhesive crack energy φadh is kept isotropic. Model 2 consists in taking

φadh(β , u1 , u2) = φadh(β) = gadh
c β2, (19)

γ(β , u1 , u2) = f2(β) k
2

[
< JuKn >

2
+ +ατ JuK2

τ

]︸                        ︷︷                        ︸
γβ

+ k∞
2 < JuKn >

2
−︸          ︷︷          ︸

γ0

, (20)

where ατ =
kτ
k . Again, an isotropic adhesive critical energy gadh

c simplifies adhesive boundary conditions on Γ2. The
introduced tangential stiffness kτ is much more difficult to calibrate than the normal one and its computation requires
additional modelisation choices coming with additional uncertainties—see for example mixed-mode modelling in
Cohesive Zone Model [82–85]. For that reason, the effect of the tangential component JuKτ will be investigated by a
sensitivity study on the parameter ατ in Section 5.
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Adhesive
model Stored energy γ in microscopic bonds Fracture energy φadh

Model 1

Eq. (18):
→ Penalized tangential disp. jump for Mode II
→ Only the positive part of disp. jump participates
to debonding: only Mode I failure

Eq. (17): isotropic

Model 2
Eq. (20):
→ Tangential disp. jump including in the debonding
process: Mode I and II failure

Eq. (19): isotropic

Model 3
Eq. (22):
→ Tangential disp. jump including in the debonding
process: Mode I and II failure

Eq. (21): anisotropic
→ Mode I and II distinction
through JuK

Table 1: Summary of the three different adhesive models considered in this paper.

Model 3. Model 3 adds the possibility of a different adhesion energy, denoted gadh,II
c , for Mode II failure. The adhesive

energy release rate gadh
c in φadh now depends on displacements u1 and u2 in order to split the source term γβ/gadh

c for
the adhesive damage β into two contributions [86]. In other words gadh

c = gadh
c (u1 , u2) is chosen so that γβ

gadh
c

becomes
γI
β

gadh
c

+
γII
β

gadh,II
c

where γI
β = k

2 < JuKn >
2
+ and γII

β = k
2 ατ JuK2

τ. Model 3 is obtained by

φadh(β , u1 , u2) = gadh
c (u1 , u2) β2, (21)

γ(β , u1 , u2) = f2(β) k
2

[
< JuKn >

2
+ +ατ JuK2

τ

]︸                        ︷︷                        ︸
γβ

+ k∞
2 < JuKn >

2
−︸          ︷︷          ︸

γ0

, (22)

with
gadh

c (u1 , u2) = γβ /
(
γI
β

gadh
c

+
γII
β

gadh,II
c

)
. (23)

The microscopic energy γ (22) is left unchanged with respect to Model 2 and a sensitivity study on ατ will also be
performed in Section 5. The question of the computation of the new introduced adhesion energy gadh,II

c is raised and
we are facing the same issue as for ατ. In this paper, as an illustration and to provide numerical results, the adhesive
critical energy release rate gadh,II

c is computed with gadh,II
c = 10 gadh

c as in [86].
It seems finally useful to recall the expression of the adhesive damage β holding on the adhesive interface Γ2 [31].

Whatever the adhesive model chosen, the last relation of (16) allows the direct computation of β

β =
γβ

gadh
c + γβ

. (24)

Since gadh
c and γβ are positive, the boundedness of β is trivial, i.e. 0 ≤ β ≤ 1. For Model 3, the dependance gadh

c (u1 , u2)
is omitted in Eq. (24) and in all the following for simplicity but it has to be kept in mind. Appendix C details the
computation of adhesive boundary conditions on Γ2 in Eqs (16).

3.3. Coupled adhesive / brittle failure model

At this stage, all energies have been introduced and the complete coupled adhesive / brittle failure model can be
derived. This derivation is briefly detailed in Appendix D to highlight that the coupling is only done through the
variational principle.

Restarting from the configuration of Figure 4, we consider this time Dirichlet and Neumann boundary conditions
both in Ω1 and Ω2 for generality. The block Ω1 can undergo brittle failures while no bulk damage is considered in
Ω2. The boundary ∂Ω1 is decomposed into ∂Ω1 = Γ

Ω1
1 ∪ Γ2 ∪ Γ

Ω1
3 where Γ

Ω1
1 supports Neumann boundary condition

8



σ1 · n1 = fsur f , Γ
Ω1
3 supports Dirichlet boundary condition u1 = ud and Γ2 is the common adhesive interface with Ω2.

Of course, the same is done for ∂Ω2: ∂Ω2 = Γ
Ω2
1 ∪ Γ2 ∪ Γ

Ω2
3 . The total energy of the system writes

Etot =

∫
Ω1

ψ1(ε1 , d) dV︸               ︷︷               ︸
EΩ1

el

+

∫
Ω1

φ(d , ∇d) dV︸               ︷︷               ︸
Ecrack

+

∫
Ω2

ψ2(ε2) dV︸           ︷︷           ︸
EΩ2

el

+

∫
Γ2

φadh(β , u1 , u2) dΓ︸                       ︷︷                       ︸
Eadh

+

∫
Γ2

γ(β , u1 , u2) dΓ︸                   ︷︷                   ︸
Emicro

. (25)

Using variational arguments on the energy Etot (25), one gets the complete set of equations to be solved

−div(σ1(ε1 , d)) = fvol in Ω1

σ1 · n1 = fsur f on Γ
Ω1
1

u1 = ud on Γ
Ω1
3

σ1 · n1 = R1 = −
(
∂γ
∂u1

+
∂φadh
∂u1

)
on Γ2

gc
c0 `

α′(d) − 2 gc `
c0

∆d = − f ′1(d)ψ+
0 (ε1) in Ω1

∇d · n1 = 0 on ∂Ω1

β =
γβ

gadh
c +γβ

on Γ2

−div(σ2(ε2)) = fvol in Ω2

σ2 · n2 = fsur f on Γ
Ω2
1

u2 = ud on Γ
Ω2
3

σ2 · n2 = R2 = −
(
∂γ
∂u2

+
∂φadh
∂u2

)
on Γ2

(26)

Before we proceed to the algorithm description, the bulk damage equation in (26) is modified. First of all, one can
introduce the expression of α′ coming from (8)

2 (1 − ξ) gc
c0 `

d − 2 gc `
c0

∆d = − f ′1(d)ψ+
0 (ε1) − gc

c0 `
ξ. (27)

As remarked in Subsection 3.1, f ′1 is here non-linear. Anticipating the linearization of the system (26), f ′1 is written
under the form f ′1(d) = K(d) (d − 1) where K(d) ≥ 0. Eq. (27) becomes[

2 (1 − ξ) gc
c0 `

+ K(d)ψ+
0 (ε1)

]︸                               ︷︷                               ︸
A

d − 2 gc `
c0

∆d = K(d)ψ+
0 (ε1) − gc

c0 `
ξ︸                  ︷︷                  ︸

B

. (28)

The iterative Algorithm 1 is implemented to solve the system (26). In this paper, the difference between two
successive iterations for both the adhesive and cohesive damages serves as a stopping criterion. Tolerances εβ and
εd are set to 10−3. It should be noted that equilibrium equations cannot be solved independently in Ω1 and in Ω2:
displacements u1 and u2 are coupled through the boundary condition on Γ2 since ∂γ

∂u1
, ∂φadh

∂u1
, ∂γ
∂u2

and ∂φadh
∂u2

depend both
on displacements u1 and u2. Following Miehe et al. [51], the irreversibility is introduced through the history fields
Hd and Hβ—respectively retaining the maximum of stored energies ψ+

0 and γβ throughout iterations. Non-linear
terms are linearized taking advantage of the iterative resolution. For an iteration i: (i) the function K(d) coming from
f ′1—see Eq. (28)—depends on di−1; (ii) stress tensors σ1 and σ2 also depend on ε i−1—see [31, Appendix B]; and (iii)
the current displacement jump JuiK is replaced by the old one Jui−1K for the computation of F in adhesive boundary
conditions on Γ2 [31]. Computation of the damage, the mechanical equilibrium and adhesive boundary conditions
through Eqs. (31) and (32) are therefore not equivalent to their counterpart in Eqs (26). Function F is given in
Appendix C by Eq. (C.2) and has to be simplified depending on the considered adhesive modelling. It should be
noted that Eq. (28) does not guarantee the boundedness of the damage variable d, i.e. 0 ≤ d ≤ 1. Following Appendix
A, a theoritical sufficient condition for 0 ≤ d ≤ 1 is given by (A.4):

2 (1 − ξ) gc
c0 `

+ KHd︸                    ︷︷                    ︸
Term A

≥ 0 and KHd −
gc

c0 `
ξ︸         ︷︷         ︸

Term B

≥ 0

Term A is always positive with ξ = 0.5 since KHd ≥ 0 and gc
c0 `
≥ 0. Term B—playing the role of the damage source

term—is slightly modified to stay positive. The bulk damage variable di for the iteration i is thus computed as follows[
2 (1 − ξ) gc

c0 `
+ K(di−1)H i

d

]
di − 2 gc `

c0
∆di = max

(
0 , K(di−1)H i

d −
gc

c0 `
ξ
)
. (29)
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Numerically, in addition with conditions (A.4), one also needs that meshes do not present angles superior to 90◦

[30, 31]. In all numerical results of Section 5, mesh’s quality is not checked and the damage variable d is observed to
stay strictly positive but exceeds the upper bound only very slightly (effect on the third decimal).

Algorithm 1: Adhesive / brittle failure computation

initialization : perform a purely elastic computation (no adhesive or bulk damage);
while ||βi − βi−1||∞ < εβ and ||di − di−1||∞ < εd do

Compute history fields;

H i
d = max

(
H i−1

d , ψ+
0 (ε i−1

1 )
)

in Ω1 andH i
β = max

(
H i−1

β , γβ(Jui−1K)
)

on Γ2 (30)

Solve the bulk damage Eq. (29) in Ω1 and compute the adhesive damage on Γ2 with (24) ;[
2 (1 − ξ) gc

c0 `
+ K(di−1)H i

d

]
di − 2 gc `

c0
∆di = max

(
0 , K(di−1)H i

d −
gc

c0 `
ξ
)

in Ω1

∇di · n1 = 0 on ∂Ω1

βi =
H i
β

gadh
c +H i

β

on Γ2

(31)

Solve the mechanical equilibrium in Ω1 and Ω2;

−div
(
σ1(ε i

1 , ε
i−1
1 , di)

)
= fvol in Ω1 −div

(
σ2(ε i

2 , ε
i−1
2 )

)
= fvol in Ω2

σi
1 · n1 = fsur on Γ

Ω1
1 σi

2 · n2 = fsur on Γ
Ω2
1

ui
1 = ud on Γ

Ω1
3 ui

2 = ud on Γ
Ω2
3

σi
1 · n1 = −F

(
βi , Jui−1K

)
JuiK and σi

2 · n2 = F
(
βi , Jui−1K

)
JuiK on Γ2

(32)

end

The two full linear problems (31) and (32) can now be solved by classical finite element methods [29, 31]. In
particular, P1 Lagrange shape functions are considered on unstructured triangular meshes and a direct LU solver is
applied on resulting linear systems.

In Algorithm 1, cohesive and adhesive damages are coupled: the damage state d near the adhesive interface
influences the adhesive damage β and, conversely, so does β on d. It couples cohesive and adhesive variables d and β
only through displacements u—more precisely through displacement jumps JuK across the adhesive interface Γ2. In
particular, the adhesive interface keeps the same energy release rates gadh

c , gadh,II
c and the same stiffnesses k, ατ = kτ/k

whatever the damage state d. It would be very interesting to discuss the influence of d and β on each other together
with more sophisticated coupling. However, such studies are beyond the scope of the present paper and postponed to
later publications.

To close this section, it seems relevant to discuss the parameters ξ and p for brittle fracture summarized in Section
3.1. Our choice strongly relies on the resolution method described here. The value p = 2 is not only largely used
in literature [59, Remark 2.3], it is also the choice that leads to a better numerical stability for (31). Wu shows in
[59] that this parameter heavily affects the stress softening behavior in the damage localization phase. Once p is
fixed, a2 and a3 therefore follow to fit the classical corresponding softening law (see Section 4 and Appendix B). The
geometric parameter ξ—restricted to ξ ∈ ]0, 2] [59, 73]—is finally constrained by ξ ≤ 1 as it guarantees that term
A in (A.4) is positive for the boundedness of d—see Appendix A. Note that the value ξ = 0, discussed for example
in [29–31, 42, 51, 52, 59, 70, 72, 87], is excluded since it lacks an initial elastic phase [73]. Among choices already
considered in literature, it thus only remains ξ = 0.5 [42, 59, 70] and ξ = 1 [59, 70–72, 87]. A lower numerical stability
of (31) is observed for ξ = 1 compared to ξ = 0.5, with p = 2, justifying the choice ξ = 0.5. The recommendation
of Wu [59] to take the larger value ξ = 2 is therefore not followed in this paper. This value ξ = 2 allows satisfying
an irreversibility condition on the crack bandwidth in a 1D homogeneous framework: the crack bandwidth cannot
shrink. Here, the irreversibility is forced by the history function whatever the value of ξ and the crack bandwidth
cannot effectively shrink.
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Parameter Value
Young’s modulus cice 9.3 GPa

Poisson’s ratio νice 0.325

Parameter Cohesive Adhesive (ice/aluminium)
Strength σc 3 MPa 1 MPa

Critical energy release rate gc 1 J / m2 0.5 J / m2

Table 2: Elastic coefficients, cohesive and adhesive properties for freezer ice [22] used in this paper.

4. Mechanical properties of ice

Our proposed mechanical modelling requires the knowledge of ice characteristics. As mentioned in Section 2,
macroscopically, a brittle behaviour is observed for high strain rate [26]. To provide numerical results, the following
classical parameters are needed: ice Young’s modulus cice, ice Poisson’s ratio νice, cohesive critical energy release rate
gc, adhesive energy gadh

c , cohesive critical strength σc and adhesive critical strength σadh
c . These parameters may vary

considerably in literature [24, 25, 50, 88–94] depending on the type of ice (glaze or rime), the means to obtain this
ice (freezer or wind tunnel), the type of degradation (cohesive or adhesive) and the interface material. Identification
is a huge area of research in itself and uncertainties related to these parameters are beyond the scope of this paper,
although the authors are fully aware of them. As an example, a recent review of ice adhesion on solid substrates [94]
gathered 113 papers and concluded that results agreed within two or three order of magnitude on the adhesive critical
strength σadh

c at given temperature—other critical values such as roughness are more poorly determined. A similar
issue arises for the cohesive critical material strength σc which is introduced in the brittle fracture model through the
Relation (10) in Subsection 3.1, derived in a uniaxial homogeneous case. Ideally, the value of σc should be identified
on a test where an accurate measurement of the local stress in the nucleation zone can be performed: see for example
the PIED (Pour Identifier l’Endommagement Diffus) test for concrete [95], reproducing uniaxial and homogeneous
conditions. To the author’s knowledge, such tests for the ice do not exist yet in the literature and we use the critical
material strength σc given by Budinger et al. [22]. The other parameters previously mentioned are also provided
in [22]: see Tab. 2. Keeping in mind the high scattering of materials’ parameters in literature, values of Tab. 2
are no exception but it should be mentioned that results given in Section 5 are only used to highlight ice shedding
trends. Then, these trends are only compared with postulated fracture mechanisms of [22]. Close comparisons with
experimental results are excluded in this paper. Now, all parameters required by the model are not directly given by
Budinger et al. in [22]. Some of them need to be related with the values of Tab. 2.

Brittle fracture parameters. In addition with ice parameters already given in Tab. 2, the model described in Subsection
3.1 needs the computation of `, p, ξ, a1, a2 and a3. Values of `, p, ξ, and a1 are already justified in Subsections 3.1 and
3.3. The focus is here on a2 and a3 which are related to the classical ice properties of Tab. 2. To that end, the approach
of Wu [59] is followed and briefly described in Appendix B: (i) the equivalent Cohesive Zone Model of the phase-field
variational approach to brittle fracture is formulated; (ii) the initial slope k0 and the ultimate crack opening ωc of the
Cohesive Zone Model are expressed; (iii) parameters a2 and a3 are deduced from k0 and ωc; and (iv) a softening law
is chosen (depending on the parameter p) fixing the pair (k0 , ωc) and thus (a2 , a3). For p = 2, we get Relations (B.6)

a2 = 1
ξ

[(
−

4 π ξ2

c0

gc

σ2
c

k0

)2/3

+ 1
]
− (p + 1), and a3 = 1

a2

[
1
ξ

(
c0 ωc σc

2 π gc

)2
− (1 + a2)

]
,

where k0 = −
σ2

c
2 gc

and ωc =
2 gc
σc

are respectively the initial slope (B.7) and the ultimate crack opening (B.8) of a linear
softening law.

Adhesive parameters. Whatever the adhesive modelling, the normal stiffness k of microscopic bonds and the adhesive
energy gadh

c for Mode I failure are needed. Models 2 and 3 respectively add the ratio ατ =
kτ
k and the adhesive energy

gadh,II
c for Mode II failure. A sensitivity study is performed on ατ. Mode I adhesion energy gadh

c is given in Tab. 2
while gadh,II

c = 10 gadh
c = 5 J / m2 is chosen [86] as an illustration in order to provide numerical results. Finally, the

computation of the normal stiffness k is performed thanks to a pure one-dimensional adhesive traction test such as in
Figure 4 and described in Appendix E. Adhesive Model 1 is considered. In that case, adhesive boundary conditions
explicited in Appendix C simplify into

σ
(
JuK

)
= R1 = −

∂γ
∂u1

= −R2 =
∂γ
∂u2

= k (1 − β)2 JuK. (33)
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Figure 5: Considered mode n = 6 with W0 = 15 µm applied on the configuration Figure 1: (a) spatial component W and the simulated “cut” zone;
and (b) aluminium substrate warped by 1000 × u and colored by ‖u‖.

Eq. (33) is used to relate the normal stiffness k to the classic adhesive strength σadh
c . Cancellation of the derivative

dσ
dJuK yields

k = 2
3

gadh
c

ω2
c

where the critical opening is here ωc = 3
8

gadh
c

σadh
c
. (34)

Values gadh
c = 0.5 J / m2 and σadh

c = 1 MPa of Tab. 2 imply k = 9.48 × 1012 Pa / m thanks to Eq. (34).

5. Numerical simulations

5.1. Generalities
First of all, sanity checks are performed seperately on a cohesive and adhesive case in order to verify our imple-

mentation. They are presented in Appendix E.

Selected mode. The coupled adhesive / brittle failure method described in Section 3 is now applied to the configuration
of Figure 1. It is recalled that the load W(x) is a flexural mode given by

W(x) = W0 sin
(

n π x
a

)
. (35)

The sixth mode of the structure n = 6 together with the spatial amplitude W0 = 15 µm are chosen. This mode is
displayed in Figure 5 and corresponds to the resonance frequency f ' 8.4 kHz [22, Tab. 3] (ω ' 53300 rad / s). This
resonance frequency is high enough to observe fractures while staying below 15 kHz as recommended in Subsection
2.1.

Computational settings. A progressive load is adopted for all tests: the mode amplitude is increased at each iteration
until reaching W0 = 15 µm. For computational cost considerations, simulations are performed only on one wave
length of the mode thanks to periodic boundary conditions applied on right and left boundaries. The simulated wave
length is indicated by the “cut” shaded zone in Figure 5(a). The ice layer (Ω1) is discretized into 1 208 220 triangular
cells of maximum size hmax ' 24.8 µm generated by GMSH [96]. Only the upper part, with respect to the neutral
line hn, of the aluminium substrate (Ω2) is meshed with 283 386 triangular cells of maximum size hmax ' 23.2 µm.
Since there is no bulk damage in aluminium, the lower part is no use to simulate. The crack regularization parameter
` is taken to be ` = 8 × hmax = 198.4 µm within the ice layer—corresponding to 40 cells in the crack support [59,
Eq. (3.14)]. The fine mesh considered here allows non-diffusive results while taking a relative large amount of cells
within the support to ensure a well-resolved crack. Some results are presented with a zoom on the range [57.5 , 71]
mm of the simulated wave length—corresponding to the maximum tensile stress region (called an antinode) on the
top surface of the ice layer. This region is displayed on Figure 6 representing initial, i.e. without crack, tensile σxx

and shear σxy = σyx stresses in the ice layer (Ω1).

Outline of the section. This section is organized as follows: (i) a full cohesive / adhesive computation with Algorithm
1 and Model 1 (Case 4) is progressively obtained through intermediate tests (Cases 1, 2 and 3) in Subsection 5.2; (ii)
the previous full cohesive / adhesive result (Case 4) is detailed and discussed in Subsection 5.3; and (iii) Subsection
5.4 presents a deeper insight into the adhesive modelling by investigating results given by Algorithm 1 with Model 2
(Case 5) and Model 3 (Case 6). All test cases are summarized in Tab. 3 and described in each subsection.
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Figure 6: Initial stresses in the ice layer Ω1: (top) tensile stress σxx; and (bottom) shear stress σxy = σyx.

Case
Subsection Cohesive/Adhesive Substrate Adhesive Model

Case 1
Subsection 5.2 Pure cohesive No No adhesive model:

imposed disp. at the ice bottom boundary
Case 2

Subsection 5.2 Cohesive/Adhesive Yes Model 1:
imposed zero adhesive damage β = 0

Case 3
Subsection 5.2 Pure cohesive Yes

No adhesive model:
damageable interface with non-zero thickness

Substrate disp. exactly transmitted
Case 4

Subsections
5.2 & 5.3

Cohesive/Adhesive Yes Model 1

Case 5
Subsection 5.4 Cohesive/Adhesive Yes Model 2

Case 6
Subsection 5.4 Cohesive/Adhesive Yes Model 3

Table 3: Test cases performed in Section 5.
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Figure 7: Case 1: domain and boundary condition

5.2. Towards full cohesive / adhesive results step by step
We start with intermediate results—Cases 1, 2 and 3—going progressively to a full cohesive / adhesive com-

putation obtained with Algorithm 1—Case 4. These results consist in comparisons between pure cohesive—model
assessed and discussed several times on other fracture problems [59, and references therein]—and cohesive / adhesive
cases. It gives us more confidence in the adhesive modelling while providing a deeper understanding on the fracture
behavior predicted by the model.

Case 1 (pure cohesive). In this simplified test, only the ice layer is simulated. To mimick the presence of the alu-
minium substrate which undergoes the flexural mode on its neutral line, displacements are imposed on the adhesive
interface—bottom boundary of the ice layer equivalently. These displacements are extracted after a purely elastic
computation: initialization of Algorithm 1. Domain and boundary condition are shown in Figure 7. The crack behav-
ior is displayed in Figure 9 (left). The crack nucleates on the first antinode where the tensile stress is maximum. Note
that the elastic energy spliting (7) forbids the degradation of its compressive part and, consequently, crack nucleation
in compression (second antinode). It then propagates through the entire ice thickness. Once reaching the ice bottom
boundary, the fracture branches and the crack continues its propagation along the bottom boundary.

Case 2 (cohesive / adhesive). In Case 2, the substrate is now added so that the displacements are applied on the neutral
line : see Figure 8. The adhesive interface is modelled with Model 1 but β = 0 is imposed. Case 2 thus corresponds
to a full coupled adhesive / brittle failure result in which the adhesive damage is set to zero throughout the entire
calculation. To that end, the computation is done with Algorithm 1 and Model 1 but: (i) updates of the history field
H i

β in (30) and the adhesive damage βi in (31) are removed; and (ii) βi = 0 is taken in (32). On Figure 9 (right), Case
2 shows a very similar crack behavior as compared to Case 1. In particular, the crack nucleates at the same position
(on the first antinode of the wave length) and follows the same path. Adhesive boundary conditions in (32) correctly
transfer efforts from the substrate to the ice when the adhesive interface is undamaged, i.e. when β = 0. One can
observe however a small difference as the crack branches a little earlier for Case 1.

Case 3 (pure cohesive). Case 3 is presented in Figure 10. Now, the adhesive damage is authorized to grow but Case 3
models the adhesive interface as a damageable homogeneous isotropic elastic layer of non-zero thickness hlayer. The
ice and the adhesive layers are hence discretized with a common mesh. There is no interface between the ice and
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Figure 8: Case 2: domain and boundary condition

Figure 9: Final damage fields: (left) Case 1; and (right) Case 2. Zoom around the maximum tensile stress region (antinode) displayed in Figure 6.
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Figure 10: Case 3: domain and boundary condition

the adhesive layer and the adhesive damage is here given by the brittle fracture model of Subsection 3.1—such as the
cohesive fracture in the ice. According to Subsection 3.1, the adhesive layer is characterized by a Young’s modulus
clayer, a Poisson’s ratio νlayer, a critical energy release rate glayer

c and a critical strength σlayer
c . The Young’s modulus

clayer is related to the normal stiffness k computed in Section 4 while the others paramaters are

clayer = k hlayer, νlayer = 0.3, glayer
c = gadh

c , and σ
layer
c = σadh

c ,

where gadh
c and σadh

c are given in Tab. 2. The interface thickness is hlayer = hice / 10 = 0.2 mm. Of course, the value of
the adhesive thickness hlayer plays an important role in the comparison: one has to consider an adhesive layer as thin
as possible in Case 3 to be comparable with Case 4. In practice, hlayer is limited by the number of cells. The layer
has to be discretized by a sufficient number of cells so as to correctly resolved the cohesive crack inside: a vanishing
layer thickness implies a dramatic increase of the computational cost. The result is given in Figure 12 (top): the crack
nucleates on the first antinode, propagates through the ice thickness and finally causes damage into the adhesive layer,
i.e. delamination.

Case 4 (cohesive / adhesive). Case 4 is very similar to Case 3 but the adhesive interface in now of zero-thickness.
The adhesive damage β is computed thanks to Model 1 described in 3.2. This case corresponds to the full cohesive /

adhesive Algorithm 1 (with Model 1): see Figure 11. Figure 12 shows a very good agreement between Cases 3 and 4.

5.3. A closer look to the predicted ice shedding mechanism
This subsection goes into further details concerning Case 4. It is recalled that the computation is done here with

Algorithm 1 where the adhesive modelling is given by Model 1: see Figure 11 for the domain and boundary condition.
The goal is to take a closer look on the ice shedding mechanism at play. Figure 13 shows some intermediate iterations
during the convergence process of Algorithm 1. Again, the failure process begins with a cohesive fracture on the first
antinode of the wave length: Figure 13 (top left) and (top right). When the cohesive fracture almost crosses the ice
through its entire thickness, the stress redistribution provides enough energy stored in microscopic bonds to initiate
adhesive damage: Figure 13 (middle left) and (middle right). Then the adhesive damage spreads: Figure 13 (bottom
left) and (bottom right). The model thus predicts a delamination caused by a cohesive fracture initating at the top of
the ice layer on the first antinode of the wave length. This supports mechanism 1 introduced in [22].
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Figure 11: Case 4: domain and boundary condition

Figure 12: Final damage fields: (top) Case 3; and (bottom) Case 4. Zoom around the maximum tensile stress region (antinode) displayed in Figure
6.
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Case 4: intermediate iterations during the convergence process

Figure 13: Case 4. Final damage fields: (top left) iteration 0; (top right) iteration 75; (middle left) iteration 80; (middle right) iteration 85; (bottom
left) iteration 90; (bottom right) final iteration 148. Zoom around the maximum tensile stress region (antinode) displayed in Figure 6.

5.4. Going further into the adhesive modelling

This last subsection is dedicated to the two more elaborated adhesive models—Case 5 (Model 2) and Case 6
(Model 3). Since the consideration of a pure Mode I failure is questionable as stated in Section 3.2, the effect of the
introduction of Mode II failure is investigated through numerical experiments in this part.

Case 5 (Model 2). Case 5 corresponds to a cohesive / adhesive computation by Algorithm 1 on the configuration
of Figure 11 but with adhesive Model 2. It is recalled that the stored energy in microscopic bonds associated with
tangential displacements JuKτ—parametrized by the coefficient ατ =

kτ
k —can now be degraded into crack surface

energy. As explained in Subsection 3.2, the tangential stiffness kτ presents some difficulties to calibrate without
introducing additional hypotheses. A fit with experimental dis explicitely mentioned to beata is also excluded as
we do not want to influence ice shedding trends. A sensitivity study on ατ is thus performed. It should be noted that
ατ = 0.25 corresponds to the stiffness ratio of an homogeneous isotropic elastic layer of vanishing thickness hlayer → 0
[97, and references therein]

ατ =
kτ
k =

1−2 νlayer

2(1−νlayer) (36)

where νlayer is taken as in Subsection 5.2, i.e. νlayer = 0.3. Damages d and β are displayed on the whole simulated
wave length in Figure 14 for ατ = 0.1 and ατ = 1. Figure 16 (left) presents the adhesive damage β for 0.1 ≤ ατ ≤ 1.
The case ατ < 0.1 yields no cohesive or adhesive damage while ατ > 1 gives very similar results compared to ατ = 1.
The choice ατ < 0.1 implies a stiffness kτ too low for transfering enough efforts from the substrate to the ice and
consequently does not allow damage to initiate. Interesting results are obtained for 0.1 ≤ ατ ≤ 1 and particularly for
ατ = 0.1. Mechanism 1 [22] is observed for ατ ≥ 0.25. However the value ατ = 0.1 clearly highlights a mechanism
close to mechanism 2 [22]: direct delamination is initiated at nodes (maximum shear stress) without cohesive fracture.
More precisely, the adhesive interface is not fully debonded since β ' 0.8 and does not reach 1. At this stage, the
model predicts the two ice shedding mechanisms postulated in [22] depending on the value of the tangential stiffness
kτ—or ατ =

kτ
k equivalently.
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Case 5

Figure 14: Case 5. Final damage fields: (left) ατ = 0.1; and (right) ατ = 1.

Case 6

Figure 15: Case 6. Final damage fields: (left) ατ = 0.05; and (right) ατ = 0.75.

Case 6 (Model 3). In Case 6, the adhesive modelling incorporates anisotropy in the adhesive fracture energy φadh:
computation with Algorithm 1 on the configuration Figure 11 with adhesive Model 3. The anisotropy takes the form of
two different critical energy release rates gadh

c for Mode I and gadh,II
c for Mode II. It is recalled that gadh

c = 0.5 J / m2 and
gadh,II

c = 10 gadh
c = 5 J / m2. Figures 15 and 16 (right) respectively display cohesive damage d and adhesive damage β

for some interesting values 0.05 ≤ ατ ≤ 0.75. As for Case 5, ατ < 0.05 leads to a too low tangential stiffness kτ for
correctly transfering efforts. Consequently, no damage appears for ατ < 0.05, neither cohesive nor adhesive. Unlike
Case 5 however, ατ ≥ 1 puts forward the limitation of the method and gives too diffusive results to be interpreted. A
possible solution could be the use of a finer mesh but this is beyond the scope of this paper. A more interesting result
is that only mechanism 1 [22] is now observed: a cohesive fracture initiates on the first antinode of the wave length,
then propagates through the entire thickness and causes delamination. Full delamination—i.e. β = 1—begins with the
value ατ = 0.25, for which a close result compared to Case 5—excluding ατ = 0.1—is obtained. Excluding ατ = 0.1
again, inspection of Figure 16 shows that the two values of gadh,II

c yields the same fracture mechanism at fixed ατ.
As a conclusion to this section, one may note that, generally, all our numerical experiments give more weight to

mechanism 1 introduced by Budinger et al. [22].

6. Conclusion

This paper deals with a phase-field variational approach for fracture applied to electromechanical de-icing. While
the obtained method is limited either by its phase-field component (fine meshes required) or by ice applications
(uncertainties due to identification of needed paramaters), it provides a useful framework to study fracture propagation
and ice shedding in this context. Numerical experiments are conducted to highlight ice shedding trends and compare
them with the postulated mechanisms of Budinger et al. [22].

The full derivation of the adhesive / brittle failure model is presented. Modelling choices and parameters involved
in the model are discussed and justified. Several test cases are performed on the pure flexural mode n = 6 correspond-
ing to a frequency around 8.4 kHz. First, full cohesive / adhesive results are obtained step by step through comparisons
with pure cohesive cases. Then, the three proposed adhesive models are investigated. Model 1 only considers Mode
I failure. Models 2 and 3 improve the adhesive modelling by gradually introducing Mode II failure. Whatever the
model used—with the exception of Model 2 with ατ = 0.1—mechanism 1 [22] is observed.

In a close future, ongoing work includes direct applications of the method: different modes staying in a reasonable
frequency range (a few kHz) with different configurations will be tested. In particular, these additional test cases could
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Figure 16: Adhesive damage β for different values of ατ: (left) Case 5 with ατ ranges from 0.1 to 1; (right) Case 6 with ατ ranges from 0.05 to
0.75.

be used to assess the other conclusions drawn by Budinger et al. [22] such as the effect of thicker ice layers or the
efficiency of mixed extensional/flexural modes. The phase-field variational method will also be confronted to reduced
models for optimization purposes. Parametric and/or topological optimization will be performed with the help of
selected reduced models for designing more efficient electromechanical systems. From a numerical point of view, the
method can be improved in many ways. Concerning the model, dynamic effects or the coupling between adhesive
and cohesive damages and its possible improvements would be worth investigating. Finally, parallelization, three-
dimensional geometry would be valuable additions to get a closer look at ice shedding mechanisms in the context of
electromechanical de-icing systems.
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Appendix A. Boundedness of the bulk damage variable d

The methodology of [98] is followed. The weak formulation∫
Ω

a u v dV +

∫
Ω

b∇u · ∇v dV =

∫
Ω

f v dV, (A.1)

is considered, where a, b, f are positive and v is a test function. For the above fomulation, a maximum principle holds
on u:

u ≥ inf
Ω

f . (A.2)

Now, the weak formulation of (28) is∫
Ω1

[
2 (1 − ξ) gc

c0 `
+ KHd

]
d v dV +

∫
Ω1

gc `
c0
∇d · ∇v dV =

∫
Ω1

[
KHd −

gc
c0 `
ξ
]

v dV, (A.3)

after the linearization f1(d) = K (d − 1) and the introduction of the history functionHd. Consequently, the result (A.2)
applies if [

KHd −
gc

c0 `
ξ
]
≥ 0 and

[
2 (1 − ξ) gc

c0 `
+ KHd

]
≥ 0 (A.4)

and we get
d ≥ inf

Ω

[
KHd −

gc
c0 `
ξ
]
⇒ d ≥ 0. (A.5)
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As Hd ≥ 0, K ≥ 0 and gc
c0 `
≥ 0, the second part of (A.4) is fullfilled with ξ = 0.5. The first part of (A.4) justifies the

modification of the source term in Eq. (28), yielding Eq. (29). Note that a similar analysis with d? = 1 − d leads to
d? ≥ 0, hence d ≤ 1.

Appendix B. Computation the two parameters a2 and a3 in the brittle failure model

The equivalent Cohesive Zone Model of the model described in Subsection 3.1 is given by Wu in [59, Eqs. (3.4a)
and (3.4b)]

σ(d?) = σc

√[
ξ + (1 − ξ) d?

]
(1 − d?)p

ξ P(d?)
, (B.1)

ω(d?) =
4 gc
√
ξ

c0 σc

∫ d?

0

[
P(d?)

(1 − d?)p
ξ + (1 − ξ) β
ξ + (1 − ξ) d?

−
P(β)

(1 − β)p

]−1/2 √
βP(β)

(1 − β)p dβ, (B.2)

parametrized by the maximum damage d?. These relations are computed in the one-dimensional case where the stress
σ is homogeneous (no body forces). Note that the critical stress σc in this framework is

σc =

√
2 cice gc

c0 `

ξ

a1
, (B.3)

justifying the expression of a1 in Eq. (10). The polynomial P is introduced in the geometric function α in Eq. (8). For
the Cohesive Zone Model (B.1)-(B.2), it is possible to compute its initial slope k0 and ultimate crack opening ωc [59,
Eqs. (3.7) and (3.8b)]

k0 = −
c0
4 π

σ2
c

gc

[ξ(a2+p+1)−1]
3/2

ξ2 , (B.4)

ωc =


0 for p < 2
2 π gc
c0 σc

√
ξ P(1) for p = 2

+∞ for p > 2.
(B.5)

From Eqs. (B.4) and (B.5), parameters a2 and a3 are deduced

a2 = 1
ξ

[(
−

4 π ξ2

c0

gc

σ2
c

k0

)2/3

+ 1
]
− (p + 1) and a3 =

 0 for p > 2
1
a2

[
1
ξ

(
c0 ωc σc

2 π gc

)2
− (1 + a2)

]
for p = 2 (B.6)

Once the classical softening law is targeted—mainly influenced by the parameter p—the initial slope k0 and the
ultimate crack opening ωc are fixed thus determining a2 and a3 through (B.6). In this paper, the choice p = 2 allows
targeting a linear softening law [59, Eqs. (3.9) and (3.20)]

k0 = −
σ2

c

2 gc
(B.7)

ωc =
2 gc

σc
(B.8)

as depicted in Figure B.17.

Appendix C. Computation of the adhesive boundary conditions

Adhesive boundary conditions on Γ2 in (16) become

R1 = −
(
∂γ
∂u1

+
∂φadh
∂u1

)
= −F

(
β , JuK

)
· JuK (C.1)
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Figure B.17: Equivalent Cohesive Zone Model (CZM) (B.1)-(B.2) compared to three classical softening laws for ξ = 0.5, p = 2, gc = 1 J / m2 and
σc = 3 MPa. Coefficients a2 and a3 are computed with (B.6) where the initial slope k0 and ultimate crack opening ωc correspond to the targeted
softening law.

where F
(
β , JuK

)
is

F
(
β , JuK

)
= k f2(β)

[
δ+

(
sin2(θ) −sin(θ) cos(θ)

−sin(θ) cos(θ) cos2(θ)

)
+ ατ

(
cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

)]
+ k∞ δ−

(
sin2(θ) −sin(θ) cos(θ)

−sin(θ) cos(θ) cos2(θ)

)
+ k

(
1

(gadh
c )II −

1
(gadh

c )I

) (
gadh

c
γβ
β
)2

[
δ+ γ

II
β

(
sin2(θ) −sin(θ) cos(θ)

−sin(θ) cos(θ) cos2(θ)

)
+ ατ γ

I
β

(
cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

)]
︸                                                                                                                                          ︷︷                                                                                                                                          ︸

∂φadh
∂u1

, (C.2)

with

δ+ =

{
0 if JuKn < 0
1 if JuKn ≥ 0 ,

δ− = 1 − δ+ and θ defined in Figure C.18. For adhesive Models 1 and 2, the term ∂φadh
∂u1

cancels in Eqs (C.1) and (C.2)
since φadh(β , u1 , u2) = φadh(β). Finally, the force R2 is directly deduced by

R2 = −
∂(γ+φadh)

∂u2
= −

∂(γ+φadh)
∂JuK

∂JuK
∂u2

=
∂(γ+φadh)
∂JuK

∂JuK
∂u1

=
∂(γ+φadh)

∂u1
= −R1, (C.3)

ensuring that σ1 · n1 = −σ2 · n2 regarding the two adhesive boundary conditions in (16). The stress tensor is thus
continuous along the normal direction through the adhesive interface whatever the adhesive model.

Appendix D. Derivation of the full coupled adhesive / brittle failure model

This appendix is dedicated to the brief derivation of the full coupled adhesive / brittle failure model of SubSection
3.3. It is important to recall that the configuration Figure 4 is completed with Dirichlet and Neumann boundary
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Figure C.18: Definition of the angle θ.

conditions both in Ω1 and Ω2 for generality and that Ω1 can undergo brittle failures while no bulk damage is considered
in Ω2. Notations introduced in SubSection 3.3 are: for i = 1, 2, ∂Ωi is decomposed into ∂Ωi = Γ

Ωi
1 ∪ Γ2 ∪ Γ

Ωi
3 where

Γ
Ωi
1 supports Neumann boundary condition σi · ni = fsur f , Γ

Ωi
3 supports Dirichlet boundary condition ui = ud and Γ2

is the common adhesive interface. The total energy of the system is given by Eq. (25)

Etot =

∫
Ω1

ψ1(ε1 , d) dV︸               ︷︷               ︸
EΩ1

el

+

∫
Ω1

φ(d , ∇d) dV︸               ︷︷               ︸
Ecrack

+

∫
Ω2

ψ2(ε2) dV︸           ︷︷           ︸
EΩ2

el

+

∫
Γ2

φadh(β , u1 , u2) dΓ︸                       ︷︷                       ︸
Eadh

+

∫
Γ2

γ(β , u1 , u2) dΓ︸                   ︷︷                   ︸
Emicro

,

and its variation is deduced

δEtot =

∫
Ω1

[
∂ψ1
∂ε1

: δε1 +
∂ψ1
∂d δd

]
dV︸                             ︷︷                             ︸

δEΩ1
el

+

∫
Ω1

[
∂φ
∂d δd +

∂φ
∂∇d · δ∇d

]
dV︸                              ︷︷                              ︸

δEcrack

+

∫
Ω2

∂ψ2
∂ε2

: δε2 dV︸              ︷︷              ︸
δEΩ2

el

+

∫
Γ2

[
∂φadh
∂β

δβ +
∂φadh
∂u1
· δu1 +

∂φadh
∂u2
· δu2

]
dΓ︸                                                ︷︷                                                ︸

δEadh

+

∫
Γ2

[
∂γ
∂β
δβ +

∂γ
∂u1
· δu1 +

∂γ
∂u2
· δu2

]
dΓ︸                                          ︷︷                                          ︸

δEmicro

. (D.1)

The total work of external forces is still expressed as Eq. (15)

Wext =

∫
Ω1

fvol · δu1 dV +

∫
∂Ω1

fsur f · δu1 dΓ︸                                           ︷︷                                           ︸
External forces acting on Ω1

+

∫
Ω2

fvol · δu2 dV +

∫
∂Ω2

fsur f · δu2 dΓ︸                                           ︷︷                                           ︸
External forces acting on Ω2

+

∫
Γ2

(−R1) · δu1 dΓ +

∫
Γ2

(−R2) · δu2 dΓ︸                                             ︷︷                                             ︸
External forces acting on Γ2

.

Now, the energy conservation principle δEtot = Wext yields∫
Ω1

[
div (σ1) + fvol

]
· δu1 dV +

∫
Ω2

[
div (σ2) + fvol

]
· δu2 dV∫

Ω1

[
gc

c0 `
α′(d) − 2 gc `

c0
∆d +

∂ψ1
∂d

]
δd dV +

∫
∂Ω1

[
gc `
c0
∇d · n1

]
δd dΓ

+

∫
Γ2

[
∂φadh
∂β

+
∂γ
∂β

]
δβ dΓ +

∫
Γ2

[
∂γ
∂u1

+
∂φadh
∂u1

+ R1

]
· δu1 dΓ +

∫
Γ2

[
∂γ
∂u2

+
∂φadh
∂u2

+ R2

]
· δu2 dΓ = 0, (D.2)
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assuming σ1 =
∂ψ1
∂ε1

and σ2 =
∂ψ2
∂ε2

. Eq. (D.2) has to hold for every variation δu1, δu2, δd, δβ, therefore

−div(σ1(ε1 , d)) = fvol in Ω1

R1 = −
(
∂γ
∂u1

+
∂φadh
∂u1

)
on Γ2

gc
c0 `

α′(d) − 2 gc `
c0

∆d = −
∂ψ1
∂d in Ω1

∇d · n1 = 0 on ∂Ω1
∂φadh
∂β

= −
∂γ
∂β

on Γ2

−div(σ2(ε2)) = fvol in Ω2

R2 = −
(
∂γ
∂u2

+
∂φadh
∂u2

)
on Γ2

(D.3)

Dirichlet and Neumann boundary conditions are finally added to (D.3). The relation ∂φadh
∂β

= −
∂γ
∂β

is replaced by its

equivalent counterpart Eq. (24) and the driving force to the bulk damage is expressed as follows ∂ψ1
∂d = f1(d)ψ+

0 (ε1) to
get Eqs (26)

−div(σ1(ε1 , d)) = fvol in Ω1

σ1 · n1 = fsur f on Γ
Ω1
1

u1 = ud on Γ
Ω1
3

σ1 · n1 = R1 = −
(
∂γ
∂u1

+
∂φadh
∂u1

)
on Γ2

gc
c0 `

α′(d) − 2 gc `
c0

∆d = − f ′1(d)ψ+
0 (ε1) in Ω1

∇d · n1 = 0 on ∂Ω1

β =
γβ

gadh
c +γβ

on Γ2

−div(σ2(ε2)) = fvol in Ω2

σ2 · n2 = fsur f on Γ
Ω2
1

u2 = ud on Γ
Ω2
3

σ2 · n2 = R2 = −
(
∂γ
∂u2

+
∂φadh
∂u2

)
on Γ2

Appendix E. Sanity checks for cohesive and adhesive failure

Cohesive failure. The classical single-edge notched plate test of Miehe et al. [51, 52] is considered here to verify our
implementation of the cohesive failure model. A straight horizontal notch of length 0.5 mm is introduced at the mid-
height of a square plate of length 1 mm, with unit out-of-plane thickness. The bottom boundary of the plate is clamped
and the top boundary is progressively sheared until reaching a value of u? = 0.014 mm. Material parameters are set
to: Young’s modulus c = 210 GPa, Poisson’s ratio ν = 0.3, critical energy release rate gc = 2700 J / m2 and material
strength σc = 2445.42 MPa. Remaining parameters are kept unchanged: see Eqs (10) and (11). Computations are
performed on a mesh with a cell size h ' 0.001 mm on the crack path and two length scale values ` = 0.025 mm
and ` = 0.05 mm. Figure E.19 shows the predicted crack pattern for the two values of `. The same crack pattern is
obtained—the length scale ` only influences the crack bandwidth—and a good agreement with literature is found.

Adhesive failure. The adhesive modelling is checked thanks to a one-dimensional adhesive traction test described by
the configuration Figure 4. Bulk damage in the ice Ω1 is deactivated and adhesive Model 1 is considered. In that case,
adhesive boundary conditions of Appendix C simplify into Eq. (33) recalled here

σ
(
JuK

)
= k (1 − β)2 JuK.

Eq. (33) is nothing but the “so-called” traction-separation law of Cohesive Zone Models [38–40] in this one-
dimensional case. Several traction forces have been applied to the configuration of Figure 4. For each of them,
the stress σ—both in the ice Ω1 and aluminium Ω2—together with the displacement jump JuK at the adhesive inter-
face Γ2 have been extracted after convergence of the algorithm. Obtained stresses are plotted against displacement
jump and compared to Eq. (33) in Figure E.20 where the adhesive interface is discretized into 300 points. Numerical
interface stresses in ice σice and in aluminium σalu match the analytic traction-separation law (33). In particular, the
following points are checked: (i) numerical peak stresses correspond to the introduced adhesive strength σadh

c = 1
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Figure E.19: Single-edge notched plate shear test of Miehe et al. [51, 52]: (left) ` = 0.05 mm and (right) ` = 0.025 mm.

MPa of Tab. 2; (ii) the continuity of the stress tensor along the normal direction through the adhesive interface, i.e.
σalu = σice in Figure E.20; and (iii) the value gadh

c = 0.5 J / m2 of Tab. 2 is retrieved when computing the area under
the traction-separation law of Figure E.20. The latter point is a basic feature of Cohesive Zone Model. The estimated
area ' 0.4941 indicated in Figure E.20 is computed thanks to a Simpson quadrature rule.
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[80] T. Roubı́ček, V. Mantič, C. G. Panagiotopoulos, Quasistatic mixed-mode delamination model, Disc. Cont. Dynam. Syst., Ser. S 6 (2013)
591–610.
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[97] V. Mantič, L. Távara, A. Blázquez, E. Graciani, F. Parı́s, A linear elastic-brittle interface model: application for the onset and propagation of

a fibre-matrix interface crack under biaxial transverse loads, International Journal of Fracture 195 (1-2) (2015) 15–38.
[98] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer Science & Business Media, 2010.

28

https://link.aps.org/doi/10.1103/PhysRevLett.112.014301
http://www.sciencedirect.com/science/article/pii/S0022509617306543
http://www.sciencedirect.com/science/article/pii/S0022509618302643
http://www.sciencedirect.com/science/article/pii/S0022509698000143
http://www.sciencedirect.com/science/article/pii/0022509694900035
http://www.sciencedirect.com/science/article/pii/S0045794906002410
http://aimsciences.org//article/id/c167248d-b485-468d-ae74-1933bb1b5cdd
https://doi.org/10.1007/s11012-014-0045-4
https://doi.org/10.1007/s11012-014-0045-4
http://www.sciencedirect.com/science/article/pii/S0013794406003808
http://www.sciencedirect.com/science/article/pii/S0013794406003808
http://www.sciencedirect.com/science/article/pii/S0013794415005111
http://www.sciencedirect.com/science/article/pii/S0013794415005457
http://www.sciencedirect.com/science/article/pii/S0013794417302357
http://www.sciencedirect.com/science/article/pii/S0045782516304297
http://www.sciencedirect.com/science/article/pii/S0022509699000289
https://ntrs.nasa.gov/search.jsp?R=19870008688
https://www.cambridge.org/core/journals/journal-of-glaciology/article/elastic-constants-of-artificial-and-natural-ice-samples-by-brillouin-spectroscopy/0C027E622189AE838C8FC631371BD94C
https://link.springer.com/article/10.1023/A:1021134128038
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7981/79815L/A-basic-approach-for-wing-leading-deicing-by-smart-structures/10.1117/12.880470.short?SSO=1
https://www.sciencedirect.com/science/article/pii/S0165232X11001145
http://www.sciencedirect.com/science/article/pii/S0376042118300058
http://www.sciencedirect.com/science/article/pii/002954939290094C

