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Introduction

Icing has been identified as a severe issue since the beginning of aviation [START_REF] Leary | We freeze to please: A history of nasa's icing research tunnel and the quest for flight safety[END_REF][START_REF] Cao | Aircraft icing: An ongoing threat to aviation safety[END_REF]. It can occur both during flight and on ground. In flight, ice accretion is caused by supercooled droplets suspended in clouds. They impact the aircraft surfaces and freeze. Ice then accumulates on the surface which may lead to an increase of mass, the degradation of aerodynamic performances or engine damage/flameout due to ice ingestion.

Ice protection systems are then required to ensure aircraft safety [START_REF]Aircraft Icing Handbook[END_REF]. Current strategies for anti-icing or de-icing can be chemical, thermal, mechanical or a combination of them [START_REF] Strobl | Feasibility study of a hybrid ice protection system[END_REF][START_REF] Zhang | A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface[END_REF]. Of course, each of these strategies possesses their own drawbacks and advantages [START_REF] Huang | A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications[END_REF]Tab. 1] and the choice depends on the targeted applications. In the context of more electrical aircraft, electromechanical solutions are especially interesting for their potential in terms of weight, durability and energy savings. The basic idea consists in feeding the protected surface with vibrations by means of electric actuators. These vibrations generate stress within the ice leading to cohesive (bulk fracture) and adhesive (delamination) failures.

A large amount of work has been carried out to study the efficiency of electromechanical ice protection systems. In the low frequency range (Hertz), Venna et al. focused on energy and weight considerations either by using smart structures [START_REF] Venna | Development of self-actuating in-flight de-icing structures with power consumption considerations[END_REF][START_REF] Venna | Mechatronic development of self-actuating in-flight deicing structures[END_REF] or by combining shear and impulse forces [START_REF] Venna | Piezoelectric transducer actuated leading edge de-icing with simultaneous shear and impulse forces[END_REF]. The de-icing power of waves in the megaHertz range has been addressed by Ramanathan et al. [START_REF] Ramanathan | Deicing of helicopter blades using piezoelectric actuators[END_REF] or by Kalkowski et al. [START_REF] Kalkowski | Removing surface accretions with piezo-excited high-frequency structural waves[END_REF] through semi-analytical models and experiments. However, most of the studies and the main focus of the present work lie within the kiloHertz range. Experiments together with finite elements modeling-mainly conducted by Palacios, Overmeyer et al. [START_REF] Palacios | Dynamic analysis and experimental testing of thin-walled structures driven by shear tube actuators[END_REF][START_REF] Palacios | Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades[END_REF][START_REF] Palacios | Investigation of an ultrasonic ice protection system for helicopter rotor blades[END_REF][START_REF] Palacios | Instantaneous de-icing of freezer ice via ultrasonic actuation[END_REF][START_REF] Palacios | Ultrasonic de-icing of wind-tunnel impact icing[END_REF][START_REF] Overmeyer | Rotating testing of a low-power, non-thermal ultrasonic de-icing system for helicopter rotor blades[END_REF][START_REF] Overmeyer | Actuator bonding optimization and system control of a rotor blade ultrasonic deicing system[END_REF] Figure 1: Electromechanical de-icing systems: (a) the analytic beam studied in [START_REF] Budinger | Ultrasonic ice protection systems: Analytical and numerical models for architecture tradeoff[END_REF][START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF] and re-used in this paper as a test case; and (b) position h n of the neutral line where the mode shape W(x) is applied as a Dirichlet boundary condition. also by Villeneuve et al. [START_REF] Villeneuve | Piezoelectric deicing system for rotorcraft[END_REF] or Strobl et al. [START_REF] Strobl | Feasibility study of a hybrid ice protection system[END_REF] for an hybrid approach-showed the efficiency of ultrasonic de-icing at low-energy costs both on plates and helicopter rotor blades.

Nevertheless, there is still a lack of understanding concerning the mechanisms leading to the fracture and debonding of ice. Using beam theory, modal analysis and numerical tools, Budinger et al. provided a first step in this direction [START_REF] Budinger | Ultrasonic ice protection systems: Analytical and numerical models for architecture tradeoff[END_REF][START_REF] Pommier-Budinger | Electromechanical resonant ice protection systems: Initiation of fractures with piezoelectric actuators[END_REF][START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. The resulting information was integrated into the design phase and guided the choice of vibrational modes. However, in their numerical analysis, Budinger et al. assumed a priori crack propagation and debonding mechanisms.

The goal of this paper is to assess the fracture mechanisms introduced by Budinger et al. [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. To do so, a phase-field variational approach to fracture and adhesive debonding is used in order to fully simulate the shedding mechanism. The method allows to remove a priori assumptions on initation and propagation direction of fracture made in [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. Our algorithm is tested on the analytical beam model of [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. Knowing the variability of ice characteristics in literature, these results are only used to identify trends in the ice shedding process.

The paper is organized as follows: (i) Section 2 provides some details on electromechanical de-icing systems and re-introduces the analytical beam model and fracture mechanisms of [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]; (ii) Section 3 describes the mechanical modelling of cohesive and adhesive failure; (iii) Section 4 deals with the mechanical properties of ice and related issues; (iv) Section 5 is dedicated to the numerical results and related discussions; and (v) Section 6 concludes this paper and presents ongoing work.

Ice shedding mechanisms in electromechanical de-icing systems

Set up and assumptions

Budinger et al. [START_REF] Budinger | Ultrasonic ice protection systems: Analytical and numerical models for architecture tradeoff[END_REF][START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF] modelled an electromechanical de-icing system by the configuration displayed in Figure 1(a), which is re-used in this paper as a test case. The aluminium support of length a = 154 mm, with simply supported boundary conditions, is covered by a layer of freezer ice-both of constant thicknesses h alu = 1.5 mm and h ice = 2 mm. Anti-icing mode of ice protection systems [START_REF] Li | Effect of ultrasound on frost formation on a cold flat surface in atmospheric air flow[END_REF] or ice accretion models [START_REF] Gao | Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves[END_REF][START_REF] Liu | Ultrasonic-attenuation-based technique for ice characterization pertinent to aircraft icing phenomena[END_REF] are thus not discussed here. Both the aluminium and the ice are considered as an elastic isotropic homogeneous material. Elastic coefficients for aluminium are set to c alu = 69 GPa and ν alu = 0.334. Ice characterization is a more complex task and this is discussed in Section 4. Macroscopically, fracture is assumed to be: (i) brittle, which is justified for high strain rate [START_REF] Druez | The adhesion of glaze and rime on aluminium electrical conductors[END_REF]; and (ii) instantaneous. Shreurs [START_REF] Schreurs | Fracture mechanics[END_REF] estimates the fracture propagation velocity in ice to be about 20 to 40 % of the speed of sound v s = c ice / ρ, yielding v 1000 m / s.

Mode shapes are supposed to be identical to that of a uniform beam which undergoes in-plane extensional and out-of-plane flexural modes, essentially used in the literature. Investigation of the available analytical formulas in [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]Tab. 3]-derived from [START_REF] Timoshenko | Strength of Materials[END_REF]-shows that pure extensional modes generate, at given frequency and magnitude, lower tensile stress at the top of the ice surface and lower shear stress at the ice / aluminium interface. Extensional modes also generally appear at higher frequencies (over 15 kHz) and thus: (i) require more energy; and (ii) may involve three-dimensional effects. Consequently, excitation of flexural modes-up to approximately 15 kHz-is privileged in this work. These modes write [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]Tab. 3] w(x, t) = W(x) sin (ω t) = W 0 sin n π x a sin (ω t) .

(1) Refering to the estimation of the fracture propagation velocity, the characteristic time of fracture is negligible against the vibratory amplitude of modes under 40 kHz. Therefore, only the spatial part W(x)-i.e. the maximum amplitude of w(x, t) in time-is retained here. According to the beam assumption, the flexural mode shape W(x) is applied on the neutral line given by [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]Tab. 3]

State 3  f 3 State 2  f 2
h n = 1 2 c alu h 2 alu -c ice h 2 ice c alu h alu + c ice h ice , (2) 
as described in Figure 1(b). This work is technology-independant and technology considerations [START_REF]Aircraft Icing Handbook[END_REF] are not discussed in this paper. The problem considered in this paper reduces to find a steady-state (fractured or not) compatible with the external load W(x).

Postulated ice shedding mechanisms

Two ice shedding mechanisms are postulated by Budinger et al. in [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. They are depicted in Figure 2 for flexural modes: maximum shear (resp. tensile) stress region is called a node (resp. an antinode) and is colored in blue (resp. red). Mechanism 1 corresponds to a cohesive fracture initiated by tensile stress at the top of the ice surface, propagating through the thickness and causing delamination thanks to a re-distribution of the stress at the ice/aluminium interface. In mechanism 2, the shear stress at the interface is sufficient to delaminate the ice, without cohesive failures. The energy balance approach for fracture propagation considered in [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF] allows discriminating between the two mechanisms when flexural modes are applied: (i) initiation of a cohesive fracture and propagation through the entire ice thickness is possible at low frequencies but an adhesive damage (delamination) generally not follows and often requires higher magnitude (i.e. voltage); and (ii) mechanism 2 is unlikely to occur.

Mechanical modelling

This section presents the mechanical modelling considered in this paper, building upon previous work [START_REF] Bennani | Numerical simulation and modeling of ice shedding: Process initiation[END_REF][START_REF] Bennani | Modélisation bidimensionnelle de systèmes électrothermiques de protection contre le givre[END_REF][START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]. It includes both brittle fracture and adhesive debonding. These two phenomena are firstly discussed and modelled separately. The different terms involved in the model along with equations are introduced and justified. In a final step, all these terms are gathered and the full coupled model is derived. The resolution method closes the section.

Brittle fracture model

Modelling fracture mechanics is not an easy task. Several methods are available in the literature, e.g. XFEM [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF][START_REF] Moës | Extended finite element method for cohesive crack growth[END_REF][START_REF] Belytschko | A review of extended/generalized finite element methods for material modeling[END_REF], remeshing [START_REF] Gurtin | Configurational forces and the basic laws for crack propagation[END_REF][START_REF] Gürses | A computational framework of three-dimensional configurational-force-driven brittle crack propagation[END_REF][START_REF] Rabczuk | Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives[END_REF], Cohesive Zone Models [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF][START_REF] Alfano | Cohesive zone modeling of mode i fracture in adhesive bonded joints[END_REF] or Variational Approach [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]. Concerning applications to ice, all these methods have been applied: both XFEM [START_REF] Lu | A large scale simulation of floe-ice fractures and validation against full-scale scenario[END_REF] and remeshing [START_REF] Jiménez | An updated-lagrangian damage mechanics formulation for modeling the creeping flow and fracture of ice sheets[END_REF][START_REF] Samak | Parallel implementation of a lagrangian-based model on an adaptive mesh in c++: Application to sea-ice[END_REF] are used for modeling ice-floe/seaice fractures; Cohesive Zone Model have been successfully applied for sea-ice and structure interactions [START_REF] Konuk | A cohesive element framework for dynamic ice-structure interaction problemspart ii: Implementation[END_REF][START_REF] Gürtner | Experimental and numerical investigations of ice-structure interaction[END_REF][START_REF] Bergan | On the potential of computational methods and numerical simulation in ice mechanics[END_REF] but also for aircraft (or similar) applications [START_REF] Sommerwerk | Analysis of the mechanical behavior of thin ice layers on structures including radial cracking and de-icing[END_REF][START_REF] Riahi | The experimental/numerical study to predict mechanical behaviour at the ice/aluminium interface[END_REF]; cohesive and adhesive failures of ice on an aluminium airfoil have been investigated thanks to a variational approach in the context of electrothermal de-icing systems [START_REF] Bennani | Numerical simulation and modeling of ice shedding: Process initiation[END_REF][START_REF] Bennani | Modélisation bidimensionnelle de systèmes électrothermiques de protection contre le givre[END_REF][START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]. Regarding electromechanical ice protection systems, Budinger et al. compared a computed energy release rate to a given fracture toughness, according to Griffith's theory [START_REF] Schreurs | Fracture mechanics[END_REF], to determine if a fracture is unstable or not [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. To the authors' knowledge, it is the only attempt to numerically study fracture propagation in this context. As an energy balance approach, the work of Budinger et al. took the same flavor as in [START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF] but assumed fracture mechanisms to be known.

The method described here falls into the concept of variationnal approaches [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF] and phase-field models [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Miehe | Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations[END_REF][START_REF] Borden | A phase-field description of dynamic brittle fracture[END_REF][START_REF] Verhoosel | A phase-field model for cohesive fracture[END_REF][START_REF] Borden | A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework[END_REF][START_REF] Msekh | Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model[END_REF]. Note that some authors combined this approach with other fracture methods such as remeshing [START_REF] Areias | Phase-field analysis of finite-strain plates and shells including element subdivision[END_REF]. The problem is formulated with an energy functional and relies on an energy conservation principle. The energy conservation principle translates the interplay between elastic energy E el and crack surface energy E Γ [START_REF] Griffith | Vi. the phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london[END_REF]. We consider a material Ω, cracked on the surface Γ, clamped on Γ 3 and undergoing an external force f sur f on Γ 1 such as in Figure 3. The model targets the balance between E el and E Γ for this particular configuration and thus predicts a steady state compatible with external loads applied on Γ 1 and Γ 3 . As a phase-field model, the crack surface energy E Γ -written in the form of a surface integral-is approximated by a volume integral E crack through the introduction of a smooth scalar damage variable d ∈ [0, 1] [52]

E Γ = Γ g c dΓ Ω φ(d , ∇d) dV = E crack .
The variable d smoothly interpolates between broken states (d = 1) and unbroken states (d = 0), the width of the regularized crack being measured by a parameter .

The starting point of the model is elastic energy E el and regularized crack surface energy

E crack E el = Ω ψ( , d) dV and E crack = Ω φ(d , ∇d) dV. (3) 
According to [START_REF] Miehe | Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations[END_REF][START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF], the crack surface density function φ-approximating the Griffith's surface energy-is expressed as

φ(d , ∇d) = g c c 0 1 α(d) + ∇d • ∇d where c 0 = 4 1 0 α(s) ds. (4) 
The "so-called" Γ-convergence [START_REF] Ambrosio | Approximation of functional depending on jumps by elliptic functional via t-convergence[END_REF][START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF][START_REF] Braides | Approximation of free-discontinuity problems[END_REF][START_REF] Braides | Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case[END_REF][START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Braides | Gamma-convergence for Beginners[END_REF][START_REF] Braides | Chapter 2 a handbook of gamma-convergence[END_REF][START_REF] Maso | An introduction to Gamma-convergence[END_REF] guarantees that the volume integral E crack -with the crack density function φ given by (4)-actually converges toward the Griffith's surface energy E Γ as the parameter goes to zero. If some difficulties can arise in practice [START_REF] Linse | A convergence study of phase-field models for brittle fracture[END_REF], Γ-convergence results hold at least numerically [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF][START_REF] Miehe | Phase field modeling of fracture in multi-physics problems. part i. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids[END_REF]. Miehe et al. [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF] propose to split the elastic density function into purely tensile ψ + and compressive ψ -parts defined by using the eigenvalues of ( and in two dimensions) and a positive/negative part function noted < . > ±

ψ + ( ) = λ 2 < + > 2 + +µ (< > 2 + + < > 2 + ) (5) 
ψ -( ) = λ 2 < + > 2 -+µ (< > 2 -+ < > 2 -). ( 6 
)
Only the tensile part contributes to crack nucleation or propagation. Consequently, ψ + is multiplied by a function f 1 (d) representing the degradation of this tensile part into crack surface energy

ψ( , d) = f 1 (d) ψ + ( ) + ψ -( ). (7) 
It now remains to define the geometric function α and the degradation function f 1 , which have to satisfy the following requirements [START_REF] Miehe | Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations[END_REF] 

α(0) = 0, α(1) = 1, f 1 (0) = 1, f 1 (1) = 0, f 1 (1) = 0 and f 1 (d) < 0.
Many expressions exist for α and f 1 : see for example [29-31, 51, 52, 70-72]. This choice greatly influences the model behavior but, in the general case, the strain-stress relation takes the following form: (i) an elastic phase from ( , σ) = (0, 0) to ( , σ) = ( e , σ e ), where the damage remains 0 everywhere; (ii) an homogeneous damage phase from ( , σ) = ( e , σ e ) to ( , σ) = ( c , σ c ), where the damage increases but remains homogeneous in the domain;

(iii) a damage localization phase from ( , σ) = ( c , σ c ) to ( , σ) = (+∞ , 0), where cracks appear and develop. Following [START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF][START_REF] Wu | A length scale insensitive phase-field damage model for brittle fracture[END_REF], the two functions α and f 1

α(d) = d ξ + (1 -ξ) d , (8) 
f 1 (d) = (1 -d) p (1 -d) p + a 1 d P(d)
and

P(d) = 1 + a 2 d + a 2 a 3 d 2 , (9) 
are adopted in this paper with

a 1 = 2 ξ c ice g c c 0 σ 2 c , (10) 
ξ = 0.5, p = 2, a 2 = 1 ξ -4 π ξ 2 c 0 g c σ 2 c k 0 2 /3 + 1 -(p + 1), a 3 = 1 a 2 1 ξ c 0 ω c σ c 2 π g c 2 -(1 + a 2 ) , (11) 
where

k 0 = - σ 2 c
2 g c and ω c = 2 g c σ c are respectively the initial slope (B.7) and the ultimate crack opening (B.8) of a linear softening law. For this choice, there is no homogeneous damage phase-i.e. e = c and σ e = σ c denoted c and σ c in all the following. Cracks thus appear just after the elastic phase. Constitutive relations (8)-( 9)-( 10)-( 11) present some advantages: (i) the presence of an elastic phase where d = 0 everywhere; (ii) a finite crack support in which d > 0 in the damage localization phase; and (iii) an -independant critical stress σ c . Concerning the latter point, can be considered as a constant material parameter [START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF][START_REF] Tanné | Crack nucleation in variational phase-field models of brittle fracture[END_REF] but the Γ-convergence is lost. Here, an -independant critical stress σ c is achieved through Relation (10)-see Appendix B and [START_REF] Wu | A length scale insensitive phase-field damage model for brittle fracture[END_REF] for more details. In this case, one can let the parameter go to zero in order to obtain sharper crack topology while maintaning the crack nucleation at the constant critical stress σ c . The notion of Γ-convergence is retrieved and the parameter keeps its numerical role. Parameters ξ = 0.5 and p = 2 are related to the numerical stability of the proposed algorithm in Subsection 3.3 and to the boundedness of the damage variable d (Appendix A). Expressions for a 2 and a 3 are justified in Section 4. Now, the model only requires the material parameters g c and σ c to be fully determined, which are also discussed in Section 4.

Using variational arguments, one may show that

-div (σ( , d)) = f vol in Ω σ • n = f sur f on Γ 1 u = u d on Γ 2 g c c 0 α (d) -2 g c c 0 ∆d = -f 1 (d) ψ + ( ) in Ω ∇d • n = 0 on ∂Ω (12) 
where the stress tensor σ is given by σ = ∂ψ ∂ . Note that σ is a non-linear function of but also of the bulk damage

d since ψ = ψ( , d) σ = ∂ψ ∂ = f 1 (d) λ < tr( ) > + 1 + 2 µ + + λ < tr( ) > -1 + 2 µ -. (13) 
In addition, the right hand sidef 1 (d) ψ + ( ) of the bulk damage equation that drives the damage growth is also nonlinear here with respect to d. It represents an additional difficulty compared to many similar works where the choice 2 -leading to a linear expression for f 1 (d)-is commonly made: see for example [START_REF] Bennani | Numerical simulation and modeling of ice shedding: Process initiation[END_REF][START_REF] Bennani | Modélisation bidimensionnelle de systèmes électrothermiques de protection contre le givre[END_REF][START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]. This will be discussed in the Subsection 3.3.

f 1 (d) = (1 -d)

Adhesive debonding model

The model developped in this section is built upon [START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF][START_REF] Frémond | Adhérence des solides[END_REF] with an approach akin to the bulk damage model of Subsection 3.1. The adhesive interface Γ 2 between two solids Ω 1 and Ω 2 is modelled by microscopic bonds as depicted in Figure 4. An adhesive damage variable β is introduced and plays the role of the bulk damage d: β = 0 means that the interface is intact while β = 1 means that the interface is completely broken. Considering no bulk damage both in Ω 1 and Ω 2 , the total energy of the system is composed of the elastic energy

E Ω 1 el in Ω 1 , the elastic energy E Ω 2
el in Ω 2 , the elastic energy stored in microscopic bonds E micro and the surface energy E adh associated with the debonding process. These energies are defined by

E Ω 1 el = Ω 1 ψ 1 ( 1 ) dV, E Ω 2 el = Ω 2 ψ 2 ( 2 ) dV, E micro = Γ 2 γ(β , u 1 , u 2 ) dΓ, and E adh = Γ 2 φ adh (β , u 1 , u 2 ) dΓ. ( 14 
)
As in the bulk damage model, energy accumulates in microscopic bonds and can be converted to surface energy in order to increase the adhesive damage β. The total work of external forces W ext is written as the sum of the work of external forces acting on each part of the system taking seperately, i.e.

W ext = W Ω 1 ext + W Ω 2 ext + W Γ 2 ext . The work W Γ 2 ext
takes into account that the block Ω 1 produces a force reaction -R 1 while Ω 2 produces the force reaction -R 2 on the adhesive interface Γ 2 . Equivalently,

W Ω 1 ext (resp. W Ω 2 ext ) includes the effect produced by Γ 2 on Ω 1 (resp. Ω 2 ) since Γ 2 ⊂ ∂Ω 1 (resp. Γ 2 ⊂ ∂Ω 2 ). This effect reads σ 1 • n 1 = R 1 and σ 2 • n 2 = R 2 on Γ 2
by the action-reaction principle. The total work of external forces is thus expressed as

W ext = Ω 1 f vol • δu 1 dV + ∂Ω 1 f sur f • δu 1 dΓ W Ω 1 ext : external forces acting on Ω 1 + Ω 2 f vol • δu 2 dV + ∂Ω 2 f sur f • δu 2 dΓ W Ω 2 ext : external forces acting on Ω 2 + Γ 2 (-R 1 ) • δu 1 dΓ + Γ 2 (-R 2 ) • δu 2 dΓ W Γ 2 ext : external forces acting on Γ 2 . (15)
Again, for the configuration described in Figure 4, variational arguments lead to

-div (σ 1 ( 1 )) = f vol in Ω 1 σ 1 • n 1 = f sur f on Γ 1 σ 1 • n 1 = R 1 = -∂γ ∂u 1 + ∂φ adh ∂u 1 on Γ 2 -div (σ 2 ( 2 )) = f vol in Ω 2 u 2 = u d on Γ 3 σ 2 • n 2 = R 2 = -∂γ ∂u 2 + ∂φ adh ∂u 2 on Γ 2 ∂φ adh ∂β = -∂γ ∂β on Γ 2 ( 16 
)
where stress tensors σ 1 and σ 2 are related to elastic energies through

σ 1 = ∂ψ 1 ∂ 1 and σ 2 = ∂ψ 2 ∂ 2 . Above, the outward normal with respect to Ω 1 (resp. Ω 2 ) is denoted n 1 (resp. n 2 ).
As a first attempt using variational approaches in the context of electromechanical de-icing systems and knowing identification difficulties, the adhesive modelling is here firstly simplified and then improved step by step. Three adhesive models are considered and summarized in Tab. 1. The first one only takes into account Mode I failure. However, according to Rice and Sih [START_REF] Sih | Plane problems of cracks in dissimilar materials[END_REF], the local stress at an interface between dissimilar materials presents both tensile and shear components, even when far-field loads are pure uniaxial tension (Mode I) or shear (Mode II). The consideration of pure Mode I failure seems therefore questionable [START_REF] Archer | Measurement and control of ice adhesion to aluminum 6061 alloy[END_REF] and models 2 and 3 presented below gradually include Mode II failure.

Model 1. The adhesive surface energy φ adh is defined by analogy with the bulk damage model [START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF] 

φ adh (β , u 1 , u 2 ) = φ adh (β) = g adh c β 2 . (17) 
The microscopic density energy γ writes [START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF] γ(β ,

u 1 , u 2 ) = f 2 (β) k 2 < u n > 2 + γ β + k ∞ 2 < u n > 2 -+ u 2 τ γ 0 . ( 18 
)
In the above relation, f 2 (β) = (1 -β) 2 is the adhesive degradation function, u = u 2 -u 1 is the displacement jump across Γ 2 and u n (resp. u τ ) its normal (resp. tangential) component. The microscopic density function [START_REF] Overmeyer | Actuator bonding optimization and system control of a rotor blade ultrasonic deicing system[END_REF] shares some similarities with the bulk elastic energy ψ: (i) its decomposition into two parts γ β and γ 0 ; (ii) only one partγ β -participates to the debonding process; and (iii) the multiplication of this part by the degradation function f 2 . Only Mode I failure is here taken into account: only the positive part of u n can be degraded into crack surface energy. The negative part of u n and the tangential part u τ are strongly penalized thanks to a numerically infinite stiffness k ∞ setting to k ∞ = 10 17 Pa / m in this paper. The penalization of < u n > -with a strong-or infinite-stiffness is a simple but common practice [START_REF] Xu | Numerical simulations of fast crack growth in brittle solids[END_REF][START_REF] Caporale | Micromechanical analysis of interfacial debonding in unidirectional fiber-reinforced composites[END_REF][START_REF] Panagiotopoulos | Bem implementation of energetic solutions for quasistatic delamination problems[END_REF][START_REF] Roubíček | Quasistatic mixed-mode delamination model[END_REF][START_REF] Vodička | Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model[END_REF] to avoid inter-penetration. Note that in that case where φ adh (β , u 1 , u 2 ) = φ adh (β), adhesive boundary conditions on Γ 2 -see Eqs (16)-simplify into

σ i • n i = R i = -∂γ ∂u i , i = 1, 2.
Model 1 only requires a normal stiffness k as parameter. It will be related to an adhesive critical stress σ adh c for its computation in Section 4.

Model 2. Stored elastic energy γ through shear displacements jump u τ can now feed the crack surface energy φ adh and is therefore incorporated into γ β . The adhesive crack energy φ adh is kept isotropic. Model 2 consists in taking

φ adh (β , u 1 , u 2 ) = φ adh (β) = g adh c β 2 , (19) 
γ(β , u 1 , u 2 ) = f 2 (β) k 2 < u n > 2 + +α τ u 2 τ γ β + k ∞ 2 < u n > 2 - γ 0 , (20) 
where α τ = k τ k . Again, an isotropic adhesive critical energy g adh c simplifies adhesive boundary conditions on Γ 2 . The introduced tangential stiffness k τ is much more difficult to calibrate than the normal one and its computation requires additional modelisation choices coming with additional uncertainties-see for example mixed-mode modelling in Cohesive Zone Model [START_REF] Turon | An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[END_REF][START_REF] Gilormini | Testing some implementations of a cohesive-zone model at finite strain[END_REF][START_REF] Dimitri | Coupled cohesive zone models for mixed-mode fracture: A comparative study[END_REF][START_REF] Hirsch | Microscale simulation of adhesive and cohesive failure in rough interfaces[END_REF]. For that reason, the effect of the tangential component u τ will be investigated by a sensitivity study on the parameter α τ in Section 5. , for Mode II failure. The adhesive energy release rate g adh c in φ adh now depends on displacements u 1 and u 2 in order to split the source term γ β/g adh c for the adhesive damage β into two contributions [START_REF] Zhang | A modification of the phase-field model for mixed mode crack propagation in rock-like materials[END_REF]. In other words g adh c = g adh c (u 1 , u 2 ) is chosen so that

Adhesive

γ β g adh c becomes γ I β g adh c + γ II β g adh,II c where γ I β = k 2 < u n > 2 + and γ II β = k 2 α τ u 2 τ . Model 3 is obtained by φ adh (β , u 1 , u 2 ) = g adh c (u 1 , u 2 ) β 2 , (21) 
γ(β , u 1 , u 2 ) = f 2 (β) k 2 < u n > 2 + +α τ u 2 τ γ β + k ∞ 2 < u n > 2 - γ 0 , (22) 
with

g adh c (u 1 , u 2 ) = γ β / γ I β g adh c + γ II β g adh,II c . ( 23 
)
The microscopic energy γ (22) is left unchanged with respect to Model 2 and a sensitivity study on α τ will also be performed in Section 5. The question of the computation of the new introduced adhesion energy g adh,II c is raised and we are facing the same issue as for α τ . In this paper, as an illustration and to provide numerical results, the adhesive critical energy release rate g adh,II c is computed with g adh,II c = 10 g adh c as in [START_REF] Zhang | A modification of the phase-field model for mixed mode crack propagation in rock-like materials[END_REF]. It seems finally useful to recall the expression of the adhesive damage β holding on the adhesive interface Γ 2 [START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]. Whatever the adhesive model chosen, the last relation of ( 16) allows the direct computation of

β β = γ β g adh c + γ β . (24) 
Since g adh c and γ β are positive, the boundedness of β is trivial, i.e. 0 ≤ β ≤ 1. For Model 3, the dependance g adh c (u 1 , u 2 ) is omitted in Eq. ( 24) and in all the following for simplicity but it has to be kept in mind. Appendix C details the computation of adhesive boundary conditions on Γ 2 in Eqs (16).

Coupled adhesive / brittle failure model

At this stage, all energies have been introduced and the complete coupled adhesive / brittle failure model can be derived. This derivation is briefly detailed in Appendix D to highlight that the coupling is only done through the variational principle.

Restarting from the configuration of Figure 4, we consider this time Dirichlet and Neumann boundary conditions both in Ω 1 and Ω 2 for generality. The block Ω 1 can undergo brittle failures while no bulk damage is considered in

Ω 2 . The boundary ∂Ω 1 is decomposed into ∂Ω 1 = Γ Ω 1 1 ∪ Γ 2 ∪ Γ Ω 1 3 where Γ Ω 1 1 supports Neumann boundary condition σ 1 • n 1 = f sur f , Γ Ω 1 3
supports Dirichlet boundary condition u 1 = u d and Γ 2 is the common adhesive interface with Ω 2 . Of course, the same is done for ∂Ω 2 :

∂Ω 2 = Γ Ω 2 1 ∪ Γ 2 ∪ Γ Ω 2 3
. The total energy of the system writes

E tot = Ω 1 ψ 1 ( 1 , d) dV E Ω 1 el + Ω 1 φ(d , ∇d) dV E crack + Ω 2 ψ 2 ( 2 ) dV E Ω 2 el + Γ 2 φ adh (β , u 1 , u 2 ) dΓ E adh + Γ 2 γ(β , u 1 , u 2 ) dΓ E micro . (25) 
Using variational arguments on the energy E tot [START_REF] Liu | Ultrasonic-attenuation-based technique for ice characterization pertinent to aircraft icing phenomena[END_REF], one gets the complete set of equations to be solved

-div(σ 1 ( 1 , d)) = f vol in Ω 1 σ 1 • n 1 = f sur f on Γ Ω 1 1 u 1 = u d on Γ Ω 1 3 σ 1 • n 1 = R 1 = -∂γ ∂u 1 + ∂φ adh ∂u 1 on Γ 2 g c c 0 α (d) -2 g c c 0 ∆d = -f 1 (d) ψ + 0 ( 1 ) in Ω 1 ∇d • n 1 = 0 on ∂Ω 1 β = γ β g adh c +γ β on Γ 2 -div(σ 2 ( 2 )) = f vol in Ω 2 σ 2 • n 2 = f sur f on Γ Ω 2 1 u 2 = u d on Γ Ω 2 3 σ 2 • n 2 = R 2 = -∂γ ∂u 2 + ∂φ adh ∂u 2 on Γ 2 (26) 
Before we proceed to the algorithm description, the bulk damage equation in ( 26) is modified. First of all, one can introduce the expression of α coming from ( 8)

2 (1 -ξ) g c c 0 d -2 g c c 0 ∆d = -f 1 (d) ψ + 0 ( 1 ) -g c c 0 ξ. (27) 
As remarked in Subsection 3.1, f 1 is here non-linear. Anticipating the linearization of the system (26), f 1 is written under the form f 1 (d) = K(d) (d -1) where K(d) ≥ 0. Eq. ( 27) becomes

2 (1 -ξ) g c c 0 + K(d) ψ + 0 ( 1 ) A d -2 g c c 0 ∆d = K(d) ψ + 0 ( 1 ) -g c c 0 ξ B . (28) 
The iterative Algorithm 1 is implemented to solve the system [START_REF] Druez | The adhesion of glaze and rime on aluminium electrical conductors[END_REF]. In this paper, the difference between two successive iterations for both the adhesive and cohesive damages serves as a stopping criterion. Tolerances β and d are set to 10 -3 . It should be noted that equilibrium equations cannot be solved independently in Ω 1 and in Ω 2 : displacements u 1 and u 2 are coupled through the boundary condition on Γ 2 since ∂γ ∂u 1 , ∂φ adh ∂u 1 , ∂γ ∂u 2 and ∂φ adh ∂u 2 depend both on displacements u 1 and u 2 . Following Miehe et al. [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF], the irreversibility is introduced through the history fields H d and H β -respectively retaining the maximum of stored energies ψ + 0 and γ β throughout iterations. Non-linear terms are linearized taking advantage of the iterative resolution. For an iteration i: (i) the function K(d) coming from f 1 -see Eq. ( 28)-depends on d i-1 ; (ii) stress tensors σ 1 and σ 2 also depend on i-1 -see [START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]Appendix B]; and (iii) the current displacement jump u i is replaced by the old one u i-1 for the computation of F in adhesive boundary conditions on Γ 2 [START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]. Computation of the damage, the mechanical equilibrium and adhesive boundary conditions through Eqs. [START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF] and [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF] are therefore not equivalent to their counterpart in Eqs [START_REF] Druez | The adhesion of glaze and rime on aluminium electrical conductors[END_REF]. Function F is given in Appendix C by Eq. (C.2) and has to be simplified depending on the considered adhesive modelling. It should be noted that Eq. ( 28) does not guarantee the boundedness of the damage variable d, i.e. 0 ≤ d ≤ 1. Following Appendix A, a theoritical sufficient condition for 0 ≤ d ≤ 1 is given by (A.4):

2 (1 -ξ) g c c 0 + K H d Term A ≥ 0 and K H d -g c c 0 ξ Term B ≥ 0
Term A is always positive with ξ = 0.5 since K H d ≥ 0 and g c c 0 ≥ 0. Term B-playing the role of the damage source term-is slightly modified to stay positive. The bulk damage variable d i for the iteration i is thus computed as follows Numerically, in addition with conditions (A.4), one also needs that meshes do not present angles superior to 90 • [START_REF] Bennani | Modélisation bidimensionnelle de systèmes électrothermiques de protection contre le givre[END_REF][START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]. In all numerical results of Section 5, mesh's quality is not checked and the damage variable d is observed to stay strictly positive but exceeds the upper bound only very slightly (effect on the third decimal).

Algorithm 1: Adhesive / brittle failure computation initialization : perform a purely elastic computation (no adhesive or bulk damage);

while ||β i -β i-1 || ∞ < β and ||d i -d i-1 || ∞ < d do
Compute history fields;

H i d = max H i-1 d , ψ + 0 ( i-1 1 ) in Ω 1 and H i β = max H i-1 β , γ β ( u i-1 ) on Γ 2 (30) 
Solve the bulk damage Eq. ( 29) in Ω 1 and compute the adhesive damage on Γ 2 with (24) ;

2 (1 -ξ) g c c 0 + K(d i-1 ) H i d d i -2 g c c 0 ∆d i = max 0 , K(d i-1 ) H i d -g c c 0 ξ in Ω 1 ∇d i • n 1 = 0 on ∂Ω 1 β i = H i β g adh c +H i β on Γ 2 (31) 
Solve the mechanical equilibrium in Ω 1 and Ω 2 ;

-div σ 1 ( i 1 , i-1 1 , d i ) = f vol in Ω 1 -div σ 2 ( i 2 , i-1 2 ) = f vol in Ω 2 σ i 1 • n 1 = f sur on Γ Ω 1 1 σ i 2 • n 2 = f sur on Γ Ω 2 1 u i 1 = u d on Γ Ω 1 3 u i 2 = u d on Γ Ω 2 3 σ i 1 • n 1 = -F β i , u i-1 u i and σ i 2 • n 2 = F β i , u i-1 u i on Γ 2 (32) 
end

The two full linear problems ( 31) and ( 32) can now be solved by classical finite element methods [START_REF] Bennani | Numerical simulation and modeling of ice shedding: Process initiation[END_REF][START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]. In particular, P 1 Lagrange shape functions are considered on unstructured triangular meshes and a direct LU solver is applied on resulting linear systems.

In Algorithm 1, cohesive and adhesive damages are coupled: the damage state d near the adhesive interface influences the adhesive damage β and, conversely, so does β on d. It couples cohesive and adhesive variables d and β only through displacements u-more precisely through displacement jumps u across the adhesive interface Γ 2 . In particular, the adhesive interface keeps the same energy release rates g adh c , g adh,II c and the same stiffnesses k, α τ = k τ/k whatever the damage state d. It would be very interesting to discuss the influence of d and β on each other together with more sophisticated coupling. However, such studies are beyond the scope of the present paper and postponed to later publications.

To close this section, it seems relevant to discuss the parameters ξ and p for brittle fracture summarized in Section 3.1. Our choice strongly relies on the resolution method described here. The value p = 2 is not only largely used in literature [59, Remark 2.3], it is also the choice that leads to a better numerical stability for [START_REF] Bennani | A mixed adhesionbrittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]. Wu shows in [START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF] that this parameter heavily affects the stress softening behavior in the damage localization phase. Once p is fixed, a 2 and a 3 therefore follow to fit the classical corresponding softening law (see Section 4 and Appendix B). The geometric parameter ξ-restricted to ξ ∈ ]0, 2] [59, 73]-is finally constrained by ξ ≤ 1 as it guarantees that term A in (A.4) is positive for the boundedness of d-see Appendix A. Note that the value ξ = 0, discussed for example in [29-31, 42, 51, 52, 59, 70, 72, 87], is excluded since it lacks an initial elastic phase [START_REF] Wu | A length scale insensitive phase-field damage model for brittle fracture[END_REF]. Among choices already considered in literature, it thus only remains ξ = 0.5 [START_REF] Bourdin | The variational approach to fracture[END_REF][START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF][START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF] and ξ = 1 [START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF][START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF][START_REF] Bourdin | Morphogenesis and propagation of complex cracks induced by thermal shocks[END_REF][START_REF] Tanné | Crack nucleation in variational phase-field models of brittle fracture[END_REF][START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF]. A lower numerical stability of ( 31) is observed for ξ = 1 compared to ξ = 0.5, with p = 2, justifying the choice ξ = 0.5. The recommendation of Wu [START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF] to take the larger value ξ = 2 is therefore not followed in this paper. This value ξ = 2 allows satisfying an irreversibility condition on the crack bandwidth in a 1D homogeneous framework: the crack bandwidth cannot shrink. Here, the irreversibility is forced by the history function whatever the value of ξ and the crack bandwidth cannot effectively shrink. 

Mechanical properties of ice

Our proposed mechanical modelling requires the knowledge of ice characteristics. As mentioned in Section 2, macroscopically, a brittle behaviour is observed for high strain rate [START_REF] Druez | The adhesion of glaze and rime on aluminium electrical conductors[END_REF]. To provide numerical results, the following classical parameters are needed: ice Young's modulus c ice , ice Poisson's ratio ν ice , cohesive critical energy release rate g c , adhesive energy g adh c , cohesive critical strength σ c and adhesive critical strength σ adh c . These parameters may vary considerably in literature [START_REF] Gao | Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves[END_REF][START_REF] Liu | Ultrasonic-attenuation-based technique for ice characterization pertinent to aircraft icing phenomena[END_REF][START_REF] Riahi | The experimental/numerical study to predict mechanical behaviour at the ice/aluminium interface[END_REF][START_REF] Nakaya | Visco-elastic properties of snow and ice in greenland ice cap[END_REF][START_REF] Scavuzzo | Structural properties of impact ices accreted on aircraft structures[END_REF][START_REF] Gammon | Elastic constants of artificial and natural ice samples by brillouin spectroscopy[END_REF][START_REF] Petrovic | Review mechanical properties of ice and snow[END_REF][START_REF] Struggl | A basic approach for wing leading deicing by smart structures[END_REF][START_REF] Mohamed | An experimental study on the tensile properties of atmospheric ice[END_REF][START_REF] Work | A critical review of the measurement of ice adhesion to solid substrates[END_REF] depending on the type of ice (glaze or rime), the means to obtain this ice (freezer or wind tunnel), the type of degradation (cohesive or adhesive) and the interface material. Identification is a huge area of research in itself and uncertainties related to these parameters are beyond the scope of this paper, although the authors are fully aware of them. As an example, a recent review of ice adhesion on solid substrates [START_REF] Work | A critical review of the measurement of ice adhesion to solid substrates[END_REF] gathered 113 papers and concluded that results agreed within two or three order of magnitude on the adhesive critical strength σ adh c at given temperature-other critical values such as roughness are more poorly determined. A similar issue arises for the cohesive critical material strength σ c which is introduced in the brittle fracture model through the Relation (10) in Subsection 3.1, derived in a uniaxial homogeneous case. Ideally, the value of σ c should be identified on a test where an accurate measurement of the local stress in the nucleation zone can be performed: see for example the PIED (Pour Identifier l'Endommagement Diffus) test for concrete [START_REF] Ramtani | Orthotropic behavior of concrete with directional aspects: modelling and experiments[END_REF], reproducing uniaxial and homogeneous conditions. To the author's knowledge, such tests for the ice do not exist yet in the literature and we use the critical material strength σ c given by Budinger et al. [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. The other parameters previously mentioned are also provided in [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]: see Tab. 2. Keeping in mind the high scattering of materials' parameters in literature, values of Tab. 2 are no exception but it should be mentioned that results given in Section 5 are only used to highlight ice shedding trends. Then, these trends are only compared with postulated fracture mechanisms of [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. Close comparisons with experimental results are excluded in this paper. Now, all parameters required by the model are not directly given by Budinger et al. in [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. Some of them need to be related with the values of Tab. 2.

Brittle fracture parameters. In addition with ice parameters already given in Tab. 2, the model described in Subsection 3.1 needs the computation of , p, ξ, a 1 , a 2 and a 3 . Values of , p, ξ, and a 1 are already justified in Subsections 3.1 and 3.3. The focus is here on a 2 and a 3 which are related to the classical ice properties of Tab. 2. To that end, the approach of Wu [START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF] is followed and briefly described in Appendix B: (i) the equivalent Cohesive Zone Model of the phase-field variational approach to brittle fracture is formulated; (ii) the initial slope k 0 and the ultimate crack opening ω c of the Cohesive Zone Model are expressed; (iii) parameters a 2 and a 3 are deduced from k 0 and ω c ; and (iv) a softening law is chosen (depending on the parameter p) fixing the pair (k 0 , ω c ) and thus (a 2 , a 3 ). For p = 2, we get Relations (B.6)

a 2 = 1 ξ -4 π ξ 2 c 0 g c σ 2 c k 0 2 /3 + 1 -(p + 1), and a 3 = 1 a 2 1 ξ c 0 ω c σ c 2 π g c 2 -(1 + a 2 ) ,
where k 0 = - [START_REF] Zhang | A modification of the phase-field model for mixed mode crack propagation in rock-like materials[END_REF] as an illustration in order to provide numerical results. Finally, the computation of the normal stiffness k is performed thanks to a pure one-dimensional adhesive traction test such as in Figure 4 and described in Appendix E. Adhesive Model 1 is considered. In that case, adhesive boundary conditions explicited in Appendix C simplify into 

σ u = R 1 = -∂γ ∂u 1 = -R 2 = ∂γ ∂u 2 = k (1 -β) 2 u . ( 33 
)

Numerical simulations

Generalities

First of all, sanity checks are performed seperately on a cohesive and adhesive case in order to verify our implementation. They are presented in Appendix E.

Selected mode. The coupled adhesive / brittle failure method described in Section 3 is now applied to the configuration of Figure 1. It is recalled that the load W(x) is a flexural mode given by

W(x) = W 0 sin n π x a . ( 35 
)
The sixth mode of the structure n = 6 together with the spatial amplitude W 0 = 15 µm are chosen. This mode is displayed in Figure 5 and corresponds to the resonance frequency f 8.4 kHz [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]Tab. 3] (ω 53300 rad / s). This resonance frequency is high enough to observe fractures while staying below 15 kHz as recommended in Subsection 2.1.

Computational settings. A progressive load is adopted for all tests: the mode amplitude is increased at each iteration until reaching W 0 = 15 µm. For computational cost considerations, simulations are performed only on one wave length of the mode thanks to periodic boundary conditions applied on right and left boundaries. The simulated wave length is indicated by the "cut" shaded zone in Figure 5(a). The ice layer (Ω 1 ) is discretized into 1 208 220 triangular cells of maximum size h max 24.8 µm generated by GMSH [START_REF] Geuzaine | Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. Only the upper part, with respect to the neutral line h n , of the aluminium substrate (Ω 2 ) is meshed with 283 386 triangular cells of maximum size h max 23.2 µm.

Since there is no bulk damage in aluminium, the lower part is no use to simulate. The crack regularization parameter is taken to be = 8 × h max = 198.4 µm within the ice layer-corresponding to 40 cells in the crack support [START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF]Eq. (3.14)]. The fine mesh considered here allows non-diffusive results while taking a relative large amount of cells within the support to ensure a well-resolved crack. Some results are presented with a zoom on the range [57.5 , 71] mm of the simulated wave length-corresponding to the maximum tensile stress region (called an antinode) on the top surface of the ice layer. This region is displayed on Figure 6 representing initial, i.e. without crack, tensile σ xx and shear σ xy = σ yx stresses in the ice layer (Ω 1 ).

Outline of the section. This section is organized as follows: (i) a full cohesive / adhesive computation with Algorithm 1 and Model 1 (Case 4) is progressively obtained through intermediate tests (Cases 1, 2 and 3) in Subsection 5.2; (ii) the previous full cohesive / adhesive result (Case 4) is detailed and discussed in Subsection 5.3; and (iii) Subsection 5.4 presents a deeper insight into the adhesive modelling by investigating results given by Algorithm 1 with Model 2 (Case 5) and Model 3 (Case 6). All test cases are summarized in Tab. 3 and described in each subsection. Case 1 (pure cohesive). In this simplified test, only the ice layer is simulated. To mimick the presence of the aluminium substrate which undergoes the flexural mode on its neutral line, displacements are imposed on the adhesive interface-bottom boundary of the ice layer equivalently. These displacements are extracted after a purely elastic computation: initialization of Algorithm 1. Domain and boundary condition are shown in Figure 7. The crack behavior is displayed in Figure 9 (left). The crack nucleates on the first antinode where the tensile stress is maximum. Note that the elastic energy spliting [START_REF] Venna | Development of self-actuating in-flight de-icing structures with power consumption considerations[END_REF] forbids the degradation of its compressive part and, consequently, crack nucleation in compression (second antinode). It then propagates through the entire ice thickness. Once reaching the ice bottom boundary, the fracture branches and the crack continues its propagation along the bottom boundary.

Case 2 (cohesive / adhesive). In Case 2, the substrate is now added so that the displacements are applied on the neutral line : see Figure 8. The adhesive interface is modelled with Model 1 but β = 0 is imposed. Case 2 thus corresponds to a full coupled adhesive / brittle failure result in which the adhesive damage is set to zero throughout the entire calculation. To that end, the computation is done with Algorithm 1 and Model 1 but: (i) updates of the history field H i β in (30) and the adhesive damage β i in (31) are removed; and (ii) β i = 0 is taken in [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF]. On Figure 9 (right), Case 2 shows a very similar crack behavior as compared to Case 1. In particular, the crack nucleates at the same position (on the first antinode of the wave length) and follows the same path. Adhesive boundary conditions in [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF] correctly transfer efforts from the substrate to the ice when the adhesive interface is undamaged, i.e. when β = 0. One can observe however a small difference as the crack branches a little earlier for Case 1.

Case 3 (pure cohesive). Case 3 is presented in Figure 10. Now, the adhesive damage is authorized to grow but Case 3 models the adhesive interface as a damageable homogeneous isotropic elastic layer of non-zero thickness h layer . The ice and the adhesive layers are hence discretized with a common mesh. There is no interface between the ice and where g adh c and σ adh c are given in Tab. 2. The interface thickness is h layer = h ice / 10 = 0.2 mm. Of course, the value of the adhesive thickness h layer plays an important role in the comparison: one has to consider an adhesive layer as thin as possible in Case 3 to be comparable with Case 4. In practice, h layer is limited by the number of cells. The layer has to be discretized by a sufficient number of cells so as to correctly resolved the cohesive crack inside: a vanishing layer thickness implies a dramatic increase of the computational cost. The result is given in Figure 12 (top): the crack nucleates on the first antinode, propagates through the ice thickness and finally causes damage into the adhesive layer, i.e. delamination.

Case 4 (cohesive / adhesive). Case 4 is very similar to Case 3 but the adhesive interface in now of zero-thickness. The adhesive damage β is computed thanks to Model 1 described in 3.2. This case corresponds to the full cohesive / adhesive Algorithm 1 (with Model 1): see Figure 11. Figure 12 shows a very good agreement between Cases 3 and 4.

A closer look to the predicted ice shedding mechanism

This subsection goes into further details concerning Case 4. It is recalled that the computation is done here with Algorithm 1 where the adhesive modelling is given by Model 1: see Figure 11 for the domain and boundary condition. The goal is to take a closer look on the ice shedding mechanism at play. Figure 13 shows some intermediate iterations during the convergence process of Algorithm 1. Again, the failure process begins with a cohesive fracture on the first antinode of the wave length: Figure 13 (top left) and (top right). When the cohesive fracture almost crosses the ice through its entire thickness, the stress redistribution provides enough energy stored in microscopic bonds to initiate adhesive damage: Figure 13 (middle left) and (middle right). Then the adhesive damage spreads: Figure 13 (bottom left) and (bottom right). The model thus predicts a delamination caused by a cohesive fracture initating at the top of the ice layer on the first antinode of the wave length. This supports mechanism 1 introduced in [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]. 

Going further into the adhesive modelling

This last subsection is dedicated to the two more elaborated adhesive models-Case 5 (Model 2) and Case 6 (Model 3). Since the consideration of a pure Mode I failure is questionable as stated in Section 3.2, the effect of the introduction of Mode II failure is investigated through numerical experiments in this part.

Case 5 (Model 2). Case 5 corresponds to a cohesive / adhesive computation by Algorithm 1 on the configuration of Figure 11 but with adhesive Model 2. It is recalled that the stored energy in microscopic bonds associated with tangential displacements u τ -parametrized by the coefficient α τ = k τ k -can now be degraded into crack surface energy. As explained in Subsection 3.2, the tangential stiffness k τ presents some difficulties to calibrate without introducing additional hypotheses. A fit with experimental dis explicitely mentioned to beata is also excluded as we do not want to influence ice shedding trends. A sensitivity study on α τ is thus performed. It should be noted that α τ = 0.25 corresponds to the stiffness ratio of an homogeneous isotropic elastic layer of vanishing thickness h layer → 0 [97, and references therein]

α τ = k τ k = 1-2 ν layer 2(1-ν layer ) ( 36 
)
where ν layer is taken as in Subsection 5.2, i.e. ν layer = 0.3. Damages d and β are displayed on the whole simulated wave length in Figure 14 for α τ = 0.1 and α τ = 1. Figure 16 (left) presents the adhesive damage β for 0.1 ≤ α τ ≤ 1.

The case α τ < 0.1 yields no cohesive or adhesive damage while α τ > 1 gives very similar results compared to α τ = 1. The choice α τ < 0.1 implies a stiffness k τ too low for transfering enough efforts from the substrate to the ice and consequently does not allow damage to initiate. Interesting results are obtained for 0.1 ≤ α τ ≤ 1 and particularly for α τ = 0.1. Mechanism 1 [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF] is observed for α τ ≥ 0.25. However the value α τ = 0.1 clearly highlights a mechanism close to mechanism 2 [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF]: direct delamination is initiated at nodes (maximum shear stress) without cohesive fracture. More precisely, the adhesive interface is not fully debonded since β 0.8 and does not reach 1. At this stage, the model predicts the two ice shedding mechanisms postulated in [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF] depending on the value of the tangential stiffness k τ -or α τ = k τ k equivalently. for some interesting values 0.05 ≤ α τ ≤ 0.75. As for Case 5, α τ < 0.05 leads to a too low tangential stiffness k τ for correctly transfering efforts. Consequently, no damage appears for α τ < 0.05, neither cohesive nor adhesive. Unlike Case 5 however, α τ ≥ 1 puts forward the limitation of the method and gives too diffusive results to be interpreted. A possible solution could be the use of a finer mesh but this is beyond the scope of this paper. A more interesting result is that only mechanism 1 [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF] is now observed: a cohesive fracture initiates on the first antinode of the wave length, then propagates through the entire thickness and causes delamination. Full delamination-i.e. β = 1-begins with the value α τ = 0.25, for which a close result compared to Case 5-excluding α τ = 0.1-is obtained. Excluding α τ = 0.1 again, inspection of Figure 16 shows that the two values of g adh,II c yields the same fracture mechanism at fixed α τ . As a conclusion to this section, one may note that, generally, all our numerical experiments give more weight to mechanism 1 introduced by Budinger et al. [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF].

Conclusion

This paper deals with a phase-field variational approach for fracture applied to electromechanical de-icing. While the obtained method is limited either by its phase-field component (fine meshes required) or by ice applications (uncertainties due to identification of needed paramaters), it provides a useful framework to study fracture propagation and ice shedding in this context. Numerical experiments are conducted to highlight ice shedding trends and compare them with the postulated mechanisms of Budinger et al. [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF].

The full derivation of the adhesive / brittle failure model is presented. Modelling choices and parameters involved in the model are discussed and justified. Several test cases are performed on the pure flexural mode n = 6 corresponding to a frequency around 8.4 kHz. First, full cohesive / adhesive results are obtained step by step through comparisons with pure cohesive cases. Then, the three proposed adhesive models are investigated. Model 1 only considers Mode I failure. Models 2 and 3 improve the adhesive modelling by gradually introducing Mode II failure. Whatever the model used-with the exception of Model 2 with α τ = 0.1-mechanism 1 [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF] is observed.

In a close future, ongoing work includes direct applications of the method: different modes staying in a reasonable frequency range (a few kHz) with different configurations will be tested. In particular, these additional test cases could be used to assess the other conclusions drawn by Budinger et al. [START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF] such as the effect of thicker ice layers or the efficiency of mixed extensional/flexural modes. The phase-field variational method will also be confronted to reduced models for optimization purposes. Parametric and/or topological optimization will be performed with the help of selected reduced models for designing more efficient electromechanical systems. From a numerical point of view, the method can be improved in many ways. Concerning the model, dynamic effects or the coupling between adhesive and cohesive damages and its possible improvements would be worth investigating. Finally, parallelization, threedimensional geometry would be valuable additions to get a closer look at ice shedding mechanisms in the context of electromechanical de-icing systems.

As H d ≥ 0, K ≥ 0 and g c c 0 ≥ 0, the second part of (A.4) is fullfilled with ξ = 0.5. The first part of (A.4) justifies the modification of the source term in Eq. ( 28), yielding Eq. ( 29). Note that a similar analysis with d = 1d leads to d ≥ 0, hence d ≤ 1. conditions both in Ω 1 and Ω 2 for generality and that Ω 1 can undergo brittle failures while no bulk damage is considered in Ω 2 . Notations introduced in SubSection 3.3 are: for i = 1, 2, ∂Ω i is decomposed into ∂Ω i = Γ Ω i 1 ∪ Γ 2 ∪ Γ Ω i 3 where Γ Ω i 1 supports Neumann boundary condition σ i • n i = f sur f , Γ Ω i 3 supports Dirichlet boundary condition u i = u d and Γ 2 is the common adhesive interface. The total energy of the system is given by Eq. ( 25) 

E tot = Ω 1 ψ 1 ( 1 ,

  but

  the mode shape W(x) is applied here as a Dirichlet boundary condition

Figure 2 :

 2 Figure 2: The two possible kinds of fracture: cohesive in the ice layer or adhesive (delamination) at the ice-substrate interface. Corresponding mechanisms postulated in [22] for delamination.

Figure 3 :

 3 Figure 3: Illustration of a cracked material.

Figure 4 :

 4 Figure 4: Two solids Ω 1 and Ω 2 with a common adhesive interface Γ 2 modelled by microscopic bonds.
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 225 g c and ω c = 2 g c σ c are respectively the initial slope (B.7) and the ultimate crack opening (B.8) of a linear softening law. Adhesive parameters. Whatever the adhesive modelling, the normal stiffness k of microscopic bonds and the adhesive energy g adh c for Mode I failure are needed. Models 2 and 3 respectively add the ratio α τ = k τ k and the adhesive energy g adh,II c for Mode II failure. A sensitivity study is performed on α τ . Mode I adhesion energy g adh c is given in Tab. 2 while g adh,II c = 10 g adh c / m 2 is chosen
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 5251 Figure 5: Considered mode n = 6 with W 0 = 15 µm applied on the configuration Figure 1: (a) spatial component W and the simulated "cut" zone; and (b) aluminium substrate warped by 1000 × u and colored by u .

Figure 7 :

 7 Figure 7: Case 1: domain and boundary condition

Figure 8 :

 8 Figure 8: Case 2: domain and boundary condition

Figure 9 :

 9 Figure 9: Final damage fields: (left) Case 1; and (right) Case 2. Zoom around the maximum tensile stress region (antinode) displayed in Figure 6.

Figure 10 :

 10 Figure 10: Case 3: domain and boundary condition

Figure 11 :

 11 Figure 11: Case 4: domain and boundary condition

Case 4 :Figure 13 :

 413 Figure 13: Case 4. Final damage fields: (top left) iteration 0; (top right) iteration 75; (middle left) iteration 80; (middle right) iteration 85; (bottom left) iteration 90; (bottom right) final iteration 148. Zoom around the maximum tensile stress region (antinode) displayed in Figure 6.

Case 5 Figure 14 : 6 Figure 15 :

 514615 Figure 14: Case 5. Final damage fields: (left) α τ = 0.1; and (right) α τ = 1. Case 6

  (right) respectively display cohesive damage d and adhesive damage β

Figure 16 :

 16 Figure 16: Adhesive damage β for different values of α τ : (left) Case 5 with α τ ranges from 0.1 to 1; (right) Case 6 with α τ ranges from 0.05 to 0.75.

Figure B. 17 : 2 δ 1 ,= 1 - 2 = 1 =

 1721121 Figure B.17: Equivalent Cohesive Zone Model (CZM) (B.1)-(B.2) compared to three classical softening laws for ξ = 0.5, p = 2, g c = 1 J / m 2 and σ c = 3 MPa. Coefficients a 2 and a 3 are computed with (B.6) where the initial slope k 0 and ultimate crack opening ω c correspond to the targeted softening law.

Figure C. 18 :

 18 Figure C.18: Definition of the angle θ.

Figure E. 19 :

 19 Figure E.19: Single-edge notched plate shear test of Miehe et al. [51, 52]: (left) = 0.05 mm and (right) = 0.025 mm.

Figure E. 20 :

 20 Figure E.20: Analytic traction-separation law Eq. (33) compared with numerical ones both in ice and aluminium. Values of Tab. 2 are considered. The area under the traction-separation law matches the value g adh c = 0.5 J / m 2 .

  

1 -Initiation of fracture by tensile stress Mechanism No. 2 -Initiation of fracture by shear stress

  

			Ice
			Aluminium
	Cohesive fracture		Adhesive fracture
	State 1 Mechanism No. Cohesive fracture	Ice Substrate	State 1
	State 2		Adhesive fracture
	Adhesive fracture		State 2
	State 3		Ice Substrate

Table 1 :

 1 Summary of the three different adhesive models considered in this paper.

	model	Stored energy γ in microscopic bonds	Fracture energy φ adh
		Eq. (18):	
	Model 1	→ Penalized tangential disp. jump for Mode II → Only the positive part of disp. jump participates	Eq. (17): isotropic
		to debonding: only Mode I failure	
		Eq. (20):	
	Model 2	→ Tangential disp. jump including in the debonding	Eq. (19): isotropic
		process: Mode I and II failure	
		Eq. (22):	Eq. (21): anisotropic
	Model 3	→ Tangential disp. jump including in the debonding	→ Mode I and II distinction
		process: Mode I and II failure	through u

Model 3. Model 3 adds the possibility of a different adhesion energy, denoted g adh,II c

Table 2 :

 2 Elastic coefficients, cohesive and adhesive properties for freezer ice[START_REF] Budinger | Electromechanical resonant ice protection systems: Analysis of fracture propagation mechanisms[END_REF] used in this paper.

	Parameter	Value	Parameter	Cohesive Adhesive (ice/aluminium)
	Young's modulus c ice 9.3 GPa	Strength σ c	3 MPa	1 MPa
	Poisson's ratio ν ice	0.325	Critical energy release rate g c	1 J / m 2	0.5 J / m 2

  d) dV adh (β , u 1 , u 2 ) dΓ∂ 1 : δ 1 + ∂ψ 1 ∂d δd dV δβ + ∂φ adh ∂u 1 • δu 1 + ∂φ adh ∂u 2 • δu 2 dΓ • δu 1 + ∂γ ∂u 2 • δu 2 dΓNow, the energy conservation principle δE tot = W ext yieldsΩ 1 div (σ 1 ) + f vol • δu 1 dV + Ω 2 div (σ 2 ) + f vol • δu 2 dV + ∂φ adh ∂u 1 + R 1 • δu 1 dΓ + Γ 2 ∂γ ∂u 2 + ∂φ adh ∂u 2 + R 2 • δu 2 dΓ = 0, (D.2)

						+		φ(d , ∇d) dV	+	ψ 2 ( 2 ) dV	+	+	γ(β , u 1 , u 2 ) dΓ ,
								Ω 1		Ω 2	Γ 2	Γ 2
			E	Ω 1 el				E crack		E	Ω 2 el	E adh	E micro
	and its variation is deduced			
	δE tot =	Ω 1	∂ψ 1					+	Ω 1	∂φ ∂d δd + ∂φ ∂∇d • δ∇d dV	+	Ω 2	∂ψ 2 ∂ 2 : δ 2 dV
					δE	Ω 1 el				δE crack	δE	Ω 2 el
						+	Γ 2	∂φ adh		δE adh	+	Γ 2	∂γ ∂β δβ + ∂γ ∂u 1 δE micro	. (D.1)
	The total work of external forces is still expressed as Eq. (15)
	W ext =									+	f vol • δu 2 dV +	f sur f • δu 2 dΓ
										Ω 2	∂Ω 2
			External forces acting on Ω 1		External forces acting on Ω 2
										+	(-R 1 ) • δu 1 dΓ +	(-R 2 ) • δu 2 dΓ .
										Γ 2	Γ 2
										External forces acting on Γ 2
						Ω 1	g c c 0 α (d) -2 g c c 0 ∆d + ∂ψ 1 ∂d δd dV +	∂Ω 1	g c c 0 ∇d • n 1 δd dΓ
			+	Γ 2	∂φ adh ∂β + ∂γ ∂β δβ dΓ +	Γ 2	∂γ ∂u 1

φ ∂β Ω 1 f vol • δu 1 dV + ∂Ω 1 f sur f • δu 1 dΓ

(1 -ξ) g c c 0 + K(d i-1 ) H i d d i -2 g c c 0 ∆d i = max 0 , K(d i-1 ) H i d -g c c 0 ξ .(29)
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Appendix A. Boundedness of the bulk damage variable d

The methodology of [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] is followed. The weak formulation

is considered, where a, b, f are positive and v is a test function. For the above fomulation, a maximum principle holds on u:

Now, the weak formulation of ( 28) is

after the linearization f 1 (d) = K (d -1) and the introduction of the history function H d . Consequently, the result (A.2) 

parametrized by the maximum damage d . These relations are computed in the one-dimensional case where the stress σ is homogeneous (no body forces). Note that the critical stress σ c in this framework is

justifying the expression of a 1 in Eq. ( 10). The polynomial P is introduced in the geometric function α in Eq. ( 8). 

) 

Once the classical softening law is targeted-mainly influenced by the parameter p-the initial slope k 0 and the ultimate crack opening ω c are fixed thus determining a 2 and a 3 through (B.6). In this paper, the choice p = 2 allows targeting a linear softening law [59, Eqs. (3.9) and (3.20)]

)

as depicted in Figure B.17.

Appendix C. Computation of the adhesive boundary conditions

Adhesive boundary conditions on Γ 2 in (16) become

Eq. (D.2) has to hold for every variation δu 1 , δu 2 , δd, δβ, therefore

Dirichlet and Neumann boundary conditions are finally added to (D.3). The relation ∂φ adh ∂β = -∂γ ∂β is replaced by its equivalent counterpart Eq. ( 24) and the driving force to the bulk damage is expressed as follows Adhesive failure. The adhesive modelling is checked thanks to a one-dimensional adhesive traction test described by the configuration Figure 4. Bulk damage in the ice Ω 1 is deactivated and adhesive Model 1 is considered. In that case, adhesive boundary conditions of Appendix C simplify into Eq. ( 33) recalled here

Eq. ( 33) is nothing but the "so-called" traction-separation law of Cohesive Zone Models [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF][START_REF] Alfano | Cohesive zone modeling of mode i fracture in adhesive bonded joints[END_REF] in this onedimensional case. Several traction forces have been applied to the configuration of Figure 4. For each of them, the stress σ-both in the ice Ω 1 and aluminium Ω 2 -together with the displacement jump u at the adhesive interface Γ 2 have been extracted after convergence of the algorithm. Obtained stresses are plotted against displacement jump and compared to Eq. [START_REF] Moës | Extended finite element method for cohesive crack growth[END_REF] in Figure E.20 where the adhesive interface is discretized into 300 points. Numerical interface stresses in ice σ ice and in aluminium σ alu match the analytic traction-separation law [START_REF] Moës | Extended finite element method for cohesive crack growth[END_REF]. In particular, the following points are checked: (i) numerical peak stresses correspond to the introduced adhesive strength σ adh c = 1