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Abstract. Quantification of turnover of inorganic soil phos-
phorus (P) pools is essential to improve our understanding
of P cycling in soil–plant systems and improve representa-
tions of the P cycle in land surface models. Turnover can
be quantified using mean residence time (MRT); however, to
date there is little information on MRT of P in soil P pools.
We introduce an approach to quantify MRT of P in sequen-
tially extracted inorganic soil P pools using data from iso-
tope exchange kinetic experiments. Our analyses of 53 soil
samples from the literature showed that MRT of labile P
(resin- and bicarbonate-extractable P) was on the order of
minutes to hours for most soils, MRT in NaOH-extractable
P (NaOH-P) was in the range of days to months, and MRT
in HCl-extractable P (HCl-P) was on the order of years to
millennia. Multiple-regression models were able to capture
54 %–63 % of the variability in MRT among samples and
showed that land use was the most important predictor of
MRT of P in labile and NaOH pools. MRT of P in HCl-
P was strongly dependent on pH, as high-pH soils tended
to have longer MRTs. This was interpreted to be related to
the composition of HCl-P. Under high pH, HCl-P contains
mostly apatite, with a low solubility, whereas under low-pH
conditions, HCl-P may contain more exchangeable P forms.
These results suggest that current land surface models under-

estimate the dynamics of inorganic soil P pools and could be
improved by reducing model MRTs of the labile and NaOH-
P pools, considering soil-type-dependent MRTs rather than
universal exchange rates and allowing for two-way exchange
between HCl-P and the soil solution.

1 Introduction

Since only a small fraction (usually < 1 %) of soil phospho-
rus (P) is present as phosphate in the dissolved state where it
can be taken up by plants and microbes, the rate at which this
pool is replenished from other soil P pools is critical to assess
the bioavailability of soil P (Syers et al., 2008). The extent
and the timescale on which unavailable soil P forms can be-
come gradually bioavailable are important factors affecting
ecosystem productivity under increasing carbon dioxide con-
centrations (Sun et al., 2017). Estimates of P availability thus
directly influence inferences on carbon sequestration. How-
ever, currently P availability is poorly constrained in land sur-
face models, which hampers our ability to project future car-
bon sequestration rates (Goll et al., 2012). Modeling the rate
of replenishment from different pools requires knowledge of
the mean residence time of P in these pools. While there is
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growing information on concentrations of soil P pools in soils
(Hou et al., 2018b), and how they react to drivers such as crop
management, land use change, or changing climate (Feng et
al., 2016; Negassa and Leinweber, 2009; von Sperber et al.,
2017), little is known about the temporal dynamics of these
pools (Hou et al., 2019). This knowledge gap not only limits
linking data on soil P pools to P availability, it also slows the
incorporation of P into global land surface models and hence
estimating the effect of P cycling on long-term ecosystem
functioning at large spatial and temporal scales (Reed et al.,
2015).

Soil P pools are most commonly measured using sequen-
tial extraction, whereby soil P is extracted with increas-
ingly strong reagents to yield experimentally defined P pools.
While different variants of sequential extraction exist, the
Hedley extraction and variants thereof are most widespread
(Hedley et al., 1982). Here, we analyzed studies that used a
resin extraction, followed by 0.5 M NaHCO3, 0.1 M NaOH,
and finally 1 M HCl extractions. It is assumed that resin- and
NaHCO3-extractable P represents loosely sorbed P, NaOH
extracts P associated with Fe and Al (hydr)oxides, and
HCl-extractable P (HCl-P) contains phosphates associated
with Ca and soluble in acids, especially apatites (Moir and
Tiessen, 1993). A precise characterization of P mineral forms
present in these inorganic pools is difficult since there is
a plethora of mixed compounds and not pure crystalline
P forms in soils. However, spectroscopic techniques have
been used to confirm that soils with more HCl-P tend to
contain more calcium phosphate, and soils with relatively
larger NaOH pools contain more P associated with Fe and
Al (Frossard et al., 2002; Helfenstein et al., 2018a; Kar et al.,
2011; Prietzel et al., 2016; Wu et al., 2014).

Mean residence time (MRT) of P has been quantified in the
soil solution and in soil microbes; however, little is known
about the mean residence time of P in Hedley pools. Mean
residence time is defined here as the average time required
to completely renew the content of a pool at steady state and
is also called turnover time in other studies (Six and Jastrow,
2002). Radioisotopic labeling experiments have shown that
the MRT of P in soil solution is on the order of milliseconds
to minutes (Fardeau et al., 1991; Helfenstein et al., 2018b),
while MRT of P in soil microbiota tends to be on the order of
days to weeks (Gross and Angert, 2017; Oberson and Joner,
2005; Spohn and Widdig, 2017). Isotope exchange kinetic
experiments, where the dilution of a radioisotopic tracer (33P
or 32P) is traced in a soil–water suspension, allow measure-
ment of the exchange of P by physicochemical processes as a
function of time (Fardeau, 1996; Frossard et al., 2011). While
the MRT of P in resin, NaOH, and HCl pools has recently
been approximated in soils on a Hawaiian climatic gradient
(Helfenstein et al., 2018a), it is not clear if these MRTs also
pertain to nonvolcanic soils.

Land surface models describe the complex interactions
governing the cycles of water, energy, and carbon, and they
increasingly incorporate cycles of major soil nutrients (i.e.,

nitrogen and phosphorus) (e.g. Wang et al., 2010). The rep-
resentations of inorganic soil phosphorus dynamics are cur-
rently very rudimentary in such models: soil inorganic phos-
phorus is commonly separated into different pools according
to differences in residence times (fast, intermediate, and slow
pools) (Wang et al., 2010). Although the structure, i.e., num-
ber of soil P pools and the connection among pools, differs
among models, they commonly apply the same concept. In
general, the residence time of P in the fastest pool is mod-
eled as a function of multiple abiotic (chemical weathering,
sorption) and biotic (mineralization, immobilization, plant
uptake, phosphatase activity) processes (Lloyd et al., 2001),
while more recalcitrant pools have prescribed globally uni-
form decay rates. The decay rates are either derived from
calibration to achieve plausible total soil P stocks (Goll et al.,
2012; Wang et al., 2010; Yang et al., 2014) or derived from
temporal net changes in soil P fraction along a single soil
chronosequence (Goll et al., 2017). Such calibration strate-
gies are not able to capture gross exchanges among soil P
pools, which do not result in net changes in pool size but are
critical for the bioavailability of soil P. Hence, current model
formulations of P cycling are likely underestimating inor-
ganic soil P dynamics and overestimating inorganic P pool
MRTs.

The objective of this work was to quantify the MRT of P
in inorganic soil P pools in a wide range of soil types and
provide much needed information to constrain soil P dynam-
ics in global models. We limited our study to inorganic pools
because the isotope exchange kinetic approach can only be
used to study physicochemical exchange processes, whereas
MRT of P in organic pools is controlled by biological pro-
cesses. In our analysis, we assume that the time necessary to
renew the total amount of P present in a Hedley pool (MRT)
can be equated to the time necessary for phosphate ions in so-
lution to exchange with all phosphate ions located in this pool
(Fig. 1a). This allowed us to calculate MRT using the func-
tion for isotopically exchangeable P as determined in isotope
exchange kinetic experiments. However, it also means that
potentially important processes influencing P MRT, such as
biological and solid-state P transformations, were neglected.
The second objective of this work was to determine if varia-
tion in MRT among soils could be explained by soil proper-
ties and climatic variables. To meet these aims, we searched
the literature for soil samples for which both P sequential ex-
traction and kinetic isotope exchange data were available. We
then used a function describing isotopically exchangeable P
as a function of time to calculate MRT of P in resin P, la-
bile P (resin and bicarbonate extractable), NaOH-extractable
P (NaOH-P), and HCl-P.
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Figure 1. Conceptual diagram showing (a) how Hedley P pools exchange with the soil solution (modified after Fardeau et al., 1993) and
(b) how mean residence time was calculated. E(t) shows the amount of phosphate that has passed through the soil solution as a function of
time.

2 Methods

2.1 Dataset

We found 53 soils for which both P sequential extraction and
isotope exchange kinetic data were available. Twelve sam-
ples were from a Hawaiian climatic gradient (Helfenstein
et al., 2018a), five from a long-term field trial in Switzer-
land (Keller et al., 2012), 11 from a study of different soils
throughout New Zealand (Chen et al., 2003), 14 from a
forested geosequence in Germany (Lang et al., 2017), seven
from field experiments on highly weathered soil in Colom-
bia (Buehler et al., 2003; Oberson et al., 1999), and four
from an agricultural field trial on Fluvisols in Italy (Borda
et al., 2014). Information on soil properties (pH, soil tex-
ture, organic C concentration), climate (mean annual tem-
perature and mean annual precipitation), soil P pools (total P,
resin-extractable P, NaHCO3-extractable inorganic P, NaOH-
extractable inorganic P, HCl-extractable P), and P exchange
properties (Pw,m, n, Pinorg; see Sect. 2.2) was retrieved from
the original publications, from associated publications, or by
contacting the authors (Table 1). One study used an ammo-
nium chloride extraction instead of a resin extraction (Chen
et al., 2003). We added the first two extractions (resin or am-
monium chloride and NaHCO3) and called this the “labile
pool”. For two studies (Borda et al., 2014; Helfenstein et
al., 2018a) soil texture was not reported and had to be es-
timated from global gridded (250 m resolution) soil infor-
mation (Hengl et al., 2017) based on geographic informa-
tion of the sample site. For the full documentation of sources
for the soil property information, please see Supplement Ta-
ble S1. Four soils (“Himatangi”, “Hurundi”, “Okarito”, and
“Temuka”; Chen et al., 2003) were excluded because, unlike

the rest of the samples, the Hedley pools of these soils were
much larger than the pools from isotope exchange kinetics.
This yielded unreasonably high MRTs because of the asymp-
totic behavior of the E(t) equation. In the discussion, we
briefly discuss how excluding these soils affected multiple-
regression models.

Despite only encompassing 53 soils from 20 geographic
sites, the dataset included samples from a wide set of cli-
matic conditions (Supplement Fig. S1), and a variety of soil
texture classes (Fig. S2). Eleven of the soil samples were
from arable land use, 14 from forest, and 28 from grassland.
The world reference base soil orders entailed were Acrisol
(1), Andosols (17), Cambisols (19), Ferralsols (7), Fluvisols
(4), and Luvisols (5) (IUSS Working Group WRB, 2015).
While some of the soils are considered to be low in avail-
able P (Buehler et al., 2003; Lang et al., 2017; Oberson et
al., 1999), the dataset also includes soils developed on P-rich
parent materials (Helfenstein et al., 2018a; Lang et al., 2017)
or soils that have been intensively fertilized (Borda et al.,
2014).

2.2 Estimating mean residence times

Isotopically exchangeable P (E(t)) (mg kg−1) can be mod-
eled as a function of time by Eq. (1) (Fardeau, 1996), where
m and n are statistical parameters, Pw (mg kg−1) is water-
extractable P, r(∞) is the radioactivity measured in solution
after an infinite time, and R is the radioactivity (Bq) intro-
duced at t = 0.

E(t) = Pw ·
1

m
(
t +m

1
n

)−n
+

r(∞)
R

(1)
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Table 1. Selected soil properties, climate conditions, soil phosphorus pools, and phosphorus exchange kinetic properties of soils used in this
study.

Variable Description Min Quartile 1 Median Mean Quartile 3 Max Sample size

Soil properties pH pH measured in water 3.36 4.30 5.20 5.36 6.20 8.10 53
Sand sand content (g kg−1) 80 190 360 359 430 800 53
Silt silt content (g kg−1) 160 340 400 413 440 710 53
Clay clay content (g kg−1) 40 160 220 228 290 399 53
Organic C organic C (g kg−1) 11 23.5 46.5 60 80.2 230.4 53

Climate MAT mean annual temperature (◦C) 4.5 8.4 13.0 14.0 19.1 27.0 53
MAP mean annual precipitation (mm) 275 792 1046 1285 1578 3123 53

Soil P pools Total P total P (mg kg-1) 167 693 1016 2772 3764 20990 44
Resin P resin-extractable P (mg kg−1) 0.90 6.95 22.98 42.55 45.84 385.93 42
NaHCO3 P NaHCO3-extractable P (mg kg−1) 1.12 9.70 21.40 32.40 37.47 170.72 53
NaOH P NaOH-extractable P (mg kg−1) 1.5 48.0 99.4 744.6 470.4 9547.8 53
HCl P HCl-extractable P (mg kg−1) 1.0 34.5 162.5 433.1 557.5 4040.7 50

P exchange kinetics Pw water-extractable P (mg kg−1) 0.013 0.328 1.00 3.782 2.6 42.5 53
m exchange parameter 0.01 0.06 0.15 0.26 0.38 0.97 53
n exchange parameter 0.03 0.40 0.46 0.45 0.50 0.76 53
E1 min P exchangeable in 1 min (mg kg−1) 1.0 2.7 4.9 13.8 11.9 218.2 53
E3 months P exchangeable in 3 months (mg kg−1) 12 111 251 806 1235 6311 53

The ratio r(∞)
R

is usually approximated as Pw
Pinorg

, where Pinorg

is the total amount of inorganic P (mg kg−1) (Fardeau, 1993).
The parameters m and n describe the rapid and slow physic-
ochemical exchange processes, respectively, and are deter-
mined by fitting a nonlinear regression model to measure-
ments of radioisotope concentration in solution from an iso-
tope exchange kinetic experiment (for details see Fardeau et
al., 1991; Frossard et al., 2011).

By plugging in different values of t (min), one can cal-
culate the amount of P that is exchangeable within a given
time frame. Likewise, it is possible to calculate the amount
of P exchangeable between two time points, e.g. between
1 d and 3 months (Frossard et al., 2011). While isotope ex-
change kinetic experiments used to fit m and n only last for
around 90 min, extrapolated E values have been shown to
describe P exchange well over a time span of months, ac-
curately describing P available to plants and being consid-
ered the gold standard for measuring P availability (Frossard
et al., 1994; Hamon et al., 2002). Furthermore, E(1 min) has
been shown to correlate with resin P, E(3 months) with NaOH-
P, and E(>3 months) with HCl-P in sewage sludge (Frossard
et al., 1996) and for soils from a Hawaiian climatic gradient
(Helfenstein et al., 2018a).

To estimate mean residence times of sequential extraction
pools, we plugged in P pool values as measured by sequential
extraction (Ppool) for E(t) (Eq. 2), and then we solved for t to
determine the amount of time necessary to exchange all the

phosphate ions contained in that pool (Eq. 3).

Ppool = Pw ·
1

m ·
(
t +m

1
n

)−n
+

Pw
Pinorg

(2)

t =

 Pw
Ppool
−

Pw
Pinorg

m

− 1
n

−m
1
n =MRT (3)

In sequential extractions, P pools are sequentially removed
from the soil, and this has to be accounted for in the calcu-
lation of MRT. MRT of resin P and labile P was calculated
using Eq. (3) and plugging in resin P or labile P pool sizes
for Ppool. However, for NaOH-P and HCl-P the previously
removed P pools have to be formally “added back”. Hence,
for NaOH-P and HCl-P the Ppool was set equal to the sum of
labile P and NaOH-P or labile P, NaOH-P, and HCl-P respec-
tively (Fig. 1b). Not accounting for the sequential nature of
these pools and using NaOH-P or HCl-P for Ppool directly in
Eq. (3) would underestimate MRT.

Estimating MRT using Eq. (3) required making several as-
sumptions. Firstly, we assumed that the labile pool exchanges
much faster than the NaOH-P pool, which again exchanges
much faster than HCl-P. This assumption rests on the ob-
servation that radioisotope specific activity after labeling is
higher in resin P�NaOH-P�HCl-P in a variety of soils
(Buehler et al., 2002; Bünemann et al., 2004; Daroub et al.,
2000; Pistocchi et al., 2018; Vu et al., 2010). Secondly, we as-
sumed that all P transformations occur via the soil solution;
i.e., we neglected potential exchange between pools in the
solid phase (such as diffusive penetration, Fig. 1a) (Barrow
and Debnath, 2014). For example, we did not consider ex-
change between NaOH-P and “occluded” soil P forms, con-
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sidered in some modeling approaches (Hou et al., 2019), but
which do not involve phosphate release to the soil solution.

Thirdly, our approach carries over all assumptions from an
isotope exchange kinetic experiment (Frossard et al., 2011),
including that biological activity does not markedly impact
P exchange during the duration of an isotope exchange ki-
netic experiment (usually 90 min). The assumption that bio-
logical activity is negligible at this timescale can be tested by
applying a microbial inhibitor to the soil suspension (Büne-
mann et al., 2012). If the microbial inhibitor does not signifi-
cantly affect radioisotopic recovery compared to the control,
biological processes have a negligible effect. Microbial in-
hibitors did not affect radioisotopic recovery of soils from the
Hawaiian climatic gradient or soils from the forested geose-
quence (only extreme soils tested, including a very low P
soil) used in this study (Bünemann et al., 2016; Helfenstein et
al., 2018a). However, for the other studies analyzed here, no
such tests were undertaken. Hence, our approach can only be
used to estimate MRT of P in inorganic P pools turning over
through physicochemical processes but does not account for
biological processes. In our analysis, we also do not consider
the residual P pool (P remaining in soil after the HCl extrac-
tion), assuming that this pool only plays a negligible role in
P exchange.

2.3 Effect of soil properties on mean residence times

To determine the effect of soil properties on MRT, we per-
formed multiple regressions, in which independent soil prop-
erties were the explanatory variables and MRTs the response
variables. Multiple-regression models were fitted to the three
response variables “t_labile”, “t_NaOH”, and “t_HCl”. For
each response variable, we derived a maximum scope model
including all numerical soil properties (pH, soil texture, and
organic C) and climatic data as well as categorical explana-
tory variables “land use” and “extraction method”. Different
studies used slightly different extraction methods; the effect
of this on the variability was explored using the extraction
method variable. Additionally, we tested the correlation of
MRTs with oxalate or dithionite-extractable aluminum and
iron as a simple regression for the samples (n= 41–43) for
which these data were available. The R function “step” (R
Core Team, 2018) was then used for stepwise selection of
explanatory variables by minimizing Akaike’s information
criterion (AIC) (Sakamoto et al., 1986). Model size was re-
duced to reduce collinearity between predictor variables, as
assessed using the variance inflation factor (VIF), which was
below 5 for each of the explanatory variables (Fox and Mon-
ette, 1992). Non-normally distributed variables were log-
transformed to meet the assumption of normality.

3 Results

3.1 P exchange as a function of time

P pools as defined by sequential extraction displayed highly
significant correlations with P pools defined by exchange-
ability, with most points falling close to the 1 : 1 line (Fig. 2).
Pearson’s moment correlation between labile P and P ex-
changeable within 1 h was 0.84, between NaOH-P and P ex-
changeable between 1 h and 3 months was 0.94, and between
HCl-P and P only exchangeable in time spans longer than
3 months was 0.87.

The soils showed a broad range of P exchange as a func-
tion of time. P that was exchangeable within 1 min (E1 min)
ranged from 0.99 to 218 mg kg−1, and P that was exchange-
able in 3 months ranged from 11.7 to 6311 mg kg−1 between
the different soils (Table 1). Soils developed on P-rich basalt
(Helfenstein et al., 2018a; Lang et al., 2017) had the highest
E values, while Ferralsols had the lowest E values (Oberson
et al., 1999). Half of the soils had < 5 mg P kg−1 exchange-
able within 1 min, which is considered a threshold for low P
availability (Gallet et al., 2003). Differences in P exchange
behavior were due either to different levels of total inorganic
P or to different P forms present in the soil (Fig. 3). For exam-
ple, a soil with high amounts of inorganic P exchanged more
within the same time interval than a soil with low amounts of
inorganic P. Similarly, soils with large proportions of HCl-P
tended to have lower slopes of E curves than soils with rel-
atively more labile or NaOH-P. This variability is reflected
in the proportion of E1 min to total P, which spanned from
0.04 % to 6 % of total soil P. Similarly, E3 months represented
on average 25 % of total soil P, spanning from 4 % to 64 %.

3.2 Estimates of mean residence times

The median MRT of P in the labile pool was around 1 h
(67 min), for NaOH-P around 1 month (3.4× 104 min), and
for HCl-P around 3 years (1.4× 106 min). However, calcu-
lated MRTs of individual soils spanned many orders of mag-
nitude. Mean residence time of P in labile P ranged from 0.4
to 4.4× 103 min, with two frequency maxima, one around
1 h and one around 1 d (Fig. 4). Mean residence time of P
in NaOH-P ranged from 91 to 3.4× 106 min and also had
two frequency maxima, one at around 1 d and one at around
3 months. Mean residence time of P in HCl-P had the widest
spread, from 129 to 1.7× 1015 min. While most soils had a
MRT of P in HCl-P around 1 year, another frequency maxi-
mum occurred at around 10 000 years. The median MRT of
P in resin P (n= 42) was 19 min, with a range of 10−4 to
102 min.

3.3 Soil properties affecting mean residence times

Multiple-regression models were able to explain between
54 % and 63 % of the variability in MRT for each pool (Ta-
ble 2). The MRT of P in labile P was best predicted by

www.biogeosciences.net/17/441/2020/ Biogeosciences, 17, 441–454, 2020
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Figure 2. Correlation between chemically extracted pools and isotopically exchangeable P. Resin- and NaHCO3-extractable P correlated with
P exchangeable in 1 h (E1 h) (a), NaOH-extractable P with P exchangeable between 1 h and 3 months (b), and HCl-extractable P with P only
exchangeable in over 3 months (c). Units of both axes are log(mg P kg−1). The dotted line shows the 1 : 1 line. Pearson’s product–moment
correlation (r value on plot) was highly significant (p<0.001) for all three correlations.

Figure 3. Examples of exchangeable P as a function of time (E curves). Grey lines show E curves of each soil in the dataset. Panels (a) and
(b) highlight two highly reactive soils, one with high amounts of P (an Andosol from Helfenstein et al., 2018a) and one with little P (a
Ferralsol from Oberson et al., 1999). Panels (a) shows the E curves and (b) the corresponding sequential extraction (b). Panels (c) and (d)
highlight two soils with similar amounts of total P, but different pH and P exchange behavior. For the high-pH Fluvisol (pH= 8.1, from
Borda et al., 2014), P exchange is slow, compared to a Cambisol with much more exchange in the fast–intermediate term (pH= 3.8, from
Lang et al., 2016) (c). In the high-pH soil most P is HCl extractable, whereas for the low-pH soil more P is found in the NaOH and labile
pools (d).

Biogeosciences, 17, 441–454, 2020 www.biogeosciences.net/17/441/2020/
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Figure 4. Distribution of mean residence times of P in labile,
NaOH, and HCl pools for 53 soils. The black bars show a boxplot
and the colored area shows the kernel density distribution.

a model including clay and land use (adjusted R2
= 0.63,

F statistic= 30.6, p<0.001). Land use was the most im-
portant predictor of t_labile. A model only including land
use had an adjusted R2 of 0.52 (F statistic 29.6, p<0.001).
While most forest and grassland soils had a MRT of P in la-
bile P around 1 h, arable soils tended to have a longer MRT
of around 1 d (Fig. 5a). The land use effect on MRT of P in
labile P was not a pool size effect (Fig. 5b). In addition, MRT
decreased with increasing clay content (adjusted R2

= 0.12,
F statistic= 6.8, p = 0.01) (Fig. S3).

The MRT of P in NaOH-P was best predicted by a model
with clay, land use, and organic C (adjusted R2

= 0.57,
F statistic= 18.4, p<0.001). Of those three explanatory
variables, the relationship was again strongest with land use.
A model only including land use had an adjusted R2 of 0.44
(F statistic 21.6, p<0.001). In general, forest soils had a
shorter MRT of around 1 d and arable soils a longer MRT
of around 3 months. Grassland soils spanned the full range
of MRT of P in NaOH-P (Fig. 5c). As for MRT in labile
P, the land use effect on MRT was not a pool size effect
(Fig. 5d). MRT of P in NaOH-P also decreased with in-
creasing clay content (adjusted R2

= 0.13, F statistic= 7.1,
p<0.01) (Fig. S3). While organic C was also a significant
predictor in the multiple-regression model, a simple regres-
sion between organic C and MRT of NaOH-P was not signif-
icant (Fig. S4).

The MRT of P in HCl-P was best predicted by a model
with clay, pH, and mean annual rainfall (adjusted R2

= 0.54,
F statistic= 17.8, p<0.001). The strongest of these predic-
tors was pH (Fig. 6). MRT of P in HCl-P increased with in-
creasing pH following Eq. (4):

log (tHCl)= −7.95+ 4.63 · (pH), (4)

where t_HCl is in minutes (adjusted R2
= 0.47, F statis-

tic= 37.7, p<0.001). Like with the models for labile P and
NaOH-P, predicted MRT also decreased with increasing clay

concentration for MRT of HCl-P; however, this relationship
was not significant as a simple regression (Fig. S3).

4 Discussion

Sequential extraction is probably the most common method
used to study P pool distribution in soils. However, the resi-
dence time of P in these pools and environmental controls re-
mains poorly understood. While earlier works hypothesized
that resin and bicarbonate P have a fast turnover, and NaOH
and HCl a slow turnover, data on MRT of P in these pools
for a wide range of soils were previously missing (Cross
and Schlesinger, 1995; Tiessen et al., 1984). We found that
on average resin P has a MRT in the range of several min-
utes, labile of 1 h (forest and grassland soils) or 1 d (arable
soils), NaOH-P in the range of days (forest and some grass-
land soils) to months (arable soils), and HCl-P in the range of
years to millennia, with a strong pH dependence. The large
variability in MRTs could be partially explained by soil prop-
erties, especially pH and clay, or land use, but may also be
due to unaccounted soil properties as well as methodological
limitations of either our approach or the lab techniques used
to produce the original data. For instance, some variability
in the MRT estimation might be generated by the different
methods used to measure total inorganic P. The accuracy in
total inorganic P measurement might affect MRTs as results
from Eq. (2).

As a predictor of MRTs of labile and NaOH-P, land use
is likely a proxy for soil P balance (fertilizer inputs, outputs
with harvest) and biological activity. Arable soils are more
likely to receive P fertilizers. Long-term fertilizer inputs may
lead to a decrease in surface charge resulting from diffusive
penetration of P into the reacting materials and therefore to
a lower phosphate buffering capacity (Barrow and Debnath,
2014). Hence, fertilizer application may lead to larger P pool
sizes but longer MRT (Helfenstein et al., 2018b). Biologi-
cal activity has been shown to accelerate P turnover in the
labile pool through rapid uptake and release by the soil mi-
crobial community (Oehl et al., 2001; Pistocchi et al., 2018;
Weiner et al., 2018). This holds especially true under grass-
land or forest and under low P availability. We consider the
later explanation less likely, since microbial uptake–release
tend to be negligible during the isotopic exchange kinetic ex-
periments (Oehl et al., 2001), or it is suppressed using micro-
bial inhibitors (Bünemann et al., 2012). However, we cannot
completely rule out such an influence as in most soil sam-
ples included in our dataset this effect was not systematically
tested.

The pH dependence of MRT in HCl-P is likely because
the composition of the HCl pool varies strongly with pH.
Under high pH, the HCl pool tends to contain apatites, cal-
cium phosphate minerals which are highly stable (Moir and
Tiessen, 1993; Nriagu, 1976). Our results predict that un-
der such conditions, MRT of HCl-P may be on the order
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Table 2. Multiple-regression models for mean residence times of P in labile P, NaOH-extractable P, and HCl-P. Models were determined by
a stepwise selection process that maximizes Akaike’s information criterion.

Response variable Multiple-regression model Adjusted R2 F statistic Significance level

t_labile log(t_labile)= 8.92–0.07 0.63 30.6 < 0.001
(clay)+ (land use)a

t_NaOH log(t_NaOH)= 11.6–0.09 (clay)+ 0.80 0.57 18.4 < 0.001
log(Corg)+ (land use)b

t_HCl log(t_HCl)=−12.9+ 5.23 (pH)− 0.21 0.54 17.8 < 0.001
(clay)+ 5.2× 10−3 (mean rainfall)

a For arable= 0; for forest=−3.08; for grassland=−3.78. b For arable= 0; for forest=−5.94; for grassland=−1.81

Figure 5. Mean residence time (MRT) of P (a, c) and pool size (b, d) as a function of land use. MRT of both P in labile P (a) and NaOH-
P (c) was significantly affected by land use.

of millennia or longer, orders of magnitude longer than es-
timated MRTs of NaOH-P. In acidic soils on the other hand,
apatite is much less stable (Guidry and Mackenzie, 2003),
and the HCl pool may contain either carryover from the
NaOH pool or other phosphates that are more reactive (Pri-
etzel et al., 2016). Equation (4) predicts a MRT in HCl-P
of three-fourths of a year for a soil with a pH of 4.5, a

range into which MRT of many NaOH-P pools also falls.
Hence, our results suggest that the exchange kinetics of
NaOH and HCl pools are more similar under low-pH condi-
tions, whereas under high-pH conditions, there seems to be
a clear distinction between availability of NaOH-extractable
P and HCl-extractable P. Nevertheless, even under neutral to
alkaline conditions, the HCl-P pool may be involved in bidi-
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Figure 6. Simple regression of calculated mean residence time of P
in HCl-P with pH. F statistic= 37.7; p<0.001.

rectional exchange of phosphate involving precipitation of
phosphate with Ca to form secondary Ca phosphates, with-
out net change in pool size (Frossard et al., 1995), although
at pedogenetic timescales this pool progressively decreases
in size (Walker and Syers, 1976). Also, using stable oxygen
isotopes in phosphate, it was shown that in 150 000-year-
old soils from arid conditions and neutral pH, roughly half
of the HCl-P pool contained secondary phosphates (Helfen-
stein et al., 2018a). The relationship of pH and other relation-
ships, e.g. land use as a predictor for t_labile and t_NaOH,
pertained if the outliers “Himatangi”, “Hurundi”, “Okarito”,
and “Temuka” were included in the multiple-regression anal-
yses; however, including the outliers reduced overall model
adjusted R2 to around 0.4 for all three models.

Clays are important binding sites for P (Gérard, 2016).
Our data seem to show that the clay content influences res-
idence times not only of labile P, but also of the NaOH
and HCl pools. In our analysis, the clay variable includes
not only clay minerals but also secondary minerals such Fe
and Al oxyhydroxides, as it follows the particle size classi-
fication. Fe and Al oxyhydroxides are known to be key in
inorganic P exchange behavior (Achat et al., 2016; Syers
et al., 2008). For the samples where data on oxalate- and
dithionite-extractable Al and Fe were available (n= 41–43),
simple regression showed only weak correlations with MRTs
and only significance for MRT of NaOH-P with oxalate-
extractable Al, dithionite-extractable Fe, and the sum of
dithionite-extractable Al and Fe as explanatory variables (ad-
justed R2

≤ 0.16, p<0.05; data not shown). In general, soil
properties controlling P sorption also control P exchangeabil-
ity and therefore residence time. Indeed, high amounts of P
sorbents might relate to more rapidly exchangeable P (Achat
et al., 2016; Demaria et al., 2013). The variety of mecha-
nisms involved in P binding on such soil surfaces (multilayer
sorption, inner-sphere complexes, surface precipitation; see
Gérard, 2016 and references therein) might explain why the
effect of clay is significant for all residence times.

Data from long-term (weeks–months) radioisotope tracer
incubation experiments, where both physicochemical and bi-
ological processes are considered, support our estimates of
MRTs. While such studies have not reported estimates of
MRTs, the time by which specific activity of 33P of the NaOH
or HCl pool equilibrates with the specific activity of the la-
bile P pool provides an estimate of MRT of the slowest pool,
i.e., the time needed to exchange all the phosphate ions lo-
cated in the slowest pool with the ones in the soil solution.
According to this assumption and using the data published
by Buehler et al. (2002) from the same Ferralsols also in-
cluded in our dataset, we could estimate a MRT of the NaOH
pool between 7 and 14 d (soils under savanna and pasture) or
longer than 2 weeks (two soils under rice). These values are
similar to MRTs from our study: 1 and 5 d for the soils un-
der savanna and pasture, respectively, and 28 and 88 d for the
soils under rice. Generally, specific activity of 33P in the HCl
pool did not equilibrate during the duration of the experiment
(2 weeks to 3 months, depending on the study), suggesting
longer MRTs for this pool (Buehler et al., 2002; Bünemann
et al., 2004; Pistocchi et al., 2018; Vu et al., 2010). Never-
theless, for stable pools such as the HCl-P, it is questionable
whether our estimates of MRTs are realistic, as the extrap-
olation of E values (Eq. 1) has been tested only over time
spans of days to months (Bünemann et al., 2007; Frossard et
al., 1994) and is impossible to validate for longer time spans
due to the short half-lives of both radioactive P isotopes.

Insights from stable oxygen isotope analysis support our
estimates of MRT of HCl-P. At the beginning of soil develop-
ment, all soil P has the parent material stable oxygen isotope
value (δ18OP) (Roberts et al., 2015; Tamburini et al., 2012).
With time, biological activity brings δ18OP into steady state
with soil water (Blake et al., 2005). By analyzing δ18OP in se-
quentially extracted pools in soils of known age, it is possible
to roughly constrain MRT of P in these pools. While δ18OP
of bicarbonate- and NaOH-extractable P tends to be in the
soil–water steady state (Helfenstein et al., 2018a; Roberts et
al., 2015), HCl-P may retain parent material signature even
in older soils. In a chronosequence on granitic parent ma-
terial, it was shown that the HCl pool acquired the biologi-
cal signature after several thousand years (Tamburini et al.,
2012), whereas under more arid conditions, where apatite re-
mains stable, HCl-P may not have turned over completely
even after 150 000 years of soil development (Helfenstein et
al., 2018a). This supports not only our long and variable es-
timates of MRTs of P in the HCl-P, but also their strong de-
pendence on pH, the main driver of apatite stability.

4.1 Limitations

The main limitations of our study concern representativity
of the soil samples used and uncertainty introduced due to
assumptions taken to calculate MRTs. The 53 soil samples
used in our study only came from a small number of studies,
and some soils, like Andosols and Cambisols, were overrep-
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resented in our study, while other important soils such as Ver-
tisols, Podzols, or carbonate- or organic-matter-rich soil or-
ders were not represented or underrepresented. In addition,
soils with large amounts of NaOH- and HCl-P were over-
represented in our study compared to a larger global dataset
(Fig. S5). However, our resin P values closely match resin
P frequency distribution of a larger global dataset (Hou et
al., 2018a). In terms of P exchange kinetics, our soils cov-
ered the full range of reported m and n values and can thus
be considered to reflect the full range of P exchange kinetic
properties observed in soils (Fig. S6) (Achat et al., 2016;
Helfenstein et al., 2018b). Assumptions taken to calculate
MRT of P in soil P pools required making several simplifica-
tions. Our approach only considers a simplified system of soil
and water in steady-state conditions and excludes biological
activity. In field conditions, P residence times may be differ-
ent due to non-steady-state conditions, microbial interactions
with abiotic processes, and plant uptake and alterations of the
physical and chemical soil environment (Hinsinger, 2001).
For example, intensive P uptake by plants may lead to net
changes in soil P pools in addition to exchange fluxes (Guo
et al., 2000). Also, it is likely that MRTs are affected by tem-
perature and changes in soil moisture. Continued improve-
ment of tracer experiments is paramount to provide empiri-
cal data on mean residence times and magnitudes of biologi-
cal and physicochemical fluxes (Bünemann, 2015; Wanek et
al., 2019). However, for the time being, our ad hoc approach
provides preliminary estimates of mean residence times of
commonly used P pools, with the potential to improve both
interpretation of lab- and field-scale results as well as land
surface modeling.

4.2 Implications for lab- and field-scale research

Mean residence times of P in inorganic soil P pools reported
here are important for improved understanding of P dynam-
ics in soil. Sequential extraction continues to be widely used
to measure soil P status, for example to study effects of land
use change and P inputs or environmental drivers on soil
P cycling (Blake et al., 2003; Feng et al., 2016; von Sper-
ber et al., 2017). Understanding the residence times of soil
P pools will allow us to fine-tune hypotheses of expected
changes and improve interpretation of observed changes in
pool sizes. Furthermore, analysis of stable oxygen isotopes
in phosphate, which is gaining importance as a tracer of
phosphate transformation and indicator of biological vs. geo-
chemical P cycling, is tightly linked to sequential extraction
(Tamburini et al., 2018). Knowledge of mean residence times
has the potential to improve interpretation of sequential ex-
tractions and derivate methods.

4.3 Implications for land surface modeling

Our study allows us to draw several conclusions important
for land surface modeling. Firstly, we show that current land
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surface models (LSMs) largely overestimates MRTs of P in
inorganic soil P pools. As models do not report all informa-
tion needed to calculate MRT, we approximate modeled P
pool MRT (in the following: MRT*) of the intermediate and
slow pool as the inverse of the decay rate assuming the pool
size and fluxes are in equilibrium (i.e., net losses are equal
to net gains). Juxtaposing our estimates of MRTs of P in in-
organic soil P pools with values used in existing land sur-
face models shows that existing land surface models under-
estimate inorganic P turnover by several orders of magnitude
(Table 3). While our estimates of the mean residence times
of the NaOH pool are in the range of months to years, ex-
isting models run with MRTs of these pools of decades to
centuries (Table 3). The discrepancy between our estimates
and existing model values is so large and consistent among
models that it is unlikely due to slightly different concep-
tualizations of the P cycle or the approximation of MRT in
models by decay rates. Rather, the overestimation of the sta-
bility of inorganic P pools in existing LSM is likely due to
the calibration of models using net changes to inorganic soil
P pools (Goll et al., 2017; Hou et al., 2019). As the P ex-
change among two given pools is most often two-way, the
calibration of residence times on the net exchange must lead
to an underestimation of P turnover. The data provided here
will allow us to better calibrate soil P dynamics and/or eval-
uate modeled MRT.

Secondly, we found that residence times of P in slow in-
organic pools varies considerably between soils, suggesting
that land surface models should account for existing knowl-
edge of P pool stability under different soil and environment
conditions, rather than assuming globally uniform mean res-
idence times. We found variation over several orders of mag-
nitude in mean residence times of the same pool between
different soils, and this variation could partly be explained
by secondary soil and environment variables.

Thirdly, land surface models should consider that the HCl-
P pool may have two-way exchange of P. Current model for-
mulations assume the HCl-P pool contains only primary ap-
atite, and the flux between the HCl-P pool and the soil so-
lution is one-way (only dissolution) (Hou et al., 2019; Yang
et al., 2014; Yu et al., 2018). From empirical observations it
is known that HCl-P does not only contain primary apatite
but may also contain secondary P minerals (Helfenstein et
al., 2018a; Tamburini et al., 2012). Under acidic conditions,
this may be Fe- and Al-associated minerals, while under neu-
tral and alkaline pH this may be precipitated Ca phosphates
(Frossard et al., 1995). Also, P radioisotope transfer from the
soil solution to the HCl-P pool is well-documented (Buehler
et al., 2002; Pistocchi et al., 2018). To take this into account,
future P model formulation should consider a two-way flux
between the HCl-P pool and the soil solution, with an ex-
change rate dependent on pH (see Eq. 4). While this change
is likely to have limited impact for the modeling of neutral to
alkaline soils, where the HCl-P pool is stable, in more acidic
soils the HCl-P pool tends to have similar dynamics to the

NaOH-P pool, thus having a considerable impact on P cy-
cling and P availability.

In conclusion, mean residence times for inorganic P pools
proposed here and the lessons learned should help improve
model formulation of P in land surface models. Our estimates
of MRTs suggest that current land surface models overesti-
mate P MRT in inorganic soil P pools and as a consequence
might overestimate the importance of biological soil P trans-
formation (e.g. via phosphatases). Also, the temporal dynam-
ics of P pools was found to vary largely between different soil
types, which is not captured by models. Finally, model for-
mulations should refrain from equating HCl-P to primary P,
as this pool often contains secondary P minerals and is rela-
tively dynamic in low-pH soils. More empirical data on soil
P pool mean residence times are needed, also from soil–plant
systems and field experiments, but our data provide the basis
to start building data-constrained soil P models.
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