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Abstract

Backpropagating gradients through random variables is at the heart of numerous
machine learning applications. In this paper, we present a general framework for de-
riving stochastic backpropagation rules for any distribution, discrete or continuous.
Our approach exploits the link between the characteristic function and the Fourier
transform, to transport the derivatives from the parameters of the distribution to
the random variable. Our method generalizes previously known estimators, and
results in new estimators for the gamma, beta, Dirichlet and Laplace distributions.
Furthermore, we show that the classical deterministic backproapagation rule is a
special case of stochastic backpropagation where the distribution is a Dirac delta,
bridging the domains of neural networks and probabilistic graphical models.

1 Introduction

Deep neural networks with stochastic hidden layers have become crucial in multiple domains, such as
generative modeling [16, 29, 20], deep reinforcement learning [33], and attention mechanisms [22].
The difficulty encountered in training such models arises in the computation of gradients for functions
of the form L(θ) := Ez∼pθ [f(z)] with respect to the parameters θ, thus needing to backpropagate the
gradient through the random variable z. One of the first and most used methods is the score function
or reinforce method [8, 38], that requires the computation and estimation of the derivative of the log
probability function. For high dimensional applications however, it has been noted that reinforce
gradients have high variance, making the training process unstable [29].

Recently, significant progress has been made in tackling the variance problem. The first class of
approaches dealing with continuous random variables are reparameterization tricks. In that case a
standardization function is introduced, that separates the stochasticity from the dependency on the
parameters θ. Thus being able to transport the derivative inside the expectation and sample from
a fixed distribution, resulting in low variance gradient [16, 29, 34, 30, 25, 7]. The second class of
approaches concerns discrete random variables, for which a direct reparameterization is not known.
The first solution uses the score function gradient with control variate methods to reduce its variance
[20, 10]. The second consists in introducing a continuous relaxation admitting a reparameterization
trick of the discrete random variable, thus being able to backpropagate low-variance reparameterized
gradients by sampling from the concrete distribution [12, 19, 36, 9].

Although recent developments have advanced the state-of-the-art in terms of variance reduction and
performance, stochastic backpropagation (i.e computing gradients through random variables) still
lacks theoretical foundation. In particular, the following questions remain open: How to develop
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stochastic backpropagation rules similar to those of [29] for a broader range of distributions ? What
is the link between the discrete random variable case and the continuous case ? And finally, what is
the relation between stochastic backpropagation and classical deterministic backpropagation ? In this
paper, we address these questions, and our main contributions are the following:

• We present a theoretical framework based on the link between the multivariate Fourier
transform and the characteristic function, that provides a standard method for deriving
stochastic backpropagation rules, for any distribution discrete or continuous, unifying the
two cases.

• We show that deterministic backpropagation emerges as a special case of stochastic back-
propagation, where the probability distribution pθ is a Dirac delta distribution.

• We generalize previously known estimators, and provide new stochastic backpropagation
rules for the special cases of the Laplace, gamma, beta, and Dirichlet distributions.

• We demonstrate experimentally that the resulting new estimators are competitive with
state-of-the art methods on simple tasks.

2 Background & Preliminaries

Let (E, λ) be a d-dimensional measure space equipped with the standard inner product, and f be a
square sommable positive real valued function on E, that is, f :E → R+, with

∫
E
|f(z)|2λ(dz) <∞.

Let pθ be an arbitrary parameterized probability density on the space E. We denote by ϕθ its
characteristic function, defined as: ϕθ(ω) := Ez∼pθ [e

iωT z]. We denote by f̂ the Fourier transform of
the function f defined as:

f̂(ω) := F{f}(ω) =

∫
E

f(z)e−iω
T zλ(dz). (1)

The inverse Fourier transform is given in this case by:

f(z) := F−1{f̂}(z) =

∫
Rd
f̂(ω)eiω

T zµ(dω), (2)

where µ(dω) represents the measure in the Fourier domain. In this paper we treat the cases where
E = Rd for which µ(dω) = dω

(2π)d
, and the case where E is a discrete set, for which the measure

µ is defined as: µ(dω) = 1[ω ∈ [−π, π]d] dω
(2π)d

. Throughout the paper, we reserve the letter i to
denote the imaginary unit: i2 = −1. To denote higher order derivatives of the function f , we use the
multi-index notation [31]. For a multi-index α = (α1, ..., αd) ∈ Nd, we define:

∂αz :=
∂|α|

∂zα1
1 ...∂zαdd

where |α|=
d∑
j=1

αj .

The objective is to derive stochastic backpropagation rules, similar to that of [29], for functions of the
form: L(θ) := Ez∼pθ [f(z)], for any arbitrary distribution pθ, discrete or continuous.

3 Generalized Stochastic Backpropagation

Stochastic backpropagation rules similar to that of [29] can in fact be derived for any continuous dis-
tribution, under certain conditions on the characteristic function. In the following theorem we present
the main result of our paper concerning the derivation of generalized stochastic backpropagation
rules.

Theorem 1. (Continuous Stochastic Backpropagation) Let f ∈ C∞(Rd,R+), under the condition
that∇θ logϕθ is a holomorphic function of iω, then: ∃! {aα(θ)}α∈Nd ∈ R such that:

∇θL =
∑
|α|≥0

aα(θ)Ez∼pθ [∂αz f(z)] . (3)
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Proof. Let us rewrite L in terms of f̂ :

L(θ) =

∫
pθ(z)f(z)λ(dz)

=

∫
pθ(z)F−1[f̂ ](z)λ(dz)

=

∫
Rd
f̂(ω)

∫
E

pθ(z)e
iωT zλ(dz)µ(dω) Fubini’s theorem

=

∫
Rd
f̂(ω)ϕθ(ω)µ(dω).

(4)

By introducing the derivative under the integral sign, and using the reinforce trick [38] applied to ϕθ,
where ∇θϕθ(ω) = ϕθ(ω)∇θ logϕθ(ω), (4) becomes:

∇θL =

∫
Rd
f̂(ω)ϕθ(ω)∇θ logϕθ(ω)µ(dω). (5)

Under analyticity conditions of the gradient of the log characteristic function, we can expand the
gradient term∇θ logϕθ(ω), in terms of Taylor series around zero as:

∇θ logϕθ(ω) =
∑
|α|≥0

aα(θ)(iω)α. (6)

Putting everything together, and replacing the characteristic function by its expression, the gradient
of L becomes:

∇θL =

∫
Rd
f̂(ω)

∫
E

pθ(z)e
iωT z

∑
|α|≥0

aα(θ)(iω)αµ(dω)λ(dz). (7)

By rearranging the sums using Fubini’s theorem a second time, we obtain the following expression
for the gradient:

∇θL = Ez∼pθ

F−1
ω 7→ ∑

|α|≥0

aα(θ)(iω)αf̂(ω)

 (z)


=
∑
|α|≥0

aα(θ)Ez∼pθ

[
F−1

{
ω 7→ (iω)αf̂(ω)

}
(z)
]

=
∑
|α|≥0

aα(θ)Ez∼pθ [∂αz f(z)] .

(8)

Q.E.D

Identically, we can follow the same procedure for discrete random variables. We suppose that pθ
factorizes over disjoint cliques of the dependency graph, where each dimension zj takes values in a
discrete space Val(zj). In theorem 2 we derive the result concerning the discrete case.

Theorem 2. (Discrete Stochastic Backpropagation) Let E be a discrete space: E =
∏d
j=1 Val(zj),

and C the set of disjoint cliques of the dependency graph over z, that is,

pθ(z) =
∏
c∈C

pθ(zc)

then,
∇θL =

∑
c∈C

∑
zc 6=z∗c

∇θpθ(zc)Ez−c∼pθ [Df(z−c, zc)] . (9)

Where:

• z∗c : represents the normalizing assignment pθ(z∗c ) = 1−
∑
zc 6=z∗c

pθ(zc).
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• Df(z−c, zc) := f(z−c, zc)− f(z−c, z∗c ). (10)

Proof. The characteristic function for the factored distribution is given by:

ϕθ(ω) =
∏
c∈C

ϕ
(c)
θ (ωc), ϕ

(c)
θ (ωc) =

∑
zc 6=z∗c

pθ(zc)e
iωTc zc +

1−
∑
zc 6=z∗c

pθ(zc)

 eiω
T
c z
∗
c . (11)

Thus the gradient of the log characteristic function becomes:

∇θ logϕθ(ω) =
∑
zc 6=z∗c

∇θpθ(zc)

[
eiω

T
c zc − eiωTc z∗c

ϕ
(c)
θ (ωc)

]
. (12)

By plugging this expression to equation (5), we obtain:

∇θL =
∑
c∈C

∑
zc 6=z∗c

∇θpθ(zc)
∫ ∏

c′ 6=c

ϕ
(c′)
θ (ωc′)

[
eiω

T
c zc − eiω

T
c z
∗
c

]
f̂(ω)µ(dω)

=
∑
c∈C

∑
zc 6=z∗c

∇θpθ(zc)Ez−c∼pθ [Df(z−c, zc)] .
(13)

Q.E.D

The estimator of (9) has been derived in the literature through Rao–Blackwellization of the score
function gradient, and it has been known under different names [2, 1, 4]. Theorem 2 shows that the
discrete case can also be seen as backpropagating a derivative of the function f , in this case a discrete
derivative given by (10).

4 Applications of Generalized Stochastic Backpropagation

Following from the previous section, we derive the stochastic backpropagation estimators for certain
commonly used distributions.
The multivariate Gaussian distribution: In this case pθ(z) = N (z;µθ,Σθ). The log characteristic
function is given by: logϕθ(ω) = iµTθ ω+ 1

2Tr
[
Σθi

2ωωT
]
. Thus by applying theorem 1, we recover

the stochastic backpropagation rule of [29]:

∇θL = Ez∼pθ

{(
∂µθ
∂θ

)T
∇zf(z) +

1

2
Tr
[(

∂Σθ
∂θ

)
∇2
zf(z)

]}
, (14)

where, ∇z and∇2
z , represent the gradient and hessian operators.

The multivariate Dirac distribution: pθ(z) = δaθ (z), the log characteristic function of the Dirac
distribution is given by: logϕθ(ω) = iωTaθ. Thus the stochastic backpropagation rule of the Dirac
is given by:

∇θL =

(
∂aθ
∂θ

)T
Ez∼δaθ [∇zf(z)] =

(
∂aθ
∂θ

)T
∇zf(aθ), (15)

resulting in the classical backpropagation rule. In other words, the deterministic backpropagation
rule is a special case of stochastic backpropagation where the distribution is a Dirac delta distribution.
This result provides a link between probabilistic graphical models and classical neural networks. We
investigate this link further in Appendix A.
The multivariate Bernoulli: pθ(z) =

∏d
j=1 B(zj ;π

(j)
θ ), where π(j)

θ = P[zj = 1]. By applying
theorem 2, we obtain the local expectation gradient of [2]:

∇θL =

d∑
j=1

∂π
(j)
θ

∂θ
Ez−j∼pθ [f(z−j , 1)− f(z−j , 0)] . (16)
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The multivariate categorical: pθ(z) =
∏d
j=1 cat(zj ;π

(j)
θ ), where the dimensions are independent

and take values in the set {1, ...,K}. Similarly to the Bernoulli case, we obtain the following
stochastic backpropagation rule:

∇θL =

d∑
j=1

K−1∑
k=1

∂πθ
(j)
k

∂θ
Ez−j∼pθ [Df(z−j , k)] . (17)

The Laplace distribution: pθ(z) = L(z;µθ, bθ), in this case the log characteristic function is the
following: logϕθ(ω) = iω − log(1 + b2θω

2), using the Taylor series expansion for the function
x 7→ 1

1−x , we get the following stochastic backpropagation rule for the Laplace distribution:

∇θL =
∂µθ
∂θ

Ez

[
df

dz
(z)

]
+

1

b2θ

∂b2θ
∂θ

∞∑
n=1

b2nθ Ez

[
d2nf

dz2n
(z)

]
. (18)

The gamma distribution: pθ(z) = Γ(z; kθ, µθ), the log characteristic function of the Gamma
distribution is given by: logϕθ(ω) = −kθ log(1− iµθω). By expanding it using Taylor series of the
logarithm function, we obtain the following stochastic backpropagation rule:

∇θL =

∞∑
n=1

[
1

n

∂kθ
∂θ

+
kθ
µθ

∂µθ
∂θ

]
µnθEz∼pθ

[
dnf

dzn
(z)

]
. (19)

The estimator of (19) gives a stochastic backpropagation rule for the gamma distribution and, hence
also applies by extension to the special cases of the exponential, Erlang, and chi-squared distributions.
The beta distribution: pθ(z) = Beta(z;αθ, βθ), in this case the characteristic function is the
confluent hypergeometric function: ϕθ(ω) = 1F1(αθ;αθ + βθ; iω). A series expansion of the
gradient of the log of this function is not trivial to derive. However, we can use the parameterization
linking the gamma and beta distributions to derive a stochastic backpropagation rule. Indeed, if
ζ1 ∼ Γ(αθ, 1) and ζ2 ∼ Γ(βθ, 1) , then z = g(ζ1, ζ2) = ζ1

ζ1+ζ2
∼ Beta(αθ, βθ). By substituting in

the gamma stochastic backpropagation rule, we obtain:

∇θL =

∞∑
n=1

1

n

{
∂αθ
∂θ

Eζ1,ζ2
[
∂nf

∂ζn1

(
ζ1

ζ1 + ζ2

)]
+
∂βθ
∂θ

Eζ1,ζ2
[
∂nf

∂ζn2

(
ζ1

ζ1 + ζ2

)]}
. (20)

The Dirichlet distribution: pθ(z) = Dir(z;K,αθ), following the same procedure, as for the beta
distribution and using the following parameterization: zk = ζk∑K

j=1 ζj
with, ζk ∼ Γ(α

(k)
θ , 1), we

obtain:

∇θL =

∞∑
n=1

1

n

{
K∑
k=1

∂α
(k)
θ

∂θ
Eζj∀j

[
∂nf

∂ζnk

(
ζ1∑K
j=1 ζj

, ...,
ζK∑K
j=1 ζj

)]}
. (21)

5 Tractable cases & Approximations of Generalized Stochastic
Backpropagation

The generalized stochastic backpropagation gradient as presented in previous sections presents two
major computational bottlenecks for non-trivial distributions. The first is the computation of infinite
series, and the second is evaluating higher order derivatives of the function f . In this section, we
present some theoretical results to bypass these issues, in special cases. Let us consider first the issue
of higher order derivatives of the function f . In most applications, the function f is a loss function
applied to the output of a neural network. The following lemma illustrates a special case of relu
neural networks where this computation is tractable.
Lemma 3. Let f be a function of the form: f : z 7→ hx(gφ(z)), where gφ is a neural network of
parameters φ with relu activation functions, and hx ∈ C∞(R,R). we have,

∀αj ≥ 1 ∂αjzj (∇zgφ) = 0 thus, ∂αz f(z) =
d|α|hx
dx̂|α|

(gφ(z))

d∏
j=1

[
∂zjgφ(z)

]αj
and,

∇θL =
∑
|α|≥0

aα(θ)Ez∼pθ

d|α|hx
dx̂|α|

(gφ(z))
d∏
j=1

[
∂zjgφ(z)

]αj . (22)
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Proof. It suffices to show that ∀αj ≥ 1 ∂
αj
zj (∇zgφ) = 0, using the chain rule (22) becomes a

consequence of this fact. Let us consider a one layer neural network with relu activations, that is

gφ(z) = max(0, φT z). The first order derivative is given by: ∇zgφ(z) =

{
φ if φT z ≥ 0
0 otherwise , thus

∂zj (∇zgφ) = 0. By induction, consider an L layer neural network of parameters φ1:L with relu

activation functions, the output can always be written as: gφ(z) =

{
r(φ)T z if condition
0 otherwise , where

r(φ) is a polynomial function of the weights, and condition depends on z, and φ. Following the same
argument as for the one layer case, we have ∀αj ≥ 1 ∂

αj
zj (∇zgφ) = 0. Q.E.D

The main result of lemma 3, is that derivatives higher than the first order of the output of a neural
network with relu activations, with respect to the input, are always equal to zero. This result leads to
an expression for the higher order derivatives of f , that only involves the Jacobian of the outputs w.r.t
the inputs and higher order derivatives of the function hx. The following corollary presents certain
cases of the function hx where the infinite sum is tractable.

Corollary 3.1. For the following special functions, the infinite sum reduces to a tractable expression.

• hx(x̂) = |x− x̂|:

∇θL = a0(θ)Ez∼pθ [f(z)] + a1(θ)TEz∼pθ [∇zf(z)] . (23)

• hx(x̂) = (x− x̂)2:

∇θL = a0(θ)Ez∼pθ [f(z)] + a1(θ)TEz∼pθ [∇zf(z)] + Tr
{
a2(θ)Ez∼pθ

[
∇2
zf(z)

]}
. (24)

• h(x̂) = exp(εx̂):

∇θL = Ez∼pθ

[
∇θ logϕθ

(
ε∇zgφ(z)

i

)
f(z)

]
. (25)

In real world applications however, the infinite sum will not often reduce to a tractable expression
such as that of the exponential. An example of this case is the evidence lower bound of a generative
model with Bernoulli observations. In this case, the natural solution is to truncate the sum up to a
finite order. The assumption (although it might be wrong), is that the components associated to higher
frequencies of the spectrum of the gradient of the log characteristic function, do not contribute as
much. And by analogy to the signal processing field, we apply a Low-pass filter to eliminate them. In
this case the gradient of the log characteristic function of (3) becomes:

∇θ logϕθ(ω) =
∑
α≤N

aα(θ)(iω)α + o((iω)N ). (26)

6 Experiments

In our experimental evaluations, we test the stochastic backpropagation estimators of equations 18
and 19 for the gamma and Laplace distributions. In the case of the gamma estimator, we use toy
examples where we can apply the results of corollary 3.1, and derive exact stochastic backpropagation
rules without truncating the infinite sum. As for the Laplace stochastic backpropagation rule, we
test the estimator in the case of Bayesian logistic regression with Laplacian priors and variational
posteriors on the weights. We compare our estimators with the pathwise [13, 14], and score function
estimators, in addition to the weak reparameterization estimator in the gamma case [30]. We do not
use control variates in our setup, the goal is to verify the exactness of the proposed infinite series
estimators and how they compare to current state-of-the-art methods in simple settings. In all our
experiments, we use the Adam optimizer to update the weights [15], with a standard learning rate of
10−3. In all the curves, we report the mean and standard deviation for all the metrics considered over
5 iterations.
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Figure 1: Training loss and log variance of the gradients for the different estimators for f(z) =∑d
j=1(zj − ε)2 for d ∈ {1, 10, 100}.
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Figure 2: Training loss and log variance of the gradients for the different estimators for f(z) =∑d
j=1 exp(−εzj) for d ∈ {1, 10, 100}.

6.1 Toy problems

In the toy problem setting, we test the gamma stochastic backpropagation rule following the same
procedure as [23]. we consider the following cases:
Toy problem 1: L(θ) = Ez∼pθ

[
||z − ε||2

]
, where pθ(z) =

∏d
j=1 Γ(zj ; kj , µj), θ = {k, µ}, and

ε = .49. In this case, we only need to compute the first and second order derivatives of the function f
following from corollary 3.1.
Toy problem 2: L(θ) = Ez∼pθ

[∑d
j=1 exp(−εzj)

]
, in this case, the infinite sum transfers to ε,

which results in the following estimator: ∇θL = ∇θ logϕθ
(
ε
i

)
Ez∼pθ [f(z)].

In figures 1 and 2 we report the training loss and log variance of the gradient across iterations of gra-
dient descent for different values of the dimension d ∈ {1, 10, 100}. The stochastic backpropagation
estimator converges to the minimal value in all cases faster than the other estimators and the variance
of the gradient is competitive with the pathwise gradient.

6.2 Bayesian logistic regression with Laplacian Priors

We evaluate the Laplace stochastic backpropagation estimator using a Bayesian logistic regression
model [11], similarly to [23]. In our case, we substitute the normal prior and posterior on the weights
with Laplace priors and posteriors. We adopt the same notations of [24], where the data, target and
weight variables are respectively: xn ∈ Rd, yn ∈ {−1, 1}, and w. The probabilistic model in our
case is the following:

p(w) =

d∏
j=1

L(wj , 0, 1) p(y|x,w) = σ(yxTw), (27)
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Figure 3: Bayesian Logistic Regression with Laplacian priors

where σ represents the sigmoid function. We consider Laplacian variational posteriors of the form
pθ(w) =

∏d
j=1 L(wj , µj , bj), with θ = {µ, b}. The evidence lower bound of a single sample is

given by:

L(x, y; θ) = Ew∼pθ
[
log σ(yxTw)

]
− DKL[pθ||p], (28)

where the Kullback-Leibler divergence between the two Laplace distributions is the following:

DKL[pθ||p] =

d∑
j=1

{
|µj |+bje

−
|µj |
bj − log bj − 1

}
. (29)

We test the model on the UCI women’s breast cancer dataset [5], with a batch size of 64 and 50
samples from the posterior to evaluate the expectation. In the case of the stochastic backpropagation
estimator we truncate the infinite series for the scale parameter b of equation 18 to N = 4 and N = 8.
In figure 3, we report the training evidence lower bound, the log variance of the gradient, and the
accuracy computed on the entire dataset for the different estimators. The stochastic backpropagation
estimator converges faster than the considered estimators and the variance is significantly lower. We
also notice that the truncation level of the infinite series for the scale parameter has little effect on the
outcome, this result confirms the intuition of neglecting higher frequencies presented in section 5.

7 Related work & Discussion

Computing gradients through stochastic computation graphs has received considerable attention from
the community, due to its application in many fields. The first general approach that provides a closed
form solution for any probability distribution is the score function method [8, 38, 33, 32]. The main
inconvenience of this approach, is that it results in high variance gradients when the dimension of
the random variable becomes high. In order to bypass this issue, the second approach consisted of
designing control variates to reduce the variance of the score function estimator [27, 37, 20, 28, 35].
In addition to the score function gradient, it was proposed to use an importance weighted estimator
instead of the classical score function with a multi-sample objective [21, 3].

The second class of approaches is that concerning reparameterization tricks [16, 29]. Through the
decoupling of the computation of the gradient from the expectancy, reparameterization tricks have
shown that they provide low-variance gradients using often a single sample. The issue for these
methods is the necessity to find a reparameterization for each probability distribution. Certain distri-
butions such as the Gaussian are easy to reparametrize but others like the gamma are not. In addition,
discrete random variables do not admit an easy reparameterization as well. Recently, these issues
has been partially solved through implicit reparameterization, the generalized reparameterization
gradient, and the pathwise gradient [30, 7, 14]. For the discrete case, continuous relaxations that are
reparameterizable have been proposed and combined with control variate methods [10, 19, 12, 36, 9].

Our approach, in contrast generalizes stochastic backpropagation as presented by [29], where the
derivative is explicitly transported to the random variable. Deriving the Gaussian stochastic back-
propagation rule from the Fourier transform has been proposed in [6]. In our work, we extend it to
non Gaussian distributions by way of the characteristic function, and exploiting the invariance of the
functional inner product under Fourier transformation (Parseval’s theorem).
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8 Conclusion

In conclusion, in this paper we presented generalized stochastic backpropagation, a method to
compute gradients through random variables for any probability distribution by explicitly transferring
the derivative to the random variable. Our approach, generalizes previously known estimators and
provides new ones for the gamma, beta, Laplace, and Dirichlet distributions. Furthermore, we show
that deterministic backpropagation emerges as a special case of stochastic backpropagation where the
distribution is a Dirac delta, which suggests that classical neural networks are special probabilistic
graphical models with Dirac distributions.
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x h(1) . . . h(L) y

Figure 4: A hidden variable probabilistic model, where the observed variables are the data x and
target y, with L hidden stochastic layers h(1:L).

Dataset Model REBAR RELAX BSB (S=1) BSB (S=5) BSB (S=10)

MNIST
one layer SBN -114.14 ± 0.44 -114.55 ± 0.48 -110.87 ± 0.2 -110.70 ± 0.11 -110.59 ± 0.08
two layer SBN -101.33 ± 0.04 -101.09 ± 0.07 -99.74 ± 0.3 -100.44 ± 0.28 -100.66 ± 0.21
Bern. VAE -127.76 ± 0.84 -128.06 ± 2.66 -107.4 ± 1.47 -108.46 ± 0.37 -109.19 ± 1.31

Omniglot
one layer SBN -123.66 ± 0.05 -123.82 ± 0.17 -113.53 ± 0.21 -114.34 ± 0.16 -114.37 ± 0.19
two layer SBN -117.81 ± 0.17 -117.89 ± 0.04 -102.05 ± 0.19 -102.16 ± 0.09 -102.29 ± 0.14
Bern. VAE -136.83 ± 0.31 -136.53 ± 0.32 -126.94 ± 0.81 -128.69 ± 0.34 -129.48 ± 0.38

Table 1: Test likelihood for the Bernoulli stochastic backpropagation (BSB) estimator compared to
the REBAR and RELAX estimators. We report the mean and standard deviation over 5 runs.

A The Dirac Distribution: the link between neural networks and
probabilistic graphical models

In this section, we explore the connection between neural networks and probabilistic graphical models
following from the stochastic backpropagation rule of the Dirac delta distribution. To this end, let us
consider the probabilistic graphical model of figure 4. The observed random variables in this model
are denoted x and y representing the data and target variables. We place the analysis in a supervised
learning context, but the argument is valid for unsupervised models as well. As usual the goal is
to maximize the log likelihood for the data samples (x, y), which is intractable, given that we need
to integrate over the hidden variables. However using variational inference, we can maximize an
evidence lower bound of the form:

L(θ;x, y) = Eh(1:L)∼qθ(·|x)

[
log p(y,h(1:L), x)

]
+ H[qθ(·|x)] (30)

As suggested in the Dirac stochastic backpropagation rule, let us assume that the variational posteriors
and priors are Dirac delta distribution of the form:

qθ(h(l+1)|h(l)) = p(h(l+1)|h(l)) = δa(l+1)(W (l+1)T h(l)+b(l))(h(l+1)) ∀0 ≤ l ≤ L− 1 (31)

where, the a(l), W (l), and b(l) represent respectively the activation functions, the weights and biases
for layer l, with the convention x := h(0) . Under these assumptions, the Kullback-Leibler divergence
term is equal to zero, and the evidence lower bound reduces to the the log-likelihood of a classical
neural network:

L(θ;x, y) = log p(y|gθ(x)), with, gθ(x) = a(L)(W (L)(....a(1)(W (1)x+ b(1))...)

Thus, when using neural networks we are indirectly using a probabilistic graphical model and making
the strong assumption that the hidden layers follow a parameterized Dirac distribution knowing the
previous layer.

B Experiments using discrete stochastic backpropagation

We evaluate the Bernoulli and Categorical Stochastic Backpropagation estimators (BSB and CSB)
of equations 16 and 17 on standard generative modeling benchmark tasks, using the MNIST and
Omniglot datasets [18, 17]. We use the REBAR, RELAX, and Gumbel-softmax (or Concrete)
estimators as baselines for our comparison [12, 19, 36, 9]. The Bernoulli stochastic backpropagation
is compared to the REBAR and RELAX estimators for three models: the sigmoid belief network of
one and two stochastic hidden layers [26] and the variational autoencoder. In this case, we adopt
the same architectures as [9]. The categorical stochastic backpropagation estimator is compared to
the Gumbel-softmax estimator [19, 12] using two models: a variational autoencoder and a single
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Figure 5: The training evidence lower bound on the MNIST training set (top) and the log variance of
the gradient (bottom) over 5 runs. Comparison with the REBAR and RELAX estimators.

Dataset Model Gumbel-softmax CSB (S=1) CSB (S=5) CSB (S=10)

MNIST one layer -113.46 ± 0.59 -107.48 ± 0.37 -107.24 ± 0.31 -107.33 ± 0.13
Cat. VAE -122.97 ± 5.68 -103.49 ± 0.73 -102.68 ± 0.63 -101.78 ± 0.88

Omniglot one layer -125.76 ± 0.24 -122.49 ± 0.80 -122.98 ± 0.30 -122.98 ± 0.21
Cat. VAE -140.25 ± 1.99 -130.20 ± 0.74 -131.66 ± 0.84 -131.63 ± 1.05

Table 2: Test likelihood for the categorical stochastic backpropagation (CSB) estimator, compared to
the Gumbel-softmax estimator. We report the mean and standard deviation over 5 runs.

layer belief network with categorical priors. In this case, we set the dimension of the hidden layer to
d = 20 and the number of modalities for each dimension to K = 10.

All models are trained using the ADAM optimizer [15] using a standard learning rate α = 10−4 and
batch size of 100. We train the models for 500 epochs on the MNIST dataset and 100 epochs on the
Omniglot dataset, longer learning epochs leads to overfitting and lower performance on the test sets
for all estimators and models. We perform 5 iterations of training in all experiments and we report
the mean and standard deviation of each performance metric considered.

For all models and estimators, we report the mean marginal test likelihood in tables 1 and 2 for
both datasets. The test likelihood is estimated via importance sampling using 200 samples from the
variational posterior. In all cases the stochastic backpropagation estimator, a control variate free
method outperforms the baselines. In the case of the one layer sigmoid belief network the BSB
estimator exhibits an increase of performance of about 4 nats in the case of the MNIST dataset and
10 nats in the case of the Omniglot dataset. We also vary the number of samples used to estimate
the expectation in the stochastic backpropagation rule S ∈ {1, 5, 10}. We notice that using a single
sample estimate does not hurt performance and leads to a faster training process.

We estimate the mean variance of the gradients w.r.t the parameters of the models using exponential
moving averages of the first and second moments computed by the ADAM optimizer. The BSB
estimator significantly outperforms the REBAR, RELAX estimators in terms of variance reduction
with a difference of about 2 nats in the case of sigmoid belief networks, and 1 nat in the case of the
categorical variational autoencoder on the mnist dataset, leading to a more stable training process as
shown in figures 5 and 6.

Finally, we evaluate the computational overhead of the categorical stochastic backpropagation
estimator compared the Gumbel-softmax estimator. We compare the two estimators in terms of
execution time of one epoch of training. The comparison is done using GPU implementations on a
NVIDIA GeForce RTX 2080 Ti GPU, where the stochastic backpropagation rule of equation (17)
is vectorized, thus leveraging the parallel batch treatment of the GPU. As shown in table 3, the
Gumbel-softmax method is faster than stochastic backpropagation (S = 1) by a difference of about
3 seconds per training epoch. This is due to the forward passes performed to compute each of the
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Figure 6: Training evidence lower bound and the log vari-
ance of the gradient for the categorical VAE on the MNIST
dataset.

Model GS CSB
(S=1)

CSB
(S=5)

CSB
(S=10)

one Linear
layer 4.11 (s) 6.32 (s) 10.93 (s) 16.83 (s)

Cat.
VAE 4.13 (s) 7.32 (s) 13.29 (s) 21.94 (s)

Table 3: Execution time of one epoch
of training on the mnist dataset per es-
timator, per model.

terms in equation (17). The variance reduction and the increase in performance outweigh however
the computational cost.
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