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Abstract—Among the anomaly detection methods, control
charts have been considered important techniques. In practice,
however, even under the normal behaviour of the data, the
standard deviation of the sequence is not stable. In such cases, the
coefficient of variation (CV) is a more appropriate measure for
assessing system stability. In this paper, we consider the statistical
design of Run Rules-based control charts for monitoring the
CV of multivariate data. A Markov chain approach is used
to evaluate the statistical performance of the proposed charts.
The computational results show that the Run Rules-based charts
outperform the standard Shewhart control chart significantly.
Moreover, by choosing an appropriate scheme, the Run Rules-
based charts perform better than the Run Sum control chart for
monitoring the multivariate CV.

Index Terms—Anomaly Detection, Run Rules, Multivariate
Coefficient of Variation, Control Chart, Markov Chain.

I. INTRODUCTION

Anomaly detection refers to the task of finding observations
that do not conform to the normal, expected behaviour which
is widely applied in research and in a variety of applications
such as intrusion detection, fraud detection, and anomaly
detection in wireless sensor networks, see [1], [2] for more
details. Due to its significance, a large number of studies
have been devoted to this problem in the literature. A survey
in [3] provided an overview of anomaly detection techniques.
Among several techniques proposed to handle the problem
of anomaly detection, a control chart is considered a simple
yet effective tool to detect anomalies in the data. Basically, a
control chart includes a center line and control limits (upper
and lower). A set of samples is taken online from the process
to calculated the characteristic of interest. This value is then
plotted in the control chart to monitor if the process is still
in-control (when the statistic of interest is within control
limits) or out-of-control (when the statistic of interest is
beyond control limits). The first control chart introduced in
the literature is the Shewhart control chart, which was named
after the author [4]. Many other types of control charts have
been proposed to improve the performance of the Shewhart
control chart in detecting small shifts of a process such as
the Cumulative Sum (CUSUM) control chart [5], the Run
Sum control chart [6], the Run Rules control charts [7], etc.

Recently, the control charts become increasingly popular in
anomaly detection techniques. For example, a control chart
based on Kernel Null Space is used to detect intrusions of a
network in real-time [8]. An overview of dynamic anomaly
detection in social networks via control charts is presented [9].

The coefficient of variation (CV) is an important measure
for assessing the stability of a process. Representing the ratio
of the standard deviation to the mean, the coefficient of
variation (CV) is a useful measure of relative dispersion of a
random variable. It has the meaning that the higher the CV, the
greater the level of dispersion around the mean. In many manu-
facturing processes, keeping the CV in-control means ensuring
product quality. The first use of the Shewhart chart to monitor
and detect changes in the CV is presented in [10]. In a process
where two or more variables are considered simultaneously,
this measure becomes the multivariate coefficient of variation
(MCV). For example, in biometry and genetics, it is quite often
to measure multiple characteristics on individuals from several
populations and the problem is to assess the relative variability
of each population. The single calculation of the univariate CV
of each characteristic is obviously insufficient because it does
not consider the correlation between these features, see [11].

A literature search reveals that not much attention has been
paid to the CV for multivariate data despite its potential
importance. The MCV control charts can only see in a few
recent studies, for example, the Shewhart MCV control chart
[12], the Run Sum MCV control chart [13], and the synthetic
MCV control chart [14]. The goal of this paper is then to
investigate the performance of the Run Rules control charts
in detecting anomaly from a process based on the MCV
characteristic. Compared to other control charts, the Run Rules
charts have a simpler design (it only adds the supplementary
Run Rules in the implementation of the Shewhart chart) but
is still very effective at monitoring shifts from a process.
This type of control chart is the major concern in several
studies, see, for example, [15]–[18]. In fact, the Run Rules
control charts have been proposed to monitor the MCV in
[19]. However, only the 2-of-3 and the 3-of-4 run rules are
considered in [19]. Meanwhile, it is well documented that the



4-of-5 runs rule is more efficient than the previous ones in cont
certain cases [20]. Therefore, we consider additionally the 4-
of-5 run rules in this study and provide a theoretical basis to
extend the Run Rules control charts to the general case r-
out-of-s. We also provide additional numerical comparisons
between the most frequently used one-sided Shewhart-MCV
charts with or without run rules. Numerical simulations show
that our proposed charts are efficient in detecting the process
shifts.

The paper is organised as follows. Section II provides a
brief review of distribution of the sample MCV. In Section III,
we present the design and implementation of the Run Rules
control charts for monitoring the MCV. Section IV is devoted
to assessing the performance of the proposed charts. Some
concluding remarks are given in Section V.

II. A BRIEF REVIEW ON THE DISTRIBUTION OF THE
SAMPLE MULTIVARIATE COEFFICIENT OF VARIATION

We present a brief review of the distribution of the sample
MCV. From the literature, there are different point of views
about the definitions of the MCV. A formal definition for
the multivariate coefficient of variation was firstly proposed
in [21]. Another definition of the MCV was given in [22]
based on the Mahalanobis distance. We use the definition of
the MCV suggested in [22] which is considered as a natural
generalisation for the CV. This definition was also adopted
in [12] to monitor the MCV. Let X denote a random vector
from a p-variate normal distribution with mean vector µ and
covariance matrix Σ. The MCV is defined as

γ = (µTΣ−1µ)−
1
2 . (1)

Suppose that a random sample of size n, say
X1,X2, . . . ,Xn, is taken from this distribution, i.e.,
Xi = (xi,1, xi,2, . . . , xi,p) ∼ N(µ,Σ), i = 1, . . . , n. Let
X̄ and S be the sample mean and the sample covariance
matrix of X1,X2, . . . ,Xn, i.e., X̄ = 1

n

∑n
i=1 Xi, and

S = 1
n−1

∑n
i=1(Xi− X̄)(Xi− X̄)T . The sample multivariate

coefficient of variation γ̂ is then defined as

γ̂i = (X̄TS−1X̄)−
1
2 . (2)

The c.d.f (cumulative distribution function) and the inverse
c.d.f of γ̂ are given in [12] as

Fγ̂(x|n, p, δ) = 1− FF
(

n(n− p)
(n− 1)px2

|p, n− p, δ
)
,

and

F−1
γ̂ (α|n, p, δ) =

√
n(n− p)
(n− 1)p

(
1

F−1
F (1− α|p, n− p, δ)

)
,

where FF (.|p, n − p, δ) and F−1
F (.|p, n − p, δ) are the non-

central F distribution and the inverse of the non-central F
distribution with p and n−p degrees of freedom, respectively,
and the non-centrality parameter is δ = nµTΣ−1µ = n

γ2 .

III. IMPLEMENTATION OF RRr,s-MCV CONTROL CHARTS

Similar to the one-sided Run Rules control charts presented
in [23], [24], we suggest the definition of two one-sided Run
Rules control charts for monitoring the MCV as follows:

• A lower-sided r-out-of-s Run Rules control chart (de-
noted as RR−

r,s− MCV) to detect a decrease in γ̂i with
a lower control limit LCL− and a corresponding upper
control limit UCL− = +∞.

• An upper-sided r-out-of-s Run Rules control chart (de-
noted as RR+

r,s− MCV) to detect an increase in γ̂i with
an upper control limit UCL+ and a corresponding lower
control limit LCL+ = 0.

Given the value of the control limits for each chart, an out-
of-control signal is given at time i if r-out-of-s consecutive γ̂i
values are plotted outside the control interval, i.e. γ̂i < LCL−

in the lower-sided chart and γ̂i > UCL+ in the upper-sided
chart. The control chart designed above is called pure Run
Rules type chart. Compared to the composite Run Rules type
charts which require both control and warning limits, these
pure type charts are more simple to implement and interpret,
see [15]. In this study, we only consider the 2-out-of-3, 3-
out-of-4 and 4-out-of-5 Run Rules charts. More complex Run
Rules schemes with larger values of (r, s) are possible to
design in a similar manner. However, their efficiency should
increase the complexity in implementation.

The performance of the proposed one-sided RRr,s−MCV
control charts is measured by the out-of-control ARL, denoted
as ARL1. We utilise a Markov chain method to calculate the
ARL1 value. Further details on this method can be found in
[24]. Let us now suppose that the occurrence of an unexpected
condition shifts the in-control MCV value γ0 to the out-of-
control value γ1 = τ × γ0, where τ > 0 is the shift size.
Values of τ ∈ (0, 1) correspond to a decrease of the γ0, while
values of τ > 1 correspond to an increase of the in-control
MCV. It is worth mentioning that a decrease (resp. increase) in
γ0 is related to process improvement (resp. deterioration). The
probability p of the event that a sample falls into an in-control
interval is equal to:

• for the RR−
r,s−MCV chart:

p = P (γ̂i ≥ LCL−) = 1− Fγ̂(LCL−|n, p, δ1), (3)

• for the RR+
r,s−MCV chart:

p = P (γ̂i ≤ UCL+) = Fγ̂(UCL+|n, p, δ1), (4)

where δ1 = n
(τγ0)

2 .

The Transition Probability Matrix P of the embedded
Markov chain for the two RR2,3−MCV control charts is

P =

 Q r

0T 1

 =


0 0 p 1− p
p 0 0 1− p
0 1− p p 0
0 0 0 1

 , (5)

where Q is the (3, 3) matrix of transient probabilities, r is the
(3, 1) vector satisfied r = 1 − Q1 with 1 = (1, 1, 1)T and



0 = (0, 0, 0)T . The corresponding (3, 1) vector q of initial
probabilities associated with the transient states is equal to
q = (0, 0, 1)T , i.e. the third state is the initial state.

Extended to Run Rules charts with larger (r, s) values,
the matrix Q(7×7) of transient probabilities for the two
RR3,4−MCV control charts is given by

Q =



0 0 p 0 0 0 0
0 0 0 0 p 0 0
0 0 0 0 0 1− p p
p 0 0 0 0 0 0
0 1− p p 0 0 0 0
0 0 0 1− p p 0 0
0 0 0 0 0 1− p p


. (6)

In this case, the seventh state in the vector q =
(0, 0, 0, 0, 0, 0, 1)T is the initial state. The (15,15) matrix Q of
transient probabilities for the two RR4,5-MCV control charts
can be found in [23]. Once matrix Q and vector q have been
determined, the ARL and SDRL (standard deviation of run
length) are obtained by:

ARL = ν1, and SDRL =
√
µ2, (7)

with

ν1 = qT (I−Q)−11,

ν2 = 2qT (I−Q)−2Q1,

µ2 = ν2 − ν21 + ν1.

A control chart is considered to be better than its competi-
tors if it gives smaller value of the ARL1 while the ARL0

is the same. Therefore, the control limit of the RRr,s−MCV
control charts should be found out as a solution of the
following equations:

• for the RR−
r,s−MCV chart:

ARL(LCL−, n, p, γ0, τ = 1) = ARL0, (8)

• for the RR+
r,s−MCV chart:

ARL(UCL+, n, p, γ0, τ = 1) = ARL0, (9)

where ARL0 is the predetermined in-control ARL value.

IV. PERFORMANCE OF THE RRr,s-MCV CONTROL CHARTS

We investigate the performance of the RR r,s− MCV
control charts. The desired in-control ARL value, say ARL0

is set at 370.4, for all the considered IC cases. In Figure
1, we present the ARL profiles for both the Shewhart chart
(designed by [12]) and the Run Rules charts for a number of
different in-control scenarios. Since the ARL curves for the
upper case overlap each other, we include the ARL curves
for τ ≥ 1.2 as an inset plot. The Figure 1 shows that for
the lower case (decrease shifts), the 4-of-5 Run Rule chart
remarkably outperforms the Shewhart chart and the other Run
Rules charts, especially when n = 5, p = 2 and γ0 = 0.1. As
n, p, γ0 increase, the improvement is not as much as in the
first case but still, it is substantial. For upper case (increase

shifts), we have also an improvement with Run Rules charts
but it is not as much as in the lower case. In addition, a part of
the ARL curve of the Shewhart chart corresponding to very
large shifts (i.e., 1.50 or 0.50) is below ARL curves of Run
Rules charts. We deduce that the Shewhart chart becomes more
efficient than the proposed Run Rule based charts in detecting
very large shifts.

The analysis presented above is only for the case of specific
shift size. In practice, however, it is hard for quality practi-
tioners to predetermine a specific shift without any previous
experience. Thus, they usually have an interest in detecting
a range of shifts τ ∈ [a, b] rather than preference for any
particular size of the process shift. The use of the uniform dis-
tribution has been proposed to account for the unknown shift
size by some authors, see [25]. The statistical performance of
the corresponding chart can be evaluated through the EARL
(Expected Average Run Length) given by

EARL =

∫ b

a

ARL(τ)× fτ (τ)dτ, (10)

where ARL(τ) is the ARL function of shift τ , and fτ (τ) =
1
b−a for τ ∈ [a, b]. In the following section, we will consider
a specific range of shift [a, b] = [0.5, 1) (decreasing case,
denoted as (D)) for lower-sided RRr,s−MCV control chart
and [a, b] = (1, 2] (increasing case, denoted as (I)) for upper-
sided RRr,s−MCV control chart.

Table I presents the values of EARL and ESDRL
(Expected Standard Deviation Run Length) for various
combinations of n = {5, 10, 15}, γ0 = {0.1, 0.2, 0.3, 0.4}
and p = {2, 3, 4}. The same trends as the case of specific
shift size are observed from this table. The value of EARL
in the upper-sided Run Rule control chart corresponding
to smaller values of (r, s) is significantly smaller than that
corresponding to larger values of (r, s). In the contrary, the
values of EARL decrease from smaller (r, s) scheme to
larger (r, s) scheme of Run Rules for lower-sided chart.
Therefore, the choice of using RR2,3−MCV, RR3,4−MCV
or RR4,5s−MCV control charts depends on the goal of
practitioners: if they want to detect increasing shifts, they
are advised to choose smaller (r, s) scheme of Run Rules
(say RR2,3−MCV in this paper); otherwise, the larger (r, s)
scheme of Run Rules (say RR4,5−MCV) should be used.

In comparison with the Run Sum MCV control chart
suggested by [13], the Run Rules based charts also have some
outstanding advantages. Even so, the global performance of the
Run Rules charts is still better than that of the Run Sum chart.
In particular, with n = 5, γ0 = 0.1 and p = 2, for the upward
chart we have EARL = 29.4 in the RR+

2.3−MCV chart in
this paper while EARL = 31.37 in the Run Sum control chart
(Table 1 in [13]); for the downward we have EARL = 67.9 in
the RR−

4.5−MCV chart while EARL = 70.49 in the Run Sum
control chart (Table 3 in [13]). As mentioned above, the use
of the Run Sum control chart requires to optimise the score
vectors over a range of shifts that is difficult to predetermine
exactly in practice. When the predetermined value of the shift



(a) p = 2, n = 5, γ0 = 0.1 (b) p = 2, n = 5, γ0 = 0.1

(c) p = 3, n = 10, γ0 = 0.3 (d) p = 3, n = 10, γ0 = 0.3

Fig. 1: The ARL profiles of Shewhart chart and Run Rules charts for various in-control settings; left side: lower-sided charts,
right side: upper-sided charts.

size τ is different from the true shift size, the run-length
properties of the designed control chart could be seriously
affected [5]. Meanwhile, the Run Rules charts only need the
determination of a single control limit value for all shift sizes.
This makes the Run Rules MCV chart easier to implement.

V. CONCLUDING REMARKS

In this paper, we have investigated the one-sided control
charts with Run Rules for monitoring the coefficient of
variation of multivariate data. Two one-sided charts were
considered to detect separately both increases and decreases
in the multivariate CV. The performance of proposed charts
is evaluated through ARL for deterministic shift size and
EARL for unknown shift size. The numerical results showed
that the Run Rules control charts enhance the performance of
Shewhart control chart significantly. For purpose of optimising
the performance of Run Rules charts, it is recommended
to use the RR−

4,5−MCV for detecting decreasing process
shifts and RR+

2,3−MCV for detecting increasing process shifts.
Moreover, under certain conditions, this careful choice of the
Run Rules charts also lead to an improved efficiency compared
to the Run Sum control chart for MCV.
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TABLE I: The values (EARL1, ESDRL1) for RR−
r,s−MCV control chart when [a, b] = [0.5, 1) and for RR+

r,s−MCV control
chart when [a, b] = (1, 2] with different values of p, n, γ0 and τ .

p = 2
RR2,3-MCV chart RR3,4-MCV chart RR4,5-MCV chart

p = 2
τ n = 5 n = 10 n = 15 n = 5 n = 10 n = 15 n = 5 n = 10 n = 15

γ0 = 0.1
(D) (101.8, 100.1) (48.1, 46.5) (33.0, 31.3) (79.4,76.7) (38.5,36.0) (26.9,24.3) (67.8,64.4) (34.0,30.6) (24.2,20.7)
(I) (29.4, 27.8) (17.4, 15.8) (13.2, 11.5) (30.3,27.9) (17.4,15.0) (13.1,10.6) (31.7,28.5) (18.0,14.7) (13.7,10.2)

γ0 = 0.2
(D) (103.1, 101.3) (49.2, 47.5) (33.9, 32.2) (80.4,77.8) (39.4,36.9) (27.6,25.1) (68.8,65.4) (34.8,31.4) (24.9,21.4)
(I) (30.3, 28.6) (18.1, 16.5) (13.7, 12.1) (31.2,28.7) (18.1,15.6) (13.6,11.1) (32.6,29.3) (18.6,15.3) (14.1,10.7)

γ0 = 0.3
(D) (105.1, 103.3) (50.9, 49.2) (35.3, 33.7) (82.2,79.6) (40.9,38.4) (28.8,26.3) (70.4,67.0) (36.1,32.7) (26.0,22.5)
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γ0 = 0.4
(D) (107.8, 106.1) (53.2, 51.5) (37.2, 35.6) (84.7,82.0) (42.9,40.3) (30.5,27.9) (72.6,69.2) (37.9,34.5) (27.4,24.0)
(I) (34.0, 32.4) (20.9, 19.3) (15.9, 14.3) (34.7,32.3) (20.6,18.1) (15.6,13.1) (36.1,32.9) (21.1,17.8) (16.0,12.6)

p = 3
RR2,3-MCV chart RR3,4-MCV chart RR4,5-MCV chart

τ n = 5 n = 10 n = 15 n = 5 n = 10 n = 15 n = 5 n = 10 n = 15
γ0 = 0.1

(D) (136.9, 135.1) (53.3, 51.7) (35.1, 33.5) (107.0,104.3) (42.5,40.0) (28.5,26.0) (90.6,87.2) (37.3,34.0) (25.6,22.1)
(I) (36.0, 34.3) (18.8, 17.2) (13.8, 12.2) (37.9,35.4) (18.8,16.4) (13.8,11.2) (40.2,36.9) (19.5,16.2) (14.3,10.9)

γ0 = 0.2
(D) (138.3, 136.5) (54.5, 52.8) (36.1, 34.4) (108.3,105.6) (43.5,41.0) (29.3,26.8) (91.8,88.3) (38.2,34.8) (26.3,22.9)
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(D) (143.6, 141.8) (58.8, 57.1) (39.6, 37.9) (113.2,110.5) (47.2,44.7) (32.3,29.8) (96.4,92.9) (41.5,38.2) (29.0,25.6)
(I) (41.6, 40.0) (22.5, 20.9) (16.7, 15.1) (43.4,40.9) (22.3,19.8) (16.4,13.9) (45.8,42.5) (22.8,19.6) (16.8,13.4)

p = 4
RR2,3-MCV chart RR3,4-MCV chart RR4,5-MCV chart

τ n = 5 n = 10 n = 15 n = 5 n = 10 n = 15 n = 5 n = 10 n = 15
γ0 = 0.1

(D) (208.8, 206.9) (60.1, 58.4) (37.6, 35.9) (171.7,168.9) (47.6,45.1) (30.4,27.9) (147.1,143.5) (41.6,38.2) (27.2,23.8)
(I) (50.0, 48.3) (20.5, 18.9) (14.5, 12.9) (55.1,52.6) (20.6,18.1) (14.5,12.0) (60.3,57.0) (21.3,18.0) (15.0,11.6)

γ0 = 0.2
(D) (210.1, 208.2) (61.3, 59.6) (38.6, 36.9) (173.1,170.3) (48.7,46.2) (31.3,28.7) (148.5,144.9) (42.5,39.2) (27.9,24.5)
(I) (51.4, 49.7) (21.3, 19.7) (15.1, 13.5) (56.6,54.1) (21.3,18.9) (15.0,12.5) (61.9,58.5) (22.0,18.7) (15.6,12.2)

γ0 = 0.3
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