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Who am I?

2004 PhD Electrical Engineering

(Lyon, France)

2005 – 2007 Research associate

(Sheffield and Nottingham, UK)

2008 – 2019 Researcher at CNRS

(Lyon, France)

Since 2019 Senior Researcher (eq. Prof.)

at CNRS

You can contact me at

◮ cyril.buttay@insa-lyon.fr

◮ (540) 998 6694

◮ Office 151, Whittemore Hall

◮ scholar.google.fr/citations?user=-gMeCUkAAAAJ

◮ I’m here until July, 2020!
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Where do I come from?

◮ Laboratoire Ampère

(named after André-Marie Ampère, born in Lyon)

◮ 180 people (Faculty, Support, PhD students)

◮ Academic research lab focusing on:
◮ Bio-engineering, biology
◮ Automation, System engineering
◮ Electrical Engineering

◮ EE activities:
◮ High voltage engineering
◮ WBG devices design and test
◮ Magnetics (material/design)
◮ EMC, Packaging, Integration.

❤tt♣✿✴✴✇✇✇✳❛♠♣❡r❡✲❧❛❜✳❢r
Source globe:wikipedia
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Operating Temperature Limits
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Source: C. Raynaud et al. “Comparison of high voltage and high temperature performances of

wide bandgap semiconductors for vertical power devices” Diamond and Related Materials, 2010,

19, 1-6

Some limits:

660℃ Aluminium melts

≈ 300℃ Die Solder melts

200 – 250 ℃ Silicone gel degrades

≈ 200℃ Board solder melts

◮ For Wide-Bandgap devices, limits set by packaging

◮ Additional packaging issues with thermal cycling
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High temperature behaviour of SiC devices – [1, 2]

Static Characterization of 490 mΩ JFET
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◮ Large increase in on-state resistance with temperature;

◮ Strong sensitivity of conduction losses to temperature.
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High temperature behaviour of SiC devices – [1, 2]

Thermal Run-away mechanism

◮ The device characteristic

◮ Its associated cooling system

◮ Two equilibrium points: one

stable and one unstable

◮ Above the unstable point,

run-away occurs
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Thermal Run-away mechanism

◮ The device characteristic

◮ Its associated cooling system

◮ Two equilibrium points: one
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◮ Above the unstable point,
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Always stable Always unstable Becomming unstable with
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High temperature behaviour of SiC devices – [1, 2]
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High temperature behaviour of SiC devices – [1, 2]

Buttay et al. “Thermal Stability of Silicon Carbide Power JFETs”, IEEE Trans on Electron Devices, 2014
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Run-away
SiC JFET:

◮ 490 mΩ, 1200 V

◮ RThJA
= 4.5 K/W

◮ 135 ℃ ambient

◮ On-state losses

High temperature capability 6= reduced cooling needs!

SiC JFETs must be attached to a low-RTh cooling system.
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High Temperature die attaches

The problem with solders
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❤tt♣✿✴✴✇✇✇✳❛♠✐✳❛❝✳✉❦✴❝♦✉rs❡s✴t♦♣✐❝s✴✵✶✻✹❴❤♦♠t✴

Homologous temperature:

TH =
TOper [K ]

TMelt [K ]

Example:

◮ AuGe solder: TMelt = 356℃ = 629 K

◮ TH = 0.8 ➜ TOper = 503 K = 230 ℃

◮ High temperature solder alloys not practical

◮ Need to decorrelate process temperature and melting point:
◮ Sintering (solid state, process below melting point)
◮ Diffusion soldering/TLPB (creation of a high melting point alloy)
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High Temperature Die Attaches – PhD A. Masson

◮ development of the

sintering process

◮ Nano-particles paste

from NBE Tech

◮ Evaluation of many parameters
◮ Sintering pressure
◮ Surface roughness
◮ Thickness of stencil
◮ Substrate finish. . .

◮ Once set, process is robust
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High Temperature Die Attaches – PhD S. Hascoët

◮ “Pressureless” sintering process

◮ Based on micro-particles

◮ Findings:
◮ Oxygen is necessary
◮ Bonding on copper (oxide)
◮ Standard Ni/Au finish not ideal

◮ Confirmed by several teams
◮ weak bonds at Ag/Au interface

◮ Bond strength lower
◮ Porosity higher
◮ Can be used to attach fragile components
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High Temperature Die Attaches – [3]

◮ All-sintered assembly

◮ Half-Bridge structure

◮ SiC JFETs

◮ Integrated gate drivers (Ampère)

◮ Ceramic capacitors

◮ Isolation function not integrated
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High Temperature Die Attaches – Silver migration, R. Riva [4]
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◮ Causes: electric field, high temperature and oxygen

◮ Large differences between similar test vehicles:

◮ Short life without encapsulation (100–1000 h)

◮ Much longer life with parylene HT protection
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Conclusion on Packaging for High Temperature

SiC devices can operate at high temperature (>300 ℃)

◮ With efficient thermal management!

◮ RTh must remain low

Silver sintering for high temperature die attaches

◮ Compatible with standard die finishes

◮ High thermal/electrical performance

◮ Research: long-term behaviour at elevated temperature
◮ pressureless processes may be a good model
◮ not presented here: cycling and storage tests [5, 6, 7]
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New Structures
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New Structures – for double-side cooling
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New Structures – for double-side cooling – investigated here
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New Structures – Macro post (R Riva) [8, 9]

Vbus

OUT

GND

JH

JL

◮ Two ceramic substrates, in “sandwich” configuration

◮ Two SiC JFET dies (SiCED)

◮ assembled using silver sintering

◮ 25.4 mm×12.7 mm (1 in×0.5 in)
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New Structures – Macro post (R Riva) [8, 9]

SiC JFET

Alumina

0.2 mm 

0,3 mm 

0.16 mm 

0,15 mm 

Copper

0.15 mm 
Gate SourceSource

Drain0.3 mm 

Scale drawing for 2.4×2.4 mm2 die

◮ Etching accuracy exceeds

standard design rules

◮ Double-step copper etching for

die contact

➜ Custom etching technique
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New Structures – Macro post (R Riva) [8, 9]

plain DBC board

◮ Final patterns within 50 µm of desired size

◮ Two designs, for 2.4 mm and 4 mm dies

◮ Die top metallized (PVD) with Ti/Ag

◮ Total copper thickness 300 µm,
≈ 150 µm per step
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New Structures – Macro post (R Riva) [8, 9]

◮ Good form factor achieved using the two-step copper etching process

◮ Satisfying alignment

◮ Poor quality of Al-Cu attach
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New Structures – Micro posts (B Mouawad) [10, 11]

◮ First studies during L. Ménager’s PhD
◮ Copper posts growth on die (electroplating)
◮ Original die/DBC assembly technology: SnCu diffusion bonding

◮ Proposition of M. Soueidan: direct copper bonding

20 / 50



New Packaging Structures – Micro posts

(B Mouawad) [10, 11]

Direct Copper-to-Copper Bonding [12]

Parameters:

◮ SPS press

◮ Cu/Cu bonding

◮ 5 or 20 min

◮ 200 or 300℃

◮ 16 or 77 MPa

◮ Very good bond, without any interface material
◮ All configuration but one yield to bonding
◮ Tensile strenght 106 to 261 MPa (365 MPa for bulk copper)

◮ Parameters compatible with the process of a semiconductor die
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New Structures – Micro posts (B Mouawad) [10, 11]
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◮ “Wafer”-level process

◮ Based on copper electroplating

◮ Assembly of DBC/die/DBC “sandwiches”

◮ No damage to dies observed
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New Structures – Micro posts (B Mouawad)
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Conclusions on “Sandwich” ceramic structures

◮ Several sandwich configurations:
◮ Solder [13, 14]
◮ Silver sintering
◮ Direct Cu/Cu bonding (Micro-posts)

◮ More suited to direct liquid cooling
◮ Solid/liquid interface
◮ Homogeneous compressing force
◮ No issue with flatness

◮ Remaining issues:
◮ Dies topside finish
◮ Mechanical relief structures
◮ Intrinsic thermo-mechanical reliability

◮ Need for further investigation
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New Structures – PCB Embedding [17, 18]

CDM

LDM

LDM

EMI Filter

VDCVS

Is LPFC

PFC PPB

LCM

LCM

CCM

CCM

◮ Bidirectionnal, Power Factor Converter for 3.3 kW applications

◮ Designed through an optimization procedure [15, 16]
◮ Based on SiC power devices
◮ 180 kHz switching frequency
◮ 4 interleaved cells

◮ Discussed here: PFC cell

◮ Idea: embbed all devices (not just semiconductor chips)

25 / 50



New Structures – PCB Embedding [17, 18]

Physical Structure

Inductor PCB 

(4.5 mm-thick)

} Driver PCB

(4.5 mm-thick)

TIM

(0.2 mm-thick)

Dies PCB

(0.7 mm-thick)

Heatsink

(25 mm-thick)

}

}
}

TIM

(0.2 mm-thick)

TIM

(0.2 mm-thick)

HF Die

Magnetic Core

3-PCB structure

◮ Magnetic component on top

◮ Heatsink on bottom

( natural convection)

◮ Power chips close to heatsink
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New Structures – PCB Embedding [17, 18]

Two board structures are used:

Thin PBC (1 mm)

for bare dies
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New Structures – PCB Embedding [17, 18]

◮ PFC inductor (Thick)

◮ TIM

◮ Gate driver (thick)

◮ TIM

◮ Power devices PCB (thin)

◮ Thermal Interface Material (TIM)

◮ Heatsink

◮ Board-to-board interconnects using wires soldered in through-holes

◮ Final cell dimensions: 7 × 7×3.5 cm3
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New Structures – PCB Embedding [17, 18]

◮ 4 PFC cells for a full converter

◮ DC capacitor bank for test only

◮ 4-stage EMC DM filter

◮ 28x7x5 cm3
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New Structures – PCB Embedding [17, 18]

For SiC dies

◮ good quality of microvias
◮ No damage to dies
◮ Uniform thickness

◮ Good alignment
◮ Gate contact

500×800 µm2

◮ Good electrical perf.
◮ Consistent RDSon

(80 mΩ)
◮ No change in Vth

◮ Low leakage current
(max 1.6 nA @ 1200 V)

◮ Very good yield
(97% on 44 dies)

SiC MOSFET

Microvias
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New Structures – PCB Embedding [17, 18]

For SiC dies

◮ good quality of microvias
◮ No damage to dies
◮ Uniform thickness

◮ Good alignment
◮ Gate contact

500×800 µm2

◮ Good electrical perf.
◮ Consistent RDSon

(80 mΩ)
◮ No change in Vth

◮ Low leakage current
(max 1.6 nA @ 1200 V)

◮ Very good yield
(97% on 44 dies)
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Other SMD components OK as well
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Operation of the PFC converter
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◮ 4 interleaved PFC cells (target power 4×825 W=3.3 kW)

◮ Operation at reduced power because of losses in inductors
◮ Current unbalance because of differences in inductor values
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Conclusions – Exploiting the PCB Embedding

◮ “All-embedded”, interleaved PFC designed
◮ includes dies, driver, inductors
◮ Very good production yield
◮ Only issue: embedded inductors

◮ Next step: better use of embedding
◮ Keep some components on the surface
◮ Improve design for manufacturing
◮ Improve design tools
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Fail-to-Short Packaging for HVDC Applications

Source: I. Yaqcub PhD thesis, 2015 [19]

HVDC Converters

◮ Rated at 100s kV

(ex 320 kV for France-Spain link)

◮ Series of 100s of transistors

(800 for same converter)

◮ Transistors fail randomly
◮ Should not stop converter
◮ Failed device turned to short

circuit
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HVDC Converters

◮ Rated at 100s kV

(ex 320 kV for France-Spain link)

◮ Series of 100s of transistors

(800 for same converter)

◮ Transistors fail randomly
◮ Should not stop converter
◮ Failed device turned to short

circuit

➜ Need for Fail-To-Short Packaging
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Fail-to-Short Packaging

◮ Standard packaging: Fail-to-Open

◮ Wirebonds act as fuses or blown away

➜ Need for massive contacts

◮ “Press pack”-type packages introduced

◮ Initially for single die, now for multichip

◮ When failure occurs:
◮ Temperature rises
◮ Die and surrounding metal melt
◮ They form a conductive area
◮ Strong package contains explosion
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Fail-to-Short Packaging

◮ Standard packaging: Fail-to-Open

◮ Wirebonds act as fuses or blown away

➜ Need for massive contacts

◮ “Press pack”-type packages introduced

◮ Initially for single die, now for multichip

◮ When failure occurs:
◮ Temperature rises
◮ Die and surrounding metal melt
◮ They form a conductive area
◮ Strong package contains explosion

Is a FTS package Possible for SiC?
source: Gunturi, S. et al. Innovative Metal System

for IGBT Press Pack Modules
(ISPSD 2003) [20]
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Fail-to-Short Packaging – test on SiC dies [21]

◮ Dies fracture because of

failure

◮ SiC and metal remain

separate

◮ Tiny metal filaments form
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Fail-to-Short Packaging – test on SiC dies [21]

◮ Dies fracture because of

failure

◮ SiC and metal remain

separate

◮ Tiny metal filaments form

➜ Fail-to-short behaviour possible with SiC
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Fail-to-Short Packaging – Design of a module [22]

◮ “Micro-Posts”: massive interconnects

◮ Silver sintering: high temperature bonding

◮ Salient features: for topside contact
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Fail-to-Short Packaging – Test samples [22]

Sample Encapsulant Clamp Switch

Module A None Yes
MOS 1
MOS 2

Module B Silicone Yes
MOS 1
MOS 2

Module C Epoxy No
MOS 1
MOS 2

Module D Silicone Yes
MOS 1

–

◮ Dies tested individually

◮ “Clamp” used for modules A, B and D

◮ MOS 2 of module D not connected
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Fail-to-Short Packaging – Results [22]

E Rinit Rfinal Failure

Encapsulant Clamp Switch [J] [mΩ] [mΩ] mode

A None Yes
MOS 1 – 186 77 SC

MOS 2 8.8 201 128 SC

B Silicone Yes
MOS 1 20 165 120 SC

MOS 2 1 188 167 SC

C Epoxy No
MOS 1 9.7 – – OC

MOS 2 – – – –

D Silicone Yes
MOS 1 2.24 180 158 SC

– – – – –

◮ Module C separated during first test, causing open circuit

◮ All other modules exhibited stable short circuit
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Fail-To-Short Packaging – Conclusions

◮ Fail-to-Short behaviour with SiC dies requires:
◮ to prevent the Ceramic tiles from separating
➜ a strong mechanical clamp/frame
➜ soft encapsulant probably better for gases to escape

◮ To provide massive interconnects:
◮ wirebonds would act as fuses
◮ to supply metal to fill the cracks in the dies
◮ heat dissipation at failure points helps reducing the resistance
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HV Substrates – Thermal stability of SiC MOSFETs

◮ Considering only conduction losses
◮ P = RDSon

I2
D

◮ Considering only mobility reduction

◮ RDSon
(TJ) = RDSon,273

×
(

TJ

273

)2.4

[23]

➜ Strong increase of losses with TJ
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➜ Need for Low RTh/High voltage substrate
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HV Substrates – Thermal/Electrical trade-off

Packaging of SiC dies

◮ Backside cooling

◮ Electrical insulation of

baseplate
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Packaging of SiC dies

◮ Backside cooling

◮ Electrical insulation of

baseplate

Ceramic substrate Ensures

◮ Electrical insulation

◮ Heat conduction
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HV Substrates – Materials and Geometric Issues [24]

Source: Dielectric properties of ceramic substrates and current developments for medium

voltage applications, L. Laudebat et al., MVDC Workshop 2017

Ceramic materials

◮ BeO discarded (toxic)

◮ AlN next best thermal

conductivity

◮ AlN best electrical strength
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HV Substrates – Materials and Geometric Issues [24]

Source: Dielectric properties of ceramic substrates and current developments for medium

voltage applications, L. Laudebat et al., MVDC Workshop 2017

Copper Resin

AlN Ceramic

Ceramic materials

◮ BeO discarded (toxic)

◮ AlN next best thermal

conductivity

◮ AlN best electrical strength

Substrate structure

◮ “Triple point”

◮ Sharp edge of metallization

➜ Electric field reinforcement
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HV Substrates – New Geometry [24]

“Protruding” structure

◮ Shielding of triple point

◮ Rounded electrodes

◮ Ideally, encapsulant and

ceramic with matched ǫR

l

h

t

R
C

εr

Aluminium Nitride

Copper

Encapsulant

Triple point

ǫR encapsulant=1 ǫR encapsulant=9
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HV Substrate – Manufacturing [24]

Copper

Aluminium nitride

Excess solder

Triple point

40 mm40 mm

◮ Active Metal Brazing between ceramic and copper (no

voiding observed)

◮ Excess solder flowed along copper, not ceramic

◮ Substrate backside coated with Ti/Ag by PVD for testing
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HV Substrate – Results and conclusion [24]

◮ Clear improvement of protruding over “standard” substrate
◮ Same total ceramic thickness (1 mm), same ceramic provider

◮ Further improvement possible:
◮ Use of encapsulant with ǫR ≈ 9 (ǫR Novec 649: 1.8)
◮ Better manufacturing process (smoother ceramic surface) 45 / 50



Outline

Packaging for High Temperature (> 200 ◦C)

Thermal stability of SiC devices

High Temperature Packaging

New Packaging Structures for Power Modules

Macro-post

Micro-Post

PCB Embedding

Packaging for High Voltage

Fail-to-short Packaging for SiC

High Voltage Substrates

Conclusion
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Summary

◮ Packaging for high temperature, high voltage or high density
◮ Ceramic and silver sintering technologies for HT/HV

◮ Currently: development of a HVDC “MMC submodule” (A. Boutry)
◮ Converter-level rather than pure packaging

◮ Printed Circuit board for integration
◮ Fully custom designs (no more modules)
◮ Embedding to overcome thermal/electrical limitations

◮ Any of these topics is open for discussion/collaboration
◮ Please see me for more information on any of them
◮ References at the end of the presentation

◮ And thanks for your attention!
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