

Packaging and Integration Activities at Laboratoire Ampère – CPES Seminar

Cyril Buttay

► To cite this version:

Cyril Buttay. Packaging and Integration Activities at Laboratoire Ampère – CPES Seminar. Doctoral. United States. 2019. hal-02968805

HAL Id: hal-02968805 https://hal.science/hal-02968805

Submitted on 16 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Packaging and Integration Activities at Laboratoire Ampère CPES Seminar

Cyril Buttay

Laboratoire Ampère, Lyon, France

09/06/2019

Who am I?

2004	PhD Electrical Engineering (Lyon, France)
2005 – 2007	Research associate (Sheffield and Nottingham, UK)
2008 – 2019	Researcher at CNRS (Lyon, France)
Since 2019	Senior Researcher (eq. Prof.) at CNRS

You can contact me at

- cyril.buttay@insa-lyon.fr
- ▶ (540) 998 6694
- Office 151, Whittemore Hall
- scholar.google.fr/citations?user=-gMeCUkAAAAJ
- I'm here until July, 2020!

Where do I come from?

- Laboratoire Ampère (named after André-Marie Ampère, born in Lyon)
- 180 people (Faculty, Support, PhD students)
- Academic research lab focusing on:
 - Bio-engineering, biology
 - Automation, System engineering
 - Electrical Engineering
- EE activities:
 - High voltage engineering
 - WBG devices design and test
 - Magnetics (material/design)
 - EMC, Packaging, Integration.

http://www.ampere-lab.fr

Packaging for High Temperature (> 200 °C)

Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules

Macro-post Micro-Post PCB Embedding

Packaging for High Voltage

Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

Packaging for High Temperature (> 200 °C)

Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules Macro-post Micro-Post PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

Source: C. Raynaud et al. "Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices" Diamond and Related Materials, 2010, 19, 1-6

Some limits:

 660° C Aluminium melts $\approx 300^{\circ}$ C Die Solder melts $200 - 250^{\circ}$ C Silicone gel degrades $\approx 200^{\circ}$ C Board solder melts

- For Wide-Bandgap devices, limits set by packaging
- Additional packaging issues with thermal cycling

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules Macro-post Micro-Post PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

Static Characterization of 490 mΩ JFET

Static Characterization of 490 mΩ JFET

5/50

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

- ► The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

- ► The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

- ► The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

- ► The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Thermal Run-away mechanism

- ► The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Always stable

- ► The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Thermal Run-away mechanism

- ► The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Always stable

Always unstable

Becomming unstable with ambient temperature rise

6/50

7/50

High temperature capability \neq reduced cooling needs! SiC JFETs must be attached to a low- R_{Th} cooling system.

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules Macro-post Micro-Post PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

The problem with solders

Homologous temperature:

$$T_H = rac{T_{Oper}[K]}{T_{Melt}[K]}$$

Example: • AuGe solder: $T_{Melt} = 356^{\circ}\text{C} = 629 \text{ K}$ • $T_H = 0.8 \Rightarrow T_{Oper} = 503 \text{ K} = 230 ^{\circ}\text{C}$

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloc

The problem with solders

Homologous temperature:

$$T_H = rac{T_{Oper}[K]}{T_{Melt}[K]}$$

xample:
• AuGe solder:
$$T_{Melt} = 356^{\circ}\text{C} = 629 \text{ K}$$

• $T_H = 0.8 \Rightarrow T_{Oper} = 503 \text{ K} = 230 ^{\circ}\text{C}$

High temperature solder alloys not practical

F

- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point al

The problem with solders

Homologous temperature:

$$T_H = rac{T_{Oper}[K]}{T_{Melt}[K]}$$

Example:
AuGe solder:
$$T_{Melt} = 356^{\circ}\text{C} = 629 \text{ K}$$

 $T_H = 0.8 \Rightarrow T_{Oper} = 503 \text{ K} = 230 ^{\circ}\text{C}$

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 Diffusion soldering/TLPB (creation of a high melting point alloy)

The problem with solders

Homologous temperature:

$$T_{H} = \frac{T_{Oper}[K]}{T_{Melt}[K]}$$

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy)

The problem with solders

Homologous temperature:

$$T_{H} = \frac{T_{Oper}[K]}{T_{Melt}[K]}$$

xample:
► AuGe solder:
$$T_{Melt} = 356^{\circ}\text{C} = 629 \text{ K}$$

► $T_H = 0.8 \Rightarrow T_{Oper} = 503 \text{ K} = 230 ^{\circ}\text{C}$

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy)

High Temperature Die Attaches – PhD A. MASSON

- development of the sintering process
- Nano-particles paste from NBE Tech

Evaluation of many parameters

- Sintering pressure
- Surface roughness
- Thickness of stencil
- Substrate finish....

Once set, process is robust

10/50

High Temperature Die Attaches – PhD A. MASSON

- development of the sintering process
- Nano-particles paste from NBE Tech

Evaluation of many parameters

- Sintering pressure
- Surface roughness
- Thickness of stencil
- Substrate finish...

Once set, process is robust

High Temperature Die Attaches – PhD A. MASSON

- development of the sintering process
- Nano-particles paste from NBE Tech

Evaluation of many parameters

- Sintering pressure
- Surface roughness
- Thickness of stencil
- Substrate finish...

Once set, process is robust

High Temperature Die Attaches - PhD S. HASCOËT

- "Pressureless" sintering process
- Based on micro-particles
- ► Findings:
 - Oxygen is necessary
 - Bonding on copper (oxide)
 - Standard Ni/Au finish not ideal
 - Confirmed by several teams
 - weak bonds at Ag/Au interface
 - Bond strength lower
 - Porosity higher
 - Can be used to attach fragile components

High Temperature Die Attaches - [3]

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated

High Temperature Die Attaches – Silver migration, R. RIVA [4]

- Causes: electric field, high temperature and oxygen
- Large differences between similar test vehicles:
- Short life without encapsulation (100–1000 h)
- Much longer life with parylene HT protection

High Temperature Die Attaches – Silver migration, R. RIVA [4]

- Causes: electric field, high temperature and oxygen
- Large differences between similar test vehicles:
- Short life without encapsulation (100–1000 h)
- Much longer life with parylene HT protection

Conclusion on Packaging for High Temperature

SiC devices can operate at high temperature (>300 °C)

- With efficient thermal management!
- ► *R*_{Th} must remain low
- Silver sintering for high temperature die attaches
 - Compatible with standard die finishes
 - ► High thermal/electrical performance
 - ► Research: long-term behaviour at elevated temperature
 - pressureless processes may be a good model
 - not presented here: cycling and storage tests [5, 6, 7]

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules

Macro-post Micro-Post PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

New Structures

New Structures

New Structures - for double-side cooling

New Structures - for double-side cooling - investigated here

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules Macro-post Micro-Post

PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

- Two ceramic substrates, in "sandwich" configuration
- Two SiC JFET dies (SiCED)
- assembled using silver sintering
- 25.4 mm×12.7 mm (1 in×0.5 in)

Scale drawing for 2.4 $\times 2.4~\text{mm}^2$ die

- Etching accuracy exceeds standard design rules
- Double-step copper etching for die contact
- → Custom etching technique

plain DBC board

- ▶ Final patterns within 50 µm of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μm of desired size
- ► Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 μ m of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

3b - Exposure and Developpment

- Final patterns within 50 μ m of desired size
- ► Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- ▶ Final patterns within 50 µm of desired size
- ► Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- ► Final patterns within 50 µm of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- ► Final patterns within 50 µm of desired size
- ▶ Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μ m, \approx 150 μ m per step

- ► Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μm,
 ≈ 150 μm per step

- Good form factor achieved using the two-step copper etching process
- Satisfying alignment
- Poor quality of Al-Cu attach

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules

Macro-post Micro-Post PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

New Structures – Micro posts (B MOUAWAD) [10, 11]

- First studies during L. MéNAGER'S PhD
 - Copper posts growth on die (electroplating)
 - Original die/DBC assembly technology: SnCu diffusion bonding
- Proposition of M. SOUEIDAN: direct copper bonding

New Packaging Structures – Micro posts (B MOUAWAD) [10, 11]

Direct Copper-to-Copper Bonding [12]

Parameters:

- SPS press
- Cu/Cu bonding
- 5 or 20 min
- 200 or 300°C
- 16 or 77 MPa

Very good bond, without any interface material

- All configuration but one yield to bonding
- Tensile strenght 106 to 261 MPa (365 MPa for bulk copper)

Parameters compatible with the process of a semiconductor die

New Packaging Structures – Micro posts (B MOUAWAD) [10, 11]

Direct Copper-to-Copper Bonding [12]

Parameters:

- SPS press
- Cu/Cu bonding
- 5 or 20 min
- 200 or 300°C
- 16 or 77 MPa

► Very good bond, without any interface material

- All configuration but one yield to bonding
- Tensile strenght 106 to 261 MPa (365 MPa for bulk copper)

Parameters compatible with the process of a semiconductor di

New Packaging Structures – Micro posts (B MOUAWAD) [10, 11]

Direct Copper-to-Copper Bonding [12]

Parameters:

- SPS press
- Cu/Cu bonding
- ▶ 5 or 20 min
- ▶ 200 or 300°C
- ▶ 16 or 77 MPa

Very good bond, without any interface material

- All configuration but one yield to bonding
- Tensile strenght 106 to 261 MPa (365 MPa for bulk copper)

Parameters compatible with the process of a semiconductor die

New Structures – Micro posts (B MOUAWAD) [10, 11]

- "Wafer"-level process
- Based on copper electroplating
- Assembly of DBC/die/DBC "sandwiches"
- No damage to dies observed

New Structures – Micro posts (B MOUAWAD)

Higher elec. resistance than expected

- Due to seed layer/die topside interface
- Would not happen with suitable dies

Simple and reproducible process

Tens of samples assembled, with good yield

Conclusions on "Sandwich" ceramic structures

Several sandwich configurations:

- Solder [13, 14]
- Silver sintering
- Direct Cu/Cu bonding (Micro-posts)

More suited to direct liquid cooling

- Solid/liquid interface
- Homogeneous compressing force
- No issue with flatness

Remaining issues:

- Dies topside finish
- Mechanical relief structures
- Intrinsic thermo-mechanical reliability

Conclusions on "Sandwich" ceramic structures

Several sandwich configurations:

- Solder [13, 14]
- Silver sintering
- Direct Cu/Cu bonding (Micro-posts)
- More suited to direct liquid cooling
 - Solid/liquid interface
 - Homogeneous compressing force
 - No issue with flatness

Remaining issues:

- Dies topside finish
- Mechanical relief structures
- Intrinsic thermo-mechanical reliability

Conclusions on "Sandwich" ceramic structures

Several sandwich configurations:

- Solder [13, 14]
- Silver sintering
- Direct Cu/Cu bonding (Micro-posts)
- More suited to direct liquid cooling
 - Solid/liquid interface
 - Homogeneous compressing force
 - No issue with flatness
- Remaining issues:
 - Dies topside finish
 - Mechanical relief structures
 - Intrinsic thermo-mechanical reliability
 - Need for further investigation

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules

Macro-post Micro-Post PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

- Bidirectionnal, Power Factor Converter for 3.3 kW applications
- Designed through an optimization procedure [15, 16]
 - Based on SiC power devices
 - 180 kHz switching frequency
 - 4 interleaved cells
- Discussed here: PFC cell
- Idea: embbed all devices (not just semiconductor chips)

Physical Structure

Two board structures are used:

Thin PBC (1 mm) for bare dies

Two board structures are used:

Thin PBC (1 mm) for bare dies

Two board structures are used:

Thin PBC (1 mm) for bare dies

Two board structures are used:

Thin PBC (1 mm) for bare dies

27/50

Two board structures are used:

Two board structures are used:

Thin PBC (1 mm) for bare dies

Thick PCB (4 mm) for SMD devices and inductors

27/50

Two board structures are used:

Thin PBC (1 mm) for bare dies

Thick PCB (4 mm) for SMD devices and inductors

27/50

Two board structures are used:

Thin PBC (1 mm) for bare dies

Two board structures are used:

Thin PBC (1 mm) for bare dies

Two board structures are used:

Thin PBC (1 mm) for bare dies

Two board structures are used:

Thin PBC (1 mm) for bare dies

Two board structures are used:

Thin PBC (1 mm) for bare dies

Two board structures are used:

Thin PBC (1 mm) for bare dies

Two board structures are used:

Thin PBC (1 mm) for bare dies

- ► PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- ► PFC inductor (Thick)
- ► TIM
- ► Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- ► PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- ► PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- ► PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

► PFC inductor (Thick)

- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- PFC inductor (Thick)
- ► TIM
- Gate driver (thick)
- ► TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- ► Final cell dimensions: 7 × 7×3.5 cm³

- 4 PFC cells for a full converter
- DC capacitor bank for test only
- 4-stage EMC DM filter
- 28x7x5 cm³

For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness

Good alignment

Gate contact 500×800 µm²

Good electrical perf.

- Consistent R_{DSm} (80 mΩ)
- No change in V_t
- Low leakage current (max 1.6 nA @ 1200 V)
- Very good yield (97% on 44 dies)

For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - ► Gate contact 500×800 µm²
- Good electrical perf.
 - ▶ Consistent R_{DS_{on}} (80 mΩ)
 - No change in V_t
 - Low leakage current (max 1.6 nA @ 1200 V)
 - Very good yield (97% on 44 dies)

For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - ► Gate contact 500×800 µm²
- Good electrical perf.
 - Consistent R_{DSon} (80 mΩ)
 - No change in V_{th}
 - Low leakage current (max 1.6 nA @ 1200 V)
 - Very good yield (97% on 44 dies)

For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - ► Gate contact 500×800 µm²
- Good electrical perf.
 - Consistent $R_{DS_{on}}$ (80 m Ω)
 - No change in V_{th}
 - Low leakage current (max 1.6 nA @ 1200 V)
 - Very good yield (97% on 44 dies)

Other SMD components OK as well

30/50

Operation of the PFC converter

- ► 4 interleaved PFC cells (target power 4×825 W=3.3 kW)
- Operation at reduced power because of losses in inductors
 - Current unbalance because of differences in inductor values

Conclusions – Exploiting the PCB Embedding

"All-embedded", interleaved PFC designed

- includes dies, driver, inductors
- Very good production yield
- Only issue: embedded inductors

Next step: better use of embedding

- Keep some components on the surface
- Improve design for manufacturing
- Improve design tools

Conclusions – Exploiting the PCB Embedding

"All-embedded", interleaved PFC designed

- includes dies, driver, inductors
- Very good production yield
- Only issue: embedded inductors

Next step: better use of embedding

- Keep some components on the surface
- Improve design for manufacturing
- Improve design tools

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules Macro-post Micro-Post PCB Embedding

Packaging for High Voltage

Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules Macro-post Micro-Post PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

Fail-to-Short Packaging for HVDC Applications

Source: I. Yaqcub PhD thesis, 2015 [19]

HVDC Converters

- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)

Transistors fail randomly

- Should not stop converter
- Failed device turned to short circuit

Source: I. Yaqcub PhD thesis, 2015 [19]

HVDC Converters

- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
 - Transistors fail randomly
 - Should not stop converter
 Failed device turned to short circuit

Source: I. Yaqcub PhD thesis, 2015 [19]

HVDC Converters

- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- Transistors fail randomly
 - Should not stop converter
 - Failed device turned to short circuit

Source: I. Yaqcub PhD thesis, 2015 [19]

HVDC Converters

- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- Transistors fail randomly
 - Should not stop converter
 - Failed device turned to short circuit

→ Need for Fail-To-Short Packaging

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- ➔ Need for massive contacts
- "Press pack"-type packages introduced
- Initially for single die, now for multichip
- When failure occurs:
 - Temperature rises
 - Die and surrounding metal melt.
 - They form a conductive area
 - Strong package contains explosion

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- ➔ Need for massive contacts
- "Press pack"-type packages introduced
- Initially for single die, now for multichip
- When failure occurs:
 - Temperature rises
 - Die and surrounding metal melt
 - They form a conductive area
 - Strong package contains explosion

source: Gunturi, S. *et al.* Innovative Metal System for IGBT Press Pack Modules (ISPSD 2003) [20]

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- ➔ Need for massive contacts
- "Press pack"-type packages introduced
- Initially for single die, now for multichip
- When failure occurs:
 - Temperature rises
 - Die and surrounding metal melt
 - They form a conductive area
 - Strong package contains explosion

source: Gunturi, S. *et al.* Innovative Metal System for IGBT Press Pack Modules (ISPSD 2003) [20]

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- ➔ Need for massive contacts
- "Press pack"-type packages introduced
- Initially for single die, now for multichip
- When failure occurs:
 - Temperature rises
 - Die and surrounding metal melt
 - They form a conductive area
 - Strong package contains explosion

Is a FTS package Possible for SiC?

source: Gunturi, S. *et al.* Innovative Metal System for IGBT Press Pack Modules (ISPSD 2003) [20]

Dies fracture because of failure

- SiC and metal remain separate
- Tiny metal filaments form

1.0		WD: 25.24 mm		MIRAS TESCAR
35 (F	SEM NAG: 694 x	Det: BSE	100 pm	
	/iew field: 501 µm Da	tedavidiVs: 11/03/16		INL Z
SEM HV: 10.0 kV	WD: 25.41 mm		MIRAS TESCAN	
SEM MAG: 82 x	Det: SE		7	
View field: 4.24 mm	Datednikky: 11/03/16		INU	

- Dies fracture because of failure
- SiC and metal remain separate
- Tiny metal filaments form

- Dies fracture because of failure
- SiC and metal remain separate
- Tiny metal filaments form

- Dies fracture because of failure
- SiC and metal remain separate
- Tiny metal filaments form

- Dies fracture because of failure
- SiC and metal remain separate
- Tiny metal filaments form

→ Fail-to-short behaviour possible with SiC

Fail-to-Short Packaging – Design of a module [22]

- "Micro-Posts": massive interconnects
- Silver sintering: high temperature bonding
- Salient features: for topside contact

Fail-to-Short Packaging – Test samples [22]

Sample	Encapsulant	Clamp	Switch	
Module A	None	Voc	MOS 1	
Module A	NONE	165	MOS 2	
	Silicono	Voc	MOS 1	
Module D	Silicone	165	MOS 2	
Modulo C	Epoxy	No	MOS 1	
Module C	сроху	INU	MOS 2	
Module D	Silicone	Voc	MOS 1	
	Silicone	163	_	

- Dies tested individually
- "Clamp" used for modules A, B and D
- MOS 2 of module D not connected

Fail-to-Short Packaging – Results [22]

				E	R init	R _{final}	Failure
	Encapsulant	Clamp	Switch	[J]	[mΩ]	[mΩ]	mode
Α	None	Yes	MOS 1	_	186	77	SC
			MOS 2	8.8	201	128	SC
В	Silicone	Yes	MOS 1	20	165	120	SC
			MOS 2	1	188	167	SC
С	Ероху	No	MOS 1	9.7	-	_	OC
			MOS 2	—	_	—	—
D	Silicone	Yes	MOS 1	2.24	180	158	SC
			—	—	—	—	—

Module C separated during first test, causing open circuit

All other modules exhibited stable short circuit

Fail-To-Short Packaging – Conclusions

- Fail-to-Short behaviour with SiC dies requires:
 - to prevent the Ceramic tiles from separating
 - ➔ a strong mechanical clamp/frame
 - ➔ soft encapsulant probably better for gases to escape
- To provide massive interconnects:
 - wirebonds would act as fuses.
 - to supply metal to fill the cracks in the dies
 - heat dissipation at failure points helps reducing the resistance

Fail-To-Short Packaging – Conclusions

- ► Fail-to-Short behaviour with SiC dies requires:
 - to prevent the Ceramic tiles from separating
 - ➔ a strong mechanical clamp/frame
 - ➔ soft encapsulant probably better for gases to escape
- To provide massive interconnects:
 - wirebonds would act as fuses
 - to supply metal to fill the cracks in the dies
 - heat dissipation at failure points helps reducing the resistance

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules Macro-post Micro-Post PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

HV Substrates – Thermal stability of SiC MOSFETs

Sunction remperature

→ Need for Low R_{Th}/High voltage substrate

Ampère

HV Substrates – Thermal stability of SiC MOSFETs

➔ Need for Low R_{Th}/High voltage substrate

HV Substrates - Thermal/Electrical trade-off

Packaging of SiC dies

- Backside cooling
- Electrical insulation of baseplate

HV Substrates - Thermal/Electrical trade-off

Packaging of SiC dies

- Backside cooling
- Electrical insulation of baseplate

Ceramic substrate Ensures

- Electrical insulation
- Heat conduction

HV Substrates – Materials and Geometric Issues [24]

Source: Dielectric properties of ceramic substrates and current developments for medium voltage applications, L. Laudebat et al., MVDC Workshop 2017

Ceramic materials

- BeO discarded (toxic)
- AIN next best thermal conductivity
- AIN best electrical strength

HV Substrates – Materials and Geometric Issues [24]

Source: Dielectric properties of ceramic substrates and current developments for medium voltage applications, L. Laudebat et al., MVDC Workshop 2017

Ceramic materials

- BeO discarded (toxic)
- AIN next best thermal conductivity
- AIN best electrical strength

Substrate structure

- "Triple point"
- Sharp edge of metallization
- → Electric field reinforcement

HV Substrates – New Geometry [24]

"Protruding" structure

- Shielding of triple point
- Rounded electrodes
- ► Ideally, encapsulant and ceramic with matched e_R

HV Substrate – Manufacturing [24]

- Active Metal Brazing between ceramic and copper (no voiding observed)
- Excess solder flowed along copper, not ceramic
- Substrate backside coated with Ti/Ag by PVD for testing

HV Substrate - Results and conclusion [24]

- Clear improvement of protruding over "standard" substrate
 - Same total ceramic thickness (1 mm), same ceramic provider

- Further improvement possible:
 - Use of encapsulant with $\epsilon_R \approx 9$ (ϵ_R Novec 649: 1.8)
 - Better manufacturing process (smoother ceramic surface)

Packaging for High Temperature (> 200 °C) Thermal stability of SiC devices High Temperature Packaging

New Packaging Structures for Power Modules Macro-post Micro-Post PCB Embedding

Packaging for High Voltage Fail-to-short Packaging for SiC High Voltage Substrates

Conclusion

- Ceramic and silver sintering technologies for HT/HV
 - Currently: development of a HVDC "MMC submodule" (A. BOUTRY)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations
- Any of these topics is open for discussion/collaboration
 - Please see me for more information on any of them
 - References at the end of the presentation
- And thanks for your attention!

- Ceramic and silver sintering technologies for HT/HV
 - ► Currently: development of a HVDC "MMC submodule" (A. BOUTRY)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations
- Any of these topics is open for discussion/collaboration
 - Please see me for more information on any of them
 - References at the end of the presentation
- And thanks for your attention!

- Ceramic and silver sintering technologies for HT/HV
 - ► Currently: development of a HVDC "MMC submodule" (A. BOUTRY)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations
- Any of these topics is open for discussion/collaboration
 - Please see me for more information on any of them.
 - References at the end of the presentation
- And thanks for your attention!

- Ceramic and silver sintering technologies for HT/HV
 - ► Currently: development of a HVDC "MMC submodule" (A. BOUTRY)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations

Any of these topics is open for discussion/collaboration

- Please see me for more information on any of them
- References at the end of the presentation
- And thanks for your attention!

- Ceramic and silver sintering technologies for HT/HV
 - Currently: development of a HVDC "MMC submodule" (A. BOUTRY)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations
- Any of these topics is open for discussion/collaboration
 - Please see me for more information on any of them
 - References at the end of the presentation
- And thanks for your attention!

- Ceramic and silver sintering technologies for HT/HV
 - Currently: development of a HVDC "MMC submodule" (A. BOUTRY)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations
- Any of these topics is open for discussion/collaboration
 - Please see me for more information on any of them
 - References at the end of the presentation

And thanks for your attention!

- Ceramic and silver sintering technologies for HT/HV
 - Currently: development of a HVDC "MMC submodule" (A. BOUTRY)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations
- Any of these topics is open for discussion/collaboration
 - Please see me for more information on any of them
 - References at the end of the presentation
- And thanks for your attention!

Acknowledgements

cyril.buttay@insa-lyon.fr

Bibliography I

- [1] C. Buttay, C. Raynaud, H. Morel, G. Civrac, M.-L. Locatelli, and F. Morel, "Thermal Stability of Silicon Carbide Power Diodes," *IEEE Transactions on Electron Devices*, vol. 59, no. 3, pp. 761–769, 2012.
- [2] C. Buttay, R. Ouaida, H. Morel, D. Bergogne, C. Raynaud, and F. Morel, "Thermal Stability of Silicon Carbide Power JFETs," *IEEE transactions on Electron Devices*, vol. 60, pp. 4191–4198, Dec. 2013.
- [3] K. El Falahi, S. Hascoët, C. Buttay, P. Bevilacqua, L. V. Phung, D. Tournier, B. Allard, and D. Planson, "High temperature, Smart Power Module for aircraft actuators," in *Proceedings of the High Temperature Electronics Network (HITEN)*, (Oxford, UK), IMAPS, July 2013.
- [4] R. Riva, C. Buttay, B. Allard, and P. Bevilacqua, "Migration issues in sintered-silver die attaches operating at high temperature," *Microelectronics Reliability*, vol. 53, pp. 1592–1506, 2013.
- [5] O. Avino-Salvado, W. Sabbah, C. Buttay, H. Morel, and P. Bevilacqua, "Evaluation of Printed-Circuit Board Materials for High-Temperature Operation," *Journal of Microelectronics and Electronic Packaging*, vol. 14, pp. 166 – 171, Oct. 2017.
- [6] W. Sabbah, P. Bondue, O. Avino-Salvado, C. Buttay, H. Frémont, A. Guédon-Gracia, and H. Morel, "High temperature ageing of microelectronics assemblies with SAC solder joints," *Microelectronics Reliability*, 2017.
- [7] W. Sabbah, F. Arabi, O. Avino-Salvado, C. Buttay, L. Théolier, and H. Morel, "Lifetime of power electronics interconnections in accelerated test conditions: High temperature storage and thermal cycling," *Microelectronics Reliability*, 2017.
- [8] R. Riva, C. Buttay, M.-L. Locatelli, V. Bley, and B. Allard, "Design and Manufacturing of a Double-Side Cooled, SiC based, High Temperature Inverter Leg," in *Proceedings of the High Temperature Electronics Conference* and Exhibition, HITEC 2014, (Albuquerque, NM), IMAPS, May 2014.
- [9] C. Buttay, R. Riva, B. Allard, M.-L. Locatelli, and V. Bley, "Packaging with double-side cooling capability for SiC devices, based on silver sintering," in *44th Annual Conference of the IEEE Industrial Electronics Society (IECON 2018)*, Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society (IECON 2018), (Washington, United States), IEEE, Oct. 2018.

Bibliography II

- [10] L. Ménager, M. Soueidan, B. Allard, V. Bley, and B. Schlegel, "A Lab-Scale Alternative Interconnection Solution of Semiconductor Dice Compatible with Power Modules 3D Integration," *IEEE Transactions on Power Electronics*, vol. 25, pp. 1667–1670, July 2010.
- [11] B. Mouawad, B. Thollin, C. Buttay, L. Dupont, V. Bley, D. Fabrègue, M. Soueidan, B. Schlegel, J. Pezard, and J.-C. Crebier, "Direct Copper Bonding for Power Interconnects: Design, Manufacturing and Test," *IEEE transactions on Components, Packaging and Manufacturing Technology*, vol. 5, pp. 143–150, jan 2015.
- [12] B. Mouawad, M. Soueidan, D. Fabrègue, C. Buttay, B. Allard, V. Bley, H. Morel, and C. Martin, "Application of the Spark Plasma Sintering Technique to Low-Temperature Copper Bonding," *IEEE Transactions on Components, Packaging and Manufacturing Technology*, vol. 2, pp. 553–560, Apr. 2012.
- [13] C. Buttay, J. Rashid, C. Johnson, F. Udrea, G. Amaratunga, P. Ireland, and R. Malhan, "Compact Inverter Designed for High-Temperature Operation," in *Proc. IEEE Power Electronics Specialists Conference PESC* 2007, pp. 2241–2247, 2007.
- [14] C. Buttay, J. Rashid, C. Mark Johnson, P. Ireland, F. Udrea, G. Amaratunga, and R. Malhan, "High performance cooling system for automotive inverters," in *Proc. European Conference on Power Electronics* and Applications, (Aalborg, Denmark), pp. 1–9, EPE, Sept. 2007.
- [15] J. Le Lesle, R. Caillaud, F. Morel, N. Degrenne, C. Buttay, R. Mrad, C. Vollaire, and S. Mollov, "Multi-objective optimisation of a bidirectional single-phase grid connected AC/DC converter (PFC) with two different modulation principles," in *ECCE*, Proc. of the IEEE Energy Conversion Congress and Exposition, (Cincinnati, OH, United States), Oct. 2017.
- [16] R. Caillaud, C. Buttay, R. Mrad, J. Le Lesle, F. Morel, N. Degrenne, and S. Mollov, "Comparison of planar and toroidal PCB integrated inductors for a multi-cellular 3.3 kW PFC," in *Integrated Power Packaging (IWIPP)*, 2017 IEEE International Workshop On, (Delft, Netherlands), pp. 1–5, IEEE, Apr. 2017.
- [17] C. Buttay, C. Martin, F. Morel, R. Caillaud, J. Le Leslé, R. Mrad, N. Degrenne, and S. Mollov, "Application of the pcb-embedding technology in power electronics – state of the art and proposed development," in *Proceedings of the International Symposium on 3D Power Electronics Integration and Manufacturing* (3DPEIM), (College Park, USA), jun 2018.

- [18] R. Caillaud, C. Buttay, R. Mrad, J. Le Lesle, F. Morel, N. Degrenne, S. Mollov, and C. Martin, "Design, manufacturing and characterization of printed circuit board embedded inductors for power applications," in *ICIT* 2018, Proc. of the IEEE 19th International Conference on Industrial Technology, (Lyon, France), Feb. 2018.
- [19] I. Yaqub, Investigation into stable failure to short circuit in IGBT power modules. Phd thesis, University of Nottingham, Nottingham, jul 2015.
- [20] S. Gunturi, J. Assal, D. Schneider, and S. Eicher, "Innovative Metal System for IGBT Press Pack Modules," in Proceedings of the International Symposium on Power Systems and Devices (ISPSD), (Cambridge, UK), p. 4, Apr. 2003.
- [21] I. Dchar, C. Buttay, and H. Morel, "SiC power devices packaging with a short-circuit failure mode capability," *Microelectronics Reliability*, 2017.
- [22] I. Dchar, C. Buttay, and H. Morel, "Packaging Solution for SiC Power Modules with a Fail-to-Short Capability," in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), (Anaheim, Californie, United States), pp. 1402–1407, IEEE, Mar. 2019.
- [23] B. J. Baliga, *Power Semiconductor Devices*. Boston: PWS Publishing Company, 1997.
- [24] H. Reynes, C. Buttay, and H. Morel, "Protruding ceramic substrates for high voltage packaging of wide bandgap semiconductors," in *Proceedings of the 5th Workshop on Wide-bandgap Power Devices and Applications (WIPDA 2017)*, (Albuquerque, United States), oct 2017.

