Packaging and Integration Activities at Laboratoire Ampère – CPES Seminar
Cyril Buttay

To cite this version:
Cyril Buttay. Packaging and Integration Activities at Laboratoire Ampère – CPES Seminar. Doctoral. United States. 2019. hal-02968805

HAL Id: hal-02968805
https://hal.science/hal-02968805
Submitted on 16 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Packaging and Integration Activities at Laboratoire Ampère

CPES Seminar

Cyril BUTTAY

Laboratoire Ampère, Lyon, France

09/06/2019
Who am I?

2004
PhD Electrical Engineering
(Lyon, France)

2005 – 2007
Research associate
(Sheffield and Nottingham, UK)

2008 – 2019
Researcher at CNRS
(Lyon, France)

Since 2019
Senior Researcher (eq. Prof.)
at CNRS

You can contact me at

- cyril.buttay@insa-lyon.fr
- (540) 998 6694
- Office 151, Whittemore Hall
- scholar.google.fr/citations?user=-gMeCUkAAAAJ
- I’m here until July, 2020!
Where do I come from?

- Laboratoire Ampère (named after André-Marie Ampère, born in Lyon)
- 180 people (Faculty, Support, PhD students)
- Academic research lab focusing on:
 - Bio-engineering, biology
 - Automation, System engineering
 - Electrical Engineering
- EE activities:
 - High voltage engineering
 - WBG devices design and test
 - Magnetics (material/design)
 - EMC, Packaging, Integration.

http://www.ampere-lab.fr
Outline

Packaging for High Temperature (> 200 °C)
 Thermal stability of SiC devices
 High Temperature Packaging

New Packaging Structures for Power Modules
 Macro-post
 Micro-Post
 PCB Embedding

Packaging for High Voltage
 Fail-to-short Packaging for SiC
 High Voltage Substrates

Conclusion
Outline

Packaging for High Temperature (> 200 °C)
- Thermal stability of SiC devices
- High Temperature Packaging

New Packaging Structures for Power Modules
- Macro-post
- Micro-Post
- PCB Embedding

Packaging for High Voltage
- Fail-to-short Packaging for SiC
- High Voltage Substrates

Conclusion
Operating Temperature Limits

Some limits:

- 660°C Aluminium melts
- ≈ 300°C Die Solder melts
- 200 – 250 °C Silicone gel degrades
- ≈ 200°C Board solder melts

Source: C. Raynaud et al. “Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices” Diamond and Related Materials, 2010, 19, 1-6

- For Wide-Bandgap devices, limits set by packaging
- Additional packaging issues with thermal cycling
Outline

Packaging for High Temperature (> 200 °C)
 Thermal stability of SiC devices
 High Temperature Packaging

New Packaging Structures for Power Modules
 Macro-post
 Micro-Post
 PCB Embedding

Packaging for High Voltage
 Fail-to-short Packaging for SiC
 High Voltage Substrates

Conclusion
High temperature behaviour of SiC devices – [1, 2]

Static Characterization of 490 mΩ JFET

\[V_{GS} = 0 \, V, \text{ i.e. device fully-on} \]

- Large increase in on-state resistance with temperature;
- Strong sensitivity of conduction losses to temperature.
High temperature behaviour of SiC devices – [1, 2]

Static Characterization of 490 mΩ JFET

\[V_{GS} = 0 \text{ V}, \text{i.e. device fully-on} \]
- Large increase in on-state resistance with temperature;
- Strong sensitivity of conduction losses to temperature.
Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs
Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs
Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs
High temperature behaviour of SiC devices – [1, 2]

Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs
Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs
High temperature behaviour of SiC devices – [1, 2]

Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Thermal run-away mechanism
High temperature behaviour of SiC devices – [1, 2]

Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

![Diagram showing thermal run-away mechanism with two equilibrium points: one stable and one unstable.](image-url)
High temperature behaviour of SiC devices – [1, 2]

Thermal Run-away mechanism

- The device characteristic
- Its associated cooling system
- Two equilibrium points: one stable and one unstable
- Above the unstable point, run-away occurs

Thermal run-away mechanism

Point of no return

Stable steady-state

Cooling system

Device

Always stable

Always unstable

Becoming unstable with ambient temperature rise
High temperature behaviour of SiC devices – [1, 2]
High temperature behaviour of SiC devices – [1, 2]
High temperature behaviour of SiC devices – [1, 2]

SiC JFET:
- $490 \, \text{m}\Omega, \, 1200 \, \text{V}$
- $R_{Th_{JA}} = 4.5 \, \text{K/W}$
- $135 \, ^\circ\text{C}$ ambient
- On-state losses

High temperature capability \neq reduced cooling needs!
SiC JFETs must be attached to a low-R_{Th} cooling system.
Outono

Packaging for High Temperature (> 200 °C)
 Thermal stability of SiC devices
 High Temperature Packaging

New Packaging Structures for Power Modules
 Macro-post
 Micro-Post
 PCB Embedding

Packaging for High Voltage
 Fail-to-short Packaging for SiC
 High Voltage Substrates

Conclusion
High Temperature die attaches

The problem with solders

Homologous temperature:

\[T_H = \frac{T_{Oper}[K]}{T_{Melt}[K]} \]

Example:

- AuGe solder: \(T_{Melt} = 356^\circ C = 629 \, K \)
- \(T_H = 0.8 \Rightarrow T_{Oper} = 503 \, K = 230 \, ^\circ C \)

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy)

Source: http://www.ami.ac.uk/courses/topics/0164_homt/
High Temperature die attaches

The problem with solders

Homologous temperature:

\[T_H = \frac{T_{\text{Oper}}[K]}{T_{\text{Melt}}[K]} \]

Example:

- AuGe solder: \(T_{\text{Melt}} = 356^\circ \text{C} = 629 \, \text{K} \)
- \(T_H = 0.8 \Rightarrow T_{\text{Oper}} = 503 \, \text{K} = 230 \, ^\circ \text{C} \)

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy)

Source: http://www.ami.ac.uk/courses/topics/0164_homt/
High Temperature die attaches

The problem with solders

Homologous temperature:

\[T_H = \frac{T_{\text{Oper}} [K]}{T_{\text{Melt}} [K]} \]

Example:

- AuGe solder: \(T_{\text{Melt}} = 356^\circ\text{C} = 629 \text{ K} \)
- \(T_H = 0.8 \rightarrow T_{\text{Oper}} = 503 \text{ K} = 230 ^\circ\text{C} \)

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy)

Source:
http://www.ami.ac.uk/courses/topics/0164_homt/
High Temperature die attaches

The problem with solders

Homologous temperature:

\[T_H = \frac{T_{\text{Oper}}[K]}{T_{\text{Melt}}[K]} \]

Example:
- AuGe solder: \(T_{\text{Melt}} = 356^\circ\text{C} = 629 \text{ K} \)
- \(T_H = 0.8 \Rightarrow T_{\text{Oper}} = 503 \text{ K} = 230 \text{ °C} \)

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy)

Source:
http://www.ami.ac.uk/courses/topics/0164_homt/
High Temperature die attaches

The problem with solders

Homologous temperature:

\[T_H = \frac{T_{\text{Oper}}[K]}{T_{\text{Melt}}[K]} \]

Example:
- AuGe solder: \(T_{\text{Melt}} = 356^\circ\text{C} = 629\ \text{K} \)
- \(T_H = 0.8 \Rightarrow T_{\text{Oper}} = 503\ \text{K} = 230^\circ\text{C} \)

- High temperature solder alloys not practical
- Need to decorrelate process temperature and melting point:
 - Sintering (solid state, process below melting point)
 - Diffusion soldering/TLPB (creation of a high melting point alloy)

Source: http://www.ami.ac.uk/courses/topics/0164_homt/
High Temperature Die Attaches – PhD A. Masson

► development of the sintering process
► Nano-particles paste from NBE Tech

► Evaluation of many parameters
 ► Sintering pressure
 ► Surface roughness
 ► Thickness of stencil
 ► Substrate finish.

► Once set, process is robust
High Temperature Die Attaches – PhD A. Masson

- Development of the sintering process
- Nano-particles paste from NBE Tech

Evaluation of many parameters
- Sintering pressure
- Surface roughness
- Thickness of stencil
- Substrate finish...

Once set, process is robust
High Temperature Die Attaches – PhD A. Masson

- Development of the sintering process
- Nano-particles paste from NBE Tech

- Evaluation of many parameters
 - Sintering pressure
 - Surface roughness
 - Thickness of stencil
 - Substrate finish...

- Once set, process is robust
“Pressureless” sintering process
- Based on micro-particles
- Findings:
 - Oxygen is necessary
 - Bonding on copper (oxide)
 - Standard Ni/Au finish not ideal
 - Confirmed by several teams
 - Weak bonds at Ag/Au interface
 - Bond strength lower
 - Porosity higher
 - Can be used to attach fragile components
High Temperature Die Attaches – [3]

- All-sintered assembly
- Half-Bridge structure
- SiC JFETs
- Integrated gate drivers (Ampère)
- Ceramic capacitors
- Isolation function not integrated
Causes: electric field, high temperature and oxygen

Large differences between similar test vehicles:

- Short life without encapsulation (100–1000 h)
- Much longer life with parylene HT protection
Causes: electric field, high temperature and oxygen

Large differences between similar test vehicles:

- **Short life without encapsulation** (100–1000 h)
- **Much longer life with parylene HT protection**
SiC devices can operate at high temperature (>300 °C)

- With efficient thermal management!
- R_{Th} must remain low

Silver sintering for high temperature die attaches

- Compatible with standard die finishes
- High thermal/electrical performance

Research: long-term behaviour at elevated temperature

- Pressureless processes may be a good model
- Not presented here: cycling and storage tests [5, 6, 7]
Outline

Packaging for High Temperature (> 200 °C)
Thermal stability of SiC devices
High Temperature Packaging

New Packaging Structures for Power Modules
Macro-post
Micro-Post
PCB Embedding

Packaging for High Voltage
Fail-to-short Packaging for SiC
High Voltage Substrates

Conclusion
New Structures

Wirebond
New Structures

- Wirebond
- Bi-metal Ribbon
- Soldered clip
- Macro Post
- Spacer
- Embossed foil
- Deposited metal
- Pressed interconnect
- Micro posts
- Nano “velcro”
New Structures – for double-side cooling

- Bi-metal Ribbon
- Bumps
- Macro Post
- Spacer
- Pressed interconnect
- Micro posts
- Nano “velcro”
New Structures – for double-side cooling – investigated here
Outline

Packaging for High Temperature (> 200 °C)
 Thermal stability of SiC devices
 High Temperature Packaging

New Packaging Structures for Power Modules
 Macro-post
 Micro-Post
 PCB Embedding

Packaging for High Voltage
 Fail-to-short Packaging for SiC
 High Voltage Substrates

Conclusion
New Structures – Macro post (R Riva) [8, 9]

- Two ceramic substrates, in “sandwich” configuration
- Two SiC JFET dies (SiCED)
- assembled using silver sintering
- 25.4 mm × 12.7 mm (1 in × 0.5 in)
New Structures – Macro post (R Riva) [8, 9]

- Etching accuracy exceeds standard design rules
- Double-step copper etching for die contact
- Custom etching technique

Scale drawing for 2.4×2.4 mm² die
New Structures – Macro post (R Riva) [8, 9]

- Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 µm, ≈ 150 µm per step
New Structures – Macro post \((R \text{ Riva}) [8, 9]\)

- Final patterns within 50 \(\mu m\) of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 \(\mu m\), \(\approx 150 \mu m\) per step
New Structures – Macro post (R Riva) [8, 9]

- Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 µm, ≈ 150 µm per step
New Structures – Macro post (R Riva) [8, 9]

- Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 µm,
 ≈ 150 µm per step
New Structures – Macro post (R Riva) [8, 9]

- Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 µm, ≈ 150 µm per step
Final patterns within 50 \(\mu m \) of desired size

Two designs, for 2.4 mm and 4 mm dies

- Die top metallized (PVD) with Ti/Ag

Total copper thickness 300 \(\mu m \), \(\approx 150 \mu m \) per step
New Structures – Macro post (R Riva) [8, 9]

1. **plain DBC board**

1a. **Photosensitive resin coating**

1b. **Exposure and Development**

2. **Etching**

3. **Resin coating**

3a. **Exposure and Development**

3b. **Exposure and Development**

- **Final patterns within 50 µm of desired size**
- **Two designs, for 2.4 mm and 4 mm dies**
 - **Die top metallized (PVD) with Ti/Ag**
- **Total copper thickness 300 µm, ≈ 150 µm per step**
New Structures – Macro post (R Riva) [8, 9]

- Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 µm, ≈ 150 µm per step

1a - Photosensitive resin coating
1b - Exposure and Development
2 - Etching
3a - resin coating
3b - Exposure and Development
4a - Photosensitive film laminating
4b - Die top metallized (PVD) with Ti/Ag
New Structures – Macro post (R Riva) [8, 9]

- Plain DBC board
- 1a - Photosensitive resin coating
- 1b - Exposure and Development
- 2 - Etching
- 3a - Resin coating
- 3b - Exposure and Development
- 4a - Photosensitive film laminating
- 4b - Exposure and Development

- Final patterns within 50 µm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 µm, ≈ 150 µm per step
New Structures – Macro post (R RIVA) [8, 9]

- Final patterns within 50 \(\mu m \) of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 \(\mu m \), \(\approx 150 \mu m \) per step
New Structures – Macro post (R RIVA) [8, 9]

- Final patterns within 50 μm of desired size
- Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag
- Total copper thickness 300 μm, $\approx 150 \mu$m per step
Final patterns within 50 μm of desired size

Two designs, for 2.4 mm and 4 mm dies
 - Die top metallized (PVD) with Ti/Ag

Total copper thickness 300 μm,
\approx 150 μm per step
Good form factor achieved using the two-step copper etching process
Satisfying alignment
Poor quality of Al-Cu attach
Outline

Packaging for High Temperature (> 200 °C)
 Thermal stability of SiC devices
 High Temperature Packaging

New Packaging Structures for Power Modules
 Macro-post
 Micro-Post
 PCB Embedding

Packaging for High Voltage
 Fail-to-short Packaging for SiC
 High Voltage Substrates

Conclusion
First studies during L. MÉNAGER’s PhD

- Copper posts growth on die (electroplating)
- Original die/DBC assembly technology: SnCu diffusion bonding

Proposition of M. SOUEIDAN: direct copper bonding
Direct Copper-to-Copper Bonding [12]

Parameters:
- SPS press
- Cu/Cu bonding
- 5 or 20 min
- 200 or 300°C
- 16 or 77 MPa

- Very good bond, without any interface material
 - All configuration but one yield to bonding
 - Tensile strength 106 to 261 MPa (365 MPa for bulk copper)
- Parameters compatible with the process of a semiconductor die
New Packaging Structures – Micro posts

(B Mouawad) [10, 11]

Direct Copper-to-Copper Bonding [12]

Parameters:
- SPS press
- Cu/Cu bonding
- 5 or 20 min
- 200 or 300°C
- 16 or 77 MPa

- Very good bond, without any interface material
 - All configuration but one yield to bonding
 - Tensile strength 106 to 261 MPa (365 MPa for bulk copper)

- Parameters compatible with the process of a semiconductor die
New Packaging Structures – Micro posts

(B Mouawad) [10, 11]

Direct Copper-to-Copper Bonding [12]

Parameters:

- SPS press
- Cu/Cu bonding
- 5 or 20 min
- 200 or 300°C
- 16 or 77 MPa

- Very good bond, without any interface material
 - All configuration but one yield to bonding
 - Tensile strength 106 to 261 MPa (365 MPa for bulk copper)
- Parameters compatible with the process of a semiconductor die
New Structures – Micro posts (B MOUAWAD) [10, 11]

- “Wafer”-level process
- Based on copper electroplating
- Assembly of DBC/die/DBC “sandwiches”
- No damage to dies observed
Higher elec. resistance than expected
- Due to seed layer/die topside interface
- Would not happen with suitable dies

Simple and reproducible process
- Tens of samples assembled, with good yield
Conclusions on “Sandwich” ceramic structures

- Several sandwich configurations:
 - Solder [13, 14]
 - Silver sintering
 - Direct Cu/Cu bonding (Micro-posts)

- More suited to direct liquid cooling
 - Solid/liquid interface
 - Homogeneous compressing force
 - No issue with flatness

- Remaining issues:
 - Dies topside finish
 - Mechanical relief structures
 - Intrinsic thermo-mechanical reliability
Conclusions on “Sandwich” ceramic structures

- Several sandwich configurations:
 - Solder [13, 14]
 - Silver sintering
 - Direct Cu/Cu bonding (Micro-posts)

- More suited to direct liquid cooling
 - Solid/liquid interface
 - Homogeneous compressing force
 - No issue with flatness

- Remaining issues:
 - Dies topside finish
 - Mechanical relief structures
 - Intrinsic thermo-mechanical reliability
Conclusions on “Sandwich” ceramic structures

- Several sandwich configurations:
 - Solder [13, 14]
 - Silver sintering
 - Direct Cu/Cu bonding (Micro-posts)

- More suited to direct liquid cooling
 - Solid/liquid interface
 - Homogeneous compressing force
 - No issue with flatness

- Remaining issues:
 - Dies topside finish
 - Mechanical relief structures
 - Intrinsic thermo-mechanical reliability
 - Need for further investigation
Outline

Packaging for High Temperature (> 200 °C)
Thermal stability of SiC devices
High Temperature Packaging

New Packaging Structures for Power Modules
Macro-post
Micro-Post
PCB Embedding

Packaging for High Voltage
Fail-to-short Packaging for SiC
High Voltage Substrates

Conclusion
Bidirectionnal, Power Factor Converter for 3.3 kW applications

- Designed through an optimization procedure [15, 16]
 - Based on SiC power devices
 - 180 kHz switching frequency
 - 4 interleaved cells

- Discussed here: PFC cell
- **Idea: embed all devices** (not just semiconductor chips)
New Structures – PCB Embedding [17, 18]

Physical Structure

3-PCB structure

- Magnetic component on top
- Heatsink on bottom (natural convection)
- Power chips close to heatsink
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies
Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Two board structures are used:

Thin PBC (1 mm) for bare dies

Thick PCB (4 mm) for SMD devices and inductors
Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
New Structures – PCB Embedding [17, 18]

Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Two board structures are used:

Thin PBC (1 mm) for bare dies

Thick PCB (4 mm) for SMD devices and inductors
Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
New Structures – PCB Embedding [17, 18]

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
New Structures – PCB Embedding [17, 18]

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{cm}^3$
New Structures – PCB Embedding [17, 18]

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
New Structures – PCB Embedding [17, 18]

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
New Structures – PCB Embedding [17, 18]

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
New Structures – PCB Embedding [17, 18]

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
New Structures – PCB Embedding [17, 18]

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
New Structures – PCB Embedding [17, 18]

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
New Structures – PCB Embedding [17, 18]

- 4 PFC cells for a full converter
- DC capacitor bank for test only
- 4-stage EMC DM filter
- 28x7x5 cm³
For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - Gate contact 500×800 µm²
- Good electrical perf.
 - Consistent $R_{DS,on}$ (80 mΩ)
 - No change in V_{th}
 - Low leakage current (max 1.6 nA @ 1200 V)
 - Very good yield (97% on 44 dies)
For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - Gate contact
 \[500 \times 800 \, \mu m^2\]
- Good electrical perf.
 - Consistent \(R_{DS(ext{on})} \) (80 mΩ)
 - No change in \(V_{th} \)
 - Low leakage current
 \[\text{max } 1.6 \text{ nA @ 1200 V}\]
 - Very good yield
 \[97\% \text{ on 44 dies}\]
For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - Gate contact
 $500 \times 800 \, \mu m^2$
- Good electrical perf.
 - Consistent $R_{DS_{on}}$ (80 mΩ)
 - No change in V_{th}
 - Low leakage current
 (max 1.6 nA @ 1200 V)
 - Very good yield
 (97% on 44 dies)
New Structures – PCB Embedding [17, 18]

For SiC dies
- good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - Gate contact
 500×800 μm²
- Good electrical perf.
 - Consistent $R_{DS_{on}}$ (80 mΩ)
 - No change in V_{th}
 - Low leakage current
 (max 1.6 nA @ 1200 V)
 - Very good yield
 (97% on 44 dies)

Other SMD components OK as well
Operation of the PFC converter

- 4 interleaved PFC cells (target power $4 \times 825 \, \text{W} = 3.3 \, \text{kW}$)
- Operation at reduced power because of losses in inductors
 - Current unbalance because of differences in inductor values
Conclusions – Exploiting the PCB Embedding

- “All-embedded”, interleaved PFC designed
 - includes dies, driver, inductors
 - Very good production yield
 - Only issue: embedded inductors

- Next step: better use of embedding
 - Keep some components on the surface
 - Improve design for manufacturing
 - Improve design tools
Conclusions – Exploiting the PCB Embedding

- “All-embedded”, interleaved PFC designed
 - includes dies, driver, inductors
 - Very good production yield
 - Only issue: embedded inductors

- Next step: better use of embedding
 - Keep some components on the surface
 - Improve design for manufacturing
 - Improve design tools
Outline

Packaging for High Temperature (> 200 °C)
 Thermal stability of SiC devices
 High Temperature Packaging

New Packaging Structures for Power Modules
 Macro-post
 Micro-Post
 PCB Embedding

Packaging for High Voltage
 Fail-to-short Packaging for SiC
 High Voltage Substrates

Conclusion
Outline

Packaging for High Temperature (> 200 °C)
 Thermal stability of SiC devices
 High Temperature Packaging

New Packaging Structures for Power Modules
 Macro-post
 Micro-Post
 PCB Embedding

Packaging for High Voltage
 Fail-to-short Packaging for SiC
 High Voltage Substrates

Conclusion
HVDC Converters

- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- Transistors fail randomly
 - Should not stop converter
 - Failed device turned to short circuit

HVDC Converters

- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- Transistors fail randomly
 - Should not stop converter
 - Failed device turned to short circuit

Fail-to-Short Packaging for HVDC Applications

HVDC Converters

- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- Transistors fail randomly
 - Should not stop converter
 - Failed device turned to short circuit

HVDC Converters

- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- Transistors fail randomly
 - Should not stop converter
 - Failed device turned to short circuit

→ Need for Fail-To-Short Packaging

Fail-to-Short Packaging

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- Need for massive contacts

- “Press pack”-type packages introduced
- Initially for single die, now for multichip
- When failure occurs:
 - Temperature rises
 - Die and surrounding metal melt
 - They form a conductive area
 - Strong package contains explosion
Fail-to-Short Packaging

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- Need for massive contacts

- “Press pack”-type packages introduced
- Initially for single die, now for multichip

- When failure occurs:
 - Temperature rises
 - Die and surrounding metal melt
 - They form a conductive area
 - Strong package contains explosion

Fail-to-Short Packaging

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- Need for massive contacts

- “Press pack”-type packages introduced
- Initially for single die, now for multichip
- When failure occurs:
 - Temperature rises
 - Die and surrounding metal melt
 - They form a conductive area
 - Strong package contains explosion

Fail-to-Short Packaging

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- Need for massive contacts

- “Press pack”-type packages introduced
- Initially for single die, now for multichip
- When failure occurs:
 - Temperature rises
 - Die and surrounding metal melt
 - They form a conductive area
 - Strong package contains explosion

Is a FTS package Possible for SiC?

Fail-to-Short Packaging – test on SiC dies [21]

- Dies fracture because of failure
- SiC and metal remain separate
- Tiny metal filaments form
Fail-to-Short Packaging – test on SiC dies [21]

- Dies fracture because of failure
- SiC and metal remain separate
- Tiny metal filaments form
Fail-to-Short Packaging – test on SiC dies [21]

- Dies fracture because of failure
- SiC and metal remain separate
- Tiny metal filaments form
Fail-to-Short Packaging – test on SiC dies [21]

- Dies fracture because of failure
- SiC and metal remain separate
- Tiny metal filaments form
Dies fracture because of failure

SiC and metal remain separate

Tiny metal filaments form

→ Fail-to-short behaviour possible with SiC
“Micro-Posts”: massive interconnects
Silver sintering: high temperature bonding
Salient features: for topside contact
Fail-to-Short Packaging – Test samples [22]

<table>
<thead>
<tr>
<th>Sample</th>
<th>Encapsulant</th>
<th>Clamp</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module A</td>
<td>None</td>
<td>Yes</td>
<td>MOS 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MOS 2</td>
</tr>
<tr>
<td>Module B</td>
<td>Silicone</td>
<td>Yes</td>
<td>MOS 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MOS 2</td>
</tr>
<tr>
<td>Module C</td>
<td>Epoxy</td>
<td>No</td>
<td>MOS 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MOS 2</td>
</tr>
<tr>
<td>Module D</td>
<td>Silicone</td>
<td>Yes</td>
<td>MOS 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>_</td>
</tr>
</tbody>
</table>

- Dies tested individually
- “Clamp” used for modules A, B and D
- MOS 2 of module D not connected
<table>
<thead>
<tr>
<th>Encapsulant</th>
<th>Clamp</th>
<th>Switch</th>
<th>E [J]</th>
<th>R<sub>init</sub> [mΩ]</th>
<th>R<sub>final</sub> [mΩ]</th>
<th>Failure mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>A None</td>
<td>Yes</td>
<td>MOS 1</td>
<td>–</td>
<td>186</td>
<td>77</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS 2</td>
<td>8.8</td>
<td>201</td>
<td>128</td>
<td>SC</td>
</tr>
<tr>
<td>B Silicone</td>
<td>Yes</td>
<td>MOS 1</td>
<td>20</td>
<td>165</td>
<td>120</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS 2</td>
<td>1</td>
<td>188</td>
<td>167</td>
<td>SC</td>
</tr>
<tr>
<td>C Epoxy</td>
<td>No</td>
<td>MOS 1</td>
<td>9.7</td>
<td>–</td>
<td>–</td>
<td>OC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOS 2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D Silicone</td>
<td>Yes</td>
<td>MOS 1</td>
<td>2.24</td>
<td>180</td>
<td>158</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- Module C separated during first test, causing open circuit
- All other modules exhibited stable short circuit
Fail-to-Short behaviour with SiC dies requires:
- to prevent the Ceramic tiles from separating
- a strong mechanical clamp/frame
- soft encapsulant probably better for gases to escape

To provide massive interconnects:
- wirebonds would act as fuses
- to supply metal to fill the cracks in the dies
- heat dissipation at failure points helps reducing the resistance
Fail-to-Short behaviour with SiC dies requires:
- to prevent the Ceramic tiles from separating
- a strong mechanical clamp/frame
- soft encapsulant probably better for gases to escape

To provide massive interconnects:
- wirebonds would act as fuses
- to supply metal to fill the cracks in the dies
- heat dissipation at failure points helps reducing the resistance
Outline

Packaging for High Temperature (> 200 °C)
 Thermal stability of SiC devices
 High Temperature Packaging

New Packaging Structures for Power Modules
 Macro-post
 Micro-Post
 PCB Embedding

Packaging for High Voltage
 Fail-to-short Packaging for SiC
 High Voltage Substrates

Conclusion
Considering only conduction losses
\[P = R_{DS_{on}} I_D^2 \]

Considering only mobility reduction
\[R_{DS_{on}}(T_J) = R_{DS_{on,273}} \times \left(\frac{T_J}{273} \right)^{2.4} \]

[23]

Strong increase of losses with \(T_J \)

→ Need for Low \(R_{Th} \)/High voltage substrate
Considering only conduction losses

\[P = R_{DS_{on}} I_D^2 \]

Considering only mobility reduction

\[R_{DS_{on}}(T_J) = R_{DS_{on,273}} \times \left(\frac{T_J}{273} \right)^{2.4} \]

[23]

Strong increase of losses with \(T_J \)

Need for Low \(R_{Th} \)/High voltage substrate
Packaging of SiC dies

- Backside cooling
- Electrical insulation of baseplate
Packaging of SiC dies

- Backside cooling
- Electrical insulation of baseplate

Ceramic substrate Ensures

- Electrical insulation
- Heat conduction
Ceramic materials

- BeO discarded (toxic)
- AlN next best thermal conductivity
- AlN best electrical strength

Source: Dielectric properties of ceramic substrates and current developments for medium voltage applications, L. Laudebat et al., MVDC Workshop 2017
Ceramic materials
- BeO discarded (toxic)
- AlN next best thermal conductivity
- AlN best electrical strength

Substrate structure
- “Triple point”
- Sharp edge of metallization
- Electric field reinforcement

Source: Dielectric properties of ceramic substrates and current developments for medium voltage applications, L. Laudebat et al., MVDC Workshop 2017
“Protruding” structure

- Shielding of triple point
- Rounded electrodes
- Ideally, encapsulant and ceramic with matched ε_R
Active Metal Brazing between ceramic and copper (no voiding observed)

- Excess solder flowed along copper, not ceramic
- Substrate backside coated with Ti/Ag by PVD for testing
Clear improvement of protruding over “standard” substrate

- Same total ceramic thickness (1 mm), same ceramic provider

Further improvement possible:
- Use of encapsulant with $\epsilon_R \approx 9$ (ϵ_R Novec 649: 1.8)
- Better manufacturing process (smoother ceramic surface)
Outline

Packaging for High Temperature (> 200 °C)
 Thermal stability of SiC devices
 High Temperature Packaging

New Packaging Structures for Power Modules
 Macro-post
 Micro-Post
 PCB Embedding

Packaging for High Voltage
 Fail-to-short Packaging for SiC
 High Voltage Substrates

Conclusion
Packaging for high temperature, high voltage or high density

- Ceramic and silver sintering technologies for HT/HV
 - Currently: development of a HVDC “MMC submodule” (A. Boutay)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations

Any of these topics is open for discussion/collaboration

- Please see me for more information on any of them
- References at the end of the presentation

And thanks for your attention!
Packaging for high temperature, high voltage or high density
 ▶ Ceramic and silver sintering technologies for HT/HV
 ▶ Currently: development of a HVDC “MMC submodule” (A. BOUTRY)
 ▶ Converter-level rather than pure packaging
 ▶ Printed Circuit board for integration
 ▶ Fully custom designs (no more modules)
 ▶ Embedding to overcome thermal/electrical limitations

Any of these topics is open for discussion/collaboration
 ▶ Please see me for more information on any of them
 ▶ References at the end of the presentation

And thanks for your attention!
Packaging for high temperature, high voltage or high density

- Ceramic and silver sintering technologies for HT/HV
 - Currently: development of a HVDC “MMC submodule” (A. BOUTRY)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations

- Any of these topics is open for discussion/collaboration
 - Please see me for more information on any of them
 - References at the end of the presentation

- And thanks for your attention!
Packaging for high temperature, high voltage or high density
 ▶ Ceramic and silver sintering technologies for HT/HV
 ▶ Currently: development of a HVDC “MMC submodule” (A. Boutry)
 ▶ Converter-level rather than pure packaging
 ▶ Printed Circuit board for integration
 ▶ Fully custom designs (no more modules)
 ▶ Embedding to overcome thermal/electrical limitations

Any of these topics is open for discussion/collaboration
 ▶ Please see me for more information on any of them
 ▶ References at the end of the presentation

And thanks for your attention!
Packaging for high temperature, high voltage or high density

- Ceramic and silver sintering technologies for HT/HV
 - Currently: development of a HVDC “MMC submodule” (A. Boutry)
 - Converter-level rather than pure packaging
- Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations

Any of these topics is open for discussion/collaboration

- Please see me for more information on any of them
- References at the end of the presentation

And thanks for your attention!
Packaging for high temperature, high voltage or high density
 - Ceramic and silver sintering technologies for HT/HV
 - Currently: development of a HVDC “MMC submodule” (A. BOUTRY)
 - Converter-level rather than pure packaging
 - Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations

Any of these topics is open for discussion/collaboration
 - Please see me for more information on any of them
 - References at the end of the presentation

And thanks for your attention!
Packaging for high temperature, high voltage or high density
 - Ceramic and silver sintering technologies for HT/HV
 - Currently: development of a HVDC “MMC submodule” (A. BOUTRY)
 - Converter-level rather than pure packaging
 - Printed Circuit board for integration
 - Fully custom designs (no more modules)
 - Embedding to overcome thermal/electrical limitations

Any of these topics is open for discussion/collaboration
 - Please see me for more information on any of them
 - References at the end of the presentation

And thanks for your attention!

