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The problem with measuring losses

I Converters are efficient
I 98 – 99 % efficiency common
I Pin−Pout

Pin
very inacurate as Pin ≈ Pout

I Pin or Pout may be difficult to mesure if not dc or if large EMI
I They can be complex

I The opposition method requires 2 converters
I This complicates their control

I They become smaller and smaller
I Power density increases
Ü Losses cannot be neglected even though eta increases.
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Calorimetry

Flow calorimeter
+ Allow for continuous operation
- monitoring of 2 temperatures, 1 flowrate
- more complicated to design and run

P = ∆TCpṁ

Adiabatic calorimeter
- Only short-time operation
+ Monitoring of a single temperature
+ Very simple detail (in basic version)

P = ∆TCTh
t
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General view

I Adiabatic calorimeter (simple design)
I Dewar jar with plastic lid
I Not perfectly adiabatic

I Heat collected by a liquid
I external dimensions: Φ = 170 mm, h = 215 mm
I volume approx 700 mL
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Selection of the Fluid

DI Water Fluorinert Novec
FC-40 (3M) 7500 (3M)

resistivity (Ω · cm) 1.8 × 107 1 × 1015 2.2 × 108

GWP - > 9000 90
toxicity none low low
residues none none none
spec. heat (kJ · kg−1 · K−1) 4.2 1.1 1.1
boiling point (◦C) 100 165 128

I Many fluids can be used: transformer oil, vegetable oil, fluorinert. . .
I Novec 7500 is used here because of low toxicity, low GDP
I Chemically compatible with electronics, dries without residues.
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Measurement Principle

I First stage: no power dissipation
I Temp. slope depends on Tbath-TA

I Second stage: power P dissipated
I Over set duration t

I Third stage: no power dissipation
I Transient until bath temp. is uniform
I Stabilization comparable to first stage

I ∆T is extracted from measurement 0 50 100 150 200
time [s]

24.9

25.0

25.1

25.2

25.3

25.4

Te
m

pe
ra

tu
re

 [
C]

P =
∆T · CTh

t
(1)

Calibration: P known (dc resistor), CTh calculated
Measurement: CTh known (dc resistor), P calculated
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Temperature Measurement Resolution

Acquisition chain
I PT100 (platinum resistor) sensor
I High resolution ohmeter (Keithley 2100)
I 4-wire connection
I Filtering
I High integration time 100 125 150 175 200 225 250 275

Time [s]
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K] Fast, no filtering

Ü 0.25 K absolute temperature accuracy
Ü 1 mK relative temperature accuracy
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Effect of stirring
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[m
K] Continuous stirring

Intermittent stirring

I Stirring required for bath uniformity
I Small dc motor attached to stirrer
I Causes small temperature rise

(2.4 mK · min−1)
Ü Corresponds to a 70 mW power flow

Ü Negligible effect as it is small and canceled by the ∆T calculation

12 / 22



Effect of stirring

0 200 400 600 800
Time [s]

10

0

10

20

30

Te
m

pe
ra

tu
re

 c
ha

ng
e 

[m
K] Continuous stirring

Intermittent stirring

I Stirring required for bath uniformity
I Small dc motor attached to stirrer
I Causes small temperature rise

(2.4 mK · min−1)
Ü Corresponds to a 70 mW power flow

Ü Negligible effect as it is small and canceled by the ∆T calculation

12 / 22



Effect of Power Level

I Using a resistor supplied with dc
current

I Power dissipated for 1 min:
I 29.2 W
I 18.7 W
I 10.5 W
I 4.7 W
I 1.2 W

Ü CTh =(1657 ± 5) J · K−1 (0.3 % error)
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Effect of measurement duration

Dissipation of ≈ 300 J over:
I 10 s
I 20 s
I 30 s
I 40 s
I 50 s
I 60 s

And for different bath temp.
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Overall, CTh =(1670 ± 59) J · K−1 (3.5 % error)
Without the "10 s" measurements, error is down to 1.4 %
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Estimation of Measurement Error

Sources of error:
I Relative error on temperature: 1 mK
I Estimated error on curve fitting: 2 mK
I Estimated error on time: 1 s
Ü for ∆T = 0.2 K and t = 60 s, error is 3.2 % (1.7 % for t alone)

Possible Mitigation
I Automatic time control: error on t virtually 0
I Improved adiabaticity to reduce error on ∆T : may be complex
I Adjustment of calorimeter bath volume to increase ∆T : easy
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Calibration
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I One calibration per test series
(different quantities of fluid)

I ∆T < 50 mK discarded
I ∆T up to 2.9 K considered
I First series CTh = 1665 ± 1 %

I Second series CTh = 1350 ± 1 %
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Test Setup

VDC

GD1

GD2

R

L

Li

4.7 µH

C Q1

Q2

Calorimeter
System under test:
I PCB-integrated converter
I SiC MOSFETs,
I output inductor,
I decoupling capacitor,
I gate drivers.

Load kept outside of the calorimeter:
I load resistor
I additional inductor
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Results
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Measurement resolution:
I gate drive only
I 33.5 J over 300 s
Ü 110 mW ± 5 %

Different test configurations:
I VDC , load resistor and inductor, load current, fsw

I Poor accuracy for low losses
I Large error due to operating time control:

E1 total error
E2 without error due to time measurement

VDC R L Imax fsw P E1 E2
(V) (Ω) (µH) (A) (kHz) (W) (%) (%)

1 100 30. 250 3.3 4 0.73 12.6 11.0
2 60 10. 250 6. 4 1.8 6.1 4.4
3 60 5. 250 12. 2 6.42 2.9 1.2
4 60 3.3 250 18.2 1.2 12.9 2.2 0.6
5 60 10. 0 6. 4 2.35 5.1 3.4
6 60 5. 0 12. 2 9.35 2.5 0.9
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Conclusions

A very simple calorimeter has been presented
I ≈ 500C (excl. ohmeter), easy to implement
I Fluid with low environmental/safety concerns

Operation over low ∆T (0.2–1 K)
I No extreme adiabaticity required
I No problem with non-linearities

Satisfying accuracy/resolution
I Can detect power consumption of gate drivers
I Conservative error estimation yields 3.2 %

I Can be reduced to 1.6 % with proper timing control
I Can be further reduced (adjusted calorimeter volume, improved calibration)
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Satisfying accuracy/resolution
I Can detect power consumption of gate drivers
I Conservative error estimation yields 3.2 %

I Can be reduced to 1.6 % with proper timing control
I Can be further reduced (adjusted calorimeter volume, improved calibration)
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Thank you for your attention.
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