Simple and Precise Calorimetry Method for Evaluation of Losses in Power Electronic Converters CIPS 2020, Berlin

Nicolas MARY¹, Cyril BUTTAY², Rémi PERRIN¹, Stefan MOLLOV¹

¹Mitsubishi Electric Research Centre Europe, Rennes, France ²Laboratoire Ampère, Lyon, France

24/03/20

Review of Losses Measurement Techniques

Presentation of the Calorimeter

Performance Evaluation

Measurement of Converter Loses

Conclusions

Review of Losses Measurement Techniques

Presentation of the Calorimeter

Performance Evaluation

Measurement of Converter Loses

Conclusions

The problem with measuring losses

Converters are efficient

- ▶ 98 99 % efficiency common
- P_{in}-P_{out} very inacurate as P_{in} ≈ P_{out}
 P_{in} or P_{out} may be difficult to mesure if not dc or if large EMI

They can be complex

They become smaller and smaller

Converters are efficient

- ▶ 98 99 % efficiency common
- <sup>P_{in}-P_{out}/P_{in} very inacurate as P_{in} ≈ P_{out}

 P_{in} or P_{out} may be difficult to mesure if not dc or if large EMI

 </sup>

They can be complex

- The opposition method requires 2 converters
- This complicates their control

They become smaller and smaller

Converters are efficient

- 98 99 % efficiency common

They can be complex

- The opposition method requires 2 converters
- This complicates their control

They become smaller and smaller

- Power density increases
- → Losses cannot be neglected even though eta increases.

Calorimetry

Flow calorimeter

- + Allow for continuous operation
- monitoring of 2 temperatures, 1 flowrate
- more complicated to design and run

$$P = \Delta T C_p \dot{m}$$

Calorimetry

Flow calorimeter

- + Allow for continuous operation
- monitoring of 2 temperatures, 1 flowrate
- more complicated to design and run

Adiabatic calorimeter

- Only short-time operation
- + Monitoring of a single temperature
- + Very simple detail (in basic version)

Review of Losses Measurement Techniques

Presentation of the Calorimeter

Performance Evaluation

Measurement of Converter Loses

Conclusions

General view

- Adiabatic calorimeter (simple design)
 - Dewar jar with plastic lid
 - Not perfectly adiabatic
- Heat collected by a liquid
- external dimensions: $\Phi = 170 \text{ mm}, h = 215 \text{ mm}$
- ► volume *approx* 700 mL

General view

- Adiabatic calorimeter (simple design)
 - Dewar jar with plastic lid
 - Not perfectly adiabatic
- ► Heat collected by a liquid
- external dimensions: $\Phi = 170 \text{ mm}, h = 215 \text{ mm}$
- ► volume *approx* 700 mL

	DI Water	Fluorinert	Novec	
		FC-40 (3M)	7500 (3M)	
resistivity (Ω · cm)	$1.8 imes 10^{7}$	$1 imes 10^{15}$	$2.2 imes 10^8$	
GWP	-	> 9000	90	
toxicity	none	low	low	
residues	none	none	none	
spec. heat (kJ · kg ⁻¹ · K ⁻¹)	4.2	1.1	1.1	
boiling point (°C)	100	165	128	

- Many fluids can be used: transformer oil, vegetable oil, fluorinert...
- Novec 7500 is used here because of low toxicity, low GDP
- Chemically compatible with electronics, dries without residues.

- ► First stage: no power dissipation
 - Temp. slope depends on T_{bath} - T_A
- Second stage: power P dissipated
 Over set duration t
- Third stage: no power dissipation
 - Transient until bath temp. is uniform
 - Stabilization comparable to first stage
- ΔT is extracted from measurement

- ► First stage: no power dissipation
 - Temp. slope depends on T_{bath} - T_A
- Second stage: power P dissipated
 - Over set duration t
- Third stage: no power dissipation
 Transient until bath temp. is uniform
 Stabilization comparable to first state
- ► ΔT is extracted from measurement

- ► First stage: no power dissipation
 - Temp. slope depends on T_{bath} - T_A
- Second stage: power P dissipated
 - Over set duration t
- ► Third stage: no power dissipation
 - ► Transient until bath temp. is uniform
 - Stabilization comparable to first stage

ΔT is extracted from measurement

- ► First stage: no power dissipation
 - Temp. slope depends on T_{bath} - T_A
- Second stage: power P dissipated
 - Over set duration t
- ► Third stage: no power dissipation
 - Transient until bath temp. is uniform
 - Stabilization comparable to first stage
- ΔT is extracted from measurement

- ► First stage: no power dissipation
 - Temp. slope depends on T_{bath} - T_A
- Second stage: power P dissipated
 - Over set duration t
- ► Third stage: no power dissipation
 - Transient until bath temp. is uniform
 - Stabilization comparable to first stage
- ΔT is extracted from measurement

Calibration: *P* known (dc resistor), C_{Th} calculated **Measurement**: C_{Th} known (dc resistor), *P* calculated

Review of Losses Measurement Techniques

Presentation of the Calorimeter

Performance Evaluation

Measurement of Converter Loses

Conclusions

Acquisition chain

- PT100 (platinum resistor) sensor
- ► High resolution ohmeter (Keithley 2100)
- 4-wire connection
- ► Filtering
- High integration time

Acquisition chain

- ► PT100 (platinum resistor) sensor
- ► High resolution ohmeter (Keithley 2100)
- 4-wire connection
- ► Filtering
- ► High integration time

Acquisition chain

- ► PT100 (platinum resistor) sensor
- ► High resolution ohmeter (Keithley 2100)
- 4-wire connection
- ► Filtering
- High integration time

Acquisition chain

- PT100 (platinum resistor) sensor
- ► High resolution ohmeter (Keithley 2100)
- 4-wire connection
- Filtering
- High integration time

→ 0.25 K absolute temperature accuracy
 → 1 mK relative temperature accuracy

Effect of stirring

- Stirring required for bath uniformity
- Small dc motor attached to stirrer
- Causes small temperature rise (2.4 mK · min⁻¹)
- → Corresponds to a 70 mW power flow

Effect of stirring

- Stirring required for bath uniformity
- Small dc motor attached to stirrer
- Causes small temperature rise (2.4 mK · min⁻¹)
- → Corresponds to a 70 mW power flow

→ Negligible effect as it is small and canceled by the ΔT calculation

- Using a resistor supplied with dc current
- Power dissipated for 1 min:
 - ▶ 29.2 W
 - ▶ 18.7 W
 - ▶ 10.5 W
 - ► 4.7 W
 - ▶ 1.2W

13/22

- Power dissipated for 1 min:
 - ► 29.2 W
 - ► 18.7 W
 - ▶ 10.5 W
 - ► 4.7 W
 - ▶ 1.2 W

- Power dissipated for 1 min:
 - ► 29.2 W
 - ► 18.7 W
 - ► 10.5 W
 - ► 4.7 W
 - ▶ 1.2 W

- Using a resistor supplied with dc current
- Power dissipated for 1 min:
 - ► 29.2 W
 - ► 18.7 W
 - ► 10.5 W
 - ► 4.7 W
 - ▶ 1.2W

- Using a resistor supplied with dc current
- Power dissipated for 1 min:
 - ► 29.2 W
 - ► 18.7 W
 - ► 10.5 W
 - ► 4.7 W
 - ► 1.2W

- Using a resistor supplied with dc current
- Power dissipated for 1 min:
 - ► 29.2 W
 - ► 18.7 W
 - ► 10.5 W
 - ► 4.7 W
 - ► 1.2 W

→
$$C_{Th} = (1657 \pm 5) \text{ J} \cdot \text{K}^{-1}$$
 (0.3% error)

Time [s]

Dissipation of \approx 300 J over:

- ► 10s
- ► 20 s
- ▶ 30s
- ► 40 s
- ► 50 s
- ▶ 60 s

Dissipation of \approx 300 J over:

- ► 10s
- ► 20 s
- ► 30 s
- ▶ 40 s
- ▶ 50 s
- ▶ 60 s

Dissipation of \approx 300 J over:

- ▶ 10s
- ► 20 s
- ► 30 s
- ► 40 s

▶ 60 s

Dissipation of \approx 300 J over:

- ▶ 10s
- ► 20 s
- ► 30 s
- ► 40 s

► 50 s

Dissipation of $\approx 300\,J$ over:

- ▶ 10s
- ▶ 20s
- ► 30 s
- ► 40 s
- ► 50 s
- ► 60 s

Dissipation of \approx 300 J over:

- ▶ 10s
- ► 20 s
- ► 30 s
- ► 40 s
- ► 50 s
- ► 60 s
- And for different bath temp.

Dissipation of \approx 300 J over:

▶ 10s

▶ 20s

▶ 30s

► 40 s

► 50 s

► 60 s

And for different bath temp.

Without the "10s" measurements, error is down to 1.4%

Sources of error:

- ► Relative error on temperature: 1 mK
- ► Estimated error on curve fitting: 2 mK
- Estimated error on time: 1 s
- → for $\Delta T = 0.2$ K and t = 60 s, error is 3.2 % (1.7 % for t alone)

Sources of error:

- ► Relative error on temperature: 1 mK
- ► Estimated error on curve fitting: 2 mK
- Estimated error on time: 1 s
- → for $\Delta T = 0.2$ K and t = 60 s, error is 3.2 % (1.7 % for t alone)

Possible Mitigation

- Automatic time control: error on t virtually 0
- ► Improved adiabaticity to reduce error on △T: may be complex
- Adjustment of calorimeter bath volume to increase ΔT : easy

Review of Losses Measurement Techniques

Presentation of the Calorimeter

Performance Evaluation

Measurement of Converter Loses

Conclusions

Calibration

Test Setup

System under test:

- PCB-integrated converter
- ► SiC MOSFETs,
- output inductor,
- decoupling capacitor,
- ► gate drivers.

Load kept outside of the calorimeter:

- Ioad resistor
- additional inductor

Results

Measurement resolution:

- ► gate drive only
- ► 33.5 J over 300 s
- ightarrow 110 mW \pm 5 %

Results

Measurement resolution:

- gate drive only
- ► 33.5 J over 300 s
- → 110 mW ± 5 %

Different test configurations:

- V_{DC} , load resistor and inductor, load current, f_{sw}
- Poor accuracy for low losses
- ► Large error due to operating time control:

E₁ total error

 E_2 without error due to time measurement

	V_{DC}	R	L	I _{max}	f _{sw}	Р	E1	E2
	(V)	(Ω)	(µH)	(A)	(kHz)	(W)	(%)	(%)
1	100	30.	250	3.3	4	0.73	12.6	11.0
2	60	10.	250	6.	4	1.8	6.1	4.4
3	60	5.	250	12.	2	6.42	2.9	1.2
4	60	3.3	250	18.2	1.2	12.9	2.2	0.6
5	60	10.	0	6.	4	2.35	5.1	3.4
6	60	5.	0	12.	2	9.35	2.5	0.9

Review of Losses Measurement Techniques

Presentation of the Calorimeter

Performance Evaluation

Measurement of Converter Loses

Conclusions

A very simple calorimeter has been presented

- ▶ \approx 500€ (excl. ohmeter), easy to implement
- Fluid with low environmental/safety concerns

Conclusions

A very simple calorimeter has been presented

- ▶ \approx 500€ (excl. ohmeter), easy to implement
- Fluid with low environmental/safety concerns

Operation over low $\triangle T$ (0.2–1 K)

- No extreme adiabaticity required
- ► No problem with non-linearities

Conclusions

A very simple calorimeter has been presented

- ► \approx 500€ (excl. ohmeter), easy to implement
- Fluid with low environmental/safety concerns

Operation over low ΔT (0.2–1 K)

- No extreme adiabaticity required
- ► No problem with non-linearities

Satisfying accuracy/resolution

- Can detect power consumption of gate drivers
- ► Conservative error estimation yields 3.2 %
 - Can be reduced to 1.6 % with proper timing control
 - Can be further reduced (adjusted calorimeter volume, improved calibration)

Thank you for your attention.

cyril.buttay@insa-lyon.fr

This work was funded by Mitsubishi Electric Research Centre Europe and the French Agency for Technology and Research (ANRT).

