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Nowadays metamaterials are at the focus of an intense research as promising for thermal and acoustic engi-
neering. However, the computational cost associated to the large system size required for correctly simulating
them imposes the use of finite-elements simulations, developing continuum models, able to grasp the physics at
play without entering in the atomistic details. Still, a correct description should be able to reproduce not only
the extrinsic scattering sources on waves propagation, as introduced by the metamaterial microstructure, but also
the intrinsic wave attenuation of the material itself. This becomes dramatically important when the metamaterial
is made out of a glass, which is intrinsically highly dissipative and with a wave attenuation strongly dependent
on frequency. Here we propose a continuum mechanical model for a viscoelastic medium, able to bridge atomic
and macroscopic scale in amorphous materials and describe phonon attenuation due to atomistic mechanisms,
characterized by a defined frequency dependence. This represents a first decisive step for investigating the effect
of a complex nano- or microstructure on acoustic attenuation, while including the atomistic contribution as well.

DOI: 10.1103/PhysRevE.102.033003

I. INTRODUCTION

Nowadays, a large technological interest is focusing on
the potential of heterogeneous architectured materials for a
number of applications [1]. These are manmade structural
materials which have been developed for obtaining ad hoc
properties, that cannot be generally found in nature. They
are generally obtained by engineering at different scales the
mixing of different materials, either in a random spacial
distribution (composite materials) either with the artificial rep-
etition of regular patterns (metamaterials). Depending on their
application, the lengthscale of such patterns can span from the
nanometer to the macroscopic range, being smaller than the
wavelength of the phenomena that the material is meant to
affect.

Metamaterials have been largely investigated for applica-
tions in acoustics, where they can be shaped to realize acoustic
guides, filters, lenses, with a macrostructure in a macroscopic
lengthscale [2–5]. More recently, thanks to both engineering
and theoretical progresses, they have been introduced also
in thermal science, with a microstructure in the nanometer
scale, for realizing tunable multi-functional thermal metama-
terials [6,7], thermal cloaks and camouflage [8], etc. In both
applications, it is matter of guiding, filtering, hindering, the

propagation of acoustic waves (phonons), responsible for the
sound propagation when their wavelength is macroscopic,
and for thermal transport at room temperature when it is
nanometric.

A heterogeneous architectured material perturbs the propa-
gation of the acoustic waves by introducing an extrinsic source
of scattering, represented by the interfaces. In the specific
case of metamaterials novel coherent effects arise, due to their
periodicity. Because of this latter, a new Brillouin Zone can be
defined, which strongly modifies the phonon band structure by
folding the dispersions at its boundaries, thus introducing new
optic modes which can scatter the acoustic ones. Moreover,
the presence of elemental bricks in the micro-structure with
a proper resonant frequency introduces interference effects
with phonons, leading to the aperture of forbidden gaps in the
phonon dispersion [2,3], useful for the realization of acoustic
filters and for impacting thermal transport [9].

To study the acoustic wave propagation and attenuation in
such complex structured materials, it is necessary to model
phonon propagation on large scale systems, more apt at repre-
senting real materials, where the effect of heterogeneities and
interfaces can be properly investigated. Such large systems
are out of reach for atomistic simulations, where the com-
puting time scales with the atoms number as N2 for a pair
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potential interaction, and even more for a multi-body inter-
action. Instead, a continuous model is expected to obtain the
effective mechanical behavior without knowing the atomistic
details. Its computing time depends on spatial discretization
[10–13], making thus affordable longer simulations on larger
systems. However, a correct description of phonon attenuation
in heterogeneous architectured materials requires to take into
account not only the extrinsic scattering sources introduced
by the micro-structure, but also the intrinsic attenuation in the
component materials. This is even more important when these
latter are highly dissipative, as it is the case for amorphous
materials, whose interest as building blocks for metamaterials
efficient for thermal transport reduction has been recently
recognized [9,14].

A multiscale approach is therefore needed, able to connect
the atomistic scale, where the intrinsic phonon attenuation
takes its origin, and the macroscopic scale, where the meta-
material assembly introduces the extrinsic scattering sources.
Moreover, such model should be able to reproduce the
frequency dependence of the intrinsic acoustic attenuation,
which is specific to the microscopic mechanisms at play.

In glasses, many attenuation channels are present, whose
importance depends on phonon frequency and temperature:
tunneling due to two level systems [15], soft modes [16],
thermally activated relaxation processes [17], anharmonicity
[18], and scattering induced by structural disorder [19–21].
This last contribution is temperature independent, and dom-
inates acoustic attenuation at frequencies in the GHz-THz
range [22]. For lower frequencies, anharmonicity gives rise to
a phonon attenuation, or damping, �, inversely proportional
to phonon lifetime, which changes with frequency as ω2.
Approaching the THz range, corresponding to phonon wave-
lengths in the nanometer scale, scattering on disorder starts
to dominate, characterized by a Rayleigh-like dependence
� ∝ ω4, with a progressive transition to a strong scatter-
ing regime, finally leading to a new high frequency � ∝ ω2

regime, as reported in a number of experimental and theoret-
ical studies [17,23–30]. This strong scattering takes place at
frequencies comparable with the Boson Peak, i.e., the excess
of modes in the phonon density of states with respect to the
Debye prediction at low frequency, and has been explained
as due to phonon scattering by nanometric elastic hetero-
geneities [29–35]. At low temperature, molecular-dynamics
(MD) simulations have been able to reproduce this attenuation
crossover, with some different scaling rules [19,21,34,36,37].
The addition of anharmonicity at finite temperatures has fi-
nally provided a complete picture of combination of the
different attenuation channels [25,38].

On the whole, three regimes of acoustic attenuation versus
frequency can be classified: (1) � ∝ ω2 due to the anhar-
monicity at low frequencies, with a temperature-dependent
strength; (2) � ∝ ω4 due to Rayleigh-like scattering in-
duced by disorder and leading to a dramatic phonon lifetime
reduction, so that the collective vibrational modes loose pro-
gressively their plane wave character; (3) � ∝ ω2 above
Ioffe-Regel frequency (ωIR = π�), where phonons cannot be
considered as a propagative plane waves anymore. As such,
they do not propagate anymore but are diffusive, and, at higher
frequency, even localized [19,20,39].

To correctly describe an amorphous-based metamaterial,
we thus need to connect atomistic and macroscopic scale,
keeping the information on the active intrinsic attenuation
channel and the microscopic frequency and temperature de-
pendence of phonon attenuation. Generally speaking, there
exist two strategies for a multiscale approach: hierarchical
and concurrent [40]. The idea of hierarchical scale-bridging
techniques is to extract information at the microscale for iden-
tifying an effective behavior to be used as an input at larger
scales. Typical examples are the use of an Eshelby inclusion to
describe the quadrupolar stress map of the shear transforma-
tion zone induced by plasticity in some amorphous materials
(STZ) [41–43], or the use of mesoscopic viscoplastic models
to reproduce the bulk rheology [44]. Other methods involve a
physically based coarse-graining of the mechanical properties
[45–47], and measurement of the effective constitutive laws
at different scales [48] to be implemented in finite-element
(FE) simulations [49], as successfully applied for simulating
the elastoplastic behavior of silica micropillars [49]. However,
accounting for properties that change with time and frequency
(dynamic homogenization) still poses challenges: This is the
case of transient sound attenuation [40,50].

In this work we propose to develop a model to homogenize
the effective attenuation triggered by multiple mechanisms,
and characterized by a defined frequency dependence. To
this aim, we start from the viscous attenuation of acoustic
waves in compressible Newtonian fluids, as formulated within
Stoke’s theory [51]: the amplitude of a plane wave decreases
exponentially with the propagation distance, with a decay rate
given, in the low frequency limit ωτ � 1, by α = ω2τ

2v
, with

τ = 4η

3ρv2 , where η is the dynamic viscosity coefficient, ρ is
the fluid density and v is the speed of sound in the absence of
viscosity. This behavior yields to a typical attenuation distance
l = 1/α scaling as ∝ω−2. A similar exponential attenuation of
acoustic wave packets was also evidenced in amorphous mate-
rials below the Ioffe-Regel frequency [20], allowing defining a
mean-free path from the corresponding Beer-Lambert law for
acoustic transport attenuation. This behavior is thus similar in
amorphous materials and in Newtonian liquids. Glasses can
be thus characterized by an effective viscoelastic behavior
for their acoustic properties, even below the glass transition
temperature (that is, in the solid state). This corresponds also
to the requirement that the internal friction in the material can
be characterized by the quality factor Q−1 = G′′/G′ where
G = G′ + iG′′ is the complex elastic modulus in the linear
regime [15]. This is indeed the case in a glass [22] for
frequencies below the Ioffe-Regel crossover, where acoustic
phonons (named propagons [39]) still maintain well-defined
wave vectors and exhibit an exponential decay. A relation can
be found between the microscopic quantity (phonon attenu-
ation) and the macroscopic one (quality factor): �/ω = Q−1

[22,35,52–55].
We therefore develop here a new continuum mechanical

model for a viscoelastic medium, where no disorder is intro-
duced. We will show that this model is able to bridge atomic
and macroscopic scale in amorphous materials and describe
phonon attenuation, in this work taken with a ω2 dependency,
in a prototype material, amorphous silicon, at wavelengths at
which phonon attenuation has an atomistic origin. As such
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our model proves to be able to give a continuum description
of atomistic processes, valid for out-of-equilibrium transient
transport of energy (acoustic attenuation), as well as for a
general description of the effective mechanical behavior of
disordered heterogeneous materials.

In the following, in Sec. II we present our viscoelastic
model and calibrate it against amorphous silicon. In Sec. III,
we detail the numerical methods used to verify its validity
through the study of the propagation of wave packets in such
medium. Such study will be presented in detail, as a function
of the wave-packet frequency, in Sec. IV, and compared with
results from molecular dynamics (MD) simulations. Secs. V
and VI are devoted to discussion and conclusion.

II. SIMPLE CONSTITUTIVE MODEL FOR
LONGITUDINAL AND TRANSVERSE

ATTENUATION IN GLASSES

The first step for describing large-scale amorphous-based
metamaterials consists in developing a continuum model able
to reproduce the intrinsic attenuation in the amorphous com-
ponent. As mentioned in the Introduction, phonon attenuation
in glasses is due to different mechanisms, depending on the
phonon energy and temperature. We are here interested to
phonons with energies in the THz range and wavelengths
in the nm range, which dominate thermal transport at room
temperature. At such energies the dominant scattering source
is the structural disorder [17,38]. In this section, we will
develop a viscoelastic model to describe this disorder-induced
harmonic damping in the THz regime. We will derive the
mechanical response both in frequency and time domain. The
frequency-dependent response allows to obtain the analytic
expression for the figure of merit Q−1, which is related to
the phonon attenuation below the Ioffe-Regel crossover, as
Q−1 = �/ω. The time-domain one corresponds to the so-
called stress-strain constitutive law, that we need for running
finite-element method (FEM) simulations for investigating the
wave-packet propagation at large scale.

Let us assume an isotropic, homogeneous, and viscous
solid: we can express the elastic constitutive laws describing
the stress-strain relation using the Hooke’s law and separating
the hydrostatic from the deviatoric components:

σi j = 3Kε
sph
i j + 2Gεdev

i j (1)

where K is the bulk modulus and G is the shear modulus.
The hydrostatic (or spherical) part of strain is given by ε

sph
i j =

1
3δi jεkk and the deviatoric part, which is isochoric, is εdev

i j =
εi j − 1

3δi jεkk , where δi j is Dirac function. Stress respects the
same separation rule, and can be written as{

σ
sph
i j = 1

3δi jσkk = 3Kε
sph
i j ,

εdev
i j = σi j − 1

3δi jσkk = 2Gεdev
i j .

(2)

The interest of such separation is that in the following we
will use different rheological models: a Kelvin-Voigt (K-V)
approach for the hydrostatic part and a Maxwell-like model
for the deviatoric one, as illustrated in Fig. 1.

This latter model gives indeed a good description of the
rheological constitutive relation [56]. Here, we use the sim-
plest version of the generalized Maxwell model called the

FIG. 1. Illustration of the viscoelastic models: the Kelvin-Voigt
model for the hydrostatic part and the standard linear model (one type
of the generalized Maxwell model with N = 1) for the deviatoric
part.

standard linear model [57] as shown in Fig. 1 (right panel).
The idea behind this model is that the deviatoric part will gen-
erate a viscous flow limited by the elasticity of the solid. The
time-dependent stress-strain relation following the Standard
linear model reads

σ dev
i j (t ) + τaσ̇

dev
i j (t ) = Eaε

dev
i j (t ) + 2Eaτaε̇

dev
i j (t ), (3)

where τa = ηa/Ea is the relaxation time, ηa is the viscosity,
and Ea is the shear modulus. Supposing that nothing happens
before t = 0, Eq. (3) can be written on a complex plane by
means of a Laplace transform:

(1 + τas)L
[
σ dev

i j (t )
]
(s) = (Ea + 2Eaτas)L

[
εdev

i j (t )
]
(s),

(4)
with s = iω + ξ the Laplace frequency parameter (with ξ →
0). We can then define the transfer function between strain and
stress:

L
[
σ dev

i j (t )
]
(s)

L
[
εdev

i j (t )
]
(s)

= Ea

(
1 + τas

1 + τas

)
. (5)

Replacing s, we obtain the expression of the complex elas-
tic modulus E∗

A (ω) = E ′
A(ω) + iE ′′

A (ω) for the Standard linear
model:

E∗
A (ω) = L

[
σ dev

i j (t )
]
(s)

L
[
εdev

i j (t )
]
(s)

∣∣∣∣∣
s=iω+ξ

= Ea

(
1 + iωτa

1 + iωτa

)
. (6)

For the hydrostatic part, we use the Kelvin-Voigt model
(left panel in Fig. 1). This is motivated by the fact that the
hydrostatic part will mainly give rise to a delayed response,
without inducing a macroscopic flow. For this reason, the
rheologic contribution from the hydrostatic part is often ne-
glected [58], the deviatoric contribution being much more
significant at large times. Still, a more precise description of
the attenuation can be obtained if it is taken into account [59].
K-V stress-strain relation can be expressed as

σ
sph
i j (t ) = Eb

[
ε

sph
i j (t ) + τbε̇

sph
i j (t )

]
, (7)

where τb = ηb/Eb with Eb the bulk modulus.
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Similar to the Standard linear model, the transfer function
of K-V model is given by

L
[
σ

sph
i j (t )

]
(s)

L
[
ε

sph
i j (t )

]
(s)

= Eb(1 + τbs), (8)

which allows us to define the complex modulus:

E∗
B (ω) = Eb(1 + iωτb). (9)

It is straightforward to link such expressions to Eq. (2)
by simply replacing the elastic moduli 3K and 2G by their
viscoelastic analogues of the trace part, i.e., E∗

B , and the de-
viatoric part, i.e., E∗

A , respectively [57]. In the low-frequency
limit (ω → 0), it should be{

E∗
A (ω → 0) = Ea

(
1 + iωτa

1+iωτa

)|ω→0 = 2G,

E∗
B (ω → 0) = Eb(1 + iωτb)|ω→0 = 3K,

(10)

which leads to the following identities:{
Ea = 2G = E

1+ν
,

Eb = 3K = E
1−2ν

,
(11)

where E is the Young modulus and ν is the Poisson ratio.
We can now write down the full complex constitutive

elastic tensor G∗, including hydrostatic and deviatoric com-
ponents. Due to isotropy, this tensor is reduced to a 6 × 6
symmetric matrix, imposing the conditions G∗

11 = G∗
22 = G∗

33
and G∗

44 = G∗
55 = G∗

66, where G∗
i j is the ith row and jth col-

umn. These 6 elements can thus be expressed in terms of only
four parameters (E , ν, τa, and τb), as detailed in the Appendix:

G∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E∗
B+2E∗

A
3

E∗
B−E∗

A
3

E∗
B−E∗

A
3 0 0 0

E∗
B−E∗

A
3

E∗
B+2E∗

A
3

E∗
B−E∗

A
3 0 0 0

E∗
B−E∗

A
3

E∗
B−E∗

A
3

E∗
B+2E∗

A
3 0 0 0

0 0 0 1
2 E∗

A 0 0

0 0 0 0 1
2 E∗

A 0

0 0 0 0 0 1
2 E∗

A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

with E∗
A and E∗

B given in Eqs. (6), (9), and (11).
To obtain the stress-strain constitutive law we need to solve

the time-domain expressions given in Eqs. (3) and (7), remind-
ing that the total stress is σi j = σ

sph
i j + σ dev

i j . For the deviatoric
part, solution of Eq. (3) is

σ dev
i j (t ) = Ea

[
εdev

i j +
∫ t

0
exp

(
− t − t ′

τa

)
∂εdev

i j

∂t ′ dt ′
]
. (13)

Combining Eqs. (7), (13), and (11), the stress-strain consti-
tutive law then reads

σi j (t ) = E

1 − 2ν

(
ε

sph
i j + τb

∂ε
sph
i j

∂t

)

+ E

1 + ν

[
εdev

i j +
∫ t

0
exp

(
− t − t ′

τa

)
∂εdev

i j

∂t ′ dt ′
]
. (14)

Our approach for solving the convolution integral in
Eq. (14) is to introduce an internal variable tensor hi j [58,60]

whose evolution indirectly includes the mechanical history of
a material. We reformulate Eq. (14) as

σi j (t ) = E

1 − 2ν

(
ε

sph
i j + τb

∂ε
sph
i j

∂t

)

+ E

1 + ν
εdev

i j + hi j, (15)

where hi j (t ) is defined by a recurrence relation:

hi j (t ) = exp

(
− t − tn

τa

)
hi j (tn)

+ E

1 + ν

∫ t

tn

exp

(
− t − t ′

τa

)
∂εdev

i j

∂t ′ dt ′, (16)

where tn is any moment before t . As such, instead of comput-
ing the convolution integral from 0, we only need to integrate
from tn to t if hi j (tn) is known.

III. FINITE-ELEMENT SIMULATIONS

Equation (14) only depends on four material parameters,
two of them related to elasticity (E and ν) and two to vis-
coelasticity (τa and τb). To use it for running a finite-element
simulation on a given material, these quantities need to be
fixed to the ones of the material under investigation. To this
aim, we derive from the elastic tensor the longitudinal and
transverse quality factors and acoustic waves velocities, to
be compared with the same quantities extracted from exper-
iments or atomistic numerical simulations, to fix the four
parameters.

By definition, isotropic longitudinal (L) and transverse (T )
sound speeds are defined as{

vL(ω)2 = G′
11(ω)
ρ

,

vT (ω)2 = G′
44(ω)
ρ

,
(17)

similarly, the quality factors are obtained as

Q−1
L (ω) = G′′

11(ω)

G′
11(ω)

and Q−1
T (ω) = G′′

44(ω)

G′
44(ω)

, (18)

where G′
i j = Re(G∗

i j ) and G′′
i j = Im(G∗

i j ).
It is worth noticing that by construction this model de-

scribes � ∝ ω2 energy-dependent attenuation, as can be
verified by substituting G′′ and G′ in the Q−1

L,T expression.
This behavior is in agreement with the energy dependence
of acoustic attenuation in glasses as observed in experiments
and numerical simulations at THz energies just above the
Ioffe-Regel crossover. However, here the quality factor does
not describe correctly the attenuation anymore, since it is
well adapted only below the Ioffe-Regel criterion [22]. In
the regime where phonon attenuation and quality factor can
be related to each other, the former should go as ω4. Still,
this Rayleigh scattering regime is very short, and it makes
the transition between two ω2 dependencies, as described
in the introduction. For this reason, as a first step for assessing
the validity of our viscoelastic model, we propose to use a
ω2 dependence as a good empirical description even in this
intermediate regime [19].
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FIG. 2. Identification of parameters τa and τb by fitting Q−1
L,T

against �/ω (data from Beltukov et al. [19]): (a) Evolution of Q−1
T (ω)

for transverse modes with τa = 9.3e − 15; (b) evolution of Q−1
L (ω)

for longitudinal modes with τa = 9.3e − 15 and τb = 3.3e − 15.

In the following, we will use this model for simulating
wave-packet propagation in amorphous silicon, and compare
the results with atomistic molecular dynamics simulations
[19,20,61]. In those works, amorphous silicon is described
by the Stillinger-Weber potential [62], where the three body
parameter � is tuned for modifying the rigidity of the sys-
tem. We compare here with the case � = 21, which gives a
good description of real amorphous silicon, with mass density
ρ = 2303 kg/m3 [61].

E and ν are the macroscopic elastic properties, that we fix
to the ones reported in Ref. [61]. τa and τb are found by fitting
the frequency-dependent quality factor Q−1 = �(τa, τb, ω)/ω
against the one reported in Ref. [19] for longitudinal and
transverse modes. Our best fits are reported in Fig. 2, together
with the �/ω values from Ref. [19]. Optimal values for the
relaxation times, together with the static values for the elastic
parameters are reported in Table I.

As anticipated, the quality of the fit is limited by the
approximation that we do in using a ω2 law for represent-
ing the Rayleigh ω4 dependence of acoustic attenuation, as
clearly demonstrated by the departure of the model from the
numerical data in the deviatoric part in Fig. 2(a). Moreover,
in the trace part [Fig. 2(b)], a marked hollow is visible in the
molecular dynamics measurements, which is not reproduced
by our model, being due to the attenuation of the transverse
waves above the Ioffe-Regel crossover.

It is worth stressing here that by calibrating our model onto
the cited molecular dynamics simulations, we will investigate

TABLE I. Parameters of the viscoelastic continuum model, fixed
on atomistic molecular dynamics simulations.

E ν τa(10−15s) τb(10−15s)

92.25 GPa [61] 0.347 [61] 9.3(±0.4) s 3.3(±0.1)

FIG. 3. 2D simulation model of solid: A semi-infinite solid can
be represented by only modeling a single layer (green zone) with
periodic boundary conditions (PBCs) on the top and bottom and
perfectly matched layers (PMLs) on the right edge.

exactly the same system but representing it as a contin-
uum medium, with no need of describing the interatomic
interactions.

Once we have defined the constitutive equation [Eq. (14)]
and we have calibrated our model on amorphous silicon, we
can run finite-element simulations, for investigating the prop-
agation of wave packets in large-scale materials, and compare
their out-of-equilibrium attenuation with the one dictated by
atomistic mechanisms.

To this aim, we prepare a system made of an horizontal line
of nine squares with a side length of 60 Å, and a total length
of 540 Å, as illustrated in Fig. 3. Such dimension is larger
than the largest phonon mean free path at THz frequencies as
reported in Ref. [20], assuring that we will be able to observe
it. The size is also larger than 20 times the interatomic distance
(2 ∼ 4 Å reported in Refs. [63,64]), thus the system can be
considered homogeneous and isotropic, as demonstrated in
Refs. [45,46]. The system is 2D, but we generate a quasi-
monochromatic acoustic pulse with plane strain state, which
means that the strain along the third direction is neglected.
Still, it shares the same constitutive tensor [Eq. (12)] and the
same constitutive equation [Eq. (14)] with the 3D case. Details
on the motion equations of the FEM simulation are reported
in the Appendix.

To investigate the propagation of the vibrational energy, we
excite a quasimonochromatic wave packet on the left side of
the sample at position x = 0 in a small time interval around
t = 0 [19]. This excitation displacement is given by

Uη(t ) = U0 × exp

[
− (t − 3t0)2

2t2
0

]
sin(ωt )nη, (19)

where U0 = 4.9 × 10−3 Å is a constant value, ω = 2πν is
the frequency of this quasi-monochromatic excitation, and
t0 = 3π

ω
. The direction of the applied displacement is defined

by nη, which is common for all nodes on the left boundary
when the excitation is coherent. The subscript η indicates the
wave-packet polarization. In this case, we use nL in x direction
for the longitudinal polarization and nT in y direction for the
transverse one.

As shown in Fig. 3, periodic boundary conditions (PBCs)
are applied at the top and the bottom by means of Lagrange
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FIG. 4. Envelope of the normalized kinetic energy Pω(x)/Pω(0)
for different frequencies in a semilog graph. Top: longitudinal po-
larization; bottom: transverse polarization. Numbers near curves
represent angular frequencies ω in THz.

multipliers U top
η = U bottom

η . On the right side of the model, the
perfectly matched layers (PMLs) are implemented to avoid
wave reflection [65–67]. Details about these two boundary
conditions are presented in Ref. [68]. Moreover, plane strain
state achieves the infinite length in the third direction (per-
pendicular to the illustrated model). Thanks to these three
numerical approaches, a semi-infinite solid is represented by
only modeling a single layer. Details on the space and time
discretization are given in the Appendix.

IV. RESULTS

We have run a series of transient simulations, following the
propagation of wave packets with energies in the THz range
through a model amorphous silicon sample. As said before,
the wave packet is created by imposing a displacement on the
left side of the sample. Its propagation is then followed along
the sample, in the x direction, which is the initial direction of
propagation of the exciting wave. To investigate the acoustic
attenuation due to the viscoelasticity of the medium, we mea-
sure the envelope of the kinetic energy induced in the system
by the propagation of the wave packet along the x direction,
and averaged over the y direction. The energy envelope is
defined for each excitation frequency ω as

Pω(x) = max
t

Ek (x, t ), (20)

where Ek (x, t ) is the instantaneous kinetic energy supported
by the frame located in x with width �x = 1 Å. We report
in Fig. 4 the normalized kinetic energy envelopes for longi-
tudinal and transverse wave-packets. The lowest investigated
frequency is ω = 6.28 THz (or ν = 1 THz). The maximum in-
vestigated frequency (50 THz for LA and 25 THz for TA) has
been chosen slightly smaller than the Ioffe-Regel crossover
for the corresponding polarization [19].

Far below the Ioffe-Regel limit, a global exponential at-
tenuation similar to a Beer-Lambert law is observed [20,69],
leading to a linear behavior in the semilog representation:

Pω(x) ∝ exp[−x/�(ω)]. (21)

FIG. 5. Result obtained from finite-element (FE) simulation
compared to atomistic analysis for longitudinal waves (blue or red)
and transverse waves (green or black). For FE simulation, solid lines
with large filled symbols (blue or green) show the mean free path �FE

obtained by the exponential fit of the envelope. For DM simulation
(Beltukov [20]), points show the results from the DHO fit of the
DSF, �DSF; solid lines show the mean free path �BL; dashed lines
show the penetration length lpen. (The Ioffe-Regel frequencies for
longitudinal and transverse waves are shown by red and black arrow,
respectively).

By fitting the kinetic energy envelope with this law, one can
get the value of the mean-free path �FE (FE standing for FE
simulations), which is inversely proportional to the acoustic
attenuation via the wave-packet velocity. Our results for the
mean free path of propagating longitudinal and transverse
wave packets in amorphouos silicon are compared with results
from molecular dynamics simulations [20] in Fig. 5. Here we
compare with two different estimations from the atomistic
calculations: �DSF is obtained from the dynamical structure
factor as detailed in Ref. [19], while �BL has been calculated
from the Beer-Lambert fit of the attenuation of propagating
wave-packets. It is reported that the results of �DSF and �BL

begin to deviate near the Ioffe-Regel frequency, which indi-
cates a crossover from weak scattering to strong scattering.
As a consequence, Beer-Lambert law gradually fails when
approaching the Ioffe-Regel limit. For this reason, in Ref. [20]
a penetration length is also calculated, representative of the
wave-packet attenuation in the diffusive regime, lpen, such that
Pη(ω, lpen) = 1

e Pη(ω, 0) [20,68], reported as well in the figure.
The agreement between the mean free path from continuum
finite-element simulations with the ones obtained in atomistic
molecular dynamics simulations is impressive, and holds
as far as we remain below the Ioffe-Regel crossover, our
constitutive equation having been derived in such regime. The
deviation at the highest frequencies investigated is indeed due
to the approaching of the diffusive regime.

We also observe that our FE mean-free paths are closer to
�DSF rather than �BL despite both �FE and �BL are fitted by
the Beer-Lambert law. This is due to the fact that our model
has been calibrated against the attenuation obtained form the
dynamical structure factor, thus related to �DSF. That is to say,
proper calibration of the parameters for the input attenuation
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data will result in accurate reproduction of this attenuation
when following the transient wave-packet propagation.

V. DISCUSSION

Our results demonstrate that the effective sound attenua-
tion in a continuum model may strictly follow the atomistic
quality factor Q−1 for a well-calibrated macroscopic linear
viscoelastic constitutive law. This was proved through the
relation between the attenuation � and the attenuation length
�. In the damped harmonic oscillator model, � is proportional
to the ratio of wave speed to attenuation length. If wave speed,
which depends on the real part G ’ of the rigidity G, keeps
constant, then a macroscopic constitutive law with � ∝ ω2

forces the λ ∝ ω−2 behavior. This is indeed the case treated
here: for the K-V model used for the hydrostatic part, real
part of G is frequency-independent, but this is not true for the
standard linear model used for the deviatoric part, for which
the real part of G nearly doubles near the peak position. Still,
the transition is too short and one can consider the real part
of G as constant far from the peak, as we have done. More
remarquably, we have shown in the present paper, that such a
simple linear viscoelastic behavior, is sufficient to reproduce
the Molecular Dynamics data obtained with a real atomistic
nonequilibrium dynamics in the constant energy ensemble.
This means that the relation between the apparent � and the
mean-free path measured from wave-packet dynamics is fully
coherent with a simple linear viscoelastic model, at least in
the low frequency regime. More generally, our estimation of
� results from the identification of the parameters G′ and G′′
of the assumed linear viscoelastic constitutive law, while the
measurement of λ results from the calculation of the full out-
of-equilibrium dynamics including scattering of a not strictly
monochromatic wave packet at the atomic scale. By fitting
the two sets of numerical data (apparent acoustic attenuation,
and mean-free path of a wave packet in a given direction as a
function of the frequency), we show that they are coherent
with a simple continuous linear model, which opens new
perspectives for effective simulations at large scales.

In the work here presented, we have developed such a law
for describing acoustic attenuation in an amorphous material
at THz frequencies, in a limited range below the Ioffe-Regel
criterium. By choice, our model imposes a � ∝ ω2 behavior,
which, as mentioned in the introduction, does not hold at all
frequencies. The first limitation of our model consists in the
assumption of a quasi-constant speed of sound [Eq. (17)],
while this is expected to be modified due to the atomic dis-
cretization and structural disorder. The second limitation is
the limited frequency range of applicability. Indeed, the most
interesting frequency range for the description of thermal
transport in amorphous materials is actually the one around
and above the Ioffe-Regel limit: when a strong scattering
regime arises due to the presence of nanometric elastic het-
erogeneities, leading to a transition from a � ∝ ω4 to � ∝ ω2

behavior [17,24,27,28,30,38]. Such strong scattering and the
resulting diffusive motion of initially plane waves are respon-
sible for the plateau in the glassy thermal conductivity at
around 10K, and the peak in the specific heat at the same
temperature [14,70,71]. Modeling amorphous materials for
thermal applications clearly needs including such frequency

dependences, with at least three successive regimes includ-
ing � ∝ ω2, � ∝ ω4 and then � ∝ ω2 again at very high
frequencies.

To extend the present model to larger frequency ranges,
we need to describe two successive ω2 − ω4 crossovers, but
as well to include a dispersive speed of sound, as the strong
scattering leads to a strong decrease of the phonon velocity.
This is the purpose of another work, which will allow to
reproduce at a macroscopic level, through a single continuum
model, the combined effect of parallel sources of acoustic
attenuation.

Despite the present limitations, our work has the merit
to be a proof of concept: by developing the appropriate vis-
coelastic law, and calibrating it against atomistic quantities,
we are able to reproduce the correct acoustic attenuation, for
both transverse and longitudinal waves. While the origin of
the attenuation is microscopic, this continuum model allows
reproducing it in FE simulations at a far larger scale, where
the atomistic details of the material are lost. As such, our work
is of evident interest in view of the current technological inter-
ests and needs. As mentioned in the introduction, for a number
of different applications ranging from acoustics, to mechan-
ical and to thermal management, complex heterogeneous
materials have arisen as most promising. Such metamaterials
are made of the ordered or disordered intertwinning of differ-
ent materials with different properties, with a heterogeneity
lengthscale (the nano- or microstructure lengthscale) which
can range from macroscopic to nanometric depending on the
applications. Such large scale systems can be realistically
modeled only through finite-element simulations, to catch the
effect of the interfaces and elastic heterogeneities on acoustic
properties and thermal transport.

Until now, they have mostly been investigated by molec-
ular dynamics simulations, allowing the investigation of the
competition between the interface effect and the intrinsic
acoustic attenuation as due to atomistic mechanisms. Still,
the limited sample size in such simulations hinders the repro-
duction of the real systems and the assumption that what is
observed for samples of a few tens of nanometers holds true
for larger scales needs to be done [14,72–74]. In a recent work
of us, we have taken the opposite approach and we have in-
vestigated the acoustic attenuation in nanocomposites through
finite-element modeling, which has allowed us to model the
real size materials, and study the effect of the interface scat-
tering, highlighting the existence of propagative, diffusive and
localized regime, depending on the nanostructuration length-
scale and elastic contrast between the components. Still, in
that work no intrinsic acoustic attenuation was considered,
the component materials being nondissipative [68]. While the
viscoelastic attenuation can be taken into account by intro-
ducing a frequency-independent macroscopic viscosity [75],
such description does not allow to correctly reproduce the
frequency dependence of the total effective attenuation, and
thus to investigate the frequency dependence of the different
regimes (propagative, diffusive, localized) in the real meta-
material. With the present model, we go beyond those works,
accurately reproducing the microscopic attenuation experi-
mentally measured or obtained in atomistic calculations. As
such, our model is a first decisive step to finally conjugate
the two approaches, and investigate the effect of the complex
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nano- or microstructure on acoustic attenuation, while includ-
ing the atomistic contribution as well.

VI. CONCLUDING REMARKS

In this work we have developed a continuum mechanical
model based on a viscoelastic description of an amorphous
material, where the frequency dependence of the microscopic
phonon attenuation can be reliably reproduced once the model
has been properly calibrated on atomistic data. To do so, we
have derived the analytic expression of the speed of sound and
the quality factor Q−1, which can be calibrated against sound
velocity and attenuation as experimentally reported or calcu-
lated in atomistic numerical simulations. We have proved the
validity of our approach by investigating the acoustic attenua-
tion in amorphous silicon at THz frequencies, corresponding
to phonon wavelengths in the nanometer range, where the
dominant attenuation mechanism is the atomic disorder. It is
worth reminding that THz acoustic phonons are the most re-
sponsible for thermal transport at room temperature. As such,
our model is promising for understanding thermal transport
in heterogeneous architectured materials with an amorphous
component [14], most promising for thermal management
applications.

While we have applied our model to the case of an amor-
phous material, where the intrinsic acoustic attenuation is
much stronger than in crystalline materials, the approach
is much more general and could be applied to crystalline
materials as well, provided the viscoelastic model repro-
duces the microscopic attenuation, as due to anharmonic
(� ∝ ω2) or defects scattering (� ∝ ω4). As such, this work
represents a proof of concept and a first step towards a com-
prehensive modeling of real heterogeneous materials, where
the effect of the microstructure can be modeled while ac-
counting also for the atomistic intrinsic phonon scattering
sources. From this first step, further work can focus on the
reproduction of other power laws for phonon attenuation, as
well as the introduction of the anisotropy, and the effect of
temperature, finally allowing to describe thermal transport
as well as sound propagation in metamaterials of arbitrary
complexity.

APPENDIX A: 3D COMPLEX CONSTITUTIVE TENSOR

The stress-strain constitutive law describes the relation
between those two quantities. Tensor can be expressed in
matrix form, strain and stress are n × 1 vectors, constitutive
tensor is n × n matrix, where n = d2, and d is dimen-
sion of space. In 3-D case, there should have been nine
terms but thanks to the symmetry of shear strain εi j =
ε ji and shear stress σi j = σ ji. In Voigt notation, strain
and stress vector are reduced to six terms and read,
respectively:

εi j =

⎡
⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎦ and σi j =

⎡
⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ13

σ23

⎤
⎥⎥⎥⎥⎥⎦

.

It is conventional to express the shear strain as 2εi j = γi j ,
which is called engineering shear strain.

The symmetric constitutive tensor G (Gi j = Gji) can be
developed as

G =

⎡
⎢⎢⎢⎢⎢⎣

G11 G12 G13 G14 G15 G16

G21 G22 G23 G24 G25 G26

G31 G32 G33 G34 G35 G36

G41 G42 G43 G44 G45 G46

G51 G52 G53 G54 G55 G56

G61 G62 G63 G64 G65 G66

⎤
⎥⎥⎥⎥⎥⎦. (A1)

We recall that the complex constitutive law of our model
(which has a form similar to Hooke’s law) reads σi j =
E∗

Bε
sph
i j + E∗

Aεdev
i j from which we can find each term of tensor

G, where ε
sph
i j = 1

3δi j (ε11 + ε22 + ε33) and εdev
i j = εi j − ε

sph
i j .

For example, for σ11,

σ11 = E∗
B

ε11 + ε22 + ε33

3
+ E∗

A

(
ε11 − ε11 + ε22 + ε33

3

)
(A2)

= E∗
B + 2E∗

A

3
ε11 + E∗

B − E∗
A

3
ε22 + E∗

B − E∗
A

3
ε33. (A3)

It is easy to find that G11 = E∗
B+2E∗

A
3 , G12 = E∗

B−E∗
A

3 , G13 =
E∗

B−E∗
A

3 , and G14 = G15 = G16 = 0.
Similarly, for σ12,

σ12 = E∗
Aε12 (A4)

= E∗
A

2
× (2ε12). (A5)

So except G44 = E∗
A

2 , other terms equal to 0.
Therefore, one can get the expression for all terms of the

tensor G as given by Eq. (12). In addition, notice that Gi j is
all complex number, so we use G∗ to represent the complex
constitutive tensor.

APPENDIX B: FINITE-ELEMENT SIMULATIONS DETAILS

In this work, we developed an explicit dynamic algo-
rithm based on the finite-element code Cast3m from CEA
[68,76,77]. To simplify the subscripts, we use bold symbols
to represent vectors, e.g., σ = σi j . The finite-element semidis-
crete in space of a transient dynamic motion equation can be
described as

f int(t ) + Mü(t ) = f ext(t ), (B1)

where f int is internal force vector, M is mass matrix, u is
displacement vector, and f ext is exciting force vector. Among
them, f int can be obtained from

f int(t ) =
∫

�

BT σ (ε, ε̇, h)d�, (B2)

with

ε(t ) = Bu(t ), (B3)

where B is the strain-displacement matrix derived from the
shape function of the element used and � is the model do-
main. The calculation of σ (ε, ε̇, h) obeys the viscoelastic
constitutive law described as Eq. (14). In practice, the con-
volution operation in Eq. (14) is replaced by a recurrence
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formula based on the internal variable h which has a “memory
effect” [58,60,78–80], yielding Eq. (15). One linearization
method dedicated for the generalized Maxwell viscosity de-
rived by Kaliske et al. [58,60] has been implemented in this
FEM code.

In the next step, we need to discretize the motion equation
[Eq. (B1)] in time. We assume a uniform partition in time
and choose a time step size �t . Combined with the central-
difference time integrator, the space-time discretized form can
be obtained:

Mün+1 = f ext
n+1 −

∫
�

BT σn+1
(
εn+1, ε̇n+ 1

2
, hn+1

)
d�, (B4)

where indices n and n + 1 are successive time steps. And the
derivative of strain at time n + 1

2 is

ε̇n+ 1
2

= 1

�t
(εn+1 − εn). (B5)

Reference to Eq. (15), the temporally discretized constitutive
law σn+1(εn+1, ε̇n+ 1

2
, hn+1) can be expressed as a recursive

equation:

σn+1 = E

1 − 2ν

(
ε

sph
n+1 + ε̇

sph
n+ 1

2

)
+ E

1 + ν
εdev

n+1 + hn+1, (B6)

where hn+1 is the updated internal variable tensor [58]:

hn+1 = exp

(
−�t

τa

)
hn + E

1 + ν
τa

[
1 − exp

(
−�t

τa

)]
ε̇dev

n+ 1
2
.

(B7)

To resume, the right-hand side of Eq. (B6) shows that the
updated stress consists of three part: (1) ε gives the purely
elastic stress; (2) ε̇ gives the viscous stress at the current time
step; (3) h records the time-dependent relaxation process. For
more details about the implemented central-difference time
integrator algorithm, see Ref. [68].

1. Spatial discretization

It is clear that the element size in element-based acoustic
computations should be related to the wavelength. A common
rule is that at least six linear elements should be used per
wavelength [81]. In this work, we use the P-1 element which
is quadrangle shape and has four nodes on the corners. The
reference length of spatial discretization is 1 Å for the refer-
ence frequency ωref = 6.28 THz, which means that transverse
wave has approximate 40 elements per wavelength. As the
frequency increases and the wavelength becomes shorter, we
have refined the mesh size accordingly.

2. Time integration

Among all the FEM time integration schemes, Newmark
scheme [82] is the most common solution for a dynamic
structure. We have selected the symplectic central-difference
algorithm from the Newmark scheme family, in that case γ =
1
2 and β = 0. The time step �t should satisfy the convergence
condition: �t < �tcr and the critical time step �tcr = �l

vwave
where �l is linked to mesh size and vwave is defined by P-wave
celerity. Based on that, the time step of simulation is �t ∼ 1 fs
for 6.28 THz and becomes shorter with increasing frequency.
Total simulation time is more than 104 fs to make sure that the
wave packet passes through the sample.

[1] O. Bouaziz, Y. Bréchet, and J. Embury, Heterogeneous and
architectured materials: A possible strategy for design of struc-
tural materials, Adv. Eng. Mater. 10, 24 (2008).

[2] Z. Liu, Locally resonant sonic materials, Science 289, 1734
(2000).

[3] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude,
Complete band gaps in two-dimensional phononic crystal slabs,
Phys. Rev. E 74, 046610 (2006).

[4] S. Zhang, L. Yin, and N. Fang, Focusing Ultrasound with an
Acoustic Metamaterial Network, Phys. Rev. Lett. 102, 194301
(2009).

[5] S. A. Cummer, J. Christensen, and A. Alù, Controlling
sound with acoustic metamaterials, Nat. Rev. Mater. 1, 16001
(2016).

[6] S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M.
Ferreira, S. Kim, and B. Min, Heterogeneously assembled meta-
materials and metadevices via 3D modular transfer printing,
Sci. Rep. 6, 27621 (2016).

[7] G. Park, S. Kang, H. Lee, and W. Choi, Tunable multifunc-
tional thermal metamaterials: Manipulation of local heat flux
via assembly of unit-cell thermal shifters, Sci. Rep. 7, 41000
(2017).

[8] S. R. Sklan and B. Li, Thermal metamaterials: Functions and
prospects, Natl. Sci. Rev. 5, 138 (2018).

[9] M. I. Hussein, C.-N. Tsai, and H. Honarvar, Nanophononics:
Thermal conductivity reduction in a nanophononic metamate-
rial versus a nanophononic crystal: A review and comparative
analysis, Adv. Funct. Mater. 30, 2070047 (2020).

[10] D. J. R. Geradin, Mechanical Vibrations: Theory and Applica-
tion to Structural Dynamics, 3rd ed. (John Wiley & Sons, New
York, 2014).

[11] T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary, Nonlin-
ear Finite Elements for Continua and Structures (Wiley John &
Sons, New York, 2013).

[12] M. Bonnet, A. Frangi, and C. Rey, The Finite Element Method
in Solid Mechanics (McGraw Hill Education, New York, 2014).

[13] J. Achenbach, Wave Propagation in Elastic Solids, Vol. 16
(Elsevier, Amsterdam, 2012).

[14] A. Tlili, V. M. Giordano, Y. M. Beltukov, P. Desmarchelier,
S. Merabia, and A. Tanguy, Enhancement and anticipation of
the Ioffe–Regel crossover in amorphous/nanocrystalline com-
posites, Nanoscale 11, 21502 (2019).

[15] K. S. Gilroy and W. A. Phillips, An asymmetric double-well po-
tential model for structural relaxation processes in amorphous
materials, Philos. Mag. B 43, 735 (1981).

[16] W. Ji, M. Popovic, T. W. J. de Geus, E. Lerner, and M. Wyart,
Theory for the density of interacting quasilocalized modes in
amorphous solids, Phys. Rev. E 99, 023003 (2019).

033003-9

https://doi.org/10.1002/adem.200700289
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1103/PhysRevE.74.046610
https://doi.org/10.1103/PhysRevLett.102.194301
https://doi.org/10.1038/natrevmats.2016.1
https://doi.org/10.1038/srep27621
https://doi.org/10.1038/srep41000
https://doi.org/10.1093/nsr/nwy005
https://doi.org/10.1002/adfm.202070047
https://doi.org/10.1039/C9NR03952J
https://doi.org/10.1080/01418638108222343
https://doi.org/10.1103/PhysRevE.99.023003


H. LUO et al. PHYSICAL REVIEW E 102, 033003 (2020)

[17] S. Ayrinhac, M. Foret, A. Devos, B. Ruffle, E. Courtens, and
R. Vacher, Subterahertz hypersound attenuation in silica glass
studied via picosecond acoustics, Phys. Rev. B 83, 014204
(2011).

[18] U. Buchenau, Y. M. Galperin, V. L. Gurevich, D. A. Parshin,
M. A. Ramos, and H. R. Schober, Interaction of soft modes and
sound waves in glasses, Phys. Rev. B 46, 2798 (1992).

[19] Y. M. Beltukov, C. Fusco, D. A. Parshin, and A. Tanguy, Boson
peak and Ioffe-Regel criterion in amorphous siliconlike materi-
als: The effect of bond directionality, Phys. Rev. E 93, 023006
(2016).

[20] Y. M. Beltukov, D. A. Parshin, V. M. Giordano, and A. Tanguy,
Propagative and diffusive regimes of acoustic damping in bulk
amorphous material, Phys. Rev. E 98, 023005 (2018).

[21] S. Gelin, H. Tanaka, and A. Lemaître, Anomalous phonon scat-
tering and elastic correlations in amorphous solids, Nat. Mater.
15, 1177 (2016).

[22] T. Damart, A. Tanguy, and D. Rodney, Theory of harmonic dis-
sipation in disordered solids, Phys. Rev. B 95, 054203 (2017).

[23] B. Rufflé, M. Foret, E. Courtens, R. Vacher, and G. Monaco,
Observation of the Onset of Strong Scattering on High-
Frequency Acoustic Phonons in Densified Silica Glass, Phys.
Rev. Lett. 90, 095502 (2003).

[24] B. Rufflé, G. Guimbretière, E. Courtens, R. Vacher, and G.
Monaco, Glass-Specific Behavior in the Damping of Acousti-
clike Vibrations, Phys. Rev. Lett. 96, 045502 (2006).

[25] B. Rufflé, D. A. Parshin, E. Courtens, and R. Vacher, Boson
Peak and its Relation to Acoustic Attenuation in Glasses, Phys.
Rev. Lett. 100, 015501 (2008).

[26] C. Levelut, R. Le Parc, and J. Pelous, Dynamic sound attenua-
tion at hypersonic frequencies in silica glass, Phys. Rev. B 73,
052202 (2006).

[27] G. Monaco and V. M. Giordano, Breakdown of the Debye
approximation for the acoustic modes with nanometric wave-
lengths in glasses, Proc. Natl. Acad. Sci. U.S.A. 106, 3659
(2009).

[28] G. Baldi, V. M. Giordano, G. Monaco, and B. Ruta, Sound
Attenuation at Terahertz Frequencies and the Boson Peak of
Vitreous Silica, Phys. Rev. Lett. 104, 195501 (2010).

[29] E. Duval and A. Mermet, Inelastic x-ray scattering from non-
propagating vibrational modes in glasses, Phys. Rev. B 58, 8159
(1998).

[30] H. Mizuno, S. Mossa, and J.-L. Barrat, Acoustic excitations and
elastic heterogeneities in disordered solids, Proc. Natl. Acad.
Sci. U.S.A. 111, 11949 (2014).

[31] A. Tanguy, J. P. Wittmer, F. Leonforte, and J.-L. Barrat, Con-
tinuum limit of amorphous elastic bodies: A finite-size study of
low-frequency harmonic vibrations, Phys. Rev. B 66, 174205
(2002).

[32] F. Leonforte, A. Tanguy, J. P. Wittmer, and J.-L. Barrat, Inho-
mogeneous Elastic Response of Silica Glass, Phys. Rev. Lett.
97, 055501 (2006).

[33] A. Tanguy, B. Mantisi, and M. Tsamados, Vibrational modes as
a predictor for plasticity in a model glass, Europhys. Lett. 90,
16004 (2010).

[34] A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco,
Heterogeneous shear elasticity of glasses: The origin of the
boson peak, Sci. Rep. 3, 1407 (2013).

[35] W. Schirmacher, T. Scopigno, and G. Ruocco, Theory of vi-
brational anomalies in glasses, J. Non-Cryst. Solids 407, 133
(2015).

[36] G. Monaco and S. Mossa, Anomalous properties of the acoustic
excitations in glasses on the mesoscopic length scale, Proc.
Natl. Acad. Sci. U.S.A. 106, 16907 (2009).

[37] L. Wang, L. Berthier, E. Flenner, P. Guan, and G. Szamel,
Sound attenuation in stable glasses, Soft Matter 15, 7018
(2019).

[38] H. Mizuno, G. Ruocco, and S. Mossa, Sound damping in
glasses: Interplay between anharmonicities and elastic hetero-
geneities, Phys. Rev. B 101, 174206 (2020).

[39] P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, Diffusons,
locons and propagons: Character of atomic vibrations in amor-
phous Si, Philos. Mag. B 79, 1715 (1999).

[40] E. van der Giessen, P. A. Schultz, N. Bertin, V. V. Bulatov, W.
Cai, G. Csányi, S. M. Foiles, M. G. D. Geers, C. González,
M. Hütter, W. K. Kim, D. M. Kochmann, J. LLorca, A. E.
Mattsson, J. Rottler, A. Shluger, R. B. Sills, I. Steinbach, A.
Strachan, and E. B. Tadmor, Roadmap on multiscale materials
modeling, Modell. Simul. Mater. Sci. Eng. 28, 043001 (2020).

[41] V. Bulatov and A. Argon, A stochastic model for continuum
elastoplastic behavior. I. Numerical approach and strain local-
ization, Modell. Simul. Mater. Sci. Eng. 2, 167 (1994).

[42] C. Maloney and A. Lemaître, Universal Breakdown of Elastic-
ity at the Onset of Material Failure, Phys. Rev. Lett. 93, 195501
(2004).

[43] T. Albaret, A. Tanguy, F. Boioli, and D. Rodney, Mapping
between atomistic simulations and eshelby inclusions in the
shear deformation of an amorphous silicon model, Phys. Rev.
E 93, 053002 (2016).

[44] A. Nicolas, E. E. Ferrero, K. Martens, and J.-L. Barrat,
Deformation and flow of amorphous solids: Insights from
elastoplastic models, Rev. Mod. Phys. 90, 045006 (2018).

[45] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat,
Local elasticity map and plasticity in a model Lennard-Jones
glass, Phys. Rev. E 80, 026112 (2009).

[46] G. Molnár, P. Ganster, J. Török, and A. Tanguy, Sodium effect
on static mechanical behavior of MD-modeled sodium silicate
glasses, J. Non-Cryst. Solids 440, 12 (2016).

[47] G. Molnar, P. Ganster, and A. Tanguy, Effect of composition
and pressure on the shear strength of sodium silicate glasses: An
atomic scale simulation study, Phys. Rev. E 95, 043001 (2017).

[48] G. Molnár, P. Ganster, A. Tanguy, E. Barthel, and G.
Kermouche, Densification dependent yield criteria for sodium
silicate glasses—An atomistic simulation approach, Acta
Mater. 111, 129 (2016).

[49] G. Molnár, G. Kermouche, and E. Barthel, Plastic re-
sponse of amorphous silicates, from atomistic simulations to
experiments—A general constitutive relation, Mech. Mater.
114, 1 (2017).

[50] J. R. Willis, The construction of effective relations for waves in
a composite, C. R. Mec. 340, 181 (2012).

[51] G. G. Stokes, On the theories of the internal friction of fluids in
motion, and of the equilibrium and motion of elastic solids, in
Mathematical and Physical Papers, Cambridge Library Collec-
tion - Mathematics (Cambridge University Press, Cambridge,
2009), pp. 75–129.

033003-10

https://doi.org/10.1103/PhysRevB.83.014204
https://doi.org/10.1103/PhysRevB.46.2798
https://doi.org/10.1103/PhysRevE.93.023006
https://doi.org/10.1103/PhysRevE.98.023005
https://doi.org/10.1038/nmat4736
https://doi.org/10.1103/PhysRevB.95.054203
https://doi.org/10.1103/PhysRevLett.90.095502
https://doi.org/10.1103/PhysRevLett.96.045502
https://doi.org/10.1103/PhysRevLett.100.015501
https://doi.org/10.1103/PhysRevB.73.052202
https://doi.org/10.1073/pnas.0808965106
https://doi.org/10.1103/PhysRevLett.104.195501
https://doi.org/10.1103/PhysRevB.58.8159
https://doi.org/10.1073/pnas.1409490111
https://doi.org/10.1103/PhysRevB.66.174205
https://doi.org/10.1103/PhysRevLett.97.055501
https://doi.org/10.1209/0295-5075/90/16004
https://doi.org/10.1038/srep01407
https://doi.org/10.1016/j.jnoncrysol.2014.09.054
https://doi.org/10.1073/pnas.0903922106
https://doi.org/10.1039/C9SM01092K
https://doi.org/10.1103/PhysRevB.101.174206
https://doi.org/10.1080/13642819908223054
https://doi.org/10.1088/1361-651X/ab7150
https://doi.org/10.1088/0965-0393/2/2/001
https://doi.org/10.1103/PhysRevLett.93.195501
https://doi.org/10.1103/PhysRevE.93.053002
https://doi.org/10.1103/RevModPhys.90.045006
https://doi.org/10.1103/PhysRevE.80.026112
https://doi.org/10.1016/j.jnoncrysol.2016.02.024
https://doi.org/10.1103/PhysRevE.95.043001
https://doi.org/10.1016/j.actamat.2016.03.053
https://doi.org/10.1016/j.mechmat.2017.07.002
https://doi.org/10.1016/j.crme.2012.02.001


CONTINUUM CONSTITUTIVE LAWS TO DESCRIBE … PHYSICAL REVIEW E 102, 033003 (2020)

[52] R. O. Pohl, X. Liu, and E. Thompson, Low-temperature thermal
conductivity and acoustic attenuation in amorphous solids, Rev.
Mod. Phys. 74, 991 (2002).

[53] W. Schirmacher, The boson peak, Phys. Status Solidi B 250,
937 (2013).

[54] S. Parke, Logarithmic decrements at high damping, Br. J. Appl.
Phys. 17, 271 (1966).

[55] M. Carfagni, E. Lenzi, and M. Pierini, The loss factor as a
measure of mechanical damping, in Proceedings of the 16th
International Modal Analysis Conference, Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series
Vol. 3243 (SPIE, 1998), p. 580.

[56] J. C. Maxwell et al., IV. On the dynamical theory of gases,
Philos. Trans. R. Soc. London 157, 49 (1867).

[57] D. Roylance, Engineering Viscoelasticity (Department of
Materials Science and Engineering–Massachusetts Insti-
tute of Technology (Cambridge, MA, 2001), Vol. 2139,
pp. 1–37.

[58] M. Kaliske and H. Rothert, Formulation and implementation
of three-dimensional viscoelasticity at small and finite strains,
Comput. Mech. 19, 228 (1997).

[59] Y. Feng, J. Goree, and B. Liu, Longitudinal viscosity of
two-dimensional Yukawa liquids, Phys. Rev. E 87, 013106
(2013).

[60] M. Kaliske, A formulation of elasticity and viscoelasticity for
fibre reinforced material at small and finite strains, Comput.
Methods Appl. Mech. Eng. 185, 225 (2000).

[61] C. Fusco, T. Albaret, and A. Tanguy, Role of local order in the
small-scale plasticity of model amorphous materials, Phys. Rev.
E 82, 066116 (2010).

[62] F. H. Stillinger and T. A. Weber, Computer simulation of local
order in condensed phases of silicon, Phys. Rev. B 31, 5262
(1985).

[63] T. Vazhappilly and D. A. Micha, Atomic modeling of structural
and optical properties of amorphous silicon, Chem. Phys. Lett.
570, 95 (2013).

[64] A. M. Ukpong, Studies of the electronic and vibrational sig-
natures of the unusual bonding geometries in melt-quenched
amorphous silicon, Mol. Phys. 107, 2521 (2009).

[65] J. Lysmer and R. L. Kuhlemeyer, Finite dynamic model for
infinite media, J. Eng. Mech. Div. 95, 859 (1969).

[66] R. Clayton and B. Engquist, Absorbing boundary conditions for
acoustic and elastic wave equations, Bull. Seismol. Soc. Am.
67, 1529 (1977).

[67] H. S. Kim, A study on the performance of absorbing boundaries
using dashpot, Engineering 06, 593 (2014).

[68] H. Luo, A. Gravouil, V. Giordano, and A. Tanguy, Thermal
transport in a 2D nanophononic solid: Role of bi-phasic mate-
rials properties on acoustic attenuation and thermal diffusivity,
Nanomaterials 9, 1471 (2019).

[69] D. F. Swinehart, The Beer-Lambert law, J. Chem. Edu. 39, 333
(1962).

[70] R. Zeller and R. Pohl, Thermal conductivity and specific heat of
noncrystalline solids, Phys. Rev. B 4, 2029 (1971).

[71] R. Pohl, Amorphous materials: Thermal conductivity, in En-
cyclopedia of Materials: Science and Technology (Elsevier,
Amsterdam, 2001), pp. 232–237.

[72] W. Li, Y. Yang, G. Zhang, and Y.-W. Zhang, Ultrafast and direc-
tional diffusion of lithium in phosphorene for high-performance
lithium-ion battery, Nano Lett. 15, 1691 (2015).

[73] L. Yang, N. Yang, and B. Li, Extreme low thermal conductivity
in nanoscale 3D Si phononic crystal with spherical pores, Nano
Lett. 14, 1734 (2014).

[74] T. Damart, V. M. Giordano, and A. Tanguy, Nanocrystalline
inclusions as a low-pass filter for thermal transport in a-Si, Phys.
Rev. B 92, 094201 (2015).

[75] Y.-F. Wang, Y.-S. Wang, and V. Laude, Wave propagation in
two-dimensional viscoelastic metamaterials, Phys. Rev. B 92,
104110 (2015).

[76] P. Verpeaux, A. Millard, T. Charras, and A. Combescure, A
Modern Approach of Large Computer Codes for Structural
Analysis (IASMiRT, Anaheim, CA, 1989).

[77] M.-É. Schwaab, T. Biben, S. Santucci, A. Gravouil, and L.
Vanel, Interacting Cracks Obey a Multiscale Attractive to Re-
pulsive Transition, Phys. Rev. Lett. 120, 255501 (2018).

[78] S. Reese and S. Govindjee, A theory of finite viscoelasticity and
numerical aspects, Int. J. Solids Struct. 35, 3455 (1998).

[79] R. Lin and U. Schomburg, A finite elastic–viscoelastic–
elastoplastic material law with damage: Theoretical and numer-
ical aspects, Comput. Methods Appl. Mech. Eng. 192, 1591
(2003).

[80] L. Rouleau and J.-F. Deü, Time-domain analysis of viscoelastic
systems, Procedia Eng. 199, 384 (2017).

[81] S. Marburg and B. Nolte (eds.), Computational Acoustics of
Noise Propagation in Fluids—Finite and Boundary Element
Methods (Springer, Berlin, Heidelberg, 2008).

[82] N. M. Newmark, A method of computation for structural dy-
namics, J. Eng. Mech. Div. 85, 67 (1959).

033003-11

https://doi.org/10.1103/RevModPhys.74.991
https://doi.org/10.1002/pssb.201248544
https://doi.org/10.1088/0508-3443/17/2/416
https://doi.org/10.1098/rstl.1867.0004
https://doi.org/10.1007/s004660050171
https://doi.org/10.1103/PhysRevE.87.013106
https://doi.org/10.1016/S0045-7825(99)00261-3
https://doi.org/10.1103/PhysRevE.82.066116
https://doi.org/10.1103/PhysRevB.31.5262
https://doi.org/10.1016/j.cplett.2013.03.053
https://doi.org/10.1080/00268970903386135
https://doi.org/10.4236/eng.2014.610060
https://doi.org/10.3390/nano9101471
https://doi.org/10.1021/ed039p333
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1021/nl504336h
https://doi.org/10.1021/nl403750s
https://doi.org/10.1103/PhysRevB.92.094201
https://doi.org/10.1103/PhysRevB.92.104110
https://doi.org/10.1103/PhysRevLett.120.255501
https://doi.org/10.1016/S0020-7683(97)00217-5
https://doi.org/10.1016/S0045-7825(02)00649-7
https://doi.org/10.1016/j.proeng.2017.09.057

