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ABSTRACT

A few years ago, Hubbard (2012, ApJ, 756, L15; 2013, ApJ, 768, 43) presented an elegant, non-perturbative method, called concentric
MacLaurin spheroid (CMS), to calculate with very high accuracy the gravitational moments of a rotating fluid body following a
barotropic pressure-density relationship. Having such an accurate method is of great importance for taking full advantage of the
Juno mission, and its extremely precise determination of Jupiter gravitational moments, to better constrain the internal structure of
the planet. Recently, several authors have applied this method to the Juno mission with 512 spheroids linearly spaced in altitude. We
demonstrate in this paper that such calculations lead to errors larger than Juno’s error bars, invalidating the aforederived Jupiter models
at the level required by Juno’s precision. We show that, in order to fulfill Juno’s observational constraints, at least 1500 spheroids must
be used with a cubic, square or exponential repartition, the most reliable solutions. When using a realistic equation of state instead of
a polytrope, we highlight the necessity to properly describe the outermost layers to derive an accurate boundary condition, excluding
in particular a zero pressure outer condition. Providing all these constraints are fulfilled, the CMS method can indeed be used to derive
Jupiter models within Juno’s present observational constraints. However, we show that the treatment of the outermost layers leads
to irreducible errors in the calculation of the gravitational moments and thus on the inferred physical quantities for the planet. We
have quantified these errors and evaluated the maximum precision that can be reached with the CMS method in the present and future
exploitation of Juno’s data.

Key words. planets and satellites: gaseous planets – planets and satellites: interiors – equation of state – methods: numerical

1. Introduction

The concentric MacLaurin spheroid (CMS) method has been de-
veloped by Hubbard (2012, 2013, hereafter H13). This method
consists of a numerical hydrostatic scheme which decomposes a
rotating celestial body into N spheroids of constant density (the
well-known MacLaurin spheroid would correspond to the case
N = 1). It needs two inputs. First, (i) the planet rotational dis-
tortion, q = ω2a3/GM, where ω denotes the angular velocity, a
the equatorial radius, M the planet’s mass and G is the gravita-
tional constant. The factor q, which is linked to the MacLaurin’s
parameter, m = 3ω2/(4πρG), is also used in the theory of figures
(see for example Zharkov & Trubitsyn 1978; or Chabrier et al.
1992), and represents the ratio of the rotational over gravitational
potentials. Second, (ii) a barotrope (P, ρ) representing the equa-
tion of state (eos) of the planet and its composition.

For a given density profile, we can calculate the gravitational
potential of each spheroid (which is constant on the spheroid),
and then calculate self-consistently the radius of each spheroid
as a function of latitude. The obtained radii give different values
for the potential of the spheroids, and successive iterations lead
to convergence of both shape and potential of the spheroids (see
Hubbard 2012, and H13). With the density and potential of each
spheroid, one easily obtains the pressure from the hydrostatic
equilibrium condition.

After this first stage of convergence, it is necessary to ver-
ify whether the obtained (P, ρ) profile of the planet is in agree-
ment with the prescribed barotrope. Since generally it is not, an

outer loop is necessary to converge the density profile for the
given eos.

At last, once the radii, potentials and densities of the
spheroids have been obtained consistently with the required nu-
merical precision, one obtains a discretized profile of these quan-
tities throughout the whole planet. We can then calculate the
gravitational moments, to be compared with Juno’s observations.
The formula is, by additivity:

Jext
k =

N−1∑
i=0

Ji
k × (λi)k , (1)

where Jext
k is the moment of order k, Ji

k is the moment of or-
der k of the ith spheroid, λi is the ratio of the equatorial radius of
the ith spheroid over the equatorial radius of the planet and the
spheroids have been labeled with index i = 0,N − 1, with i = 0
corresponding to the outermost spheroid and N − 1 to the in-
nermost one. Equation (1) implies that the uncertainties of each
spheroid are added up, so a small error on the radius, potential
or density can lead ultimately to a significant error once summed
over all the layers.

As explained in H13, for a given piecewise density profile,
the evaluation of the gravitational moments is extremely precise,
with an error around 10−13. The main sources of error, apart
from the uncertainties on the barotrope, then arise from the fi-
nite number of spheroids and from the approximation of constant
density within each spheroid, potentially leading to an incorrect
evaluation of the radii and potential of the layers. In this paper,
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Table 1. Values of the planetary parameters of Jupiter.

Parameter Value
Ga (global parameter) 6.672598 × 10−11 ± 2 × 10−17 m3 kg−1 s−2

G ∗ MJ
b 126 686 533 ± 2 × 109 m3 s−2

MJ 1.89861 × 1027 kg
Req

c 71 492 ± 4 km
Rpolar

c 66 854 ± 10 km
ωd 1.7585324 × 10−4 ± 6 × 10−10 s−1

ρ̄ 1326.5 kg m−3

m = 3ω2/4πGρ̄ 0.083408
q = ω2R3

eq/GMJ 0.0891954
J2 × 106e 14 696.514 ± 0.272
−J4 × 106e 586.623 ± 0.363
J6 × 106e 34.244 ± 0.236
−J8 × 106e 2.502 ± 0.311

Notes. Req and Rpolar are observed at 1 bar. The value of the pulsation is chosen following Archinal et al. (2011).

References. (a) Cohen & Taylor (1987). (b) Folkner et al. (2017). (c) Archinal et al. (2011). (d) Riddle & Warwick (1976). (e) Bolton et al. (2017).

we evaluate the errors due to the discretization of the density
distribution, and of the description of the outermost layers, the
main aim of the paper is to find the best configuration in the
CMS method to safely use it in the context of the Juno mission.

In Sect. 2, we show analytically that 512 spheroids are not
enough to match Juno’s error bars, and that the repartition of
spheroids is an important parameter in the evaluation of the
errors. We confirm these results by numerical calculations in
Sect. 3. We then apply our method with a realistic eos in Sect. 4.
These sections show the need to improve the basic CMS method.
In Sect. 5, we study the impact of the outer boundary condition.
Section 6 is devoted to the conclusion.

2. Analytical evaluation of the errors
in the CMS method

2.1. Evaluation of the errors with 512 spheroids

In order to evaluate the errors analytically, we have considered
a polytrope of index n = 1, P ∝ ρ2. We call ρ2 the discretized
version of ρ in the CMS model. The various quantities relevant
for Jupiter are given in Table 1.

If we assume longitudinal and north-south symmetry, only
the even values of the gravitational moments are not null. There-
fore, we were able to express the difference between the ana-
lytical value of the potential and the value obtained with the
CMS method on a point exterior to the planet with radial and
latitudinal coordinates (r, µ = cos(θ), where θ is the angle from
the rotation axis), as:

∆φ = −
4πG

r

∞∑
k=0

P2k(µ)r−2k

×

∫ 1

0

∫ aJ

0

[
ρ(r′) − ρ2(r′)

]
r′2k+2P2k(µ)dr′dµ, (2)

where P2k is the Legendre polynomial of order 2k and aJ is
Jupiter’s equatorial radius. Our first assumption here was that the
CMS method prefectly captures the shapes of the spheroids. In
reality, this is the case only for an infinite number of spheroids,
but we have neglected this first source of error which is difficult
to evaluate analytically.

Since the masses of the two models must be the same, the
k = 0 term must cancel. In terms of gravitational moments J2k:

J2k = −
4π

Ma2k
J

∫ 1

0

∫ aJ

0
ρ(r′)r′2k+2P2k(µ)dr′ dµ. (3)

By construction we can write ρ2(r) = ρi, ri+1 < r ≤ ri. So the
difference on the gravitational moment between the exact and
the CMS models from Eq. (3) is:

∆J2k = −
4π

Ma2k
J

N−1∑
i=0

∫ 1

0

∫ ri(µ)

ri+1(µ)

[
ρ(r′) − ρi

]
× r′2k+2P2k(µ)dr′ dµ. (4)

This formulation is exactly the same as in H13 (Eq. (10)), except
that we used ρi instead of δρi. The analytical expression of the
density of a rotating polytrope at first order in m as a function
of the mean radius l of the equipotential layers and of the planet
mean density ρ̄ is given by (Zharkov & Trubitsyn 1978):

ρ(l)
ρ̄

= A
sin

(
α

l
l0

)
(

l
l0

) +
2
3

m, (5)

with A =
π

3

(
1 −

2
3

m
(
1 −

6
π2

))
and α = π

(
1 +

2m
π2

)
, (6)

where l0 is the outer mean radius.
At this stage, our method implied an important approxima-

tion, namely that ρ2 followed perfectly the polytropic density
profile of Eq. (5) on each layer, if evaluated at the middle of the
layer: ρi = ρpoly (ri + ri+1) /2. The errors we calculated are thus
smaller than the real ones since we did not take into account
those arising from the departure from the exact density profile.
In Appendix A, we show how to get rid of the dependence on the
angular part, µ, in Eq. (4). As detailed in Appendix B, for a linear
spacing of the spheroid with depth, ∆r = aJ/N, we obtained:

|∆J2k | ∼ (2k + 3)
π

12
〈P2k〉

N3

N−1∑
i=0

(
1 −

1
N

(
i +

1
2

))2k+2

, (7)

with 〈P2k〉 =

∣∣∣∣∣ ∫ 1

0

(
1

1 + e2µ2

)k+1

P2k(µ)dµ
∣∣∣∣∣. (8)
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Fig. 1. Contribution of each part of the planet to the total value of J2,
normalized to its maximum value, for a polytrope of index n = 1.

It is interesting to note that the relative error of each layer is a
decreasing function of i: the external layers lead to larger errors
on the gravitational moments than the inner ones. Figure 1 dis-
plays the contribution to J2 of the outer layers of the planet in the
polytropic case (we have numerically integrated the expression
for J2 from Eqs. (3), (5) and (A.4)).

To quantify the error, we focused on J2, the case k = 1. As
detailed in Appendix C, one gets:

|∆J2| × 106 ∼
π

12
〈P2〉

N2 × 106 ≈
9.4 × 103

N2 · (9)

With N = 512 (as used in H13), we get |∆J2| × 106 ∼ 3.6× 10−2.
The first data from Juno after three orbits give an uncertainty
of 2.72 × 10−1 on J2 × 106. We are under these error bars by
a factor of eight, but in these analytical calculations, we have
made several restrictive approximations. Notably, we have sup-
posed that the numerical method can find perfectly the shape and
the density of each spheroid, and we have neglected the factor
α3/3 ∼ 2−10 in Eq. (B.20). As mentioned earlier, it is hard to
evaluate a priori the errors due to the wrong shapes and densi-
ties of the spheroids, but combined with the neglected factor, we
expect the real numerical errors to become larger than Juno’s er-
ror bars. This is confirmed by numerical calculations in the next
section. Therefore, even in this ideal case, the CMS method in
its basic form is intrinsically not precise enough to safely fulfill
Juno’s constraints. Calculations with 512 MacLaurin spheroids
with a linear spacing cannot safely enter within Juno’s error bars.

Hubbard & Militzer (2016, hereafter HM16) proposed a bet-
ter spacing of the spheroids, with twice more layers above 50%
of the radius than underneath. As shown in Appendix C.2, the
new error for 512 spheroids becomes:

|∆J2| × 106 =
9

256
π〈P2〉

N2 × 106 ≈ 1.51 × 10−2. (10)

This is about 2.5 times better than with the linear spacing. But
once again, when considering the factor of ten neglected in
Eq. (B.20) in nearly the entire planet and the strong approx-
imation of perfect density and perfect shape of the discrete
spheroids, it seems very unlikely to reach in reality a precision
well within Juno’s requirements. Again, this is confirmed numer-
ically in Sect. 3. We note in passing that the difference between

the errors obtained with the above two different spacings shows
the strong impact of the outermost layers in the method.

In conclusion, these analytical calculations show that, at least
with 512 sheroids, the CMS method, first developed in H13 and
improved in HM16, leads to a discretization error larger than
Juno error bars. Increasing the number of spheroids would give
a value of J2 outside Juno’s error bars and would thus require
a change in the derived physical quantities (core mass, heavy
element mass fraction ...). We investigate in more details the un-
certainties on these quantities in Sect. 4.3.

It should be mentioned that Wisdom & Hubbard (2016) cal-
culated similar errors by comparing their respective methods,
finding (their Eq. (15)):

log10

∣∣∣∣∣∆J2

J2

∣∣∣∣∣ ' 0.7−1.81 log10(N), (11)

while we get (12)

log10

∣∣∣∣∣∆J2

J2

∣∣∣∣∣ ' −0.6−2 log10(N). (13)

The 0.7 constant term is about 20 times the value obtained in
Eq. (10). This confirms that, indeed, we underestimated the er-
rors in the analytical calculations, as mentioned above.

These expressions show that one needs to use at least
2000 spheroids to reach Juno’s precision, as can already be in-
ferred from Wisdom & Hubbard (2016). These authors, how-
ever, suggest that 512 spheroids can still be used to derive in-
terior models, because a slight change in the density of one
spheroid could balance the discretization error. A change in
one spheroid density, however, will affect the whole planet den-
sity structure, because of the hydrostatic condition. Changing
the density of each spheroid (within the uncertainties of the
barotrope itself) can thus yield quite substantial changes in the
gravitational moments.

Even more importantly, if the method used to analyze Juno’s
data has uncertainties due to the number and repartition of
spheroids larger than Juno’s error bars, this raises the question
of the need for a better precision on the gravitational data, since
the derived models depend on the inputs of the method itself.
It is thus essential to quantify precisely the uncertainties arising
from the discretization errors, as we do in Sects. 4 and 5.

Another option would be to use Wisdom’s method (Wisdom
1996), which has virtually an unlimited precision. Table 3 of
Wisdom & Hubbard (2016) indeed shows that its accuracy is
greater than anything Juno will ever be able to measure. In its
present form, however, it is not clear whether this method can
easily handle density, composition or entropy discontinuities;
it is certainly worth exploring this issue. The CMS method, in
contrast, is particularly well adapted to such situations, charac-
teristic of planetary interiors. As for the standard perturbative
theory of figures, it becomes prohibitively cumbersome when
deriving high-order (fifth even order for J10) moments (see e.g.,
Nettelmann 2017). For these reasons, the CMS method appears
to be presently the most attractive one to analyze Juno’s data.
As mentioned above, it is thus crucial to properly quantify its
errors and examine under which conditions it can be safely used
to derive reliable enough Jupiter models.

2.2. Spacing as a power of k

As shown in Appendix C.3, for a cubic distribution of spheroids
as a function of depth, we obtained the error on J2:

|∆Jcubic
2 | ∼

π

12
〈P2〉

N2 · (14)
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This is the same result as Eq. (9). We checked that we get the
same results for a quadratic spacing or with a spacing of power
of four (it is probably easy to prove that this holds for any integer
power of n). This is interesting for several reasons.

First, these types of spacings have more points in the high
atmosphere region, where the neglected factor of Eq. (B.20) is
closer to two than ten. The global neglected factor is then smaller
than for a linear spacing. Second, we studied where the cubic
spacing is equal to the linear one. Using Eq. (C.11), we got:

∆rcubic
i = ∆r ⇐⇒

∆i3

N2 = 1

⇐⇒ 3i2 + 3i + 1 = N2

=⇒ i ∼
N
√

3
· (15)

More generally, with a spacing of power k, ∆rk
i is smaller than

the linear ∆r for i ≤ N/k
1

k−1 , and larger for larger values of i.
That means that above ri = aJ

(
1 − 1/k

1
k−1

)
the radius, potential

and density of the spheroids are better estimated than in the lin-
ear case and less well below this radius. And the stronger the
exponent in the spheroid distribution, the larger the external gain
(internal loss) on the spheroids because the more (less) tight the
external (internal) layers.

With a quadratic spacing, the spheroids are closer than in the
linear case above 75% of the radius of the planet while inside this
limit the spacing is worse than in the linear case. With a cubic
spacing the precision in the spheroids repartition is better than in
the linear case down to only 80% of the radius, while for a power
of 4 the limit is 85%. As shown and explained in Sect. 3.1, the
cubic spacing ends up being the best compromise.

There is one remaining problem with a cubic spacing: for
N > 512, the sizes of the first (outermost) layers are extremely
small, well below the kilometer, with densities smaller than
10−3 kg m−3. It is thus mandatory to have an eos accurate enough
in this regime; if not the errors will be very large. The other so-
lution, that is discussed in Sect. 5 is to impose a non zero density
as outer boundary condition.

2.3. Exponential spacing of the layers

Here, we examine an exponential repartition of spheroids. The
details of the calculations are given in Appendix C.4, and the
repartition functions of the spheroids are displayed in Fig. 2.

For the exponential repartition, the value of the error is:

|∆Jexp
2 | × 106 '

π〈P2〉

252
×
γ2

N2 × 106 ≈ 449
(
γ

N

)2
, (16)

where γ ∈ [5, 10] is a parameter which determines how sharp we
want the exponential function to be. A large value of γ leads to
a steep slope in the innermost layers and a very small ∆ri in the
exterior. With N = 512:

|∆Jexp
2 | × 106 ∈ [1.54 × 10−2, 1.6 × 101]. (17)

As seen, the smaller γ the smaller the error, but also the larger the
range of outer layers which is a problem, as examined in Sect. 3.
Note also that the neglected factor of Eq. (B.20) in the analytical
calculations is much smaller because of the very large number
of spheroids in the outermost part of the envelope (see Fig. 2).
Compared to Eq. (10), we see that the exponential error is always
larger for γ > 3. As discussed in the next section, however, the
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Fig. 2. Equatorial radius as a function of the spheroid number for vari-
ous functional forms for the repartition of the spheroids. a) from 0 to aJ ;
b) zoom of the external layers.

impact of the first layers becomes very important with this type
of spheroid repartition.

In summary, in this section, we have shown analytically that
512 layers spaced linearly is not enough to obtain sufficient ac-
curacy on the gravitational moments of Jupiter to safely exploit
Juno’s data. Indeed, the theoretical errors are within Juno’s er-
ror bars but the simplifying assumptions used in the calculations
(in particular perfect shape and density of the spheroids) suggest
that the real calculations will not match the desired accuracy.
As explained in Sect. 1, the method, mathematically speaking,
is precise up to 10−13 for a piecewise density profile, but the
errors due to the discretization, as derived in this section, are
of the order of ∼10−7. Using a better repartition of spheroids
yields, at best, an error of the order of Juno’s error bars but, in
any case, remains insufficient with 512 spheroids. The impact of
such an error on Jupiter’s derived physical quantities is discussed
in Sect. 4.3.

According to this analytical study, using a minimum of
1000 spheroids spaced cubically, quadratically or exponentially
seems to provide satisfying solutions. That may sound surprising
since the spacing used in HM16, with their particular first layer
density profile, gives a smaller uncertainty in Eq. (10) than the
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Table 2. Difference between the values calculated with our code and the
results from Hubbard (2013).

Quantity Theoretical value H13 Our code

J2 × 106 13 988.511 13 989.253 13 989.239
−J4 × 106 531.82810 531.87997 531.87912
J6 × 106 30.118323 30.122356 30.122298
−J8 × 106 2.1321157 2.1324628 2.1324581

cubic or square one in Eq. (14). To explain this apparent contra-
diction, we need to explore more precisely how the error depends
on the different spacings by comparing numerical calculations
with the analytical predictions. This is done in the next section.

3. Numerical calculations

3.1. How to match Juno’s error bars

In this section, we explore two main issues: how does the error
depend (i) on the number of layers and (ii) on the spacing of the
spheroids. Another parameter we did not mention in the previous
section is the repartition of the first layers. This is the subject of
the next section.

To study this numerically, we have developed a code similar
to the one developed by Hubbard, as described in H13. The ac-
curacy of our code has been assessed by comparing our results
with all the ones published in the above papers. In the case of
constant density, we recovered a MacLaurin spheroid up to the
numerical precision, while for a polytrope of index n = 1, we
recovered the results of Table 5 of H13, as shown in Table 2 (the
differences are due to the fact that the published results were not
converged to the machine precision. With the very same con-
ditions, our code and Hubbard’s agree to 10−14). We have also
performed several tests of numerical convergence with different
repartitions of spheroids. We have compared our various numer-
ical evaluations of the errors, double precision with 30 orders of
gravitational moments and 48 points of Gauss-Legendre quadra-
ture, to a quadruple precision method with 60 orders of moments
and 70 quadrature points, from a couple of hundred spheroids to
2000 spheroids. The differences are of the order of 10−13, neg-
ligible compared with Juno’s error bars. Finally, as explained in
Hubbard et al. (2014), we have implemented an auto exit of the
program if the potential diverges from the audit points.

Figure 3 displays the difference between the expected and
numerical values of J2 for a polytrope of index n = 1, for dif-
ferent spacings with 512 layers. The first thing to note is that,
whatever the repartition, the numerical errors are always larger
than Juno’s error bars: 512 spheroids are definitely not enough
to match the measurements of the Juno mission with sufficient
accuracy, as anticipated from the analytical calculations of the
previous section.

The second and quite important problem, as briefly aluded to
at the end of Sect. 2, is the difference between calculations using
a density ρ = 0, as in HM16, or ρ , 0 in the first layer. With
512 spheroids spaced as in HM16, the first layer is 50 km deep.
Imposing a zero density in this layer is equivalent to decreasing
the radius of the planet by 50 km, which is larger than the uncer-
tainty on Jupiter’s radius. As seen in the figure, if one does so,
the error on J2 is more than 100 × Juno’s error bar. Specifically,
for the HM16 spacing, when the first layer has a non-zero den-
sity, its impact on the value of J2 × 106 is ∼5 × 101. We discuss
that in more details in Sect. 3.2.
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1
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Fig. 3. Absolute value of the difference between the expected and nu-
merical results on J2 × 106 for different spacings of the spheroids with
N = 512. Lin, squ and cub are repartitions of spheroids following a
power law of exponent 1, 2 or 3, respectively; expγ=8 is the exponential
repartition with our favored value γ = 8. HM is the method exposed in
HM16, explained in Appendix C.2. The subscript 1 means that the first
layer has a non-0 density while the subscript 0 means zero density in
the first layer.

Figures 4 and 5 display the behavior of the error as a func-
tion of the number N of spheroids for a cubic, square and a
few exponential repartitions, respectively. As mentioned earlier,
we see in Fig. 4a that only for N > 1000 spheroids do we get
an error smaller than Juno’s error bar. Importantly enough, we
also see that the first spheroid (N = 0) makes no difference
on the result when the layers are cubically spaced (Fig. 4b).
This contrasts with the results obtained with the HM16 spheroid
repartition, where we see that the first spheroid has a huge im-
pact on the final result (Fig. 3). The cubic spacing with at least
1000 spheroids thus matches the constraints, with both an uncer-
tainty within Juno’s error bars and a negligible dependence on
the first layer. As mentioned in the previous section (and shown
later in Fig. 6b), however, with the cubic spacing the densities of
the first layers are orders of magnitude smaller than 10−3 kg m−3,
questioning the validity of the description of the gas properties
by an equilibrium equation of state. For this reason, it is prefer-
able to use a square or exponential spacing in the case of a zero
pressure outer boundary condition. The effect of changing this
boundary condition is discussed in Sect. 5.

As seen in Fig. 4a, the square spacing requires at least
1500 spheroids to be under the error bars of Juno with reason-
able accuracy. For 1500 or 2000 spheroids, the first layers have
densities around 10−2 kg m−3. In Fig. 4b, we confirm that, in that
case, having a zero or non-zero density outer layer changes the
value under the precision of Juno.

For the exponential spacing, we recall that the higher the
γ value the smaller the first layer, which can become a prob-
lem (see Sect. 3.2). Considering Figs. 5a and b, the best choices
for γ are γ = 8 or γ = 7, because it does not require too many
spheroids to converge and at the same time the obtained values
for the densities of the first layers are comparable to the ones
obtained with the square repartition (slightly larger for γ = 7).

Globally, we conclude in this section that we need at
least 1500 and preferentially 2000 spheroids spaced quadrati-
cally or exponentially to fulfill our goals of both high enough
precision for Juno’s data and densities high enough to justify the
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Fig. 4. Numerical error as a function of the number of spheroids for the cubic and square repartitions. a) Error between the analytical and measured
J2 × 106; b) difference on J2 × 106 when the first layer has 0 or non-0 density.
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Fig. 5. Numerical error as a function of the number of spheroids for exponential repartitions. a) Error between the analytical and measured J2×106;
b) difference on the J2 × 106 when the first layer has 0 or non-0 density.

use of an equilibrium eos. Having two different repartitions that
match Juno error bars brings some confidence in results that are
obtained with a realistic eos instead of a polytrope. Furthermore,
with such choices of repartition, we do not need to impose a
first layer with zero density. In Sect. 5, however, we show that
the cubic repartition can also be used, with a different boundary
condition.

3.2. Importance of the first layers

As explained in HM16, these authors improved the spacing of
their spheroids by adding up a first spheroid at depth aJ − ∆r/2,
instead of ∆r, which has zero density: ρ0 = 0. Although this

could seem quite arbitrary, it has an analytical justification
emerging from the linear dependence of the density with radius
(Hubbard, priv. comm.). The obtained result is indeed closer to
the analytical value of Hubbard (1975), but it has two downsides.
First, it decreases arbitrarily the radius by 50 km (see discussion
above). For example, for a cubic spacing with 512 spheroids, de-
creasing the radius by 50 km leads to J2×106 = 13961.23 with an
error of 2.7 × 101 according to the analytical calculation, 100 ×
Juno’s uncertainty. Furthermore, there is no guarantee that this
repartition will still be valid with a realistic eos, with an expo-
nential dependence of the density upon the radius. In order to
assess the robustness of the results and of the CMS method, one
needs to confirm that different repartitions yield similar values
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i as a function of altitude for linear,

cubic and exponential (γ = 8) repartitions of spheroids. a) From center
to exterior; b) zoom on the external layers.

and that the results are not only correct for one given spheroid
repartition.

More generally, a key question is: why are the first layers so
important in the CMS method? Going back to Fig. 1, we see that
the region outside 90% in radius contributes as much to J2 as the
region within the inner 50%. The problem is the slope of the mo-
ment: it is much steeper in the outside region. Consequently, the
behavior of a layer in the outermost region yields a much larger
error than the contribution from the inner layers. This simply re-
flects the fact that most of the planet angular momentum is in its
outermost part.

Another issue is that, in the first layers, the change in density
represents at least 10% of the density itself and can even become
comparable to this latter. In contrast, in the internal layers, even
a large ∆r yields a relative change of density from one spheroid
to another less than 1%. Then, the error due to the inevitable
mistake on the true shape of the spheroids is much more conse-
quential in the external layers, where the relative density change
is significant. Another source of error stems from the fact that

the pressure is calculated iteratively from the hydrostatic equa-
tion, starting from the outermost layers. A small error in the first
layers will then propagate and get amplified along the density
profile.

Equation (10) of H13 gives the explicit expression of J2 for
each layer. With the notation of the paper:

J2
i = −

(
3
5

)
δρi

∫ 1
0 dµP2k(µ)ξi(µ)5∑N−1

j=0 δρ j
∫ 1

0 dµξi(µ)3
, (18)

δρi = ρi − ρi+1 if i > 0,
δρ0 = ρ0, (19)
ξi(µ) = ri(µ)/aJ . (20)

To illustrate our argument, we said that every spheroid has the
same shape and that δρi is the same as in the rest case, given by
a slight modification of Eq. (63) of H13:

δρi = ρc × δλi

cos(πλi)
λi

−
sin πλi

λ2
i

 , (21)

λi = ξi(0) and δλi = λi − λi+1. (22)

Then, the only different terms for each layer stemmed from the
numerator: δρi × λ

5
i . We plot this value for different spacings of

the spheroids in Fig. 6.
As seen, the linear spacing is much less precise than the other

ones in the external layers because of the very small number of
layers; it will thus greatly enhance the numerical errors. The cu-
bic spacing is much better but has so many points in the out-
ermost layers that it is oversampling the extremely high part of
the atmosphere. The exponential spacing is the worst one in the
lower part of the envelope (see Fig. 6), but provides a nice cut-off
between linear and cubic spacings in the uppermost layer region.

An appealing solution would be to take a combination of all
these spacings to always have the most optimized one in each
region of the planet. We have tried this, with a great number
of spheroids, and the conclusion remains the same: the limit-
ing effect on the total errors is the precision on the external lay-
ers (above ∼95% of the radius). Having simply an exponential
repartition of spheroids throughout the whole planet or the same
exponential in the high atmosphere and then a cubic repartition
when this latter becomes more precise, and then square and lin-
ear repartitions (such a repartition almost doubles the number
of spheroids) yield eventually the same error. To obtain results
within Juno’s precision (see Figs. 4 and 5), we need the external
layers to be smaller than 1 km.

To conclude this section, we want to stress that the main lim-
iting factor in the CMS method is the number of spheroids in
the outmermost layers (above ∼0.95 × aJ) and the proper eval-
uation of their densities. If we do not want to impose a first
layer with 0 density, with consequences not predictable in gen-
eral cases, we must be able to describe this region of the planet
with sufficiently high accuracy. This requires an optimized trade-
off between the number of spheroids in the external layers and
the value of the smallest densities. As shown in Sect. 4.3, the
treatment of these layers in the CMS method is the largest source
of error in the derived physical quantities of the planet.

One could argue that if the outermost layers can not be ade-
quately described by an eos, a direct measurement of their densi-
ties would solve this issue. Unfortunately, beside the fact that, by
construction, MacLaurin spheroids imply constant density lay-
ers, there is an additional theoretical challenge: in the high at-
mosphere, the hydrostatic balance barely holds. The isopotential
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surfaces are not necessarily in hydrostatic equilibrium, as dif-
ferential flows are dominating. The time variability in these re-
gions is an other problematic issue. At any rate, the treatment
of the high atmospheric layers is of crucial importance in the
CMS method, because it determines the structure of all the other
spheroids. An error in the description of these layers will prop-
agate and accumulate when summing up the spheroids inward,
yielding eventually to large errors. In Sect. 5, we examine the
solution used in Wahl et al. (2017) to overcome this issue.

3.3. One bar radius and external radius

So far, Jupiter outer radius in the calculations has been defined
as the observed equatorial radius at 1 bar, R1bar = 71 492 km (see
Table 1). A question then arises: does the atmosphere above 1 bar
have any influence on the value of the gravitational moments?

When converging numerically the radius at 1 bar to the ob-
served value, we obtained a value for the outer radius Rext =
71 505 km. Integrating Eq. (3) from R1bar to Rext by considering
a constant density equal to the 1 bar density, with the simplifi-
cations of Appendix A, yields a contribution of the high atmo-
sphere J2<1 bar × 106 ' 1 × 10−2.

It thus seems reasonable to use the 1 bar radius as the outer
radius with the current Juno’s error bars. In Sect. 5, however,
we examine in more detail this issue and quantify the impact
of neglecting the high atmosphere layers in the calculations, as
done in Wahl et al. (2017). In the next section, we now examine
if the conclusions of Sect. 3 still hold when using a realistic eos.

4. Calculations with a realistic equation of state

The aim of this paper is not to derive the most accurate Jupiter
models or to use the most accurate eos, but to verify (i) under
which conditions is the CMS method appropriate in Juno’s con-
text, (ii) which spheroid repartition, among the ones tested in the
previous sections, is reliable when using a realistic eos to de-
fine the barotropes, and (iii) whether the high atmosphere is cor-
rectly sampled to induce negligible errors on the moment calcu-
lations. For that purpose, we have carried out calculations with
the Saumon, Chabrier, Van Horn eos (1995, SCvH). This eos
perfectly recovers the atomic-molecular perfect gas eos, which is
characteristic of the outermost layers of the planet (Saumon et al.
1995).

4.1. Impact of the high atmospheric layers
on the CMS method

Concerning the last of the three aforementioned questions, the
SCvH eos yields much better results than the polytrope. The
polytropic densities in the high atmosphere are much larger than
the realistic ones, yielding an overestimation of the contribution
of the external layers. Figure 7 illustrates the contribution to J2
of the outermost spheroids with the SCvH eos. Even though, as
mentioned earlier, the very concept of an equilibrium equation of
state becomes questionable at such low densities (P < 100 Pa =
10−3 bar corresponds to ρ < 10−3 kg m−3), this clearly illustrates
our purpose.

Figure 7 shows that, when using a realistic perfect gas eos,
using only 1 spheroid up to 10−3 bar seems to be adequate to ful-
fill Juno’s constraints. Unfortunately, the real problem is more
complex: if we use only one spheroid of 8 km (a few 10−3 bar)
as a first spheroid, even though its own influence is indeed neg-
ligible, as if we divide it into many spheroids, the total value of
J2 × 106 is changed by ∼1−2, ten times Juno’s error! The reason
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Fig. 7. Contribution of each spheroid to the total value of J2 × 106 and
to the truncated J2 × 106, i.e., the sum of the contributions of the lay-
ers from 1 to 10−5 bar, for a square spacing with the SCvH eos with
1500 spheroids.

Table 3. Value of J2 × 106 for an exponential γ = 7 spacing with
1500 spheroids and the SCvH eos with no core.

First layer (km) J2 × 106

Rext = 71 492 km R1 bar = 71 492 km
0.6 (unchanged) 14 997.24 15 046.34

3 14 999.03 15 046.71
6 15 001.11 15 047.46

15 15 012.00 15 051.85
35 15 035.41 15 061.54

Notes. Left column: the outer radius is taken as Jupiter’s radius; right
column: the radius at 1 bar is taken as Jupiter’s radius.

is that the whole density profile within the planet is modified by
the inaccurate evaluation of the first layers. Indeed, remember
that the CMS method decomposes the planet into spheroids of
density δρ. Therefore, a wrong evaluation of the first layers is
propagated everywhere since the density at one level is the sum
of the densities of all spheroids above that level. We verified that
any change in the size of the first layer, from less than 1 km to
35 km significantly changes the value of J2.

We have also tried a solution where we converged the 1 bar
radius to the observed R1 bar value, in order to avoid this modifi-
cation in the structure, but the result still holds: it is not possible
to reduce the global contribution of the first layers, and the densi-
ties of the first layers are too small to be realistically described by
an equilibrium equation of state. Clearly, with the CMS method,
it is not possible to diminish the size of the first layers without
significantly affecting the gravitational moments. This, again, is
examined in detail in Sect. 5.

Table 3 gives the results for an exponential repartition of
1500 spheroids using the SCvH eos, with no core (in that case,
the size of the first layer is 0.6 km). Clearly, varying the size of
the first layers yields changes of the J2 value larger than Juno
error bars. A quadratic repartition yields similar results with dif-
ferences on J2 × 106 that are <3 × 10−1. It is not clear, however,
whether the induced errors stem from the iterative calculations
of the pressure from the hydrostatic equation or from the er-
ror on the potential determination. Therefore, we confirm with
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Table 4. Difference between square, exponential γ = 7 and HM16 spacing for 3 different tests with 1500 spheroids.

Moment Test 1: no core Test 2: Y = 0.37, Mc = 4 MT Test 3: fit on J2

Square Expγ=7 HM16 Square Expγ=7 HM16 Square Expγ=7 HM16
J2 × 106 14 997.42 14 997.24 15 025.89 14 636.63 14 636.47 14 680.96 14 696.51 14 696.51 14 696.51
−J4 × 106 604.21 604.19 606.49 586.44 586.42 589.47 589.21 589.21 590.08
J6 × 106 35.79 35.79 35.99 34.62 34.62 34.87 34.80 34.80 34.90

a realistic eos the results obtained in Sect. 3.2: a very accurate
evaluation of the first layers is mandatory in order to properly
converge the CMS method.

4.2. Errors arising from a (quasi) linear repartition

In order to assess quantitatively the errors arising from an ill-
adapted repartition of spheroids, we have carried out 3 test cal-
culations. One without a core, where we changed the H/He ratio
(i.e., the helium mass fraction Y) to converge the CMS method
(as explained in HM16, that means having a factor β = 1 in H13).
A second one where we imposed Y and the mass of the core but
allowed the size of the core to vary (we have verified that impos-
ing the mass or the size leads to the same results). And, finally,
one where Y and the mass of the core could change and we con-
verged J2 to the observed value. These models were not intended
to be representative of the real Jupiter but to test the spacings of
the CMS explored in the previous sections. All these tests used
the observed radius as the outer radius, Req = 71 492 km. The
results are given in Table 4.

The difference on J2 × 106 between the square and expo-
nential spacings with 1500 spheroids are <2 × 10−1, as expected
from Figs. 4a and 5a. In contrast, the HM16 method, which is
linear in ∆r, though with a different spacing in the high and low
atmosphere, respectively, leads to differences 100× larger. These
values were obtained with a HM16 spacing with 1500 spheroids;
with 512 spheroids the differences from square and exponential
are a factor ten larger. This demonstrates that the square and ex-
ponential repartitions remain consistent, confirming the results
obtained for the polytropic case, whereas the HM16 spacing di-
verges completely. As expected, the idea of using a first half
layer of zero density fails when using a realistic eos.

Another proof is the difference, with the HM16 repartition,
between 512 and 1500 spheroids: in the polytropic case the dif-
ference on J2 × 106 was found to be around 2 × 10−1. Indeed
the HM16 repartition with 512 spheroids led to results very
close to the theoretical value. In our first test case, the value of
J2 × 106 we obtained for the HM16 spacing with 512 spheroids
is 15 075.52. When we compare to Table 4, the difference is
5 × 101: the discretization error on the gravitational moments
with this spacing is way off Juno’s precision. Moreover, we see
that the order of magnitude of the error is similar to the one in the
linear case of Fig. 3. Indeed, if one does not use a polytrope, the
HM16 spacing behaves as badly as a linear spacing, as expected
from the quasi linear shape of this repartition.

Figure 8 summarizes graphically the uncertainties arising
from using an ill adapted repartition of spheroids. As stated
above, the errors on J2 from the bad handling of the high atmo-
sphere reach almost 100 × Juno’s error bars, as shown in Fig. 8a.
On the other hand, when fitting J2, Fig. 8b shows that the er-
rors on J4 and J6 are comparable or inferior to Juno’s. Nonethe-
less, we show in Sect. 4.3 that this leads to significant changes in
the physical quantities, hampering the determination of interior
models in the context of Juno. These changes can be considered
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Fig. 8. Comparison of the errors of the CMS method from quadratic
and HM16 repartitions with Juno’s error bars, shifted to be centered on
the observed Jn. a) −J4 × 106 vs. J2 × 106 from test 1; b) J6 × 106 vs.
−J4 × 106 from test 3, when J2 is fit.

as negligible compared to the uncertainties on the various phys-
ical quantities in the models but they are significant when one
aims at matching Juno’s measurements and thus take full advan-
tage of the Juno mission.

What we have shown so far in the present study is that the
CMS method, when taking into account the entire atmosphere
above 1 bar, relies on uncontrolled assumptions that can change
significantly the value of J2. The whole purpose of the method,
however, is to constrain with high precision Jupiter’s internal
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Table 5. Effective helium mass fraction above (Y ′) and underneath (Y ′2)
the entropy jump, and mass of the core (Mc in units of 1024 kg) for
different repartitions and numbers of spheroids.

N Quadratic Quadratic 10 HM16

512
Y ′ 0.34622 0.34451 0.32297
Y ′2 0.37379 0.37368 0.37215
Mc 9.9241 9.8952 9.6819

800
Y ′ 0.34698 0.34496 0.33168
Y ′2 0.37386 0.37372 0.37276
Mc 9.9227 9.8928 9.7677

1500
Y ′ 0.34742 0.34506 0.33840
Y ′2 0.37390 0.37372 0.37323
Mc 9.9193 9.9000 9.8453

Notes. Quadratic is a power law spacing of exponent two, Quadratic 10
is the same with a first layer of 10 km and HM16 corresponds to the
repartition used in Hubbard & Militzer (2016).

structure (mass fraction of heavy elements, mass of the core, ...).
Therefore, we need to assess the impact of these assumptions on
such quantities.

4.3. Intrinsic uncertainties on the Jupiter models

In this section, we derived interior models that match both J2
and J4 from the first Juno data (Bolton et al. 2017) and deter-
mined how they were affected by the number of spheroids and
their repartition. Ideally, one would like the final models not to
depend on the method used to derive them. We recall that the
purpose of this paper is not to derive the most accurate Jupiter
models but to determine the impact of the uncertainties in the
CMS method upon these models, in the context of the Juno mis-
sion. Therefore, we used the SCvH eos with an effective helium
mass fraction (Y ′) which includes the metal contribution (see
Chabrier et al. 1992). We supposed that the core was a spheroid
of constant density ρcore = 20 000 kg m−3, the typical density
of silicates at the pressure of the center of Jupiter. At 50 GPa,
we imposed a change in the effective Y ′ at constant temperature
and pressure, thus a change in entropy, to mimic either an abrupt
metallization of hydrogen or a H/He phase separation. Inward of
this pressure, the value of the effective helium mass fraction is
denominated Y ′2. All the models were converged to the appropri-
ate J2 and J4 values with a precision of 10−8, within Juno’s error
bars.

Table 5 gives the values of Y ′, Y ′2 and the core mass for
different repartitions and numbers of spheroids. We considered
a quadratic repartition with an unchanged first layer or with a
first layer of 10 km, and the HM16 repartition. With HM16,
the change on the effective helium mass fraction is of the or-
der of 5%, consistent with the expectations from the results of
the previous sections. This confirms that the HM16 repartition
of spheroids is not suitable to exploit Juno’s data. When we used
the Y ′ and core mass fraction obtained with 512 spheroids to a
case with 1500 spheroids, the value of J2×106 became 14 647.9,
which leads to an error of 5 × 101, a hundred times Juno er-
ror bars. As stated in the abstract, this result demonstrates that
Jupiter models which have been derived with this spheroid repar-
tition are invalid, in the framework of Juno’s constraints. The
most recent calculations of Wahl et al. (2017) are examined
specifically in Sect. 5.

With the quadratic repartition, using the values obtained with
512 spheroids in the 1500 spheroid calculations yields an error

on J2 × 106 of 4 × 100, ten times Juno’s error bars (which con-
firms the necessity to use at least 1500 spheroids and this type
of repartition). When correctly fitting J2 and J4 with this repar-
tition, the change on Y ′ from 512 to 1500 spheroids is about
0.5%, about the same as the difference between using a <1 km
or a 10 km first layer. For the core mass, increasing the number
of spheroids is useless as the difference is negligible compared
to the one due to changing the size of the first layer. Therefore,
the uncertainties due to the description of the first layers are the
dominant sources of limitation in the determination of Jupiter’s
physical quantities like Y ′ or the core mass fraction.

In reality, the limitation is even more drastic. First, with a
10 km first layer, the outer density is '3 × 10−3 kg m−3. This is
too low to use an equilibrium equation of state. If we use instead
a 20 km first layer, increasing the density to more acceptable val-
ues, the uncertainties on Y ′ are about 1−2% and >5% on Mc. Vir-
tually any model leading to such an uncertainty can fit J2 and J4.
Indeed, given the impact of the first layers on the gravitational
moments, they could be used, instead of Y ′ and Mc, as the vari-
ables to fit models with the appropriate gravitational moments.
Slightly changing these layers (mean density, size, ...) can yield
adequate models. Therefore, no model can be derived within bet-
ter than a few percent uncertainties on Y ′, thus the heavy element
mass fraction, and on the core mass.

The calculations carried out in this section yield three major
conclusions:

1. It is not possible to use a linear repartition, especially with a
zero density first layer, as the values of the moments would
be changed by 100× the value of Juno’s error bars when in-
creasing the number of spheroids.

2. The results obtained with a square or an exponential repar-
tition with 1500 spheroids yield consistent errors, no mat-
ter the size of the first layer, and can thus be considered
as reliable spheroid repartitions. The size of the first layer,
however, remains the major source of uncertainty in the
CMS method when taking into account the high atmosphere
above the 1 bar level.

3. When deriving appropriate internal models of Jupiter, the
CMS method such as used in HM16 can not allow the de-
termination of key physical quantities such as the amount
of heavy elements or the size of the core to better than a
few percents. Changing the size and/or density distribution
of the first layers yields a significant change in the values
of the gravitational moments. This degeneracy unfortunately
hampers the derivation of very precise models.

In the light of these conclusions, the CMS method, such as
used so far in all calculations, needs to be improved. To do so,
Wahl et al. (2017) propose to neglect the high atmosphere, and
define the outer boundary at the 1 bar level. We examine this
solution in the next section.

5. Taking the 1 bar level as the outer boundary
condition

5.1. Irreducible errors due to the high atmosphere region
(<1 bar)

According to their second Appendix, Wahl et al. (2017) impose
the 1 bar level as the outer boundary condition in their CMS
calculations. As shown with a polytropic eos in Sect. 3.2, the
atmosphere above this level, called here the high atmosphere,
has a contribution to J2 × 106 ' 1 × 10−2. With a realistic eos,
converging the 1 bar radius on the observed value yields a high
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atmosphere depth of ∼70 km but a smaller outer density than the
polytrope. The contribution to J2 is then about the same.

The high atmosphere, however, also alters the evaluation of
the potential inside the planet and thus the shape of the spheroids
in the CMS method. In Appendix D, we evaluated the first order
neglected potential φneg on each spheroid due to the omission
of the high atmosphere. We showed that it is a constant value,
which does not depend on depth or angle:

φneg ' 2.87 ×
GM
a1 bar

(
ρext

ρ̄S

) (
∆a

a1 bar

)
, (23)

where ρext is the (constant) density of the high atmosphere, ρ̄S is
the mean density of Jupiter if it was a sphere of radius a1 bar =
71 492 km, and ∆a is the depth of the high atmosphere.

As mentioned above, ∆a ' 70 km and we know that ρ̄S '

103 kg m−3. Taking the outer density in a range (0.01−1)×ρ1 bar,
and the conditions of Jupiter, ρ1 bar ' 0.17 kg m−3, yields:

φneg ∈
[
5 × 10−9; 5 × 10−7

]
×

GM
a1 bar

· (24)

This is clearly a first order correction since the potential on each
spheroid, given by the CMS method, ranges from GM/a1 bar in
the outermost layers to 2GM/a1 bar inside.

The neglected potential does not depend on the layer, so the
hydrostatic assumption (using the gradient of the potential) re-
mains valid. The main source of change comes from the shapes
of the spheroids. We calculated the impact of this change in
Appendix D with the use of Eq. (40) of H13 and obtained the
following result:

∆J2,0

J2,0
' 287 ×

(
ρext

ρ̄S

) (
∆a

a1 bar

)
· (25)

Within the above range of outer densities we get:

∆J2,0

J2,0
∈

[
5 × 10−7; 5 × 10−5

]
. (26)

Since the potential is smallest in the outside layers, we expect the
relative change in J2,i of the ith spheroid to decrease with depth.
Nevertheless, we have seen that the CMS method requires a large
number of spheroids in the high atmosphere (a point which is
validated in the next section). We thus expect the change in the
J2,i in the outer layers, which have the largest impact on J2, to
be comparable to Eq. (26). If we make the bold assumption that
every layer contributes equally and choose for the outer density
ρext = 0.03 kg m−3, which is the value that corresponds to mass
conservation in the high atmosphere, we get:

∆Jext
2 × 106 ' 8 × 10−6(Jext

2 × 106) ' 1 × 10−1. (27)

This is approximately 1/2 Juno error bars. Even though this re-
lies on several assumptions, mainly that we can approximate the
outer layers by a constant density spheroid and that the error is
the same on each spheroid, it gives a reasonable estimate of the
impact of neglecting the high atmosphere on J2. From the eval-
uation of J4 and J6 in Appendix D, we calculated that:

∆Jext
4 × 106 ' 6 × 10−2, (28)

∆Jext
6 × 106 ' 2 × 10−2. (29)

We see that the agreement with Juno’s error bars improves with
higher order moments, although it stabilizes around 10−2 from
J6 onward. In order to derive physical information from the high
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Fig. 9. Comparison of the errors of the CMS arising from neglecting
the high atmosphere with Juno’s error bar, shifted to be centered on the
observed Jn. a) −J4 × 106 vs. J2 × 106; b) J6 × 106 vs. −J4 × 106.

order moments, however, one needs to have confidence in the
evaluation of the first moments. Moreover, these estimations rely
on many assumptions and give only orders of magnitude.

As in Fig. 8, we show graphically these uncertainties in
Fig. 9. We see that we are now able to reach Juno’s precision. As
mentioned in the abstract, however, the analysis of future, more
accurate data will remain limited by these intrinsic uncertainties.

If we were able to perform rigorously the calculations of
Appendix D, we would probably find that the errors on the Jn’s
are correlated, decreasing the aforederived uncertainties. Unfor-
tunately, a rigorous derivation of these errors would require to
relax many assumptions and would imply very complicated the-
oretical and numerical calculations. Until this is not done, the
determination of the Jn are inevitably blurred by the neglected
potential, up to half Juno’s error bars, as shown in Fig. 9.

In conclusion, we have shown in this section that the ne-
glected potential due to the high (<1 bar) atmosphere region
leads to an error of about half Juno error bars. Globally, neglect-
ing the atmosphere above 1 bar in the CMS method leads to an
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Fig. 10. Numerical error as a function of the number of spheroids when
neglecting the high atmosphere for a polytropic eos.

irreducible error on J2 × 106 of the order of 10−1. Although such
an error level is smaller than Juno’s present precision, this will
become an issue if the precision improves further.

It must be stressed that this irreducible error is not arising
from uncertainties in any physical quantity, such as for exam-
ple the radius determination or the eos. It stems from neglecting
the high atmospheric levels in the CMS method itself, and in
that regard cannot be removed; indeed, as we have shown in the
previous sections, including the high atmosphere leads to huge
uncertainties. Said differently, even with a perfect knowledge of
Jupiter radius, internal eos, etc., the error, intrinsically linked to
the method, remains. Semi analytical integrations of Eq. (D.11)
show that, globally, this error is of the order of 10−2 for higher
order moments. Therefore, the Jk × 106 cannot be determined
within better than a few 10−2. On J10 and higher order moments,
in particular, this error can be close to the order of magnitude
of the moments themselves. One must keep that in mind when
calculating values of these moments with the CMS method, as
in Wahl et al. (2017).

5.2. Error from the finite number of spheroids

Now that we have estimated every possible source of error and
showed that the method used by Wahl et al. (2017) is applicable
with the current error bars of the Juno mission, we need to ex-
amine how the uncertainties depend on the number of spheroids
and verify whether the conclusions of Sect. 3 are affected or not
by the change of outer boundary condition. Figure 10 displays
the dependence of the error upon the number of spheroids for
different spheroid repartitions in the present case.

Interestingly, the exponential γ = 6 repartition happens to
provide the best match to the analytical results. More impor-
tantly, we show that some of the different repartitions give the
same results, a mandatory condition to use the method with
confidence with a realistic eos, as mentioned earlier.

We see, again, that 512 spheroids are not enough to sat-
isfy Juno’s precision. As mentioned previously, even though the
CMS values are precise at 10−13, the discretization error domi-
nates. Depending on the spheroid repartition, this error can be-
come quite significant. Unfortunately, Wahl et al. (2017) do not
mention which spheroid repartition they use exactly. As shown

Table 6. Same as Table 5 when neglecting the high atmosphere.

N Quadratic Cubic

512
Y ′ 0.3210 0.3211
Y ′2 0.372001 0.372015
Mc 9.6849 9.6709

1500
Y ′ 0.3218 0.3218
Y ′2 0.372098 0.372090
Mc 9.6546 9.6624

in the figure, however, this needs to be clearly specified when
deriving Jupiter models in the context of Juno to verify their
validity.

When neglecting the high atmosphere, the calculations are
not hampered by any degeneracy due to the first layers since the
densities, which are larger than ρ1 bar ' 0.17 kg m−3 are well
described by the eos. Therefore, the only errors on the derived
quantities of interest come from the discretization errors. As in
Sect. 4.3, we give in Table 6 the values of Y ′, Y ′2 and Mc obtained
when matching J2 and J4 in the same conditions. One might no-
tice that these results are different from the ones in Table 5; this is
only due to the fact that in Table 5 the outer radius is 71 492 km,
instead of the radius at 1 bar. We checked that if the external
radii are consistent, the derived physical quantities are within
the range of uncertainties of Sect. 4.

The differences from 512 to 1500 spheroids are of the order
of 0.3% on the physical quantities. Because of the degeneracy of
models leading to the same external gravitational moments (by
e.g., changing the pressure of the entropy jump, the amount of
metals, etc.) we do not expect to derive a unique model with such
a precision on the core mass, so, in this context, 512 spheroids
can be considered as sufficient to derive accurate enough mod-
els of Jupiter. When using the physical quantities obtained with
512 spheroids in calculations done with 1500 spheroids, we
get an error on J2 × 106 of ∼1, 10× Juno error bars. There-
fore, even though one can derive a precise enough model with
512 spheroids, it is highly recommended, as a sanity check, to
verify with 1500 whether Juno precision can be reached with
only a slight change of the derived physical quantities.

We still have to evaluate the errors coming from neglecting
the high atmosphere. To evaluate the largest possible uncertainty,
we added 1× 10−1 to J2 × 106 and removed it from J4 × 106. We
stress again that this must be done because the value of both J2
and J4 can not be trusted under the aforederived intrinsic irre-
ducible error of the method, due to the omission of the high at-
mosphere, even when fitting to observed values at much higher
precision. The results are given in Table 7. The differences be-
tween Tables 6 and 7 show that neglecting the high atmosphere
yields an uncertainty on the physical quantities of a few parts in
a thousand, even up to 2 to 3% on the core mass.

This is the irreducible error of the CMS method when ne-
glecting the levels of the high atmosphere (<1 bar). An improve-
ment in the precision of Juno cannot change this uncertainty. In
that regard, using more than 1500 spheroids would be a second
order correction on the method uncertainty.

6. Conclusion

In this paper, we have examined under which configuration the
CMS method can be safely used in the context of the Juno mis-
sion. We have first derived analytical expressions, based on a
polytropic eos, to evaluate the errors in the calculation of the
gravitational moments with the CMS method in various cases.
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Table 7. Same as Table 6 except that J2 × 106 and J4 × 106 have been
changed by ±1 × 10−1.

N Cubic +1−1 Cubic −1+1

512
Y ′ 0.3212 0.3225
Y ′2 0.372155 0.372024
Mc 9.5297 9.8015

1500
Y ′ 0.3212 0.3225
Y ′2 0.372149 0.372022
Mc 9.5374 9.8053

Notes. +1−1 means that we add 1 × 10−1 on J2 and remove it from J4,
−1+1 is the opposite.

These analytical derivations relied on simplifying approxima-
tions and thus represent lower limits of the errors. When applied
to calculations based on 512 spheroids, as done for instance in
the works of Hubbard & Militzer (2016) these expressions show
that it is not possible to match the Juno’s constraints because of
the discretization error. To verify the analytical calculations, we
have developed a code based on the method exposed by Hubbard
(2013). The numerical calculations confirmed the analytical re-
sults and also showed that the external layers of the planet have a
huge impact on the determination of J2 and need to be described
with very high accuracy. At first, this appeared to be the biggest
limitation of the CMS method: for a precise evaluation of the
gravitational moments of Jupiter, this method requires layers in
the high atmosphere smaller than 1 km. However, this implies
densities so low that the very concept of an equilibrium equa-
tion of state to describe these layers becomes questionable, while
density profiles fit from observations would not solve this issue
(as explained at the end of Sect. 3.2).

We have shown, with a polytrope n = 1, that one needs a
quadratic or exponential repartition of at least 1500 spheroids
to reach precise enough values of the moments to match Juno’s
constraints, which implies densities of the order of a few
10−2 kg m−3 for the outermost layers. With such specifications,
the CMS method can in principle reach precisions better than
Juno’s uncertainties.

When these calculations are performed numerically with
barotropes prescribed from an appropriate eos for the external
layers, the above conclusions were confirmed: the CMS method
requires a square, cubic or exponential spacing of at least
1500 spheroids. None of these calculations, however, was able
to get a satisfying description of the first layers. Indeed, even
though each of these individual layers contributes negligibly
to J2, a small change in the density structure of these regions
leads eventually to unacceptable changes in the total value of J2.
Furthermore, when fitting J2 and J4, we have shown that the
description of these layers leads to a degeneracy of solutions
which hampers the determination of physical quantities such as
the heavy element mass fraction or the mass of the core to better
than a few percents.

In order to overcome this issue, Wahl et al. (2017) propose to
neglect the high atmosphere and impose the 1 bar pressure as an
outer boundary condition. We have evaluated the errors coming
from this assumption, and showed that they are of the order

of half Juno error bars. In principle, the CMS method with this
boundary condition can thus be applied to derive Jupiter mod-
els within the current precision of Juno, with an irreducible un-
certainty arising from the neglected high atmosphere. This un-
certainty is of the order of 0.1 on J2 × 106 while the current
precision of Juno is ±0.272. The remaining sources of errors
on the physical quantities, however, stem from discretization er-
rors, and 512 spheroids can give results with a precision of a few
parts of a thousand. Considering the degeneracy of models that
could fit with Jupiter’s observed gravitational moments, this can
be considered as an acceptable uncertainty. However, we show
that, due to the aforementioned irreducible error of the method,
increasing Juno precision will not enable us to derive more pre-
cise models. Quantitatively, the irreducible errors yield global
uncertainties on the physical quantities derived in a model close
to 1%.

The conclusion of this study is that the Concentric
MacLaurin Spheroid method such as used in HM16 could not
satisfy Juno’s constraints and needed to be improved to derive
accurate enough Jupiter model, invalidating any model up to this
stage in the context of the Juno mission. First, a larger num-
ber of spheroids with a better repartition is mandatory. Second,
there is no satisfying solution to safely take into account the im-
pact of the high atmosphere region above 1 bar. We have shown
that imposing the 1 bar radius as the outer boundary condition,
as done in Wahl et al. (2017), is acceptable, although it leads to
irreducible errors of a few parts of a thousand on the derived
physical quantities, increased by an eventual discretization er-
ror. Although such a precision can be considered as satisfactory,
given all the other sources of uncertainty in the input physics of
the model, this shows that, if the precision on Juno’s data im-
proves, the CMS method in its present form will not be able to
exploit this improvement to refine further the models.
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Appendix A: Simplifications for the angular part

Here, we show in details how we got rid of the angular part in
Eq. (4). The integral we wanted to simplify is:

II =

∫ 1

0

∫ aJ

0
ρ(r′)r′2k+2P2k(µ)dr′ dµ. (A.1)

We approached this integral differently: instead of just consider-
ing an integral over r′ and µ, we rather followed the surfaces
of constant density. Then, r′(µ) was defined in order to have
ρ(r′(µ)) = const. when µ varies from 0 to 1. Another way to
say it is that we took the value of ρ for a given equatorial radius
req, and calculated the integral over constant ρ from equator to
pole.

In order to go further, we considered that the surfaces of con-
stant potential were ellipsoids with the same ratio of polar to
equatorial radius e. That gave, for every equipotential surface:

r′(µ) =
req√

1 + e2µ2
, (A.2)

where req is the equatorial radius of the spheroid. In reality, this
is not exactly the case, the isobaric spheroids are not ellipsoids
and the innermost ones are less flattened than the outermost ones,
but it gives an idea of the integral over µ.

We just had to change variables: µ → µ and r′ →
req/

√
1 + e2µ2. With µ varying from 0 to 1 and req from 0 to aJ ,

we have not changed the domain of integration because outside
of the outermost ellipsoid – in our ellipsoidal approximation –
we had ρ(aJ , µ > 0) = 0. The Jacobian is 1/

√
1 + e2µ2 and we

obtained:

II =

∫ aJ

0
ρ(req)r2k+2

eq

∫ 1

0

P2k(µ)( √
1 + e2µ2

)2k+3 dµ dreq. (A.3)

From Eq. (5), we see that the density only depends on l/l0, the
mean radius of one isobaric layer above the external mean radius.
With Eq. (A.2), we were then able to write l = β × req with the
same β for all req. The β cancelled in the fraction, and we simply
changed l/l0 by req/aJ .

We just had to calculate the other part of the integral, with
the analytical expression of Eq. (A.2):

〈P2k〉 =

∫ 1

0

(
1

1 + e2µ2

) 2k+3
2

P2k(µ)dµ. (A.4)

Since there is no simple way to do it, we kept it in our equations,
but the interesting aspect is that it no longer depends on r′: we
have reduced our equation to a simple integral.

We were able to check whether this is correct or not. So far,
we have supposed that the equipotential surfaces are ellipsoids
and that they have the same e value. Considering that we inte-
grate along these surfaces by varying the equatorial radius from
the center to aJ , we showed that we can write:

J2k ∼ −
4π

Ma2k
J

∫ 1

0

(
1

1 + e2µ2

) 2k+3
2

P2k(µ)dµ


×

∫ aJ

0
ρ(req)r2k+2

eq dreq. (A.5)

It was easy to calculate these integrals as we know their analyt-
ical expression. We just needed to choose the correct e and m

values. From the observed equatorial and polar radii of Jupiter
(see Table 1), we have:

e =
√

71 4922/668542 − 1 ≈ 0.378897. (A.6)

These radii also give us the value for the mean density: ρ̄ =
MJ

4
3
πa2

J(aJ)polaire

≈ 1326.5 kg m−3, which allowed us to calculate

m =
3ω2

4πGρ̄
≈ 0.083408. (A.7)

Implemented in Eq. (A.5) with the expression of density from
Eq. (5), a numerical integration gave:

J2 × 106 = 16348.804 with Jtheory
2 × 106 = 13988.511

−J4 × 106 = 643.983 with − Jtheory
4 × 106 = 531.828

J6 × 106 = 35.16 with Jtheory
6 × 106 = 30.12. (A.8)

There is about 20% difference with the theoretical results, which
is expected as we have chosen the outermost e value, which is
the largest. With e = 0.36, we obtained less than 10% differ-
ence on these moments. Considering further approximations that
are made in the next Appendices, a 0.9 factor is acceptable to
compare the theory with the numerical results and we retain this
e = 0.36 value in our calculations.

Appendix B: Supplementary calculations
for the general case

Going back to Eqs. (4), (5) and (A.4) we have:

|∆J2k | ∼

∣∣∣∣∣ 4π
Ma2k

J

N−1∑
i=0

〈P2k〉

×

∫ ri

ri+1

Ā


sin(α

r′

aJ
)

r′

aJ

−

sin(α
Ri

aJ
)

Ri

aJ

 r′2k+2dr′
∣∣∣∣∣, (B.1)

with Ri =
ri+1 + ri

2
, (B.2)

and Ā = ρ̄A. (B.3)

Because there is a high number of layers, we were able to ap-
proximate |Ri − r′| � Ri everywhere. This approximation is less
valid in the ∼10 deepest layers, but their impact on the gravita-
tional moments is negligible (Fig. 1).

With:

γ =
α

aJ
, (B.4)

we developped the sinus to order 2:

sin (γr′)
r′

=

sin
(
γRi

(
1 +

r′ − Ri

Ri

))
Ri

(
1 +

r′ − Ri

Ri

)
sin (γr′)

r′
'

1
Ri

1 − ξ

Ri
+

(
ξ

Ri

)2 ( sin(γRi) cos(γξ)

+ cos(γRi) sin(γξ)
)
,

where ξ = r′ − Ri � Ri.
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We know that α ∼ π. In the internal layers, aJ � Ri, so
γξ = ξα/aJ � ξ/Ri. On the outside, aJ ∼ Ri so γξ ∼ ξ/Ri.
As mentioned above, ξ/Ri � 1, which means that everywhere
γξ � 1. Therefore:

sin (γr′)
r′

'
1
Ri

1 − ξ

Ri
+

(
ξ

Ri

)2 ( sin(γRi)
(
1 −

(γξ)2

2

)
+ cos(γRi) (γξ)

)
,

sin (γr′)
r′

'
sin(γRi)

Ri
+ ξ

 γRi
cos(γRi) −

1
R2

i

sin(γRi)


+ ξ2
− γ2

2Ri
sin(γRi) −

γ

R2
i

cos(γRi) +
1

R3
i

sin(γRi)
 .

(B.5)

The zeroth order term cancelled in Eq. (B.1) so:

|∆J2k | ∼

∣∣∣∣∣ 4π
Ma2k

J

N−1∑
i=0

〈P2k〉
ĀaJ

Ri

×

∫ ri

ri+1

[
(r′ − Ri)

(
γ cos(γRi) −

1
Ri

sin(γRi)
)

+ (r′ − Ri)2
(
−
γ2

2
sin(γRi) −

γ

Ri
cos(γRi)

+
1

R2
i

sin(γRi)
)]

r′2k+2dr′
∣∣∣∣∣. (B.6)

We introduced

C1 =

(
γ cos(γRi) −

1
Ri

sin(γRi)
)

C2 =

−γ2

2
sin(γRi) −

γ

Ri
cos(γRi) +

1
R2

i

sin(γRi)
 . (B.7)

This gave a simplified expression for the potential:

|∆J2k | ∼

∣∣∣∣∣ 4π
Ma2k

J

N−1∑
i=0

〈P2k〉
ĀaJ

Ri

×

∫ ri

ri+1

(
C1(r′ − Ri) + C2(r′ − Ri)2

)
r′2k+2dr′

∣∣∣∣∣. (B.8)

Developping the power of r′ yielded:

r′2k+2 = R2k+2
i

(
1 +

r′ − Ri

Ri

)2k+2

,

r′2k+2 ' R2k+2
i

(
1 + (2k + 2)

r′ − Ri

Ri

)
· (B.9)

Then, the integral I is given by:

I ' R2k+2
i

∫ ri

ri+1

[
C1(r′ − Ri)

+

(
C2 + (2k + 2)

C1

Ri

)
(r′ − Ri)2

]
dr′. (B.10)

We changed the variable of integration r′ → (r′ − Ri), and using
Eq. (B.2):

I ' R2k+2
i

∫ ri−ri+1
2

ri+1−ri
2

[
C1r′ +

(
C2 + (2k + 2)

C1

Ri

)
r′2

]
dr′. (B.11)

As a first calculation, we chose a constant ∆r with depth, as
suggested in H13, ∆r = aJ/N. If one wants another repartition
of spheroids, they just have to change ∆r by ∆ri depending on
depth:

I ' R2k+2
i

∫ ∆r
2

− ∆r
2

[
C1r′ +

(
C2 + (2k + 2)

C1

Ri

)
r′2

]
dr′. (B.12)

This is easily calculated and we got:

I ' R2k+2
i

(
C2 + (2k + 2)

C1

Ri

)
∆r3

12
· (B.13)

Puting this expression into Eq. (B.6), we obtained an intermedi-
ate formula:

|∆J2k | ∼

∣∣∣∣∣ 4π
Ma2k

J

N−1∑
i=0

〈P2k〉ĀaJR2k+1
i

×

(
C2 + (2k + 2)

C1

Ri

)
∆r3

12

∣∣∣∣∣· (B.14)

We considered two cases: in the internal layers, where aJ � Ri:

C1 ∼ γ −
γ3R2

i

2
− γ +

γ3R2
i

6
= −

α3

3
R2

i

a3
j

, (B.15)

C2 ∼ −
γ3Ri

2
−
γ

Ri
+
γ3Ri

2
+
γ

Ri
−
γ3Ri

6
= −

α3

6
Ri

a3
j

· (B.16)

In the external layers, aJ ≈ Ri, there is no obvious approxima-
tion. We assumed that C1 and C2 were of the same order of mag-
nitude as the coefficient in front of the sinusoidal functions and,
remembering that Ri/aJ ∼ 1:

C1 ∼ γ ∼
1
Ri

=

(
Ri

a j

)2 1
aJ

=
R2

i

a3
j

, (B.17)

C2 ∼ γ
2 ∼

1
R2

i

=
Ri

aJ

1
a2

J

=
Ri

a3
j

· (B.18)

Neglecting the factor α3/3 (which varies with height):

C1 ∼
R2

i

a3
j

C2 ∼
Ri

a3
j

, (B.19)

which yielded the aproximated relation:

C2 + (2k + 2)
C1

Ri
∼ (2k + 3)

Ri

a3
J

· (B.20)

In Fig. B.1, we plot the exact and approximated values of
C2 + (2k + 2)C1 for k = 1. As expected, in the interior we re-
cover the factor ten shift (α3/3) between the real and estimated
value, whereas in the externalmost layers this term is smaller so
we underestimate the error by a factor ∼2−5. Everything is thus
consistent with our assumptions.

With these assumptions, we were then able to write (redefin-
ing 〈P2k〉 as its absolute value):

|∆J2k | ∼ 4π(2k + 3)
∆r3

12
Ā〈P2k〉

M

N−1∑
i=0

(
Ri

aJ

)2k+2

· (B.21)
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Fig. B.1. Normalized value of C2 + 4C1/Ri and of its approximation
5Ri/a3

J (Eq. (B.20)) as a function of altitude Ri. a) From center to exte-
rior; b) zoom on the external layers

It is important to note that up to now, if ∆r was not constant we
would still have the same result by using ∆ri instead of ∆r in the
sum. This is done in Appendix C.3

In the case of a linear spacing of the spheroids, ∆r = aJ/N,
we went further:

∆r3Ā
M

=
a3

J

N3

Aρ̄
M

=

a3
J ρ̄

M

 A
N3 =

3
4π

A
N3 ∼

1
4N3 , (B.22)

because, from Eq. (B.2), A ∼ π/3 if m � 1, which is valid for
Jupiter (and for the vast majority of celestial bodies).

As ri+1 = ri − ∆r and r0 = aJ , ri = aJ − i × ∆r, we get:

Ri =
ri + ri+1

2
= aJ −

(
i +

1
2

)
∆r = aJ

(
1 −

(
i +

1
2

) /
N
)
. (B.23)

Combining Eqs. (B.21), (B.22) and (B.23) gave the final result,
as written in Eq. (7):

|∆J2k | ∼ (2k + 3)
π

12
〈P2k〉

N3

N−1∑
i=0

(
1 −

(
i +

1
2

) /
N
)2k+2

. (B.24)

Appendix C: Supplementary calculations for J2

The formula for J2 is directly derived from Eq. (7):

|∆J2| ∼
5π
12
〈P2〉

N3

N−1∑
i=0

(
1 −

(
i +

1
2

) /
N
)4

. (C.1)

C.1. Linear spacing

First, we wanted to calculate 〈P2〉 from Eq. (A.4). A simple nu-
merical integration yielded (in absolute value):

〈P2〉 ≈ 0.035982. (C.2)

We could have expanded the sum in Eq. (C.1) with the binomial
theorem, but it is easy to show that the first order is equivalent to
neglecting the factor 1/2 in the term (i+1/2). So we had directly:

P =

(
1 −

(
i +

1
2

)
/N

)4

∼ 1 −
4
N

i +
6

N2 i2 −
4

N3 i3 +
i4

N4 · (C.3)

As Eq. (C.3) corresponds to the 1st order expansion in i in
Eq. (C.1), we needed to make sure that these terms did not cancel
in the sum for this approximation to be correct. This sum is

N−1∑
i=0

P ≈ N −
N(N − 1)

2
4
N

+
(N − 1)N(2N − 1)

6
6

N2

−
(N − 1)2N2

4
4

N3 i3

+
(N − 1)(N)(2N − 1)(3(N − 1)2 + 3(N − 1) − 1)

30N4 ·

N−1∑
i=0

P ≈ N − 2N + 2N − N +
N
5
,

so
N−1∑
i=0

(
1 −

(
i +

1
2

)
/N

)4

∼
N
5
· (C.4)

If we wanted to keep every term up to this stage, we would find
that the second order term is 1/2 � N/5. Our approximations
were thus justified. Finally, Eqs. (C.1), (C.2) and (C.4) yielded:

|∆J2| ∼
π

12
〈P2〉

N2 ≈
9.42 × 10−3

N2 · (C.5)

C.2. Hubbard and Militzer spacing

In HM16, the spacing is not exactly linear. The planet is sepa-
rated in two domains: first, from the outside boundary to ri =
0.5 aJ , they use 341 spheroids, and 171 inside this limit. Then,
outside ∆rext = 3∆r/4 and inside ∆rin = 3∆r/2. Moreover, the
first spheroid is a bit particular as it has a a zero density over half
its size. We did not consider it here: since it is just one spheroid,
the impact on the analytical derivation of the error is small.
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Using Eq. (B.21), we were able to write it with a general
number N as:

|∆J2k | ∼
4π(2k + 3)

12
Ā〈P2k〉

M

×


2N
3∑

i=0

(
3∆r

4

)3 (
Rext

i

aJ

)2k+2

+

N−1∑
i= 2N

3 +1

(
3∆r

2

)3 Rint
i

aJ

2k+2
 ·

(C.6)

Rext
i = aJ

(
1 −

3
4N

(
i +

1
2

))
, (C.7)

Rin
i = aJ

(
0.5 −

3
2N

((
i −

2N
3

)
+

1
2

))
· (C.8)

Which can be rewritten:

|∆J2k | ∼
4π(2k + 3)

12
Ā〈P2k〉

M
27∆r3

8

×

1
8

2N
3∑

i=0

(
Rext

i

aJ

)2k+2

+

N
3∑

i=0

Rint
i− 2N

3

aJ


2k+2 · (C.9)

For k = 1, using Eqs. (B.22) and(C.4), we obtained:

|∆J2| ∼
5 × 27 × π〈P2〉

12 × 8 × N3

[
1
8

(
4
3

2 × N
3

)
1
5

+
1
24

(
1
3

N
3

)
1
5

]
|∆J2| ∼

9
256

π〈P2〉

N2 · (C.10)

Compared to Eq. (9), this is approximately twice better in terms
of errors.

C.3. Cubic spacing

In this Appendix, we calculated the error for a cubic repartition
of the spheroids, that is ∆r depending on i as ri = aJ−aJ× i3/N3.

Using Eq. (B.21), we got:

∆ri = ((i + 1)3 − i3)
aJ

N3 =
∆(i3)
N2 ∆r, (C.11)

Ri = aJ

(
1 −

i3 + (i + 1)3

2N3

)
· (C.12)

Straightforwardly, we obtained the new Eq. (7):

|∆Jc
2k | ' (2k + 3)

π

12
〈|P2k |〉

N5

×

N−1∑
i=0

∆(i3)
(
1 −

i3 + (i + 1)3

2N3

)2k+2

, (C.13)

which gave for J2:

|∆Jc
2| '

5π〈P2〉

12N5

N−1∑
i=0

∆(i3)
(
1 −

i3 + (i + 1)3

2N3

)4

· (C.14)

We developed again the various terms:

∆(i3) = 3i2 + 3i + 1 ∼ 3i2, (C.15)

Pc =

(
1 −

i3 + (i + 1)3

2N3

)4

,

Pc =

(
1 −

1
N3 i3 −

3
2N3 i2 −

3
2N3 i −

1
2N3

)4

'

(
1 −

i3

N3

)4

,

Pc ' 1 − 4
i3

N3 + 6
i6

N6 − 4
i9

N9 +
i12

N12 , (C.16)

∆(i3)Pc ' 3
(
i2 − 4

i5

N3 + 6
i8

N6 − 4
i11

N9 +
i14

N12

)
· (C.17)

In order to calculate the sum, we needed the leading term of∑N−1
i=0 ik. With:

(a + 1)k − ak =

k−1∑
i=0

(
k
i

)
ai, (C.18)

N−1∑
a=1

(
(a + 1)k − ak

)
=

k−1∑
i=0

(
k
i

) N−1∑
a=1

ai, (C.19)

but the terms in the sum cancelled two by two:
N−1∑
a=1

(
(a + 1)k − ak

)
= Nk − 1, (C.20)

so: Nk − 1 =

k−1∑
i=0

(
k
i

) N−1∑
a=1

ai. (C.21)

With this formula, it is easy to show by recurrence that
∑N−1

a=1 ai =

O(N i+1). Therefore, in the equation above only the k−1 term can
lead to Nk. Then the result:

N−1∑
a=1

ak−1 ∼
Nk(
k

k − 1

) =
Nk

k
· (C.22)

From here, we obtained the leading order terms of the sum of
Eq. (C.17):

N−1∑
i=0

∆(i3)Pc ∼ 3
(

N3

3
−

4N3

6
+

6N3

9
−

4N3

12
+

N3

15

)
=

N3

5
·

(C.23)

The result is thus the same as in the linear case:

|∆Jc
2| ∼

π

12
〈P2〉

N2 · (C.24)

C.4. Exponential spacing

For an exponential repartition of the spheroids, we imposed:

λi+1 = λi − βeiα. (C.25)

Then, considering the difference λi+1 − λi as a geometric se-
quence, we obtained:

λi = 1 − β
eiα − 1
eα − 1

· (C.26)
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Now, with the condition that the first layer (normalized to the
radius of Jupiter) is 1 and the last one is 0:

λi = 1 −
eiα − 1
eNα − 1

· (C.27)

To determine the error we needed:

Ri = 1 +
1

eNα − 1
−

eiα

2(eNα − 1)
−

e(i+1)α

2(eNα − 1)

= 1 +
1

eNα − 1
− eiα 1 + eα

2(eNα − 1)
, (C.28)

∆r =
e(i+1)α − eiα

eNα − 1
= eiα eα − 1

eNα − 1
= βeiα. (C.29)

As we wanted the increment to be reasonable, eNα − 1 could not
be too large. In this paper, we chose

α =
γ

N
, (C.30)

where we varied γ between 5 and 10, depending on how sharp
we wanted the exponential function to be (see Fig. 2).

Then, using Eq. (B.21), we had to calculate, for J2:

N−1∑
i=0

(∆ri)3R4
i = β3

N−1∑
i=0

e3iα
([

1 +
1

eNα − 1

]
− eiα 1 + eα

2(eNα − 1)

)4

,

N−1∑
i=0

(∆ri)3R4
i = β3

N−1∑
i=0

e3iα(δ − εeiα)4, (C.31)

β =
eα − 1

eNα − 1
, δ = 1 +

1
eNα − 1

, ε =
1 + eα

2(eNα − 1)
· (C.32)

Developing the power of 4 brackets and using the well known
result for the sum of the terms of a geometric sequence:

N−1∑
i=0

(∆ri)3R4
i = β3δ4

(
e3Nα − 1
e3α − 1

− 4
ε

δ

e4Nα − 1
e4α − 1

+ 6
(
ε

δ

)2 e5Nα − 1
e5α − 1

− 4
(
ε

δ

)3 e6Nα − 1
e6α − 1

+

(
ε

δ

)4 e7Nα − 1
e7α − 1

)
· (C.33)

Here, we considered that 7α � 1, eNα � 1, which is a reason-
able approximation in the range γ = 5−10 and N > 512. Then:

β ∼
α

eNα , δ ∼ 1 , ε ∼
1

eNα ,
e3Nα − 1
e3α − 1

∼
e3Nα

3α
, (C.34)

N−1∑
i=0

(∆ri)3R4
i ∼

(
α

eNα

)3
(

e3Nα

3α
− 4

e3Nα

4α

+ 6
e3Nα

5α
− 4

e3Nα

6α
+

e3Nα

7α

)
,

N−1∑
i=0

(∆ri)3R4
i ∼ −

α2

105
= −

γ2

105 N2 · (C.35)

We checked numerically that our approximations yield an error
always smaller than ≈10%.

Implementing these results into Eq. (B.21) yields:

|∆Jexp
2 | ∼

π〈P2〉

252
∗
γ2

N2 ≈ 0.000449
(
γ

N

)2
, (C.36)

with γ ∈ [5−10].

Appendix D: Neglecting the high atmosphere

The neglected potential on a point (µ, r j) of the jth spheroid
reads:

φneg = 4πG
∞∑

k=0

(r j)2kP2k(µ)
∫ aext

a1 bar

∫ 1

0

ρ(r′)
r′2k−1 P2k(µ′)dµ′ dr′.

(D.1)

With ρ = ρext = const. and Appendix A:

I =

∫ aext

a1 bar

∫ 1

0
ρ(r′)

1
r′2k−1 P2k(µ′)dµ′ dr′

' ρext

∫ aext

a1 bar

1
r′2k−1 dr′

∫ 1

0
P2k(µ′)(1 + e2µ′2)k−1dµ′. (D.2)

For any k > 0, we integrate a Legendre polynomial of degree
2k with a polynomial of order 2(k − 1). By orthogonality of the
Legendre base, only the k = 0 term is non zero. Thus

φneg ' 4πGρext

[
1
2

(a2
ext − a2

1 bar)
arctan(e)

e

]
· (D.3)

With aext = a1 bar + ∆a:

(a2
ext − a2

1 bar) ' 2a1 bar∆a, and so (D.4)

φneg ' 4πGρexta1 bar∆a
arctan(e)

e
· (D.5)

Using the exterior e ' 0.38 and defining ρ̄S as the density of
Jupiter if it was a sphere of radius a1 bar, the neglected potential
simply reads:

φneg ' 2.87
GM
a1 bar

(
ρext

ρ̄S

) (
∆a

a1 bar

)
· (D.6)

This expression does not depend on r j nor on µ: the first order
error is a constant neglected potential on each spheroid.

This means that the hydrostatic condition is not perturbed by
the neglected high atmosphere, because it is only sensitive to the
gradient of the potential. As the 1 bar pressure is set at the ob-
served radius, we do not expect a change in the pressure-density
profile of the planet from the direct effect of this neglected po-
tential.

On the other hand, this neglected potential affects the cal-
culation of the shapes of the spheroids. Calling ∆U = φneg ×

a1 bar/GM and U j the dimensionless potential of the jth spheroid,
we derived the first order perturbation of Eq. (51) of H13:

−
1

ζ j(µ)

N−1∑
i= j

∞∑
k=0

J̃i,2k

(
λi

λ j

)2k

ζ j(µ)−2kP2k(µ)

+

j−1∑
i=0

∞∑
k=0

J̃′i,2k

(
λ j

λi

)2k+1

ζ j(µ)2k+1P2k(µ)

+

j−1∑
i=0

J̃′′i,0λ3
jζ j(µ)3

 +
1
2
λ3

jζ j(µ)2(1 − µ2) = U j + ∆U.

(D.7)

For simplicity, we set x = ζ̄ j(µ) the solution without the ne-
glected potential and ∆x the variation to this solution. Both x and
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∆x depend on µ. It was then straightforward to write Eq. (D.7) at
the first order:

−
1
x

(
−

N−1∑
i= j

∞∑
k=0

J̃i,2k

(
λi

λ j

)2k

x−2k
(
2k

∆x
x

)
P2k(µ)

+

j−1∑
i=0

∞∑
k=0

J̃′i,2k

(
λ j

λi

)2k+1

x2k+1
(
(2k + 1)

∆x
x

)
P2k(µ)

+

j−1∑
i=0

J̃′′i,0λ3
j x

3
(
3

∆x
x

) )

+
1
x

∆x
x

( N−1∑
i= j

∞∑
k=0

J̃i,2k

(
λi

λ j

)2k

x−2kP2k(µ)

+

j−1∑
i=0

∞∑
k=0

J̃′i,2k

(
λ j

λi

)2k+1

x2k+1P2k(µ)

+

j−1∑
i=0

J̃′′i,0λ3
j x

3
)

+ λ3
j x

2
(
∆x
x

)
(1 − µ2) = ∆U. (D.8)

The second bracket could be simplified by the fact that x satisi-
fies Eq. (51) of H13:

−
∆x
x

(
−

N−1∑
i= j

∞∑
k=0

2kJ̃i,2k

(
λi

λ j

)2k

x−2k−1P2k(µ)

+

j−1∑
i=0

∞∑
k=0

(2k + 1)J̃′i,2k

(
λ j

λi

)2k+1

x2kP2k(µ)

+

j−1∑
i=0

3J̃′′i,0λ3
j x

2
)
−

∆x
x

(
U j −

1
2
λ3

j x
2(1 − µ2)

)
+

(
∆x
x

)
λ3

j x
2(1 − µ2) = ∆U. (D.9)

Now, we restricted ourselves to the outermost spheroid j = 0,
λ j = 1. Only the first sum remained, and we recognized Eq. (1):

∆x
x

 ∞∑
k=0

2kJext
2k x−2k−1P2k(µ) − U j +

3
2

x2
(
1 − µ2

) = ∆U. (D.10)

With Juno data, we know the first few Jext
2k and the contribution of

each J2k to the sum is strongly decreasing with k so we were able
to use only the first 4 even gravitational moments. From here, we
approximated x given by the CMS program as a polynomial of
order 15 (which gave errors of a few 10−14), but allowed us to
obtain as many evaluations of ∆x as we needed.

We noticed that around µ ∼ 0.5 the bracketed term tends to 0
so ∆x should not be defined. That means that at this point some
neglected effect should be taken into account. However, with the
polynomial approximation for x, we were able to use Riemann
sum to evaluate the change on Eq. (40) of H13:

J̃i,2k = −
3

2k + 3

δρiλ
3
i

∫ 1
0 P2k(µ)ζi(µ)2k+3dµ∑N−1

j=0 δρ jλ
3
j

∫ 1
0 ζ j(µ)3dµ

· (D.11)

We found that the undefined region for ∆x has a negligible influ-
ence on the integral because it is almost ponctual. We also found
that the change in the denominator which is, as expected, of the
order of the neglected mass, is ten times smaller than the change
in the numerator. Therefore, the change in the numerator domi-
nates the uncertainties on J2. By comparing for different number
of points in the Riemann sum, we obtained:

∆J2,0

J2,0
' 100 × ∆U ' 287 ×

(
ρext

ρ̄S

) (
∆a

a1 bar

)
· (D.12)

This result has a variation of about a factor 2 (due to the bad
handling of the divergence zone) and this evaluation is rather a
lower bound for ∆J2,0.

Because, in the linear limit, the 2k + 3 exponent cancel the
2k+3 in the denominator, the absolute uncertainty is approxima-
tively the same for all Jk (decorrelated by the P2k) so the relative
uncertainty is a rapidly growing function of k. Typically:

∆J4,0

J4,0
' 1 × 103 × ∆U (D.13)

∆J6,0

J6,0
' 6 × 103 × ∆U (D.14)

∆J8,0

J8,0
' 1 × 105 × ∆U. (D.15)
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