N

N

SwitchTree: In-network Computing and Traffic Analyses
with Random Forests
Jong-Hyouk Lee, Kamal Singh

» To cite this version:

Jong-Hyouk Lee, Kamal Singh. SwitchTree: In-network Computing and Traffic Analyses with Random
Forests. Neural Computing and Applications, inPress. hal-02968593

HAL Id: hal-02968593
https://hal.science/hal-02968593
Submitted on 16 Oct 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02968593
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

SwitchTree: In-network Computing and Traffic
Analyses with Random Forests

Jong-Hyouk Lee - Kamal Singh

the date of receipt and acceptance should be inserted later

Abstract The success of machine learning in different domains is finding ap-
plications in networking. However, this also needs real-time analyses of network
data which is challenging. The challenge is caused by the big data size and the
need for bandwidth to transfer network data to a central location hosting an
analyses server. In order to address this challenge, an in-network computing
paradigm is gaining popularity with advances in programmable data plane
solutions. In this paper, we perform in-network analysis of the network data
by exploiting the power of programmable data plane. We propose SwitchTree
which embeds the Random Forest algorithm inside a programmable switch
such that Random Forest is configurable and re-configurable at runtime. We
show how some flow level stateful features can be estimated, such as the
round trip time and bitrate of each flow. We evaluate the performance of
SwitchTree using system level experiments and network traces. Results show
that SwitchTree is able to detect network attacks at line speed with high
accuracy.

Keywords In-network computing - Network traffic analyses - Programmable
data plane - P4 - Random Forests - Detection of attacks

J.-H. Lee

Department of Computer and Information Security, Sejong University, Republic of Korea
Tel.: +82-3408-1846

E-mail: jonghyouk@sejong.ac.kr

X K. Singh (Corresponding Author)
Laboratory Hubert Curien,

University of Saint-Etienne, Jean Monnet,
Saint-Etienne, France

E-mail: kamal.singh@univ-st-etienne.fr

2 Jong-Hyouk Lee, Kamal Singh

1 Introduction

Demands of analysing network traffic in order to detect anomalies and security
attacks are ever growing. For example, for network management, data centers
and network service providers require to analyse lot of network traffic at very
high speed. Their goals are to improve the performance of their network and
detect problems in real-time to be able to solve them.

This topic of data analyses and anomaly detection takes us to the topic of
machine learning. Recently, machine learning approaches have been success-
fully applied in several domains and have shown significant breakthroughs.
One advantage of machine learning is that it can deal with complicated prob-
lems. Therefore it is intuitive to exploit machine learning to solve the problems
in networking where we are faced with complex problems [22].

Exploiting machine learning for networks or making networks more in-
telligent has been made possible by some recent advances in the domain of
networking. For example, there has been the arrival of virtualisation, which
has brought flexibility enabling smarter solutions and techniques. There has
also been the idea of decoupling control and data planes, which was pushed by
Software Defined Networking (SDN). One disadvantage of SDN was that it was
limited to existing headers/header fields and there was no support for custom
(encapsulating) protocols. This was because only the control plane was pro-
grammable. The data plane was not programmable and it could only support
the pre-configured headers. Thus, the idea of programmable switches is gain-
ing a lot of attention. The idea is to make switches as protocol-independent
and target independent.

Programmable switches call for flexibility, but Application Specific Inte-
grated Circuits (ASICs) present in the switches are traditionally fixed. New
custom ASICs can achieve such flexibility required by programmable switches
at terabit speeds and for that there are also other technologies like FPGA,
etc. Thus, initiatives such as P4, a programming language for the switches,
are gaining ground. With such initiatives, now we have the possibility to have
both control plane and data plane as programmable. This is one of the factors
contributing to the paradigm of in-network computation [19] and we are wit-
nessing an evolution from configurable to programmable network equipment
as shown in Fig 1.

With the above context, we study in-network analyses of packets at line-
speed by exploiting the power of programmable data plane. This in-network
analysis can be used, for example, to detect security attacks in the data plane
itself. This can be done without sending all the data for analyses to the control
plane. Thus, in-network analyses of data in the data plane economises the link
between the switch and the control plane. In-network traffic analyses for attack
detection has several advantages. It avoids sending all the heavy network data
to a centralised server for analyses. Detection is done in the path itself and
in a distributed fashion. When an abnormal flow is detected then it can be
dropped, marked, re-classified, forwarded to a different port or forwarded to

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 3

—

.
—/
} SDN: programmable Control P4: programmable
Configurable Plane Data Plane

Fig. 1 From configurable to programmable

a different path with degraded QoS, for further analyses, to avoid wasting
important resources.

In this paper, we propose to embed Random Forests inside a programmable
switch. The key property of the embedded Random Forest is that it is re-
configurable at run-time by the control plane. As a use case of this Random
Forest implemented in data plane, we study the detection of network security
attacks at line speed. Using system evaluations, we show that it is possible to
detect security attacks with high accuracy. The contributions of this paper are
summarised as follows:

— We embed the Random Forest algorithm in a programmable switch. The
control plane can configure or reconfigure the Random Forest parameters
at run-time.

— For analysing incoming packets, we propose strategies to compute different
stateless and stateful features inside the data plane which offers only limited
operations.

— We use the embedded Random Forest for in-network analyses of incoming
packets at line-speed.

— Experiments show that Random Forest embedded in a switch can detect
security attacks with high performance.

This paper is organised as follows. Section 2 discusses the background and
the related work. Section 3 shows how Random Forests can be used to detect
attacks in general. Section 4 shows how we can embed Random Forests in a
programmable switch and use it for online detection of attacks, at line speed
in the data plane. Section 5 concludes the paper.

2 Background
This section presents the background on programmable data plane as well as

related work on in-network computing and detection of security attacks in the
network.

2.1 Programmable Data Plane

Traditionally, in networking domain, we have been limited to fixed functional-
ities. We have a little or no control on allocating switch resources. This is due

4 Jong-Hyouk Lee, Kamal Singh

to proprietary and closed APIs. This means that we can not add new features
which in turn slows down the innovation. However, recently new programmable
switch chips are becoming available which let us define and customize how a
switch processes packets.

This is a big step from limited options due to proprietary solutions to-
wards open and programmable network devices. This opens a door to many
possibilities. For example, now as soon as we have an innovative idea, we can
directly program it into the switch and test it without waiting for the switch
manufacture to implement it. ISPs and Data centers can adapt the devices to
their own needs with tailor made solutions. Some interesting new ideas have
come out of this such as the idea of In-band Telemetry.

Programmable switches can specify customized operations using a new
language designed for this purpose such as P4 !. P4 is a language for pro-
gramming switches which allows to program the packet parsing logic. It uses
a fast match-action table, as shown in Fig 2. It is a re-configurable match-
action table [4] which stores a key (Source IP address, Destination IP address,
or any other packet parameter) pointing to what action can be performed
(drop, forward, etc.). Thus, in case the corresponding values in an arriving
packet matches with the key, then the corresponding action, pointed out by
the matching entry in the table, is executed.

A P4 program needs to be compiled and then uploaded to the switch.
Then the controller present in the control plane can change the content of the
match-action table at run-time. Depending on switch capacity and available
memory, many match-action pipelines are possible and they can be executed in
parallel. This opens up the possibility to design many applications, design our
own protocol, in-network computing, in-network processing to analyse packets
in data planes and network telemetry.

2.2 Related work and State of the Art

Recently there has been several works on programmable data planes such as
in-network data aggregation [19], in-network telemetry [12],[10], etc. Existing
telemetry systems, which do not use programmable data plane, process all
packets at servers such as [3] and [25]. They can express many types of queries,
but can only support lower packet rates and need to send the packets to the
server, causing bandwidth overhead. Some recent first attempts to monitor
networks using programmable switches include [17], etc.

Recently a research group, called Computation in the Network (COIN)?2,
has been created at Internet Research Task Force (IRTF). One of the use case
put forward [8] argues that in-network computing can be applied to enhance
security and privacy in the networks.

Coming back to our topic of security attack detection, several works have
studied network anomaly detection [21] and network intrusion detection [9,

1 https://p4.org
2 https://irtf.org/coinrg

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 5

1

1

. 1

compile i

LI

'I L

. 1 1

Switch Lo

1

EEHE

1 1

Parser T
=lke =
— Q >
N ~ Match-action I
N tables Egress L,
—| E——

G O Metadata

Fig. 2 A switch programmable using P4

7] using machine learning approaches. Distributed Denial of Service (DDoS)
detection in the context of SDN is studied in [24]. Work in [2] proposes mal-
ware detection even when the traffic is encrypted. They found that Random
Forest classifier to be the most robust for such types of problems and feature
selection had significant impact on performance. An advanced feature selection
algorithm applied to intrusion detection systems is proposed in [1]. Recently,
[11] proposed a novel multi-stage optimized ML-based Network Intrusion De-
tection System (NIDS) framework that reduces computational complexity and
enhances detection accuracy. They also used the University of New South
Wales (UNSW) dataset for detecting attacks, which is the same dataset used
in our experiments. They reported around 99.96% of F1 score for attack de-
tection, however, they seemed to have used a label value (attack category) as
an input feature. Attack category is actually a label as mentioned in the paper
describing the UNSW dataset [15]. Apart from security attack detection, but
for works related to traffic analyses such as traffic classification using machine
learning, please see the following survey [18]. However, above works do not
perform in-network or in switch detection.

Some works use in-network aggregation to help training distributed ma-
chine learning algorithms [20], but they do not embed machine learning inside
data plane.

Two recent works are near to our approach. IISY [23] embeds machine
learning algorithms such as Decision Trees, SVM, K-means in data plane.
However, they do not embed Random Forests and they tested their algorithm
for traffic classification with relatively simple features such as the value of
source or destination port. As compared to their work, we show how to com-
pute advanced stateful features such as round trip time of a flow. Another
interesting work, which is very recent, pForest [6] implements Random Forests

[§ Jong-Hyouk Lee, Kamal Singh

in programmable switches. They propose an advanced feature compression
technique which results in low consumption of memory. However, their source
code is not available to this date and, thus, we implemented® our own ver-
sion of Random Forests embedded in a programmable switch. As compared to
pForest, we provide algorithms to compute more complex and stateful features
and some of our features are more accurate as will be discussed in the text
later.

3 Detection of Attacks using Random Forests

Before embedding Random Forests inside data plane, let us first focus on
detecting attacks using Random Forests in general. In order to train the Ran-
dom Forest, we use the UNSW-NB15 dataset? [15] [16]. It consists of 2 million
records with 100GB of network traces. This dataset has nine types of attacks:
Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shell-
code and Worms. There are a total of 49 network data features, which includes
labels: attack category and class label. Some of these features are simply the
fields found in packet headers such as source or destination IP address, ports,
time to live (TTL), etc. Some are derived based on time such as duration,
jitter, inter-arrival of packets, round trip time, etc. Others are again derived
statistics such as bitrate, average packet size and loss rates. Finally the rest
are further derived from the above features using special algorithms such as
ct_state_ttl is derived using source/destination time to live. It should be noted
that the features are specified separately for both directions: source to desti-
nation as well as in inverse direction. As we will explain later, we detail only
12 features in Table 1 as they were the ones chosen for our study. We also
provide ct_state_ttl calculation algorithm (Algorithm 1), which is an existing
algorithm, for the readers.

In this study, we do not focus on detecting individual types of attacks,
but as a first step, we focus on detecting whether a network flow is normal or
abnormal. We can embed all the 49 features in the switch, but one trade-off
of embedding so many features is that it takes switch memory. In fact as we
will discuss later, stateless features are easy to implement, but implementing
stateful features inside a switch is challenging and requires significant switch
memory. Additionally as Random Forest involves many Decision Trees, em-
bedding several Decision Trees takes switch memory.

Thus, in this section, we consider the selection of the number of trees needed
and number of features to consider. Note that the approach in general is not
limited by these parameters and depending on the available switch memory,
these parameters can be adapted as required.

3 https://https://github.com/ksingh25/SwitchTree
4 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity / ADFA-NB15-
Datasets/

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 7

Result: Value of ct_state_ttl
Initialization: ct_state_ttl <— O;
if (sttl == (62 or 63 or 254 or 255) and ditl == (252 or 253) and state == FIN)
then
‘ ct_state_ttl=1 ;
else if (sttl == (0 or 62 or 254) and ditl == 0 and state == INT) then
‘ ct_state_ttl=2 ;
else if (sttl == (62 or 254) and dttl == (60 or 252 or 253) and state == CON)
then
| ctstate_ttl=3 ;
else if (sttl == 254 and ditl == 252 and state == ACC) then
| ctstate_ttl=4 ;
else if (sttl == 254 and ditl == 252 and state == CLO) then
‘ ct_state_ttl=5 ;
else if (sttl == 25/ and dttl == 0 and state == REQ) then
‘ ct_state_tt1=6 ;
else
‘ ct_state_tt1=0 ;
end
Algorithm 1: Algorithm to calculate ct_state_ttl [14]. The sttl is source
to destination time to live, dttl is destination to source time to live, state
is REQ (TCP, requested) INT (UDP, initiated), EST (TCP, established),

CON (UDP, connected), FIN (TCP, finished) or CLO (UDP closed)

Table 1 Selected features

No. Feature Description

1 sttl Source to destination time to live value

2 ct_state_ttl ~ An integer value calculated as a state according to specific range
of values for source/destination time to live

3 dttl Destination to source time to live value

4 sload Source bits per second

5 dpkts Destination to source packet count

6 dmeansz Mean of the packet size transmitted by the destination

7 sbytes Source to destination transaction bytes

8 dload Destination bits per second

9 smeansz Mean of the packet size transmitted by the source

10 teprtt TCP connection setup round-trip time

11 dsport Destination port number

12 dur Record total duration

3.1 Features Selection

First of all, we focus on selecting the most important features for detecting a
network attack. The dataset has 49 features including labels. Thus, as a first
step we trained a Random Forest classifier using all the features and labels. For
training classifiers, we used the Scikit-Learn® library with Jupyter® Notebook.
The dataset was randomly split into 75% of training data and 25% of test
data. The test data was not shown to the training algorithm.

5 https://scikit-learn.org/
6 https://jupyter.org/

8 Jong-Hyouk Lee, Kamal Singh

Variable Importances

Importance
a4 a4 o o o
- - ~N N w
(=] w o v o

o
o
V]

o
o
=]

E BE B T o4, N u o on £ =
F 2832283 EEE 8
W a @ = 2 7 Q.
= a0 § o 3 B g
A, 5 &

=]
Variable

Fig. 3 Importance of different parameters after training a Random Forest with 10 trees
and maximum depth of 10.

We first trained the Random Forest without any limit of maximum tree
depth or number of trees. After that impurity-based feature importance were
considered and the features were sorted according to their importance. As
a given feature’s importance changes when we eliminate certain features, we
eliminated features only one by one and arrived at the final 12 features. Thus,
finally we selected only 12 features for this study and this number was found
while targeting a Fl-score > 0.95. Note that any more features can be easily
added to SwitchTree. The features that we selected are shown in Table 1.
Figure 3 shows relative feature importance among these 12 selected features. In
Figure 3 the Random Forest was trained with 10 trees, with a maximum depth
of 10 using a pre-compiled dataset extract (UNSW_NB15_training-set.csv and
UNSW _NB15_testing-set.csv) which is provided within the UNSW dataset.

3.2 Selecting the Number of Trees

Another Random Forest parameter that we considered is the number of trees
in the Random Forest. Note that again we are only considering this number
for this study and this number can always be changed depending on the switch
capacity.

From the step before, we already fixed the number of features to be 12.
Now, we changed the number of trees to check the impact on the detection
performance. Higher number of trees in Random Forests allows to generalize
the classification task such that over-fitting is avoided. In our case a higher
number of trees also takes switch memory thus there is a trade-off.

Table 2 shows the values of precision, recall and F1 scores vs. different
number of trees in the Random Forest. It can be seen that the best precision
is when there are 10 trees. Increasing to 20 decreases the precision slightly,
but improves the recall. This is because more trees generalize better, but at

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 9

Table 2 Precision, Recall and F1 score on test data and with different numbers of trees in
the Random Forest.

No. Trees Precision Recall Fl-score

3 0.9662 0.9725 0.9693
10 0.9791 0.9660 0.9725
20 0.9784 0.9689 0.9736

Table 3 Confusion matrix for test data after training a Random Forest with 3 trees and
maximum depth of 10

Predicted Class 0 Predicted Class 1 (attack)

Real Class 0 169111 369
Real Class 1 (attack) 292 5229

the cost of some precision. Decreasing the number of trees to 3 decreases the
performance only slightly. Table 3 shows the confusion matrix when 3 trees
are used with 12 features. There are still 292 (5.29%) flows which were not
identified. To identify these remaining flows, we will have to add more features,
or increase the maximum depth of the tree.

From these results, we decided to focus on using 3 trees only in the Random
Forest. With this configuration, 12 features and 3 trees, we have a F1 score of
0.9693. Later we will see that increasing the number of trees to 5 increased the
processing cost. It should be noted that there is also another Random Forest
parameter called classification threshold which can impact the performance of
precision and recall. We can always manipulate that parameter if needed.

4 SwitchTree: Embedding Random Forests in a Switch

This section describes the design of SwitchTree and presents the results.

4.1 General Architecture

Figure 4 shows the architecture of programmable switches that are programmable
using P4. When a packet arrives then it is first parsed by the first parser
block. After that the packet is passed through a pipeline of several match-
action blocks which consist of several tables. The idea is that a key based on
packet parameters can be generated and matched with the contents of the
given match-action table. Different matches lead to different rows in the table
which contain a specific action to be executed. For example a key composed of
5-tuple {Source IP address, Destination IP address, Source Port, Destination
Port, Layer 4 protocol} can be used to match an action meant for this specific
flow. As an example, a table carrying keys composed of just the destination
IP address can be used to match to a row containing the destined exit port

10 Jong-Hyouk Lee, Kamal Singh

Programmable Match-Action Pipeline
Programmable A Programmable
Di

Parser ™

A
HHHH
I

Fig. 4 Example embedding of one of the trees, from the Random Forest, in the switch.
dpkts is the number of packets sent from destination to source, ct_state_ttl is a function of
source TTL and destination TTL, and Class is the final classification of the packet.

to realise routing, and so on. Finally depending on a switch’s capacities, there
can be several pipelines which can be executed in parallel. These match-action
tables use advanced hash algorithms and fast memory, which enables them to
process packets very rapidly.

P4 enables the programmer to define the structure and semantics of the
match-action tables. Once the P4 program is compiled then the controller is
able to populate the tables, while respecting the structure and semantics, at
runtime and control the match-action process.

In order to embed the Random Forest inside the switch, we need to define
the structure and semantics pertaining to Random Forests for the match-action
tables. Random forests are composed of several Decision Trees. Each Decision
Tree consists of a decision node where a condition has to be satisfied. If the
condition is satisfied the child node on left is evaluated, otherwise the child
node on the right is evaluated. Thus the evaluation proceeds iteratively till
a leaf node is encountered which outputs the classification result. Finally the
results of different Decision Trees are combined, for example using majority
voting, to obtain the final classification.

Figure 4 shows a Decision Tree embedded inside a match-action pipeline
of the programmable switch. Each match-action stage is used to embed a
particular level of the Decision Tree. In the example shown, the top most level
checks if dpkts < 0 (which in this specific case translates to whether dpkts = 0
as its value cannot be less than 0). If the condition is satisfied (or not) then the
processing moves to the next level carrying the results from the previous level
where the next condition related to ct_state_ttl is checked (just for illustration
and nothing to do with whether the checking moves left or right in the Decision

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 11

table level n {
key = {
meta.node_id: exact;
meta.prevFeature: exact;
meta.isTrue: exact;

}

actions = {
NoAction;
CheckFeature;
SetClass;

}
size = 1024;

Fig. 5 An example of a P4 table defined to embed a Decision Tree’s node of nth level

Tree) and so on. The example of the structure of a table at the nth level, inside
the P4 code, is shown in Figure 5.

Each table can define its own specific key. The key used in tables repre-
senting Decision Tree nodes is {node_id, previous feature id, previous result}
which maps to actions such as NoAction, CheckFeature, SetClass, etc., and
these actions accept parameters such as the threshold to compare, which in
turn is configurable by the control plane. The parameter node_id is used to
differentiate two different nodes in the Decision Tree, which may be on the
same level, and thus the same table, and may have the same condition. Thus,
node_id value is unique to each node and can be initiated arbitrarily as long
as it remains unique for each node. The purpose of node_id is to track where
we are in the Decision Tree. Whenever the CheckFeature action is called, it
checks the condition described by the input parameters that are provided and
uses the threshold value provided by the control plane. The SetClass action
sets the final class of the analysed packet when the end node of the Decision
Tree is reached.

Note that the exact content of the table will be populated by the control
plane. Thus, during runtime, the control plane is not only able to configure
the value of the threshold to be checked at each level, but it is also able
to configure other things explained in the following. The control plane also
configures which feature will be checked next and which action will be called,
with which parameters, after a given condition is satisfied or not. For example
in the case of the Decision Tree shown in Figure 4, the analyses starts from
the level_1 at the root where the condition checked is: dpkts < 0. Next, the
level 2 table will contain the following 2 entries (0 means that the condition,
in the level before, was not satisfied and 1 means it was satisfied).

Key(node_id, dpkts feature id, 1) -> CheckFeature(ct_state_ttl, 1)
Key(node_id, dpkts feature id, 0) -> CheckFeature(ttl, 250)

12 Jong-Hyouk Lee, Kamal Singh

Thus, in case in level_1 if the previous condition with dpkts was not satis-
fied, then a match will reach level_2 and the next condition to be checked will
be: TTL < 250 (this is just an example and in our studied case we check either
sttl or dttl). On the other hand if the previous condition was satisfied then the
condition to check next will be: ct_state_ttl < 1. Some matches will ultimately
produce the value of the Class by calling SetClass action. This happens when
the end node is reached. However, if that is not the case then the processing
will follow through to the next match-action stages.

Finally, several Decision Trees can be embedded inside several match-action
stages as either serial stages, in the case of a single pipeline, or parallel stages
with parallel pipelines depending on a switch’s capability. A final stage com-
pares the results of all the Decision Trees and depending on the algorithm
implemented, it outputs the final class. We implemented the voting algorithm
such that the final class is the one which is output by majority of the Decision
Trees.

4.2 Stateless vs. Stateful Features

It should be noted that some features are stateless and others are stateful that
require states to be kept in the switch for each flow. The stateless features
are just sttl and dsport and rest all other 10 features are stateful. Even dttl is
stateful as the currently arrived packet only contains sttl and in order to know
about dttl, which corresponds to the return packets, it needs to be stored in
the switch. Unfortunately for attack detection, mostly the stateful features are
important. There are works [13] that study the problem of detecting attacks
with stateful vs. stateless manner. They found that some categories such as
bandwidth based DoS attacks can be detected in a scalable way. We leave such
a study with SwitchTree for future work.

4.3 Estimation of Features

Embedding Random Forests inside programmable switches is relatively easy
and the main trick is to make them configurable at runtime. After that, im-
plementation of stateful features is challenging as they require tracking over
time and take switch memory. Depending on the application, one could only
consider stateless features, but stateful features are required for our case in
order to efficiently detect attacks. We explain the estimation of most com-
plicated features in the following text. For the purpose of the Decision Tree
implementation using P4, we differentiate between the features that require
division or not. The ones requiring division are treated in a special way.

Fractional thresholds: P4 does not support floating point. Thus, the
fractional thresholds in the Random Forest models were rounded to the lowest
integer. This did not have much impact on the performance as is shown by the
results later. In future, we will study if Random Forests can be constrained to
have only integer thresholds while training.

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 13

W=25 (W next=[17+7?

Fig. 6 Dual tumbling windows for bitrate estimation

Bitrate: Estimation of bitrate is required by features such as sload and
dload. Calculating bitrate is challenging as P4 does not support division, does
not support floating point and moving average will require to store a lot of past
values to be able to calculate an average over a sliding window. pForest [6] uses
EWMA filters (limited to only EWMA averaging parameter of 0.5 as division
by 2 is achieved by a shift operation) to calculate averages, which does not
provide precise values and can lead to inaccurate classification when using pre-
trained Random Forests based on actual bitrates. We argue that for detection
of attacks, we need to detect them as soon as possible, thus the flow will be
short lived before it is detected. We thus estimate the absolute bitrate of each
flow in stateful manner based on the total packets received till that point of
time. It is estimated as 8*5%, where dur is the flow duration as explained in
the table describing the features, bytes refers to the bytes transmitted during
the duration dur. However, note that division is not allowed in P4. Thus
instead of comparing

M < threshold
dur

we compare:

8 x bytes < threshold x dur.

Nevertheless, if the long term tracking for flows is required then we use
dual tumbling windows to estimate bitrate values. This requires only 2 stateful
variables, irrespective of the window size, to store tumbling window values and
another third variable to store the window duration. The idea is that the first
parameter stores the total size of packets in the previous window and the next
parameter stores the size of packets till now. A variable keeps track of time
and as soon as more time than the granularity or the desired window size (for
example 1s or 100ms, etc.) is elapsed than the W _next window is considered
complete and its value is transferred to W. The old value of W gets deleted
and W _next gets reset to start calculating the total size of packets received
in the next window. This is shown in Figure 6. We now have the size of total
packets received and need to calculate the bitrate without using division. The
condition is transformed from

< threshold

time

to:

14 Jong-Hyouk Lee, Kamal Singh

W < threshold * time.

Average packet size: This feature (required by smeansz and dmeansz
in our case) is also calculated in a similar way as bitrate feature. We show
the case for smeansz, where sbytes is the number of bytes transmitted by the
source to destination and spkts is the number of packets transmitted by the
source to the destination. For short lived flows:

sbytes
smeansz =

spkts

Again the division is avoided by transforming the condition to be checked into:

sbytes < threshold x spkts.

For long term estimations, we use dual tumbling windows. The only differ-
ence as compared to that of bitrate estimation is that instead of tracking the
time elapsed for the window, a variable tracks the number of packets. Again
as divisions are not supported, the condition is evaluated by the number of
packets transmitted multiplied to the threshold.

TCP Round Trip Time: To estimate tcprtt, we only consider initial
exchanges corresponding to the feature which is TCP connection setup round-
trip time. A 3-way TCP handshake takes place during TCP connection setup.
First the source sends a packet with SYN flag. Second if the destination accepts
the connection it sends a packet with SYN flag + ACK for the first packet.
Third the source sends an ACK and it can start sending data from this packet
onwards. To estimate tcprtt, we first track the arrival time of the first packet
with SYN flag from source in a stateful way. After that we look for the arrival
of ACK (third packet of the 3-way handshake) from the same source and for
the same flow. The value of tepritt is the difference of time between ACK and
SYN packets.

4.4 Hash Mapping

After estimating the features another challenge is to track them for each flow.
We use registers and hash mapping to keep track of per flow parameters. The
features or states of a flow are tracked using switch registers indexed using
a hash over 5-tuple values of a flow as shown in Figure 7. As the number of
registers are limited, a timeout value is used to erase the values of old flows
which have not been seen since some time. In experiments, we used 15s as
the timeout value. Hash collisions can still occur depending on how many
registers are used and how many flows are observed at one time. In case of
hash collision, the observed flow will not be classified and thus we mark it
and forward it to the control plane for further analyses. The hash collision is
detected by storing the packet header fields: source IP address, destination IP
address, source port, destination port and protocol at the index pointed by

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 15

Feature 1 Feature2 Feature3 ...

Hash
(5-tuple)

k

Fig. 7 Hash maps to track stateful features

the hash. Every time a packet arrives then its corresponding fields are checked
with those present at the location pointed by the index. In case the values are
different then it is a hash collision.

As a future work, we would like to use a bloom filter [5] for tracking
some binary parameters and eliminate some redundant checks. For example,
at present, one problem is that a given flow continues to be tracked even when
previously it was detected as an attack. Otherwise of course the control plane
can also immediately block the future packets from that flow once it was de-
tected as an attack. A bloom filter allows a user to query the presence of a
particular flow or not, using minimal memory space. A query returns either
“possibly in set” or “definitely not in set.” It uses multiple hash functions, for
example, using the 5-tuple as the key. These multiple hash functions return
different indexes and the bit is set at those index positions. Now if a query
wants to know if a flow (based on 5-tuple values) was seen before or not then
all these bit positions are checked. If all are set then the flow was probably
seen (probably because may be other flows created the same index resulting
in a hash collision), but even if one bit is unset then we are sure that the
flow was not seen. This can be used to track previously classified flows. Many
more flows are normal than abnormal flows. Thus better performance might
be achieved by only storing information about abnormal flows as compared to
storing information about normal flows.

16 Jong-Hyouk Lee, Kamal Singh

RandomForest
parameters converted
to P4 rules

~N

Controller @

oy
Switch /o
Parser ;’ H
N : .
tcpreplay o N l Match-action > Statistics
J O tables Egress s
= 1 -
O O Metadata

Fig. 8 Experimental setup

4.5 SwitchTree Performance

In order to test the performance of SwitchTree, we implemented SwitchTree”
inside the BMV?2 behavioral model® of the P4 switch. Note that BMV?2 is not
meant to be production grade and is meant for developing and testing P4
programs. The network trace from UNSW-NB15 was fed into the switch using
tepreplay as shown in Figure 8. We fed a total of 1800611 packets with peak
4000 packets/s approx. and average 1900 packets/s approx. It corresponds
to the data captured in the UNSW traces between 2015-01-22 13:49:36 and
2015-01-22 14:05:04 UTC. The Random Forest parameters were converted to
switch rules using a script and were installed from the control plane. The
virtual BMV2 switch was run on a machine with 16GB RAM and 8 cores of
CPUs. The debugging of BMV2 was disabled for test runs to avoid packet
loss as packets are analysed at line speed. Enabling debugging results in high
packet losses.

The packets arrive® at port 1 and then the packets classified as attack are
forwarded to port 2 and the ones classified as normal are forwarded to port
3. At the end the received packets on these 2 ports are compared with the
ground truth to evaluate the performance. The statistics are also obtained
from the controller which keeps track through the use of counters available in
P4 language.

In order to compare the packet processing performance of SwitchTree with
respect to number of trees, we performed stress testing. Here SwitchTree is

7 https://github.com/ksingh25/SwitchTree
8 https://github.com/p4lang/behavioral-model
9 As we use network traces, we send the inbound as well as the outbound packets on this

same port for analyses.

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 17

100

——-1tree 3 Trees 5 Trees

10
=
o
vl
o 1
|

0,1

0 10 20 30 40 50 60 70 80 90
Speed (Mbps)

Fig. 9 Stress testing. The first point corresponds to the speed at which original traffic was
captured and is only approx. 10 Mbps. Note that SwitchTree here runs on a machine and
better performance should be expected while running on a switch.

90
80
70
~ 60
£
S 50
@
3 40
=
3 30
I
: I
. Bl
100 512 1024 2048 4096 8192

Number of Registers

Fig. 10 Hash collision percentage for arriving packets vs. number of registers per tracking
variable

running on a machine and BMV2 which is not production grade. Better per-
formance is expected when it runs on a production grade switch. First the
traffic was sent at its normal rate of capture. Then the traffic injection speed
was gradually increased using a tcpreplay parameter. This was to compare
the performance when the number of Decision Trees are increased. As shown
in Figure 9 the losses increase when the traffic speed is increased. Moreover,
losses increase as the number of trees increase. This is because with more
trees the packets have to pass through more conditions. This increases the
processing cost and thus increases the chance that the queues will be full and
arriving packets will be dropped. The attack detection accuracy also decreases
because already the time related features do not get estimated correctly when
the traffic speed is not original. Thus, the detection accuracy for accelerated
traffic is not shown.

18 Jong-Hyouk Lee, Kamal Singh

100
90

g 80

3

g 70

5 o

s

w

E 50

w

& 40

o

% 30

-

@

g 20

)

o 10
0

100 512 1024 2048 4096 8192

Number of Registers

Fig. 11 Detected attack percentage in terms of flows vs. number of registers per tracking
variable

About attack detection accuracy, we first show results when using just 1
tree, thus in this case the Random Forest becomes a Decision Tree. After that
we show the results with Random Forest of 3 and 5 Decision Trees.

One of the crucial switch parameter is the number of registers available
or other memory elements which can store the feature states. Each feature
needs to track certain number of tracking variables per flow. For example
dttl just needs 1 tracking variable per flow to store the value of dttl for a
given flow, however, sload required at least 2 tracking variables to store the
number of transmitted bytes and total duration for a given flow. Thus, we
study the performance of SwitchTree by varying the number of registers per
tracking variable. Low number of registers mean that there will be hash col-
lisions and we will have to let the flow pass with just a mark, to be analysed
by some other network element later. Thus, a low number of registers can
still help by detecting some attacks and marking the other flows for further
analyses by other elements in the network. Figure 10 shows that the number
of hash collisions decrease with the increasing number of registers. With 8192
registers, we observed 4.282% collisions. We also observe in Figure 11 that the
attack detection percentage improves with the number of registers used. For
example with 8192 registers per feature, SwitchTree detects 97.36% of attacks.
The above results correspond to just 1 Decision Tree. Also note that even af-
ter disabling debugging during our experiments, for optimal performance, we
noted around 0.26% of packet losses. They decreased the detection perfor-
mance, even though very slightly. Losses are still present even when no table
is implemented inside BMV2. These packet losses are either due to system
errors or due to sudden peaks of heavy load in the traffic.

Next, we tested Random Forest with 3 and 5 trees. With multiple trees,
their classification results are aggregated to achieve a final classification. The
SwitchTree implementation with more trees takes more memory as more num-

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 19

Table 4 SwitchTree with more trees

Number of Trees Detected Attacks

SwitchTree (1 Tree) 97.36% (on 1 GB Data at line speed
SwitchTree (3 Trees) 94.45% (on 1 GB Data at line speed)
SwitchTree (5 Trees) 87.35% (on 1 GB Data at line speed)

ber of match-action tables are used. However, the behaviour of hash collisions
remain same as features are only computed once per packet even when there
are multiple trees. Table 4 shows the results. It can be seen that adding more
trees degraded the performance in terms of a decrease of 2.91% with 3 trees
and a decrease of 10.01% with 5 trees. This is because of increasing losses
with increasing number of trees. Moreover, some times the results from differ-
ent trees can conflict and this increases with number of trees. In any case, this
is a trade-off as more trees are known to generalise better and thus perform
better on new data, at the cost of decrease in performance.

5 Conclusions

In this paper, we proposed SwitchTree which is an embedded Random Forest
algorithm inside a programmable switch. We showed that complicated fea-
tures needed to detect network attacks can be estimated using hash mapping,
inside data plane. This however makes the performance results dependent on
the number of registers, or other memory elements, which can store the states.
Thus, it becomes an equipment dimensioning question and in-network detec-
tion can be performed if the switch has the required capacity. Switch with low
memory can still help by detecting and offloading some attacks and marking
other flows, in case of hash collision, to be detected by other network elements
or servers. Using system level experiments, SwitchTree is able to detect more
than 94% of network attacks.

As future work, we would like to add more features to improve performance
and would like to explore ways to decrease the number of registers needed and
optimise the packet processing capability. One idea is to use bloom filters for
features requiring binary states.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Ambusaidi, M.A., He, X., Nanda, P., Tan, Z.: Building an intrusion detection system
using a filter-based feature selection algorithm. IEEE transactions on computers 65(10),
2986-2998 (2016)

20

Jong-Hyouk Lee, Kamal Singh

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Anderson, B., McGrew, D.: Machine learning for encrypted malware traffic classification:

accounting for noisy labels and non-stationarity. In: Proceedings of the 23rd ACM
SIGKDD International Conference on knowledge discovery and data mining, pp. 1723—
1732 (2017)

. Borders, K., Springer, J., Burnside, M.: Chimera: A declarative language for streaming

network traffic analysis. In: Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12), pp. 365-379 (2012)

. Bosshart, P., Gibb, G., Kim, H.S., Varghese, G., McKeown, N., Izzard, M., Mujica, F.,

Horowitz, M.: Forwarding metamorphosis: Fast programmable match-action processing
in hardware for SDN. ACM SIGCOMM Computer Communication Review 43(4), 99—
110 (2013)

. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey. Internet

mathematics 1(4), 485-509 (2004)

. Busse-Grawitz, C., Meier, R., Dietmiiller, A., Biihler, T., Vanbever, L.: pforest: In-

network inference with random forests. arXiv preprint arXiv:1909.05680 (2019)

. Devan, P., Khare, N.: An efficient XGBoost—-DNN-based classification model for network

intrusion detection system. Neural Computing and Applications pp. 1-16 (2020)

. Fink, I.B., Wehrle, K.: Enhancing Security and Privacy with In-Network Computing.

Internet-Draft draft-fink-coin-sec-priv-00, Internet Engineering Task Force (2020). URL
https://datatracker.ietf.org/doc/html/draft-fink-coin-sec-priv-00. Work in Progress

. Ghanem, W.A., Jantan, A.: A new approach for intrusion detection system based on

training multilayer perceptron by using enhanced bat algorithm. Neural Computing
and Applications pp. 1-34 (2019)

Gupta, A., Harrison, R., Canini, M., Feamster, N., Rexford, J., Willinger, W.: Sonata:
Query-driven streaming network telemetry. In: Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication, pp. 357-371 (2018)
Injadat, M., Moubayed, A., Nassif, A.B., Shami, A.: Multi-stage optimized machine
learning framework for network intrusion detection. IEEE Transactions on Network
and Service Management (2020)

Kim, C., Sivaraman, A., Katta, N., Bas, A., Dixit, A., Wobker, L.J.: In-band network
telemetry via programmable dataplanes. In: ACM SIGCOMM (2015)

Kompella, R.R., Singh, S., Varghese, G.: On scalable attack detection in the network.
In: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, pp.
187-200 (2004)

Moustafa, N.: Designing an online and reliable statistical anomaly detection framework
for dealing with large high-speed network traffic. Ph.D. thesis, University of New South
Wales, Canberra, Australia (2017)

Moustafa, N.; Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set). In: 2015 military communications
and information systems conference (MilCIS), pp. 1-6. IEEE (2015)

Moustafa, N., Slay, J.: The evaluation of Network Anomaly Detection Systems: Statis-
tical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data
set. Information Security Journal: A Global Perspective 25(1-3), 18-31 (2016)
Narayana, S., Sivaraman, A., Nathan, V., Goyal, P., Arun, V., Alizadeh, M., Jeyakumar,
V., Kim, C.: Language-directed hardware design for network performance monitoring.
In: Proceedings of the Conference of the ACM Special Interest Group on Data Com-
munication, pp. 85-98 (2017)

Pacheco, F., Exposito, E., Gineste, M., Baudoin, C., Aguilar, J.: Towards the deploy-
ment of machine learning solutions in network traffic classification: A systematic survey.
IEEE Communications Surveys & Tutorials 21(2), 1988-2014 (2018)

Sapio, A., Abdelaziz, 1., Aldilaijan, A., Canini, M., Kalnis, P.: In-network computation
is a dumb idea whose time has come. In: Proceedings of the 16th ACM Workshop on
Hot Topics in Networks, pp. 150-156 (2017)

Sapio, A., Canini, M., Ho, C.Y., Nelson, J., Kalnis, P., Kim, C., Krishnamurthy, A.,
Moshref, M., Ports, D.R., Richtarik, P.: Scaling distributed machine learning with in-
network aggregation. arXiv preprint arXiv:1903.06701 (2019)

Tama, B.A., Rhee, K.H.: An in-depth experimental study of anomaly detection using
gradient boosted machine. Neural Computing and Applications 31(4), 955-965 (2019)

SwitchTree: In-network Computing and Traffic Analyses with Random Forests 21

22.

23.

24.

25.

Wang, M., Cui, Y., Wang, X., Xiao, S., Jiang, J.: Machine learning for networking:
Workflow, advances and opportunities. IEEE Network 32(2), 92-99 (2017)

Xiong, Z., Zilberman, N.: Do switches dream of machine learning? Toward In-Network
Classification. In: Proceedings of the 18th ACM Workshop on Hot Topics in Networks,
pp. 25-33 (2019)

Xu, Y., Liu, Y.: Ddos attack detection under sdn context. In: IEEE INFOCOM 2016-
the 35th annual IEEE international conference on computer communications, pp. 1-9.
IEEE (2016)

Yuan, Y., Lin, D., Mishra, A., Marwaha, S., Alur, R., Loo, B.T.: Quantitative network
monitoring with NetQRE. In: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, pp. 99-112 (2017)

