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We introduce and explore an approach for constructing force fields for small molecules, which
combines intuitive low body order empirical force field terms with the concepts of data driven
statistical fits of recent machine learned potentials. We bring these two key ideas together to bridge
the gap between established empirical force fields that have a high degree of transferability on the
one hand, and the machine learned potentials that are systematically improvable and can converge
to very high accuracy, on the other. Our framework extends the atomic Permutationally Invariant
Polynomials (aPIP) developed for elemental materials in [Mach. Learn.: Sci. Technol. 2019 1
015004] to molecular systems. The body order decomposition allows us to keep the dimensionality
of each term low, while the use of an iterative fitting scheme as well as regularisation procedures
improve the extrapolation outside the training set. We investigate aPIP force fields with up to
generalised 4-body terms, and examine the performance on a set of small organic molecules. We
achieve a high level of accuracy when fitting individual molecules, comparable to those of the
many-body machine learned force fields. Fitted to a combined training set of short linear alkanes,
the accuracy of the aPIP force field still significantly exceeds what can be expected from classical
empirical force fields, while retaining reasonable transferability to both configurations far from the
training set and to new molecules.

I. INTRODUCTION

Molecular mechanics (MM) with classical empirical
force fields has been used to perform simulations of or-
ganic molecules for many decades [1, 2]. One of the prin-
ciple reasons why such force fields have been so successful
is that the simplicity of their functional form results in
both a low body order and relatively few fitting param-
eters. This allows the parameters to be fit using just
a small amount of quantum mechanical (QM) or experi-
mental data, and the problems associated with overfitting
do not readily occur. The simple, chemically intuitive
functional form makes the force fields highly transferable,
giving reasonable results for molecules and conformations
far away from those that were used to fit the parame-
ters. Over time, improvements were made in the descrip-
tion of both the intermolecular interactions, particularly
through the construction of polarizable models [3], and
the intramolecular interactions, mainly with the devel-
opment of Class II force fields [4–6] that introduced new
couplings between bond and angle terms. However, de-
spite these developments the accuracy of classical force
fields remains limited by the restrictive functional forms,
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the very same that gave rise to their success. This is
particularly noticable when having to make unavoidable
trade-offs between the accuracy of different observables.
Freeing up the functional form has been achieved for only
low body orders (up to three-body) e.g. in the ChIMES
force field [7, 8].

Over the past few years, a completely new direction
emerged: the development of machine learning (ML)
based potentials [9, 10] has led to a significant improve-
ment in accuracy for small molecules [11–22]. It has been
demonstrated that these new ML models can perform
molecular dynamics (MD) simulations in some cases and
be transferred to some extent to molecules they have not
been explicit fit to [23]. The long term goal of these
developments is to obtain a general model having an ac-
curacy comparable to accurate ab initio methods such as
CCSD(T) [24], and a speed and transferability compa-
rable to classical force fields. The various formalisms of
the recent ML models represent, on the surface, a radical
departure from that of empirical force fields. The aim of
this paper is to bridge this formalism gap, and to seek
answers to questions such as: what makes the ML models
accurate, is it their high dimensionality (i.e. body order)
or their flexible functional form? How much additional
accuracy is gained by allowing a controlled increase in
body order?

Predating the recent surge of interest in machine
learned force fields, there is a significant literature for
accurate fitting of molecular potential energy surfaces
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Figure 1. Removing some number of hydrogens from methane
using DFT/B3LYP (top), ANI (middle) and aPIPs (bottom).
Both ANI and the aPIP were fitted only to near equilibrium
geometries (the aPIP shown here was fitted to a database of
small linear alkanes, including distortions of bond lengths up
to 0.3 Å).

(PES) [17, 25]. One of the most prominent and system-
atic approaches is due to Bowman and Braams [26–30].
Given a fixed molecular composition, a basis consisting
of permutationally invariant polynomials (PIPs) of the
interatomic distances is constructed and then used to ap-

proximate the PES by least squares fitting. Models using
PIPs have very high accuracy, below 1 meV/molecule,
and successfully reproduced the properties of a number
of small molecules including CH+

5 , H2O2 and malonalde-
hyde [26–28]. They have also been used as building blocks
in models of water such as MBpol by Paesani et al [31–
34], probably the most accurate water model to date.

The difficulty in extending the PIP formalism to larger
molecules or larger clusters of small molecules is in the
scaling of the computational cost with the number of
atoms. The number of permutationally invariant polyno-
mials that are used as the basis grows factorially, in fact
we were unable to obtain basis functions for six atoms of
the same kind with full permutation symmetry. One way
out of this crushing scaling is to employ a so-called “frag-
mentation scheme” [29], in which parts of the molecule
are explicitly grouped into fragments, and permutations
between the groups are excluded from the symmetries of
the basis. However, the choice of the fragments, based
on distances in the initial molecule template, is manual
and therefore limited to molecules which can be clearly
split into suitable fragments. Potentials for large cyclic
molecules or flexible molecules cannot be produced with
this method.

A little over a decade ago, a new approach to mak-
ing potentials was devised, inspired by the developments
in computer science. Instead of systematically expand-
ing the potential energy function using an analytically
defined basis set, or using carefully designed chemically
intuitive descriptions of atomic interactions, the idea was
to describe the entire local neighbourhood of an atom us-
ing a set of descriptors, and then use nonlinear regression
techniques to fit a model with thousands of parameters
to first principles data. First, Behler and Parrinello in-
troduced atom-centered symmetry functions and used a
feed-forward artificial neural networks [9]; later, spherical
harmonics were used in combination with Gaussian pro-
cess (kernel) regression [10]. These new approaches led to
exquisitely accurate interatomic potentials for strongly
bound materials [14, 18, 37–39] and condensed phase
molecular materials [13, 22, 40–42]. Although using neu-
ral networks to fit potentials was not itself new (e.g. see
Refs. 43, 44) these aforementioned models had finite in-
teraction range, resulting in linear scaling cost, which
opened the door to simulations of large systems with un-
precedented accuracy.

The field has since blossomed, with many novel ap-
proaches introduced [16, 45–51]. Particularly notable is
the ANI series of models for organic molecules [19, 23, 52].
For moderate sized molecules and small clusters very ac-
curate custom made (non-transferable) models can be
made using simply the interatomic distances as the set
of descriptors and a Gaussian kernel [13, 14, 20, 21, 53].
Along with these successes, however, due to the high
dimensional nature of these fits, come the problems of
extrapolation and transferability. All these ML models
(both for materials and molecules) are guaranteed to be
accurate only for configurations quite near their train-
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Figure 2. Top: Relationships between different force field schemes. Bottom: a graphical representation of the body order terms
in empirical force fields and in the aPIP framework. The shading of the 3-,4- and 5-simplices emphasises that full dimensionality
of the simplex is represented, and thus the n = 3-, 4-, and 5-body terms are 3, 6 and 9 dimensional functions, respectively
(given by 3n − 6). On the right, the cartoons represent (i) the PIP method of Bowman & Braams [26] and sGDML [35] that
both describe a whole molecule always using its full dimensional representation, and (ii) atom-centered ML methods [19, 36]
that represent the complete environment of an atom up to a cutoff. All of these approaches are many-body and do not take
advantage of the atomic body-ordered decomposition in the way empirical force fields and aPIPs do.

ing set, and can become uncontrolled or even nonsensical
far from there. The practice of making ML models has
therefore largely focused on how to create suitable (and
rather large) training sets, how to detect when the model
goes “out of scope” etc. Such problems do not exist
for the empirical force fields: although their accuracy is
only moderate, and not systematically improvable, they
never give catastrophically incorrect results. They be-
have much more reasonably in extrapolation, even with-
out explicit fitting to such configurations, since chemical
intuition is built in through the functional form and leads
to much lower-dimensional objects to fit.

An illustration of such a problem is in Fig. 1, show-
ing the ANI model[19] behaving unphysically as hydro-
gens are removed from a methane molecule. The reason
is simple: neither such bond dissociations, nor isolated
atoms were included in its fitting database; no doubt if
they were, the results would look much better. We em-
phasise that this is no indictment of the ANI model in
particular, and we expect all direct high dimensional fits
to behave similarly, or worse.

In this work, we introduce a way of making force fields
for molecules that has the transferability and reasonable
extrapolation property, due to limited body order, of em-

pirical force fields, and also the accuracy of the recent ML
models, due to its systematic nature. The construction,
which we call atomic permutationally invariant polyno-
mials (aPIP), builds heavily on the PIP framework of
Bowman and Braams, and generalises our earlier work for
strongly bound materials Ref. 54. We show that the “best
of both worlds” is possible: chemically sensible functions
leading to smooth dissociation curves, as shown in Fig 1,
without compromising on the convergence and ultimate
accuracy of the fit. Before we introduce the construction
of multi-element aPIPs in detail, it is helpful to note that
they can be viewed in two ways.

When developing empirical force fields, adding terms
to the functional form is a natural way to improve a po-
tential’s accuracy, as was shown in the development of
Class II force fields [4–6]. These have additional cross-
terms between the bond, angle and dihedral components
and include higher degree terms [4]. This indeed im-
proves the accuracy of the force field [55] but these addi-
tional higher body order terms introduce only very few
new degrees of freedom. Manually adding such terms
to the functional form becomes increasingly tedious and
complex. The aPIP construction can be viewed as a gen-
eral framework to implement this idea of systematically
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increasing to arbitrary body order, while allowing for the
full dimensional freedom at each order. By increasing the
degree of the polynomials, the functional form becomes
increasingly complex as higher degree bond and angle
terms, as well as all possible cross-terms between angles
and bonds, are automatically included. By retaining the
atom-wise body ordered description, the dimensionality
of the representation is kept small, as is the case for em-
pirical force fields. (In fact existing empirical force fields
can all be represented as aPIPs.) This is the crucial way
in which aPIPs differ from the regular PIPs of Bowman
and Braams, and brings us to the second, complementary
view of aPIPs. They can instead be viewed as a version of
PIPs in which we limit the combinatorial explosion in the
number of terms with system size by (i) explicitly limiting
the body order of the potential, and (ii) using a smooth
spatial cutoff. The latter can be seen as an automated
way to implement the aforementioned “fragmentation”
process, and also brings an atom centered view. In fact,
it can be shown that in the limit of high body order,
the aPIP basis is equivalent to the high dimensional ML
approaches, and particularly closely linked to MTP [46]

and ACE [56, 57]. Figure 2 shows the conceptual rela-
tionships between many of the approaches mentioned in
this section. The key advance with aPIPs is the ability
to gradually and systematically increase the body order,
describing each term in its full generality.

Two more short points are in order. Firstly, due to the
smooth cutoff we introduce, discrete atom types, as used
in empirical force fields, are no longer necessary, although
could still be used if desired. Secondly, just as empirical
force fields have separate short and long range interac-
tion terms, so too can aPIPs. We focus in this paper on
the short range intramolecular interactions. Any exist-
ing long range model, whether describing electrostatics
of van der Waals dispersion, can be added if desired.

The construction of the aPIP potential is as follows. To
start with, the total energy is decomposed as a sum of
body-ordered terms, each of which depends on the chem-
ical element of the elements involved. More precisely, let
us consider a system containing a total of M atoms of
K different elements (Z1, . . . , ZK) with positions and el-
ements R = ((r1, z1), . . . , (rM , zM )). The total energy is
decomposed as

E(R) =
∑

1≤k≤K

∑
i, s.t.
zi=Zk

E
(Zk)
1 (ri) +

∑
1≤k1≤k2≤K

∑
i1 6=i2 s.t.

(zi1 ,zi2 )=(Zk1
,Zk2

)

E
(Zk1

,Zk2
)

2 (ri1 , ri2) +

+
∑

1≤k1≤k2≤k3≤K

∑
i1 6=i2 6=i3 s.t.
(zi1 ,zi2 ,zi3 )

=(Zk1
,Zk2

,Zk3
)

E
(Zk1

,Zk2
,Zk3

)
3 (ri1 , ri2 , ri3) + · · ·+

∑
1≤k1≤...≤kN≤K

∑
i1 6=···6=iN s.t.
(zi1 ,...,ziN )

=(Zk1
,...,ZkN

)

E
(Zk1

,...,ZkN
)

N

(
ri1 , . . . , riN ). (1)

Thus, the total energy is viewed as a sum of one-
body, two-body, three-body contributions and so on, each
body-order being itself described by many independent
functions, separated with respect to the chemical ele-
ments. In this paper, we consider this expansion up
to body-order 4, which keeps the dimensionality of the
potential low (up to 6 dimensions for four-body terms).
To guarantee the rotation and permutation invariance
of the global PES, we enforce the symmetries at each

body-order and for each component E
(Zk1

,...,Zkn )
n that

we denote by EZ
n , combining the element indices into a

vector. As detailed in the next section, we transform the
cartesian coordinates in each term into interatomic dis-
tances and angle variables, which are rotation-invariant.
We then construct permutation-invariant polynomials of
these variables following Ref. 26. Finally, these polyno-
mials are globally fit using a linear least-squares fit to
energy and force data. In order to limit the evaluation
cost and be able to treat large molecules, we employ a
distance-based cutoff, restricting the sums in each term of
the body-order expansion (1) to nearby atoms. Further-
more, in order to avoid the presence of holes in the PES,

i.e. very large negative values of the energies for some
reasonable physical configurations, we add regularisation
to the least-squares fit, thus improving the smoothness of
the potential. An iterative data gathering and fitting pro-
cedure is also used to eliminate holes in the PES. Such
techniques are essential for the potential to be readily
used for a wide range of systems and applications.

In this work, we set out to explore the use of aPIPs,
rather than introduce a specific force field parametrisa-
tion for future use, and thus focus only on a handful of
small organic molecules made of a few different elements.
Note that the approach is well suited to applications with
many chemical elements, due to its inherently favourable
scaling: each cluster appears once and only once in the
expansion of the energy, so that the overall evaluation
cost of the potential is independent of the number of dis-
tinct elements.
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II. THEORY

A. Symmetric polynomial basis

We introduce a basis of permutation and rotation in-
variant polynomials for fitting molecular PES, extending
the construction of Ref. 54 to treat multi-element sys-
tems. While our focus is on molecules, our construction
directly applies to multi-component alloys. As in Ref. 54,
the starting assumption is that the body-order expan-
sion (1) can be truncated at a moderate to low body-
order N to obtain an accurate PES. The body-ordered
components EZ

n are then constructed to incorporate rota-
tion symmetry and permutation invariance with respect
to identical particles. The main difference from Ref. 54
concerns the invariant polynomials used, which are ad-
justed to the permutation groups considered. Differences
of our method from the original PIPs [26] are discussed
in detail in the Introduction, see also below.

1. Rotation-invariant coordinates

Given a body-order n and atomic positions
(r1, . . . , rn), we can define rotation-invariant (RI)
coordinates in two different ways:

(D) Distance-based coordinates: Let uij denote a dis-
tance transform, e.g., uij = rij , uij = e−αrij , or in-

verse distance variables uij = r−pij . Then we rewrite

EZ
n as

EZ
n ({ri}ni=1) = EZ,D

n ({uij}1≤i<j≤n).

The potentials proposed by Bowman & Braams [26]
also employ distance-based coordinates.

(DA) Distance-angle coordinates: Particularly for
molecules it is natural to consider bond-angles,
which suggests using distance and angle variables.
Given a center atom i, we define

wjik = cos(θjik) = r̂ij · r̂ik.

The combined distance and angle variables are

{uij}1≤j≤n
j 6=i

, {wjik}1≤j<k≤n
j,k 6=i

.

and the term EZ
n is rewritten as

EZ
n ({ri}ni=1) = EZ,DA

n ({u1j}nj=2, {w1jk}2≤j<k≤n).

While distance-based coordinates were used e.g. in
Refs. 26, 54, and is the norm when working with
PIPs [31, 34], we will focus on distance-angle coordinates,
which happen to lead to better numerical results in the
present context, as is illustrated in the Supplementary
Information S1.

2. Permutation-invariant polynomials

Given rotationally invariant coordinates, we need to
further transform them into variables that are also invari-
ant under permutation of identical particles. These are
obtained using invariant theory [26, 58]. We generate in-
variant polynomials called primary and secondary invari-
ants which are adapted to the permutational symmetry
group on the rotationally invariant coordinates (distance-
based or distance-angle), from which any polynomial that
is invariant under permutation of like atoms can be ex-
pressed in a unique way. This gives

EZ
n ({ri}ni=1) =

∑
b

sZn,bPn,b({pZn,a}), (2)

where {pZn,a}n(n−1)/2a=1 denote the primary invariants,

{sZn,b}b denote the secondary invariants, and Pn,b are

multivariate polynomials in the n(n − 1)/2 rotationally
invariant coordinates ({u1j}, {wi1j}). These primary and
secondary invariants are determined using the Computer
Algebra System Magma [59]. We refer to Refs. 26, 54
for further details of this construction.

The primary and secondary invariants depend on the
symmetry groups which are induced by the element com-
binations and the rotationally invariant coordinates, but
not directly on the identity of the elements. For example,
the triplet of atoms with Z = (1, 1, 6) and Z = (1, 6, 6)
have the same invariants because both contain one atom
of one element and two atoms of a different element. We
show the different possible invariants for body-orders 2
to 4 below that are used in this paper. They can also be
found e.g. in Bowman & Braams [26].
a. Body-order 2. In this case, the only rotation-

invariant coordinate is the distance separating the two
particles, which is already permutation-invariant. There-
fore, a rotation and permutation invariant (RPI) repre-
sentation of the two-body energy is

E
(Z1,Z2)
2 (r1, r2) = E

(Z1,Z2),RPI
2 (u12).

In the notation of primary and secondary invariants this
corresponds to choosing p2,1 = u12, s2,1 = 1. Note that
the constant polynomial 1 is usually not considered as a
secondary invariant, but we include it for convenience.
b. Body-order 3 For three-body terms, there are

three distinct element combinations possible, AAA, AAB
and ABC, but only two cases have to be considered
for distance-angle coordinates, since the center atom at
which the angle is measured does not enter into the con-
sideration of symmetry. We denote these two cases by
?AA, and ?AB, where ? stands for the center atom. We
summarise a canonical choice (it is not unique) of invari-
ants in Table I. Invariants for distance-based coordinates
can be found in the Supplementary Information S3.

Note that considering the symmetry with respect to
like atoms that are not the center atom of the environ-
ment, as is done in the case of distance-angle coordinates,
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leads to simpler invariants compared to the full symme-
try as the considered symmetry group is smaller, but this
is partly compensated by an additional sum needed to ac-
count for the different atom-centered environments in the
computation of the energy.

c. Body-order 4 For four-body terms, there are five
distinct element combinations, which are AAAA, AAAB,
AABB, AABC, ABCD. As for three-body components,
only element combinations ?AAA, ?AAB, ?ABC have to
be considered for distance-angle coordinates, for which
invariant polynomials are presented in Table I. Invariant
polynomials for distance-based coordinates are presented
in the Supplementary Information S3.

3. Cutoffs and Basis

For large molecules, we expect the contribution of
terms that involve far-away atoms to be very small,
hence we introduce a cutoff on the distance variables.
This breaks the fundamental factorial scaling of the PIP
scheme. The corresponding loss of accuracy depends on
the application, can be observed numerically, and con-
trolled by the cutoff. Thus, for a given body-order com-
ponent Z = (Z1, . . . , Zn), our final basis functions are
given by

BZ
bk(R) =

∑
i1<...<in
zil=Zl

Fcut({ril}nl=1) (3)

×

sZn,b n(n−1)/2∏
a=1

(pZn,a)ka

 ,
where the invariants sZn,b, p

Z
n,a are evaluated at

{ril}l=1,...,n. The tuples k = (ka)
n(n−1)/2
a=1 are tuples of

non-negative integers with

deg(sZn,b) +
∑
a

kadeg(pZn,a) ≤ Dn,

where Dn ∈ N is a prescribed maximum degree, and
deg(sZn,b) and deg(pZn,a) are the total degrees of the pri-
mary and secondary invariants. We refer to Ref. 54 for
further discussion of these basis functions.

To specify Fcut we choose a univariate cutoff function
fcut(r) which is smooth and vanishes outside some cutoff
radius rcut, and then define

Fcut({ril}l=1,...,n) =

n∏
j=2

fcut(r1j)

In practice, we choose a cutoff radius rcut and a cutoff
parameter r′cut < rcut, and we use

fcut(r) =


1 0 ≤ r < r′cut
1
2

(
cos

(
π

r−r′cut
rcut−r′cut

)
+1

)
r′cut ≤ r ≤ rcut

0 r > rcut.

(4)

In the assembly of the total potential energy, only clusters
respecting the cutoff condition Fcut({ril}l=1,...,n) > 0 are
taken into account.

4. Summary of the basis generation

Finally, each term in the total energy expression (1) is
expanded as a linear combination of the basis functions
defined in (3) and we are left with the determination
of the coefficients (cZbk) which will be described in Sec-
tion II B. For now, let us summarize the generation of the
symmetry-adapted polynomial basis. First, we choose
the body-order components taken into account in the ex-
pansion (1), indexed by Z. In practice, we will very often
choose to take all possible components up to body-order
4, that is 12 components for systems with two chemi-
cal elements A and B (AA, AB, BB, AAA, AAB, ABB,
BBB, AAAA, AAAB, AABB, ABBB, BBBB).Then, for
each component,

1. we choose rotationally invariant coordinates, which
are either distance-based or distance and angles
based.

2. we compute the primary and secondary invariants
relative to the corresponding permutation group
using Magma [59].

3. we choose a cutoff function and a cutoff radius.

4. we choose a maximum polynomial degree and con-
sider all possible basis functions with a lower de-
gree.

The total energy is then expanded as a linear combina-
tion of these basis functions, as

E(R) =
∑
n

∑
Z s.t.
#Z=n

∑
b,k

cZbkB
Z
bk(R). (5)

B. Least-squares fitting

It remains now to determine the coefficients (cZbk) in
the linear expansion (5). For this, we solve a linear least
squares problem, where the training set is composed of
atomic configurations R with their corresponding energy
ER and forces FR. The minimized functional is of the
form

J =
∑
R

( (WE

Nat

)2 ∣∣∣E(R)− ER
∣∣∣2

+W 2
F |F (R)−FR|2

)
+ Reg ,

(6)

where WE , WF are weights that may depend on the con-
figurations R, Nat is the number of atoms in the system,
F (R) are the forces computed from the energy functional
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?AAA ?AAB ?ABC
p1 u12 + u13 + u14 u14 u12

p2 w213 + w214 + w314 u12 + u13 u13

p3 u2
12 + u2

13 + u2
14 w214 + w314 u14

p4 u12w213 + u13w314 + u14w214 w312 w213

p5 w3
213 + w3

214 + w3
314 u2

12 + u2
13 w214

p6 u3
12 + u3

13 + u3
14 + w2

213w214 + w213w
2
314 + w2

214w314 w2
214 + w2

314 w314

s1 1 1 1
s2 u12w214 + u13w213 + u14w314 u12w314 + u13w214

s3 w2
213 + w2

214 + w2
314

?AA ?AB
p1 u12 + u13 u12

p2 u12u13 u13

p3 w213 w213

s1 1 1

s4 u2
12u14 + u12u

2
13 + u13u

2
14

s5 u12u13w213 + u12u14w214 + u13u14w314

s6 u12w
2
213 + u13w

2
314 + u14w

2
214

s7 u2
12w214 + u2

13w213 + u2
14w314

s8 u12w213w214 + u13w213w314 + u14w214w314

s9 w2
213w314 + w213w

2
214 + w214w

2
314

s10 s2s3
s11 s22
s12 s25

Table I. 3-body and 4-body primary and secondary invariants for distance-angle coordinates (with 3-body on the lower right).
The ? denotes the center atom, which also corresponds to index 1, and the subscripts follow the ordering of the atoms (e.g.
w213 is the angle between atom 2 and atom 3 measured at the central atom 1.)

E(R), and Reg contains all the regularisation terms that
will be described in the next section.

Without regularisation terms, J is quadratic in the
unknown polynomial coefficients cZbk, hence minimizing
J can be done by solving a standard linear least-squares
problem

min
c
‖Ac− Y ‖22, (7)

which we solve using a QR factorisation. We will show
below that adding regularisation terms does not change
the linear structure of the problem.

C. Regularisation

In order to improve the smoothness of the potential as
well as its extrapolation capabilities, we use two regular-
isation techniques described in Ref. 54.

First, we use a Laplace regulariser, which adds a contri-
bution to the least-squares functional for each body-order
component of the form

JZ
n =

γZn
J

J∑
j=1

∣∣∣∆[EZ
n (uj)

]∣∣∣2, (8)

where γZn is an adjustable regularisation parameter, and
the second derivatives of EZ

n are approximated with
finite-difference. The points (uj) are chosen according
to a Sobol sequence. This regularisation penalises large
variations of the potential, hence promotes the smooth-
ness of the potential. Varying the paramaters γZn allow
balancing between the accuracy of the fit and the smooth-
ness of the potential.

Second, we use a two-sided cutoff for 3B and 4B com-
ponents, and a simple analytic repulsive 2B function for
small interatomic distances, in order to prevent “holes”
in the PES coming from polynomial oscillations in this
region [30]. The two-sided cutoff consists in replacing
the cutoff functions fcut(r) by a function which satisfies
fcut = 0 on both [0, rin] and [rcut,∞), e.g.

f2scut(r) = (1− fcut,in(r))fcut,out(r),

where fcut,out(r), fcut,in(r) are the cutoff functions de-
fined in (4) respectively with cutoff radii rcut, rin, and
parameters r′cut, r

′
in, as shown on Figure 3.

Figure 3. Two-sided cutoff function f2s
cut with cutoff radii

rcut, rin, and parameters r′cut, r
′
in.

For the two-body components, we start by solving the
linear least-squares problem with the two-body compo-
nents defined on the whole interval [0, rcut). We choose
a splining point rS that is sufficiently small so as to not
influence the training set error, specific values are given
in the following section. The new two-body components
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with repulsive core are defined such that

Ẽ2(r) :=

{
E2(r), r ≥ rS,
Erep(r), r < rS,

Erep(r) = e∞ + βr−1e−αr,

(9)

where e∞ < E2(rS) is a parameter adjusting the steep-

ness of the potential, and α, β are chosen such that Ẽ2 is
continuous and continuously differentiable at rS.

Note that the regularised least-squares problem is still
linear, hence the regularisation procedure does not affect
the computational cost of the fit.

III. METHODS

A. Fits and hyper-parameters

We now describe the details of the fitting process
and training data generation to construct aPIPs for
molecules. As detailed in Section IV, we explore the
use of aPIPs for fitting the PES of individual molecules
(trained and tested independently from one another),
as well as for fitting a combined force field. The com-
bined force field is fit to data from multiple linear hy-
drocarbons, and is then shown to be accurate for both
the molecules it has been fit to as well as to slightly
longer linear hydrocarbons. We used the same hyper-
parameters in all fits, as shown in Table II, except for the
individual N-methylacetamide PES which was fit with a
4B maximum degree of 6 and the combined force field
which used a cutoff of r′cut = 2.75 and rcut = 3.25Å. For
N-methylacetamide, as there are four different elements
present, the number of basis functions is very large when
the maximum degree for the 4B term is 10. Therefore,
a lower maximum degree was used in this case to reduce
the number of basis functions and still allow a potential
to be fit for NMA with only 1000 structures. When per-
forming individual molecule fits, the performance of the
potential is relatively insensitive to the choice of outer
cutoff. However, for the combined fit reducing the outer
cutoff resulted in improved performance on the testing
set.

When fitting individual molecular PESs, the hyperpa-
rameters could be optimised anew for each molecule and
this would no doubt improve accuracy, but we are more
interested in using a generic parameter set which does
not need to be tuned and greatly reduces the effort re-
quired to create new fits. The fact that the resulting
PESs are still very accurate suggests that the potentials
could be made transferable across molecules. The poten-
tials created include all possible 2B, 3B, and 4B terms;
e.g. for butane, the 4B terms are HHHH, CHHH, CCHH,
CCCH, CCCC. Not including some of these would result
in a smaller number of basis functions and in some cases
may not influence the accuracy of the potentials, for ex-
ample one might surmise that the HHHH terms are not

Parameter Symbol Value
Max degree-2B D2 12
Max degree-3B D3 10
Max degree-4B D4 10
Outer Cutoff r′cut, rcut 4.00, 5.50 Å
Inner Cutoff rin, r

′
in 0.70, 0.80 Å

Weight-Ratio WE : WF 100:1
Regularisation γZ

n 0.05

Radial transform u e(−2.5(r/1.54−1))

rS (Å)
CC: 0.93 CH: 0.56 HH: 0.27 CO: 0.98
OH: 0.61 NO: 1.02 NC: 0.96 NH: 0.59
OO: 1.04 NN: 0.99

Table II. The hyperparameters used for fitting the aPIPs. The
rS values that define the switch-over to a repulsive core, Erep,
in (9), correspond roughly to the point where the ZBL poten-
tial is 20 eV.

necessary. However, we have included all terms in our
fits in order to eliminate the necessity of such manual
choices.

The number of basis functions depends on the num-
ber of different elements, the maximum body order and
polynomial degree. By way of example, the alkane fits in
this work (beyond butane) use 13629 basis functions.

B. MD Training Data

The majority of the training data in our fits is ob-
tained by taking snapshots from MD trajectories with a
temperature of 1500K. To reduce the computational cost,
these MD simulations were performed using DFTB [60]
with the mio–1–1 parameter set, using the NVT ensem-
ble with a Langevin thermostat and a friction coefficient
of 0.002. The time step was 0.1 fs and samples were
taken 1000 time steps apart. A total of 1000 structures
were collected for each molecule, except for ethanol and
N-methylacetamide, where the temperature was reduced
to 800 K to prevent bond dissociation. We emphasise
that with a fixed sized basis set, we expect convergence
of the coefficients and thus a large number of data points
were collected to ensure that. The evaluation cost of the
aPIPs force field is independent of the number of training
data points. We made no attempt to study the minimum
size and composition of the optimal training set, this is
left for future work. Energy and force data for the force
field fit was then obtained by reevaluating the snapshots
from the DFTB-MD using Molpro [61] with a B3LYP
hybrid DFT functional [62–64] and 6-31G** basis set.

C. Additional Training Data

In addition to the high temperature MD, there are
two more sources of training data that take account of
the special structure of PESs. The first issue is that



9

the repulsive potential (9) we add at small distances is
not designed to accurately reproduce the potential en-
ergy, rather it is kept simple in order to ensure that it
is repulsive and does not introduce additional local min-
ima. This means that the splining point rS at which
it is turned on is chosen well below the distance which
we expect to encounter between atoms even at the high
temperature of 1500K. The smooth transition to the re-
pulsive potential is thus aided by manually adding dimer
configurations of each pair of elements to the data set.
One choice would be to use the same level of quantum
mechanics for these as for the rest of the data set, but we
opt instead to use the ZBL functional [65], which is fit
to Hartree–Fock data and has better accuracy than DFT
at small distances. This ZBL set consists of 55 dimers
with interatomic distances in the range of [0.1 Å,5.50 Å].
In the least squares fit, we reduce the weight if the ZBL
set in a ratio of 100:1 relative to the rest of the training
set, so that the ZBL data does not noticeably influence
the accuracy of the fit in regions of configuration space
where other data exists.

The second additional training data concerns only
the molecules butene and ethene. The HCCH dihedral
around the double bond in these molecules will not be
sampled during the MD simulations as the energy bar-
rier is too high. Therefore, the HCCH dihedral energy
scans around the double bond are added to the train-
ing set, with 12 data points in each scan. The weight of
this dihedral scan data is increased in the ratio 2:1, to
take into account of the small number of samples in this
additional data set.

D. Iterative Fitting Process

One of the key goals in using aPIPs is that “holes”
in the potential should be eliminated. We consider any
region of configuration space a hole which has lower en-
ergy than the energy of the molecule’s locally optimized
structure when starting from the true equilibrium geom-
etry. The presence of holes in PIP fits are well docu-
mented [30], and many overparametrised ML models are
also in danger of having holes due to the high dimension-
ality of the molecular representation they use. In order to
try and eliminate holes, we introduce an iterative fitting
process that systematically searches for holes in config-
uration space. Various iterative fitting methods exists,
with either geometry optimisation [66, 67], MD or Dif-
fusion Monte Carlo (DMC) [30, 68] used to sample the
PES. Alternatively, active learning can be used, where
the uncertainty of the prediction for a set of test struc-
tures is quantified and the most uncertain structures are
added to the training set [23, 69]. The dimensionality
of our energy terms is much smaller than in the cases of
the cited works, and so we opt for a different strategy.
Using the Sobol quasirandom sequence [70], we create a
“Sobol test set” for each molecule according to the fol-
lowing procedure:

• The optimized structure of the molecule is calcu-
lated with the B3LYP hybrid functional and 6-
31G** basis set, and the geometry is converted to
internal coordinates.

• A Sobol sequence of length 100,000 is then pro-
duced with a dimension equal to the number of in-
ternal coordinates.

• The elements in the sequence correspond to the
displacement of the internal coordinates from their
equilibrium position, scaled such that the range of
bond lengths, angles and dihedral displacements for
non-cyclic molecules is ±0.30 Å, ±10◦ and ±10◦

respectively, for cyclic molecules these ranges are
halved. Rotatable dihedrals are identified and al-
lowed to take a value between 0-360◦.

• The scaled Sobol sequence displacement vectors are
then used to generate the set of 100,000 “Sobol test
set” structures.

• Finally, we check for clashing atoms: any structure
with atoms closer than the corresponding rS (see
Table II) is removed from the set.

The resulting Sobol test set has a diverse range of struc-
tures that sample the space around the equilibrium posi-
tion more uniformly than if we did stochastic sampling.
It is very fast to generate and does not rely on carrying
out MD or DMC with either DFT or even a preliminary
force field. Doing the latter could lead to poor results be-
cause the trajectory can get trapped in a hole, or result
in bond dissociation.

The entire fitting process is summarized in Figure 4. In
each iteration, the potential energy of the Sobol test set is
calculated using the current force field. DFT calculations
are performed for the five lowest energy structures, and
up to five highest energy structures (with energies above
2.5 eV/atom), and added to the training set in the next
iteration. This process is repeated until there are no
structures with an energy below that of the equilibrium
structure.

E. Empirical Force Field Comparison

To demonstrate the improved performance of aPIPs
over an empirical force field, we parametrised a simple
force field for methane on the same training set. The
maximum body order is five, but the functional form is
very limited and the number of free parameters is very
small. The precise form for the empirical force field is
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Select 10 highest
and lowest energy

structures

DFT calculation,
add to training set

Predict energy
on Sobol test set

Do very high
or low energy

structures exist? Yes

No

Splice in repulsive 2B
term for small distances

Fit force field

MD using DFTB
 at 1500 K

Dihedral scans
of double bonds

ZBL data for dimers
at small distances

Initial
data
set

Force field complete

Figure 4. The flowchart shows the stages we used to build the
database and fit the aPIP force field.

given by,

E =
∑
bond

[Kb2(b− b0)2 +Kb3(b− b0)3 +Kb4(b− b0)4]

+
∑
angle

[Ka2(θ − θ0)2 +Ka3(θ − θ0)3 +Ka4(θ − θ0)4]

+
∑

bond/bond

Kbb(b− b0)(b′ − b′0)

+
∑

bond/angle

Kba(b− b0)(θ − θ0)

+
∑

angle/angle

Kaa|(θ − θ0)(θ′ − θ′0)|

(10)

The parameters were determined by minimizing the func-
tional given in Equation (6). The WE and WF terms in
Equation (6) were the same as those used for the aPIP
potential. For simplicity and given the simple functional
functional form and large amount of data used, no regu-
larization was needed in this case.

IV. RESULTS

A. Convergence: tests on methane

Before we discuss the aPIP force field’s performance
for a set of small molecules, we first examine its conver-
gence properties, tradeoff between speed and accuracy as
controlled by the basis set size, and the effects of regular-
isation and the iterative fitting process, all for the case
of the individual fit to methane. Figure 5 shows the de-
crease in the energy root mean square error (RMSE) with
the increasing number of basis functions and body order.
The number of basis functions is dependent both on the
maximum polynomial degree and body order, and for a
fixed body order, the RMSE levels off to the minimum
error possible for that body order. The minimum error
for 3B is about 2 × 10−3 eV/per atom, and increasing
the body order to 4B without changing the overall num-
ber of basis functions results in a big drop in the RMSE.
In contrast, this is not the case for the empirical force
field, for which there is very little gain beyond adding 3B
terms.

In the Supplementary Information, we show that the
distance-based coordinates are less accurate than the
distance-angle coordinate system. The decision to use
distance-angle coordinates for our force field is further
strengthened by the results shown in S2, with the nor-
mal mode recreation for butene significantly better. The
convergence of additional properties with the number of
basis functions is discussed further in S2.

2B

3B

4B

5B

Figure 5. The change in the training set RMSE with the
number of basis functions and body order for the methane
aPIP potential (circles), up to body-order 4. Also shown are
the errors of an empirical potential fit as the corresponding
bond, angle etc terms are added (squares), up to body-order
5.

Although, as stated in the introduction, the aPIP for-
mulation is the bridge between the low body order em-
pirical force fields and high dimensional ML potentials,
from the point of view of number of degrees of freedom we
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are interested in the regime when it is closer to the latter.
Having thousands of degrees of freedom means that regu-
larising the least squares fit is necessary in order to avoid
overfitting. The regularisation effect is shown in Fig. 6.
For the unregularised potential, the test set RMSE is
about a 100 times larger than the training set RMSE.

Figure 7 shows the effect of changing the regularisation
strength γ on the RMSE on the training and test sets.
The training set is as described in the previous section,
ZBL data and the iterative structures for the regularized
fit are included in all potentials, whereas the test set
is composed of 8000 independently sampled structures
from the same 1500K MD simulation. For methane, the
optimal regularization strength is at approximately 10−4.
The training set RMSE is relatively constant up until
10−2 when an increase starts. Given that we opted to
use a single value for fitting all molecules in this paper,
the higher regularisation strength of 0.05 is used, because
for larger molecules that is beneficial due to the larger
number of basis functions.

Finally, Fig. 8 shows the RMSE as a function of the
number of configurations in the MD training set (with
no additional data), with the other parameters as in Ta-
ble II. The decrease in RMSE on a fixed test set of 1000
independent structures shows no sign of saturation, and
reaches 1 × 10−4 for 8000 training configurations. We
kept the regularisation strength fixed here, but if it were
optimised separately for each training set size, the error
would go down further and the difference between the er-
rors on the training and test set be also naturally further
reduced.

B. Iterative Fitting

In Section III D we introduced an iterative fitting al-
gorithm that samples structures derived using the Sobol
quasirandom sequence. Figure 9 demonstrated the ef-
fect of a single iteration on the energy distribution on
the Sobol test set. The original fit (labelled “Iter 1” in
the figure) resulted in thousands of structures having a
lower energy than the true equilibrium structure. The
addition of just five of the lowest energy structures re-
sults in a considerable change in the energy distribution
seen at the second iteration and all the structures with
unrealistically low predicted energies disappear.

C. Individual Molecule Force Fields

In this section, the performance of the aPIP force fields
with up to 4-body terms for individual molecule PESs is
evaluated for 14 small organic molecules. A combined
fit to alkanes is discussed in the next section. Although
ultimately we are interested in general force fields, con-
sidering the individual fits is interesting for a number of
reasons. It enables comparison to other models that also
target PESs one at a time (such as the PIP scheme and

sGDML). Characterising the lowest possible error within
a given body order and polynomial degree for individual
fits is helpful when thinking about the errors of a general
force field because it informs us of the extent to which
the combined fit is forced to make compromises between
fitting to data corresponding to different molecules.

1. RMSE for Training and Testing Set

A most basic test of the performance of a force field
is the RMSE of the energies for a training and testing
set. Table III summarises the energy RMSE for the 14
molecules tested, further graphs are given in the Supple-
mentary Information S1. We show total energy errors,
and also error/atom, because as molecules get larger,
we expect (when keeping the training set size constant)
that the total energy error would go up, but the er-
ror/atom stay bounded. The table shows that this is
mostly true, the test set error/atom stays near or below
3 meV/atom for molecules with only single bonds, and
below 5 meV/atom for molecules with double bonds.

Table III also shows that the 300K test set RMSE is
comparable to the training set error. The configurations
sampled by the 300K MD will be well within the sample
of structures that the potential is fit to and are there-
fore well reproduced by the aPIP potential. The error
for the higher temperature MD test set is several times
higher than the training error. This is because structures
that are not well represented by the training data will be
present in the higher temperature MD. As discussed in
Section IV A, an increase in the number of structures in
the training set will result in a decrease in the test set
error (and this was demonstrated for methane). With a
fixed body order and basis set size, there is of course a
saturation to a minimum error. As an example, when a fit
is made to butane with the same parameters but 10,000
training structures instead of 1000, the energy RMSE for
the 1500K test set falls by 20% to 22.7 meV, a substantial
decrease, but not as large as that for methane. There is
no expectation that the rate of convergence is the same
for different sized molecules. A detailed study of conver-
gence rates for different molecules is left for future work.

2. Comparison to Empirical Force Fields

In order to directly assess the enhanced accuracy of the
aPIP model over empirical force fields of the same body
order, we parametrised one for methane as described in
Section III E. The key differences between the two po-
tentials are summarised as follows:

• The functional form used for aPIP is significantly
more complex than for the empirical force field,
with the number of degrees of freedom being 5694
and 9, respectively.
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Figure 6. Comparison of target and predicted energies for the training and test sets, for both regularised and unregularised
fits.
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Figure 7. The energy RMSE of methane on the 1500K train-
ing and test set (8000 structures) as a function of regulariza-
tion strength (γZ

n ).

• The empirical force field includes only terms de-
scribing the interactions between atoms joined to-
gether by covalent bonds, whereas aPIP also natu-
rally allows terms with nonbonded atoms (as long
as they are within the spatial cutoff), e.g. the four-
body HHHH term.

• The empirical force field includes a five-body term
(the angle-angle coupling) whilst the aPIP pre-
sented here is limited to four-body terms.

Table III shows that the energy RMSE of the empirical
force field for methane decreases significantly as the body
order is increased up to 3B; 4B and 5B terms each bring
less than 15% improvement. Compare this with the case
of aPIPs (Fig. 5), where a decrease in error of almost
a factor of 50 is possible when going from 3B to 4B.
The final test set errors are about 40 times larger for
the empirical force field than for aPIP, at both 300K and
1500K. This strongly suggests that it is the constraints of
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Figure 8. Energy RMSE of methane on a the 1500K training
and test set (1000 structures) as a function of the MD sampled
training set size. All other parameters are as in Table II. Note
that the errors at 1000 training structures are slightly higher
than in Table III because the the potentials reported there
include additional training data.

the functional form, rather than low body order that limits
the accuracy of empirical force fields. Note however, that
the training and test set errors of the empirical force field
are nearly the same, even though no regularisation was
used in its fit—the need for careful regularisation is the
price one pays for introducing enormous flexibility in the
functional form.

3. Comparison to high dimensional methods

The aPIPs basis was introduced as a way to bridge the
gap between empirical force fields and recent high dimen-
sional machine learning based approaches. Therefore it is
important to ask whether the limited body order aPIPs
basis can reach the high accuracy of the ML methods,
and at what computational cost. While we leave the de-
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Figure 9. The energy distribution of the Sobol test set for the
butane aPIP potential at iteration 1, and iteration 2 (trained
with five additional Sobol test set structures). The energy is
shifted so that true geometry optimised butane molecule is at
0.0 eV.

tailed comparative study (including training and testing
all methods on exactly the same data sets, optimising
hyperparameters and computational efficiency of aPIPS,
etc.) to future work, we can broadly answer in the affir-
mative. Methane and N-methyl acetamide (NMA) have
both been fitted with the PIPs of Braams and Bowman.
In Ref. [30], energy RMSE of 0.4 meV was achieved on
the training set of 1000 methane structures. For NMA,
Ref. [29] gives the errors as 3.32 meV for the energy with
the PIPs while the RMSE of the “fragment method 2”
in that paper was 4.25 meV.

For the benzene and ethanol molecules, the perfor-
mance of aPIP can be compared to the sGDML [21].
The energy RMSEs achieved there for a 500K test set are
5.2 meV and 3.9 meV, for benzene and ethanol, respec-
tively. The corresponding errors for the 4-body aPIPs
for the 1500K test set are about 30% higher.

4. Bond, Angle and Dihedral Energy Scans

We now demonstrate that the combination of low body
order and regularisation results in smooth potential en-
ergy surfaces up to very high energies, several eV higher
than the equilibrium energy, which are never encountered
in the 1500K training and test sets. We performed bond,
angle and dihedral scans for each molecule. The full set
of results are given in Supplementary Information S1.

The bond and angle aPIP energy scans show excellent
agreement with the DFT results. The greatest differences
between the aPIP and DFT scans occur for the hexane,
butadiene and butene, which have more varied interac-
tions and bonding present. However, even for these three
molecules the energy scans are very well recreated. This

Energy RMSE (meV)

Molecule Atoms
Train

1500K*
Test
300K

Test
1500K*

Regularised 4-body aPIP
(individual molecule fits)

Methane 5 0.3 0.2 1.6 (0.3)
Ethane 8 1.8 1.2 7.8 (1.0)

Propane 11 3.0 2.9 12.7 (1.2)
Butane 14 8.2 7.0 29.1 (2.1)

Pentane 17 12.8 13.0 50.1 (2.9)
Hexane 20 19.6 28.1 65.8 (3.3)

Adamantane 26 11.5 4.1 22.0 (0.8)
Ethene 6 3.0 2.1 21.9 (3.7)
Butene 12 13.3 16.0 56.9 (4.7)

Butadiene 10 7.9 5.2 31.5 (3.2)
Benzene 12 4.3 1.9 8.8 (0.7)

Methylbenzene 15 8.5 4.1 25.7 (1.7)
Ethanol 9 *3.3 1.4 *5.6 (0.6)

NMA 12 *4.0 1.8 *4.6 (0.4)
mean 7.2 6.3 24.6 (2.2)

Unregularised 4-body aPIP
(individual molecule fits)

median 4.4 3.4 211
mean 5.3 106 108

maximum 16 107 109

Combined 4-body aPIP fit
Methane 5 4.38 0.98 3.47 (0.7)

Ethane 8 8.27 2.85 12.25 (1.5)
Propane 11 17.58 8.19 22.35 (2.0)
Butane 14 23.78 10.54 30.65 (2.2)

Pentane 17 26.15 16.94 44.27 (2.6)
Hexane 20 31.16 24.36 65.90 (3.3)

Heptane 23 - 35.06 118.36 (5.1)
Octane 26 - 44.84 156.62 (6.0)

Table III. The RMSE of the energies for training and test sets
is given for the fourteen molecules tested. The higher temper-
ature testing set is taken from 1500K MD for all molecules,
except ethanol and NMA (marked by *) where it is 800K, this
is due to bond dissociation occurring for the higher tempera-
ture. Energy errors per atom are shown in parentheses.

level of accuracy for aPIP is in large part due to reg-
ularization. Figure 10 demonstrates this with a C–C–H
angle energy scan for butene. The regularised aPIP curve
with regularization exactly follows the DFT energy scan,
whilst the unregularised aPIP fit results in unphysical
oscillations.

We also calculated the energy curve for dilating
adamantane [71]. Instead of just calculating the energy
with the change in length of one individual bond, this
test involves the uniform expansion of all the C–C bonds
in adamantane. Again, a very close match with the
DFT result is achieved. Note that adamantane has 26
atoms, this is over twice the size of N-methylacetamide,
the largest molecule fit with PIPs [29]. The fragmenta-
tion approach developed in Ref. 29 would not be suit-
able for adamantane, as the cyclic structure means that
unambigous fragments do not exist and therefore, with-
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Figure 10. Energy curve for a C–C–H angle in the molecule
butene. Results for aPIP with and without regularization are
shown.

out the reduction in body order achieved with aPIPs, it
would not be possible to create a PIP potential for this
molecule.

Figure 11. The energy curve for dilating adamantane, this is
the uniform increase of the C–C bond length.

Accurate dihedral energy scans are an essential crite-
rion for any organic molecular force field, and so a vari-
ety of dihedral angle energy scans for the aPIP potentials
are shown in S1. The DFT energy is generally well re-
produced. Hexane again shows slight discrepancy, with
a RMSE of 26.7 meV, similar to the RMSE on the 300K
test set.

Further tests of aPIP’s ability to reproduce dihedral
effects is shown in the two dimensional maps of Fig. 12.
For both pentane and ethanol, minimum and maximum
energy barriers are reproduced and the high energy re-
gions in the DFT pentane map also occur in the aPIP
map. One of the interesting points to note about the
aPIP pentane potential is that before the Sobol struc-
tures are added to the training set through the iterative
fitting process, the high energy regions of the 2D energy
scan contain an unrealistically low energy structure, as
shown in Fig. 13. At the first iteration of the fitting al-
gorithm the RMSE for the 2D scan is 159 meV, whilst

Frequency
MAE (cm−1)

Individual Combined
Methane 0.647 10.76
Ethane 4.93 10.76
Propane 4.8 13.71
Butane 10.65 16.88
Pentane 11.04 15.77
Hexane 15.06 17.72
Heptane - 19.69
Octane - 21.67

Table IV. The normal mode recreation errors for the combined
and individual aPIP potentials for a set of short linear alkanes.
The training set includes the linear alkanes up to hexane.

at the last iteration the RMSE is 36.6 meV, with the re-
maining error primarily due to the structures in the high
energy region.

As a final example of the dihedral energy scan recre-
ation, we show the energy scan of the methyl group at-
tached to the N–C bond in NMA in Figure 14. The DFT
energies and barrier heights are very well reproduced,
and this along with the graphs shown in Supplementary
Information S1 demonstrate the success of aPIPs for a
molecule with four different element types.

5. Normal Mode Recreation

Vibrational frequencies of molecules are regularly used
as a measure of the accuracy of a force field. Empiri-
cal force fields with Class I functional forms, which have
harmonic bond/angle terms and no coupling terms i.e.
AMBER or OPLS, can achieve an error in the recreation
of frequencies of approximately 50 cm−1 [72] (mean ab-
solute error, MAE) whilst Class II force fields, which in-
clude anharmonic and coupling terms in their functional
forms, can achieve an MAE around 24 cm−1 [5].

The normal mode recreation for each individual
molecule is given in S1 with all the DFT and aPIP fre-
quencies for the molecules tested shown in Fig. 15. With
a MAE of 8.56 cm−1 for the full set of molecules, aPIP
recreates the normal mode frequencies with an accuracy
that is far superior to empirical force fields. The indi-
vidual molecules figures in S1 show that ethene has the
highest MAE (16.6 cm−1) whilst methane has a very low
error with a MAE of just 0.647cm−1.

D. Combined Molecule Potentials

In this section, we show that the aPIP framework al-
lows multiple molecules to be fit simultaneously, just as
empirical force fields do. This is in contrast to some high
dimensional methods such as PIPs and sGDML.

Table III shows the testing and training RMSE for the
aPIP model fitted to the combined training set of linear
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Pentane

Ethanol

aPIP B3LYP

Figure 12. The 2D dihedral angle energy scans for pentane and ethanol. The dihedral angles changed are marked on the
molecule. The energy units are eV and values above 1.0 eV are not shown on the plot.

Iteration 1 
Iteration 6

Figure 13. The lowest energy structure in the pentane 2D
dihedral energy scan with the aPIP pentane potential at iter-
ation 1 and at iteration 6.

alkanes up to hexane. This can be compared to results
for the individual aPIP fits in the same table. For alkanes
with up to four carbon atoms, the individual molecule fits
are superior. However, even for these four molecules the
combined fit RMSE remains below 3 meV/atom on the
high temperature test set. For pentane and hexane the
combined fit gives the same or better levels of accuracy
compared with the individual fits. Additionally, closer
agreement between the training and test set RMSE is
observed for the combined fit. This is due to the increase
in the number and diversity of structures in the training
set which further reduces overfitting.

Table IV showing the normal mode recreation exhibits
a similar trend to the RMSE results. The error for shorter
linear alkanes is lower with the individual aPIP poten-
tials, but as the alkanes become longer the difference be-
tween the individual and combined aPIP potential errors
decreases. The error in the combined molecule fit is still

Figure 14. The dihedral energy scan for the methyl group
attached to the N–C bond of NMA.

far below the typical errors expected from empirical force
fields.

The extrapolation capabilities of the combined poten-
tial to molecules not included in the fitting set are also
demonstrated in Tables III, IV and Fig. 16. The RMSE
for the 300 K testing set increases for the heptane and
octane molecules, but stays below 2 meV/atom. The
1500 K test set RMSE shows a greater increase and
demonstrates the need for larger data sets and possi-
bly larger cutoffs. The normal mode recreation error for
heptane and octane (Table IV) remains acceptable, with
the error increasing only by 3.96 cm−1 from hexane to
octane. Figure 16 examines the energy scans for hep-
tane. The CCH energy scan is reproduced very well and
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Figure 15. The DFT and aPIP normal mode frequencies for
the set of 14 molecules. The mean absolute error (MAE) for
the normal mode recreation is 8.56 cm−1.

the overall shape of the CCCC dihedral energy scan is
also reasonable. However, the trans-gauche dihedral en-
ergy barrier is 0.03eV lower than the corresponding DFT
value.

Currently, the best transferable high dimensional force
field is ANI [19, 23, 52]. While a detailed comparative
study is left for future work, the DFT version (ANI-1)
gives RMSE errors on the GDB-11 database of about
2.9 meV/atom [19], higher than what the combined 4-
body aPIP fit achieves on our limited range of molecules.

V. DISCUSSION AND CONCLUSION

In this work, we have built on the ideas introduced
in Ref. 54, which reformulated the permutationally in-
variant polynomial basis for single element materials,
and created potentials for organic molecules using the
multi-element atomic permutationally invariant polyno-
mial (aPIP) basis. We showcase potentials that restrict
the body order (in the present case to four), and em-
ploy a bond-angle based coordinate system, cutoffs for
large and small distances, a repulsive core, and regu-
larize the least square fitting. These alterations allow
potentials for much larger molecules to be created and
multiple molecules to be fit at once, in contrast to the
original PIP framework. Additionally, by a combination
of regularization and iterative training, the “holes” in
the potential are eliminated, making them suitable for
molecular dynamics (see the SI for examples).

The performance of the aPIP potentials, both individ-
ually fitted to organic molecules and simultaneously to a
combined set, showed very good accuracy for a number
of properties (e.g. a few meV per atom error for the en-
ergy at 1500K), on a par with recent machine learning
approaches. The speed of aPIP potentials is of course
much slower than that of empirical force fields, but is the

a)a)

b)

c)

Figure 16. a) CCH angle and b) CCCC dihedral energy scans
and normal mode recreation for heptane, which was not the
training set.

same order of magnitude as other ML potentials: typi-
cally on the order of 1 ms/atom. Fast implementations of
polynomial bases exist (certainly for MTP [73] and also
ACE [56, 57]) that will bring this time down further.
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Furthermore, the relatively small dimensionality of low
body order terms coupled with well controlled regulari-
sation results in smooth potentials and remarkable ex-
trapolation properties. Returning to Fig. 1, we see that
the aPIP dissociation curves of methane are smooth and
qualitatively correct, even though the only data that in-
forms the potential are near equilibrium geometries, and
the isolated atom energies. The latter only ensures that
the simultaneous removal of all four Hs gives the correct
limit at infinite distance (black dashed line in the bottom
panel), the rest is extrapolation.

We have also outlined the relationships between the
approaches for making force fields. Although each have
rather distinct assumptions and seemingly incompatible
mathematical frameworks, it turns out that body or-
dered polynomials (either the aPIPs variety used in this
work, or the atomic cluster expansion) form links be-
tween them. This points the way forward to creating po-
tentials that do not require atom typing, can be reactive

and transferable, but remain highly accurate approxima-
tors of the Born-Oppenheimer potential energy surface.

Building a comprehensive organic force field is a signifi-
cantly larger undertaking, but our limited results already
show that achieving high accuracy does not necessarily
need nonlinear fitting such as neural networks or even
kernel methods. This, which we consider the main point
of this work, is at variance with what might be gleaned
from recent trends in the literature.
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Physical Review X 8, 041048 (2018).
[40] T. Morawietz and J. Behler, J. Phys. Chem. A 117, 7356

(2013).
[41] M. Gastegger, C. Kauffmann, J. Behler, and P. Marque-

tand, J. Chem. Phys. 144, 194110 (2016).
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Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J.
May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E.
Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng,
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Figure S2: Bond Lengths for Adamantane
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S4: Comparison between the QM and PIP energies for Adamantane
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Figure S7: Bond Lengths for Butane
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Figure S8: Angles for Butane
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S10: Comparison between the QM and PIP energies for Butane
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Figure S11: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Butane
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S1.1.3 Ethane
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Figure S12: Normal Modes for Ethane
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Figure S13: Bond Lengths for Ethane
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Figure S14: Angles for Ethane

Figure S15: Dihedrals for Ethane
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S16: Comparison between the QM and PIP energies for Ethane
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Figure S17: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Ethane
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S1.1.4 Hexane
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Figure S18: Normal Modes for Hexane
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Figure S19: Bond Lengths for Hexane
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Figure S20: Angles for Hexane
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Figure S21: Dihedrals for Hexane
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S22: Comparison between the QM and PIP energies for Hexane
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Figure S23: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Hexane
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S1.1.5 Methane
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Figure S24: Normal Modes for Methane
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Figure S25: Bond Lengths for Methane
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Figure S26: Angles for Methane
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S27: Comparison between the QM and PIP energies for Methane
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Figure S28: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Methane
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S1.1.6 Pentane
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Figure S29: Normal Modes for Pentane
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Figure S30: Bond Lengths for Pentane
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Figure S31: Angles for Pentane
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Figure S32: Dihedrals for Pentane
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S33: Comparison between the QM and PIP energies for Pentane
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Figure S34: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Pentane
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S1.1.7 Propane
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Figure S35: Normal Modes for Propane
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0.0

0.1

0.2

E
n

er
gy

/
eV

aPIP

DFTB

B3LYP

1.00 1.05 1.10 1.15
Bond CH Length / Å
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Figure S36: Bond Lengths for Propane

112.0 112.5 113.0 113.5
Angle CCC / ◦

0.00

0.05

0.10

E
n

er
gy

/
eV

aPIP

DFTB

B3LYP

109.5 110.0 110.5 111.0
Angle CCH / ◦

0.00

0.05

0.10

E
n

er
gy

/
eV

aPIP

DFTB

B3LYP

107.5 108.0 108.5
Angle HCH / ◦

0.000

0.025

0.050

0.075

E
n

er
gy

/
eV

aPIP

DFTB

B3LYP

Figure S37: Angles for Propane

Figure S38: Dihedrals for Propane
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S39: Comparison between the QM and PIP energies for Propane
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Figure S40: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Propane
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S1.2 Alkenes

S1.2.1 Butadiene
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Figure S41: Normal Modes for Butadiene
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Figure S42: Bond Lengths for Butadiene
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Figure S43: Angles for Butadiene
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S44: Comparison between the QM and PIP energies for Butadiene
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Figure S45: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Butadiene
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S1.2.2 Butene
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Figure S46: Normal Modes for Butene
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0.00

0.05

0.10

0.15

E
n

er
gy

/
eV

aPIP

DFTB

B3LYP

Figure S47: Bond Lengths for Butene
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Figure S48: Angles for Butene
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Figure S49: Dihedrals for Butene
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S50: Comparison between the QM and PIP energies for Butene

0 100 200
Time / ps

−4276

−4275

−4274

P
IP

E
n

er
gy

/
eV

Figure S51: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Butene

S21



S1.2.3 Ethene
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Figure S52: Normal Modes for Ethene
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0.0

0.1

0.2

0.3

E
n

er
gy

/
eV

aPIP

DFTB

B3LYP

1.00 1.05 1.10 1.15
Bond CH Length / Å
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Figure S53: Bond Lengths for Ethene
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Figure S54: Angles for Ethene
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Figure S55: Dihedrals for Ethene
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S56: Comparison between the QM and PIP energies for Ethene
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Figure S57: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Ethene
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S1.3 Aromatic

S1.3.1 Benzene
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Figure S58: Normal Modes for Benzene
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Figure S59: Bond Lengths for Benzene
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Figure S60: Angles for Benzene
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Figure S61: Impropers for Benzene
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S62: Comparison between the QM and PIP energies for Benzene
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Figure S63: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Benzene
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S1.3.2 Methylbenzene
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Figure S64: Normal Modes for Methylbenzene
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Figure S65: Bond Lengths for Methylbenzene
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Figure S66: Angles for Methylbenzene
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Figure S67: Impropers for Methylbenzene
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Training Set - 1000 structures, 1500K MD

Test Set - 8000 structures, 1500K MD

Test Set - 8000 structures, 300K MD

Figure S68: Comparison between the QM and PIP energies for Methylbenzene
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Figure S69: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for Methylbenzene

S27



S1.4 Other

S1.4.1 Ethanol
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Figure S70: Normal Modes for Ethanol
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Figure S71: Bond Lengths for Ethanol
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Figure S72: Angles for Ethanol
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Figure S73: Dihedrals for Ethanol
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Test Set - 8000 structures, 300K MD

Training Set - 1000 structures, 800K MD

Test Set - 8000 structures, 800K MD

Figure S74: Comparison between the QM and PIP energies for Ethanol
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S1.4.2 NMA
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Figure S75: Normal Modes for NMA
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Figure S76: Bond Lengths for NMA
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Figure S77: Angles for NMA
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Figure S78: Dihedrals for NMA
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Test Set - 8000 structures, 300K MD

Training Set - 1000 structures, 800K MD

Test Set - 8000 structures, 800K MD

Figure S79: Comparison between the QM and PIP energies for NMA
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Figure S80: Energy over the course of a 300K MD simulation whilst using an aPIP potential
for NMA
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S1.5 Energy per atom Errors

The energy per atom errors for the testing and training set forces are shown in Table S1.

Table S1: The energy per atom errors for the testing and training set for the molecules
tested.

Energy RMSE per atom(meV)
Testing Testing

Training 300K High Temp.
Molecule No. atoms No Reg. Reg. No Reg. Reg. No Reg. Reg.
Methane 5 0.02 0.05 0.04 0.04 30.03 0.32

Ethane 8 0.06 0.23 0.06 0.15 3.26 0.98
Propane 11 0.21 0.28 0.20 0.27 5.64 × 105 1.15
Butane 14 0.35 0.58 0.47 0.50 19.45 2.08

Pentane 17 0.55 0.76 0.70 0.76 4.17 2.95
Hexane 20 0.78 0.98 1.26 1.41 3.69 3.29

Adamantane 26 0.33 0.44 0.13 0.16 2.83 × 104 0.85
Ethene 6 0.64 0.49 0.57 0.35 1.97 × 103 3.65
Butene 12 0.81 1.11 1.33 1.33 187.71 4.74

Butadiene 10 0.40 0.79 0.59 0.52 1.06 × 106 3.15
Benzene 12 0.16 0.36 0.15 0.16 8.07 0.74

Methylbenzene 15 0.32 0.57 0.22 0.27 9.05 1.71
Ethanol 9 0.61 0.36 1.50 × 106 0.16 3.13 × 108 0.62

NMA 12 0.21 0.33 0.21 0.15 4.11 0.39
Mean 0.39 0.52 1.07 × 105 0.44 2.25 × 107 1.90
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S1.6 Force Errors

The force errors for the testing and training set forces are shown in Table S2.

Table S2: The force errors for the testing and training set for the molecules tested.

Force RMSE (meV/Å)
Testing Testing

Training 300K High Temp.
Molecule No. atoms No Reg. Reg. No Reg. Reg. No Reg. Reg.
Methane 5 0.59 2.86 1.01 1.2 2645 12.6

Ethane 8 3.07 23.7 1.89 13.5 224.6 57.7
Propane 11 15.0 25.4 11.1 12.3 1.89 × 108 49.3
Butane 14 34.4 49.2 33.1 27.8 2975 85.9

Pentane 17 49.6 61.4 38.4 39.0 198.8 112.3
Hexane 20 66.6 76.7 49.3 50.1 173.1 127.5

Adamantane 26 29.0 36.6 13.4 13.9 3.26 × 106 52.4
Ethene 6 11.4 46.6 13.1 30.5 8.00 × 104 10.8
Butene 12 60.9 109 66.9 53.7 2.39 × 104 161

Butadiene 10 32.8 61.0 41.1 29.3 9.37 × 107 110
Benzene 12 11.4 27.8 5.62 7.18 728.5 36.6

Methylbenzene 15 32.7 48.1 18.7 21.8 74.3 86.6
Ethanol 9 5.86 22.3 1.93 × 10−8 10.3 1.93 × 1010 34..1

NMA 12 12.0 20.3 13.1 9.86 455.9 22.8
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S1.7 MD Without Regularization

The MD energy trajectory for a butene aPIP potential with and without regularization is

shown in Figure S81.
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Figure S81: The energy of a butene molecule during a 300K MD simulation. An aPIP
potential with regularization and a repulsive core is shown in comparison to an aPIP potential
which is fit without regularization and a repulsive core.
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S2 Varying Polynomial Degree

In this section, the change in the performance of the potential with polynomial degree is

shown for the molecule butene. Additionally, the performance of the potential if the bond

length transform is used instead of the bond angle transform is also shown.

Figure S82: The change in the MUE for CH/HCH energy scans and the normal mode error
with the degree employed in the polynomial. The degree of the polynomial is shown in the
order 2B, 3B, 4B (12,0,0 therefore corresponds to a 2B potential, 12,10,0 corresponds to a
3B potential). The performance of the distance length (D) transform is also plotted.

The change in the performance of the potential with degree and transform is shown in

Figure S82. As expected, with an increase in the body order and degree, the number of

basis functions increase and the accuracy of the potential improves. The distance length

(D) transform is seen to have a lower number of basis functions than the distance angle

(DA) transform and a reduction in the performance. This is particularly noticeable for the

recreation of the normal modes with the error for D, 41.6 cm−1, three times higher than the

DA transform with degree 12,10,10 (13.26 cm−1) and almost double the DA potential with

degree 12,10,5 (22.98 cm−1). However, the decrease in performance is not simply due to the

decrease in the number of basis functions as for all three properties the error for 12,10,5

(with 1448 basis functions) is below the D transform error (with 6681 basis functions).

Figure S83 and Figure S84 again show that the increase in the potential’s degree leads to

improved performance. A degree of 12,10,0 or 12,10,5 is seen to be insufficiently accurate to

reproduce the dihedral scan and also results in a high error in the testing and training sets.
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Figure S83: Energy curves for the H–C–C–H dihedral angle in butene. aPIPs with varying
4B degree are shown. The degree of the polynomial is shown in the order 2B, 3B, 4B.

Training Set - 1000 structures, 1500K MD

Testing Set - 8000 structures, 300K MD

Testing Set - 8000 structures, 1500K MD

Figure S84: Comparison of the QM and PIP energies for Butene. aPIPs with varying 4B
degree are shown. The degree of the polynomial is shown in the order 2B, 3B, 4B.
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S3 Testing the Speed of the Potential

The speed of three of the potentials created in this work was calculated by finding the energy

and forces of 1000 structures. The table below summarizes the findings.

Table S3: The time taken per atom to calculate the energy and forces with aPIPs and with
sGDML. The sGDML - Intel Xeon CPU E5-2640 @ 2.40 GHz timings are taken from Ref.
S1.

Timings (ms/per atom)
Run 1 Run 2 Run 3 Mean

aPIP - Intel Xeon CPU E5-2680 @ 2.40GHz
Methane 0.106 0.0853 0.0919 0.0944
Butane 0.741 0.748 0.728 0.739
Benzene 0.647 0.673 0.63 0.65
Ethanol 0.795 0.822 0.828 0.815
sgdml - Intel Xeon CPU E5-2640 @ 2.40 GHz a

Benzene 0.192
Ethanol 0.134
sgdml - Intel Xeon CPU E5-2680 @ 2.40GHz

Benzene 0.367 0.365 0.405 0.379
Ethanol 0.188 0.193 0.186 0.189

Table S3 shows that all three molecules have a speed of less than 1.0 ms/per atom. The

three hydrocarbon molecules demonstrate the increase in time with the number of atoms

present in the molecule, this is because there is an increase in time required with the number

of atoms in the cutoff. This trend of speed with size does not persist to ethanol, which is

slower than benzene despite consisting of 9 atoms as opposed to 12 atoms. This is due to

ethanol consisting of three different elements and therefore having a greater number of basis

functions (27437) than the hydrocarbon potentials (13629 for benzene).

The aPIPs benzene and ethanol potentials are several times slower than the sGDML

potentials. However, given that there are further opportunities to improve the speed of

aPIPs in future versions of the potential, this discrepancy in the timings is not seen as a

concern.
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S4 Distance-based coordinates invariants

We present below primary and secondary invariants for three-body and four-body potentials

with distance-based coordinates.

Table S4: 3-body primary invariants for distance-based coordinates. For this body-order
there is only the trivial secondary invariant s1 = 1.

AAA ABB ABC

p1 u12 + u13 + u23 u12 + u13 u12
p2 u12u13 + u12u23 + u13u23 u12u13 u13
p3 u12u13u23 u23 u23
s1 1 1 1

Table S5: 4-body primary and secondary invariants for distance-based coordinates.

ABBB AABB AABC ABCD
p1 u23 + u24 + u34 u12 u12 u12

p2 u34 u34 u13

p3 u3
23 + u3

24 + u3
34 u13 + u14 + u23 + u24 u13 + u23 u14

p4 u12 + u13 + u14 u13u14 + u23u24 u14 + u24 u23

p5 u2
12 + u2

13 + u2
14 u13u23 + u14u4 u2

13 + u2
23 u24

p6 u3
12 + u3

13 + u3
14 u2

13 + u2
14 + u2

23u
2
24 u2

14 + u2
24 u34

s1 1 1 1 1
s2 u23u14 + u24u13 + u34u12 u3

13 + u3
14 + u3

23 + u3
24 u13u14 + u23u24

s3 s22
s4 s32
s5 u23u24(u13 + u14) + u23u34(u12 + u14) + u24u34(u12 + u13)
s6 u23u14(u12 + u13) + u24u13(u12 + u14) + u34u12(u13 + u14)
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