
HAL Id: hal-02968536
https://hal.science/hal-02968536v1

Preprint submitted on 15 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic bandits with vector losses: Minimizing
ℓ∞-norm of relative losses

Xuedong Shang, Han Shao, Jian Qian

To cite this version:
Xuedong Shang, Han Shao, Jian Qian. Stochastic bandits with vector losses: Minimizing ℓ∞-norm of
relative losses. 2020. �hal-02968536�

https://hal.science/hal-02968536v1
https://hal.archives-ouvertes.fr


Stochastic bandits with vector losses: Minimizing `∞-norm of relative losses

Xuedong Shang Han Shao Jian Qian
Inria Lille, SequeL Team Toyota Technological Institute at Chicago MIT

Abstract

Multi-armed bandits are widely applied in sce-
narios like recommender systems, for which the
goal is to maximize the click rate. However, more
factors should be considered, e.g., user stickiness,
user growth rate, user experience assessment, etc.
In this paper, we model this situation as a problem
of K-armed bandit with multiple losses. We de-
fine relative loss vector of an arm where the i-th
entry compares the arm and the optimal arm with
respect to the i-th loss. We study two goals: (a)
finding the arm with the minimum `∞-norm of rel-
ative losses with a given confidence level (which
refers to fixed-confidence best-arm identification);
(b) minimizing the `∞-norm of cumulative rela-
tive losses (which refers to regret minimization).
For goal (a), we derive a problem-dependent sam-
ple complexity lower bound and discuss how to
achieve matching algorithms. For goal (b), we
provide a regret lower bound of Ω(T 2/3) and pro-
vide a matching algorithm.

1 Introduction

Multi-armed bandit is a classical sequential decision-making
problem, where an agent/learner sequentially chooses ac-
tions (also called “arms”) and observes a stochastic scalar
loss of the chosen arm for T rounds (Thompson, 1933). The
two classical goals are to identify the best arm (which is
the arm with the minimum expected loss) and to minimize
the cumulative losses. Practical applications of multi-armed
bandit, among many others, range from recommendation
systems (Zeng et al., 2016), clinical trials (Durand et al.,
2018) to portfolio management (Huo and Fu, 2017). For
example, when a user comes to an e-commerce website,
traditional recommender systems choose a product (an arm)
to recommend and observe whether the user clicks it or not
(the loss). However, in addition to click rates, other factors
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like user stickiness should be considered as well in practice.
Another example is fairness in public policy making, where
each policy (an arm) can have drastic impacts over differ-
ent gender/race groups (vector losses). These problems
can be modeled as multi-armed bandits with vector/multi-
dimensional losses. In each dimension i, we measure the
performance of an arm k by comparing its i-th loss with
the minimum loss among the i-th dimension, which we call
relative loss1.

We provide a simple problem instance shown in Table 1
to explain the intuition on how our setting differs from the
usual one: the bandit model contains 3 arms, each row
corresponds to the loss vector incurred by playing each arm
and each column corresponds to the vector of absolute i-th
losses for each arm. In this example, the optimal arm with
respect to each arm has zero-loss, thus the relative losses
coincide with the absolute losses. The optimal arm would
be arm 3 since it minimizes the maximum of each row. We
formalize the intuition later in Section 2.

Table 1: An instance.
arms `(1) `(2)

arm 1 1 0

arm 2 0 1

arm 3 1/2 1/2

In this paper, we study both
the two classical goals under
the vector-loss setting: best-
arm identification and regret
minimization.

Best-arm identification, as a
particular type of pure explo-
ration, only cares about iden-
tifying the optimal arm given some stopping criterion.
Two kinds of stopping criterion exist: (a) fixed-budget
for which the algorithm stops when a given budget is ex-
hausted (Bubeck et al., 2009; Audibert and Bubeck, 2010;
Gabillon et al., 2012; Karnin et al., 2013; Carpentier and Lo-
catelli, 2016); (b) fixed-confidence for which the algorithm
stops when we are able to spot the best arm with a high
confidence level (Even-dar et al., 2003; Kalyanakrishnan
et al., 2012; Gabillon et al., 2012; Jamieson et al., 2014;
Garivier and Kaufmann, 2016; Qin et al., 2017; Yu et al.,
2018; Degenne et al., 2019; Ménard, 2019; Shang et al.,
2020). In this paper, we focus on the second type and the
detailed setting is described in Section 2.2.

1One may notice that the relative loss coincides with the tradi-
tional definition of regret in the scalar case.
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Contrary to best-arm identification, the objective of regret
minimization, as indicated by its name, is to minimize the re-
gret: the gap between the total reward gathered by the agent
and the cumulative reward obtained by optimal strategy. Re-
gret minimization naturally balances between exploration
and exploitation. An asymptotic lower bound on the re-
gret is given by Lai and Robbins (1985). Since then the
problem has been extensively studied. Typical solutions in-
clude optimistic algorithms (Auer et al., 2002; Cappé et al.,
2013; Honda and Takemura, 2015), their Bayesian competi-
tor Thompson sampling (Thompson, 1933; Kaufmann et al.,
2012; Agrawal and Goyal, 2013; Korda et al., 2013), and
non-parametric methods (Baransi et al., 2014; Chan, 2020;
Baudry et al., 2020). In our paper, the objective is somehow
different. We aim to minimize the `∞-norm of cumulative
relative loss, which requires a more specific definition of
regret that we give in Section 2.3.

Related work. Vector payoffs/losses, as a core ingredient
of this work, mostly finds its popularity among literature
of online learning, in particular in a game theory point of
view. The problem is closely related to multi-objective
optimization where the use of Blackwell approachability
has been thoroughly investigated both for the full infor-
mation setting (Perchet, 2014) and the partial monitoring
setting (Kwon and Perchet, 2017; Perchet, 2011). The very
same problem is less studied for multi-armed bandit. To the
best of our knowledge, minimizing the `∞-norm of (cumu-
lative) relative loss has never been looked into in the bandit
literature. For best-arm identification, a related setting refers
to to Katz-Samuels and Scott (2019), where the feedback
is also multi-dimensional, but the goal is constrained maxi-
mization. For regret minimization, the most similar setting
to ours is the multi-objective multi-armed bandit that consid-
ers conflicting sub-objectives. It is first proposed by Drugan
and Nowe (2013) and Zuluaga et al. (2013), and is fol-
lowed by a series of extensions (Auer et al., 2016; Drugan
and Nowe, 2014; Lu et al., 2019). Multi-objective multi-
armed bandit aims to find the Pareto frontier of different
sub-objectives, while our setting only cares about the maxi-
mum. For example, arm 1 and arm 2 in Table 1 are on the
Pareto frontier as well, but do not achieve optimality in our
definition.

Contributions. The contributions of this paper are the
following:

• We describe a novel multi-armed bandit setting with
d-dimensional vector losses and we study the problem
in both best-arm identification and regret minimization.
We design the performance measure as minimizing the
`∞-norm of relative loss over all single dimensions.

• We first investigate best-arm identification. We de-
rive a problem-dependent lower bound on the sample

complexity and discuss how to achieve matching algo-
rithms for fixed-confidence best-arm identification.

• We then study regret minimization. We show that any
algorithm suffers a worst-case regret of order Ω(T 2/3)
under our setting. We provide an algorithm based on
two-player game with matching upper regret bound up
to a log factor.

Outline. The rest of the paper is organized as follows. We
start by the problem formulation in Section 2 where we
specify both best-arm identification and regret minimization
under our setting. We first study best-arm identification in
Section 3 for which we focus on the sample complexity.
It then follows regret minimization in Section 4 where we
provide the worst-case lower bound along with a simple
matching algorithm before we conclude.

2 Problem formulation

Our model ν for the environment is a K-armed bandit
with unknown vector payoffs, i.e., vector loss distributions
(ν

(1)
k , . . . , ν

(d)
k )k∈[K] where ν(i)

k is the i-th sub-(scalar) loss
distribution for the k-th arm. Each distribution ν(i)

k is from
a known sub-Gaussian canonical exponential family with
one parameter (the mean of the distribution) for all i and
k ∈ [K].

We consider two mainstream multi-armed bandit frame-
works in this paper (see Kaufmann and Garivier 2017 for
a survey), namely best-arm identification and regret mini-
mization. In both settings, a learning algorithm A selects
an arm At ∈ [K] at each round t = 1, . . . , T , and then
observes a loss vector of arm k: yAt,t ∼ (ν

(1)
At , . . . , ν

(d)
At ).

Let Ft = σ(A1, yA1,1, . . . ,At, yAt,t,) be the information
available to the algorithm after t rounds. We specify the two
frameworks under our setting in this section.

2.1 Some notations

Let Σn , {ω ∈ [0, 1]n :
∑n
i=1 ωi = 1} with n ∈ N denote

the n-dimensional probability simplex. Let 1 denote the all-
one vector whose dimension can be known from the context.
We let d(x, y) denote the Kullback-Leibler divergence from
the distribution parameterized by x to that parameterized by
y for x, y ∈ [0, 1]. We let d+(x, y) = d(x, y)1{x>y}. For
simplicity, we abuse arg min (resp. arg max) to represent
an arbitrary element that achieves the minimum (resp. maxi-
mum) and fix this element thereafter2. We introduce several
notions of loss for problem formulation. Note that all the
following loss definitions depend on the bandit model ν.
For simplicity, we omit it in the notations whenever there is
no ambiguity.

2It is not hard to check that the choice does not affect the results
in this paper.
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For each i ∈ [d], we define the i-th expected loss as

`(i) , (`
(i)
1 , . . . , `

(i)
K ) ,

where `(i)k = E[ν
(i)
k ] ∈ [0, 1] for k ∈ [K]. Similarly, we

denote by
`k , (`

(1)
k , . . . , `

(d)
k )

the expected loss vector of arm k. A bandit model in this
paper can thus be interchangeably represented by ν or ` =
(`1, . . . , `K) ∈ [0, 1]d×K .

Let ?i , arg mink∈[K] `
(i)
k denote the index of the arm with

the lowest i-th expected loss. We further define the i-th
expected relative loss for i ∈ [d] as

`
(i)
|? = (`

(i)
1|?, . . . , `

(i)
K|?) ,

and the expected relative loss of arm k as

`k|? , (`
(1)
k|?, . . . , `

(d)
k|?) ,

where `(i)k|? , `
(i)
k − `

(i)
?i . And we denote the matrix of the

expected relative losses by

`|? = (`1|?, . . . , `K|?) ∈ [0, 1]d×K .

We define the i-th expected loss of weight ω ∈ ΣK as

`(i)ω , ω>`(i) ,

and the i-th expected relative loss of the weight ω as

`
(i)
ω|? , ω

>`
(i)
|? .

Finally, we denote by

`ω|? ,
∥∥∥(`

(1)
ω|?, . . . , `

(d)
ω|?)

∥∥∥
∞

the `∞-norm of the expected relative loss of the weight ω.

2.2 Best-arm identification

We first detail the framework of fixed-confidence best-arm
identification in our case: the objective is to identify the arm
with the minimum relative loss in terms of infinite norm.
That is, for each bandit model ` ∈ [0, 1]d×K , the unique
correct answer is given by

i?(`) , arg min
k∈[K]

‖`k|?‖∞ = arg min
k∈[K]

max
i∈[d]

`
(i)
k|?

among the set of possible correct answers I = [K].

Motivation. In general, the vector-loss/payoff settings
considered by previous works mainly focus on the Pareto
frontier of different sub-objectives. This notion of optimal-
ity is unreasonable in some cases, where some dimensional
losses suffer extremely high scalar regrets. To avoid the risk
of incredibly high scalar regrets for any single dimension,
we target at minimizing the infinite norm of the relative
losses (which are scalar regrets) and thus, we can bound the
scalar regrets for all dimensions at the same time.

Algorithm. A deterministic pure-exploration algorithm
under the fixed-confidence setting is given by three com-
ponents: (1) a sampling rule (At)t≥1, where At ∈ [K] is
Ft−1-measurable. (2) a stopping rule τδ, a stopping time
for the filtration (Ft)t≥1, and (3) a decision rule ı̂ ∈ I
which is Fτδ -measurable. Non-deterministic algorithms
could also be considered by allowing the rules to depend
on additional internal randomization. The algorithms we
present are deterministic.

δ-correctness and fixed-confidence objective. An algo-
rithm is δ-correct if it predicts the correct answer with prob-
ability at least 1 − δ, precisely if P`

(
ı̂ 6= i?(`)

)
≤ δ and

τδ < +∞ almost surely for all ` ∈ [0, 1]d×K . The goal
is to find a δ-correct algorithm that minimizes the sample
complexity, that is, the expected number of samples E`[τδ]
needed to predict an answer.

2.3 Regret minimization

We now detail the setting for regret minimization. LetLA ,∑T
t=1 `At denote the expected cumulative loss of algorithm

A where `At = (`
(1)
At , . . . , `

(d)
At ) and L

(i)
A ,

∑T
t=1 `

(i)
At

be the expected cumulative losses. The traditional regret
(which we call relative loss) w.r.t. the scalar loss `(i)?i is
defined as

L
(i)
A|? , L

(i)
A − T`

(i)
?i

for i ∈ [d]. The goal is to minimize the `∞-norm of cumu-
lative relative loss, which differs from the goal of classical
stochastic multi-armed bandits with scalar payoffs. How-
ever, comparing the `∞-norm of cumulative relative loss of
an algorithm with a single optimal arm may be unreason-
able. For example, a bandit problem with three arms (1, 0),
(0, 1) and (3/4, 3/4) has the optimal arm (3/4, 3/4). But
we can achieve `∞-norm of cumulative relative loss T/2 by
pulling arm 1 and arm 2 for T/2 rounds respectively while
always pulling the single optimal arm can only achieve
3T/4. Therefore, it is more reasonable to look into the opti-
mal proportion of arm pulls instead of only considering the
single optimal arm under the context of vector losses. We
call the optimal proportion of arm pulls the optimal weight.
Definition 1 (optimal weight). We define

ω? , arg min
ω∈ΣK

`ω|?

the optimal weight of arms.

Consequently, it is also natural to measure the performance
by comparing with the optimal weight. Therefore, we in-
troduce the following regret in terms of the relative losses
defined w.r.t. the optimal weight.
Definition 2 (regret). The expected regret of algorithm A
is defined as

E[RA(T )] , E
[∥∥LA|?∥∥∞]− `ω?|?T , (1)



Stochastic bandits with vector losses: Minimizing `∞-norm of relative losses

where LA|? = (L
(1)
A|?, . . . , L

(d)
A|?).

3 Best-arm identification

We first study best-arm identification for our setting in a
fixed-confidence context. We are thus interested in the sam-
ple complexity. We begin with particularizing the general
problem-dependent lower bound by Garivier and Kaufmann
(2016) to our setting. Then we discuss how to design asymp-
totically optimal algorithms that we precise the definition.

3.1 Lower bound on the sample complexity

We first derive a problem-dependent lower bound as stated
in the following theorem.

Theorem 3. Let Sy(η) , {i|ηi ≤ yi} and Cγ(z) ,
{i|zi ≤ γ} for η, y ∈ Rd, z ∈ RK and γ ∈ R. For
any δ-correct strategy and any ` ∈ [0, 1]d×K , we have

lim inf
δ→0

E`[τδ]
log(1/δ)

≥ T ?(`) ,

where T ?(`) is a characteristic time defined by

T ?(`)−1

= max
ω∈ΣK

min
k?∈[K]
j∈[d]

inf
x∈[0,1],y∈[0,1]d:

y≤(1−x)1

ωi?(`)d(`
(j)
i?(`), x+ yj)

+ ωk?

 ∑
i/∈Sy(`k? )

d+(`
(i)
k? , x+ yi)


+
∑
i 6=j

∑
k∈Cyi (`(i))

ωid(`
(i)
k , yi)

+
∑

k∈Cyj (`(j))/{i?(`)}

ωjd(`
(j)
k , yj) . (2)

Proof. By Theorem 1 of Garivier and Kaufmann (2016),
we have

lim inf
δ→0

E`[τδ]
log(1/δ)

≥ T ?(`) ,

where

T ?(`)−1 = max
ω∈ΣK

inf
λ∈Alt(`)

 ∑
k∈[K]

∑
i∈[d]

ωkd(`
(i)
k , λ

(i)
k )

 ,

where Alt(`) is an alternative bandit problem with different
optimal arm, i.e.,

Alt(`) , {λ ∈ [0, 1]d×K : i?(λ) 6= i?(`)} .

Then we just need to calculate T ?(`)−1 to complete the
proof. For an alternative λ with i?(λ) = k?, we let y =

(λ
(1)
?1 , . . . , λ

(d)
?d ) ∈ [0, 1]d and x = maxi λ

(i)
k? − yi ∈ [0, 1].

Then we have ∃j ∈ [d], λ
(j)
i?(`) − yj ≥ x. For any ω ∈ ΣK ,

we have

inf
λ∈Alt(`)

 ∑
k∈[K]

∑
i∈[d]

ωkd(`
(i)
k , λ

(i)
k )


= min
k?∈[K]

inf
λ∈Alt(`):
i?(λ)=k?

 ∑
k∈[K]

∑
i∈[d]

ωkd(`
(i)
k , λ

(i)
k )



= min
k?∈[K]

inf
λ∈Alt(`):
i?(λ)=k?

 ∑
k∈∪i∈[d]Cyi (`

(i))

∪{i?(`),k?}

∑
i∈[d]

ωkd(`
(i)
k , λ

(i)
k )


= min
k?∈[K]
j∈[d]

inf
x∈[0,1],y∈[0,1]d:

y≤(1−x)1

ωi?(`)d(`
(j)
i?(`), x+ yj)

+ ωk?

 ∑
i/∈Sy(`k? )

d+(`
(i)
k? , x+ yi)


+
∑
i6=j

∑
k∈Cyi (`(i))

ωid(`
(i)
k , yi)

+
∑

k∈Cyj (`(j))/{i?(`)}

ωjd(`
(j)
k , yj) ,

which completes the proof.

3.2 Asymptotically optimal algorithms

To design an algorithm for fixed-confidence best-arm iden-
tification, one needs to specify three components as pre-
viously mentioned: a stopping rule, a decision rule and
a sampling rule. The Track-and-Stop strategy proposed
by Garivier and Kaufmann (2016) can be adopted in our
setting with optimal sample complexity. For completeness,
we describe the algorithm briefly below.

In the next, we use the empirical average ˆ̀
t to estimate the

expected losses ` at time t, that is

∀k ∈ [K], i ∈ [d], ˆ̀(i)
t,k ,

1

t

t∑
τ=1

y
(i)
τ,k .

Decision rule. Let f(·) be a function of time-dependent
exploration bonus (e.g. log(t)) for t ∈ N. Let [ct,k, dt,k] ,

{ξ :
∑
i∈[d]Nt−1,kd(ˆ̀(i)

t−1,k, ξ) ≤ f(t)}. Now, let

˜̀
t−1 , argmin

λ∈[0,1]d×K∩∏K
k=1[ct,k,dt,k]

d

 ∑
k∈[K]

∑
j∈[d]

Nt−1,kd(ˆ̀
(j)
t−1,k, λ

(j)
k )

 .

Then for the decision rule, we choose to recommend ı̂ =
i?( ˜̀

t−1). Note that if the empirical loss matrix ˆ̀
t−1 ∈

[0, 1]d×K , then ˜̀
t−1 coincides with ˆ̀

t−1 and the decision
is simply the empirical best arm.



Xuedong Shang, Han Shao, Jian Qian

Stopping rule. In this paper, we choose to use the classi-
cal Chernoff stopping rule (see e.g. Chernoff 1959; Garivier
and Kaufmann 2016) that can be concretized (for exponen-
tial family bandit models) to the following form:

τδ , inf
{
t ∈ N : GLRt(Alt( ˆ̀

t)) > β(t, δ)
}
,

where β(t, δ) is a threshold function to be chosen carefully
and

GLRt(Alt( ˆ̀
t)) = inf

λ∈Alt( ˆ̀
t)

 ∑
k∈[K]

∑
i∈[d]

Nt,kd(ˆ̀(i)
t,k, λ

(i)
k )


is the generalized log-likelihood ratio between the alterna-
tive set Alt( ˆ̀

t) and the whole parameter space.

Using the same reasoning as Shang et al. (2020), one can
show that the Chernoff stopping rule coupled with the thresh-
old

β(t, δ) , 4 log(4 + log(t)) + 2C
(

log((Kd− 1)/δ)

2

)
leads to the δ-correctness, i.e. P [τδ <∞∧ ı̂ 6= i?(`)] ≤ δ
for any sampling rule. The function C is given by Kaufmann
and Koolen (2018) that satisfies C(x) ' x+ log(x). Note
that in practice, one can simply choose to set β(t, δ) =
log((1 + log(t))/δ).

Sampling rule and the whole picture. We aim to design
algorithms that match the lower bound derived in Theorem 3.
We call such algorithms asymptotically optimal. Formally,
a fixed-confidence algorithm is asymptotically optimal if

lim sup
δ→0

E`[τδ]
log(1/δ)

≤ T ?(`) .

To achieve this property, the learner needs to allocate her
pulls according to the optimal weight vector given by the
characteristic time (Garivier and Kaufmann, 2016; Russo,
2016), that is

ω?(`) = arg max
ω∈ΣK

inf
λ∈Alt(`)

 ∑
k∈[K]

∑
i∈[d]

ωkd(`
(i)
k , λ

(i)
k )


= arg max

ω∈ΣK

min
k?∈[K]
j∈[d]

inf
x∈[0,1],y∈[0,1]d:

y≤(1−x)1

ωi?(`)d(`
(j)
i?(`), x+ yj)

+ ωk?

 ∑
i/∈Sy(`k? )

d+(`
(i)
k? , x+ yi)


+
∑
i 6=j

∑
k∈Cyi (`(i))

ωid(`
(i)
k , yi)

+
∑

k∈Cyj (`(j))/{i?(`)}

ωjd(`
(j)
k , yj) , (3)

which can be considered as solving a minimax saddle-point
problem. Although the inf part is non-convex, it is com-
putable by calculating the infimum over x, y for each k?

and j. To calculate the infimum over x, y, for each i ∈ [d],
we consider the case that yi is larger than the i-th losses of
mi arms with mi = 0, 1, . . . ,K separately. In each case of
fixed k∗, j, {mi}i∈[d], the infimum part of (3) is convex and
solvable. However, this incurs a computational complexity
of Θ(dKd+1).

The aforementioned problem requires the knowledge of the
true means, one simple way to overcome this is to adopt the
D-Tracking rule (Garivier and Kaufmann, 2016), where
we choose to sample

At+1 ∈ arg max
k∈[K]

ω?k( ˆ̀
t)−Nt,k/t

using ‘plug-in’ estimates of the optimal weight.
D-Tracking is proved to be asymptotically optimal (Gariv-
ier and Kaufmann, 2016), with a known drawback as its
computational liability due to the optimization problem (3)
that has to be treated once at each step, since there is no
known closed form expression or even no computationally
feasible approximation approach in general.

An improved algorithm without solving the optimization
problem every round by solving a two-player game derived
from Degenne et al. (2019) is given in Appendix A.

4 Regret minimization

We turn our attention to regret minimization. We first derive
a worst-case lower bound. Then we present an efficient
algorithm that matches the lower bound. For simplicity, we
omit the t in the subscripts in this section, e.g., we denote
ˆ̀(i)
k instead of ˆ̀(i)

t,k.

4.1 Worst-case lower bound

Theorem 4. For T > 27, let sup be the supremum over
all distributions of losses and inf be the infimum over all
algorithms. Then we have,

inf
A

sup
ν

E [RA(T )] ≥ 1

2304
T

2
3 .

Proof. Let ε ∈ [0, 1/6] be a constant, we consider a bandit
model ν with the following 2-dimensional loss vectors:

`1 =

(
1

4
,

3

4

)
, `2 =

(
3

4
,

1

4

)
,

`3 =

(
3− ε

8
,

3 + ε

8

)
, `4 =

(
3 + ε

8
,

3− ε
8

)
,

where the losses are Gaussian distributions with variance 1
and expectation of the indicated value.
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Denote N1, N2, N3 and N4 the number each arm is pulled.
Since there is a symmetry between arm 3 and arm 4. With-
out loss of generality, we assume for the given algorithm A
under consideration, that EA,ν [N3] ≤ EA,ν [N4]. Then ac-
cording to the assumption between N3 and N4, we consider
an alternative bandit model ν′ with the following losses,

`′1 =

(
1− ε

4
,

3

4

)
, `′2 =

(
3

4
,

1

4

)
,

`′3 =

(
3− ε

8
,

3 + ε

8

)
, `′4 =

(
3 + ε

8
,

3− ε
8

)
.

For ε < 1/6 : The optimal arms for each loss are ?1 = 1,
?2 = 2.

ω?ν′ , arg min
ω∈ΣK

max
i∈[d]

{
ω>(`′)(i) − `(i)?i,ν′

}
= arg min

ω∈ΣK

max

{
(2 + ε)ω2

4
+

(1 + ε)ω3

8

+
(1 + 3ε)ω4

8
,
ω1

2
+

(1 + ε)ω3

8
+

(1− ε)ω4

8

}
= (0, 0, 1, 0).

Thus the regret is lower bounded as follows,

Rν′(T ) , max
i∈[d]

(
L(i) − `(i)ω?

ν′
T
)

= max

{
(1− ε)N1

4
+

3N2

4
+

(3− ε)N3

8

+
(3 + ε)N4

8
− 3− ε

8
T,

3N1

4
+
N2

4

+
(3 + ε)N3

8
+

(3− ε)N4

8
− 3 + ε

8
T

}
= max

{
− (1 + ε)N1

8
+

(3 + ε)N2

8
+
εN4

4
,

(3− ε)N1

8
− (1 + ε)N2

8
− εN4

4

}
≥ 2

3

(
− (1 + ε)N1

8
+

(3 + ε)N2

8
+
εN4

4

)
+

1

3

(
(3− ε)N1

8
− (1 + ε)N2

8
− εN4

4

)
≥ 1

48
N1 +

5

24
N2 +

ε

12
N4

= (
1

48
− ε

12
)N1 + (

5

24
− ε

12
)N2 +

ε

12
(T −N3)

≥ 1

144
N1 +

1

6
N2 +

ε

12
(T −N3) .

So we have the following regret for the bandit model ν′,

E [RA,ν′(T )] ≥ 1

144
EA,ν′ [N1] +

ε

12
(T − EA,ν′ [N3]) .

(4)

According to the inequality (6) by Garivier et al. (2018), we
have,

ε2

32
EA,ν′ [N1] ≥ kl

(
EA,ν′ [N3]

T
,
EA,ν [N3]

T

)
≥ 1

2

(
EA,ν [N3]

T
− EA,ν′ [N3]

T

)2

.

Therefore,

EA,ν′ [N3] ≤ ε

4
T
√

EA,ν′ [N1] + EA,ν [N3]

Furthermore with EA,ν [N3] ≤ T/2, and according to our
assumption,

E [RA,ν′(T )] ≥ 1

144
EA,ν′ [N1] +

ε

12
(T − EA,ν′ [N3])

≥ 1

144
EA,ν′ [N1]+

ε

12
T− ε

2

48
T
√

EA,ν′ [N1]

− ε

12
EA,ν [N3]

≥ 1

144
EA,ν′ [N1]+

ε

24
T− ε

2

48
T
√

EA,ν′ [N1]

Take ε = T−1/3/2 < 1/6, we have,

E [RA,ν′(T )] ≥ 1

144
Eν′ [N1]+

1

48
T

2
3− 1

192
T

1
3

√
Eν′ [N1]

If Eν′ [N1] ≥ T 2/3/16, then by (4), we have,

E [RA,ν′(T )] ≥ 1

144
Eν′ [N1] ≥ 1

2304
T

2
3

Else, we have,

E [RA,ν′(T )] ≥ 1

144
Eν′ [N1]+

1

48
T

2
3− 1

192
T

1
3

√
Eν′ [N1]

≥ 1

48
T

2
3 − 1

192
T

1
3

1

4
T

1
3

≥ 1

2304
T

2
3

A simple method derived from the lower bound proof.
The lower bound proof actually indicates that the minimum
losses for each dimension are crucial in order to achieve
optimality. To this regard, following a simple scheme of
forced exploration, then exploit, we could easily derive an
algorithm matching the lower bound for the minimax regret.
Detailed description of the algorithm and analysis can be
found in Appendix B. Despite its simplicity, the computation
complexity scales exponentially with d. To cope with this
issue, we develop a second algorithm with the two-player
game scheme.
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4.2 A minimax game

We propose an algorithm called Combinatorial Game (CG),
whose pseudo-code is displayed in Algorithm 1.

The idea is to introduce a two-player game scheme as re-
cently studied by Degenne et al. (2020b), where one tries
to identify the best allocation of probability across the arms
while the opponent always replies with a best response.
More specifically, at each round t we request from the first
learner its probability allocation, and pull arms accordingly.
When the losses are revealed, we calculate the fictitious
losses the learner would have suffered if it had played the
arm, and feed the fictitious losses to the learner, as dis-
played in Algorithm 1. The learner is supposed to have
regret bounds similar to AdaHedge (de Rooij et al., 2014).

Concretely, the arm with the smallest empirical i-th loss is
denoted by ?̂i,arg mink∈[K]

ˆ̀(i)
k for i ∈ [d]. Let LCB(`|?)

be the lower confidence bound of `|?, calculated as,

LCB(`|?)i,k = ˆ̀(i)
k|?̂ −

√
2 log(T )

Nt,k
−
√

2 log(T )

N
, (5)

where ˆ̀(i)
k|?̂ = ˆ̀(i)

k − ˆ̀(i)
?̂i

. Then we can define
the best response in an optimistic fashion: xt =
arg maxx∈Σd

x> LCB(`|?)ωt, and feed the optimistic loss
LCB(`|?)

>xt back to L.

Algorithm 1 The algorithm of CG
1: Input: Time horizon T , number of forced exploration

rounds N , learner L for linear losses on the simplex
2: Pull each arm for N rounds
3: Start an instance of L and set N1,k = 0 for all k ∈ [K]
4: for t = 1, · · · , T −KN do
5: ?̂i = arg mink∈[K]

ˆ̀(i)
k for i ∈ [d]

6: Get ωt from L
7: // Track the weights
8: Play arm At = arg mink∈[K]

(
Nt,k −

∑t−1
τ=0 ωτ,k

)
9: Nt+1,At = Nt,At+1 andNt+1,k = Nt,k for k 6= At

10: xt = arg maxx∈Σd
x> LCB(`|?)ωt,

11: where LCB(`|?) is calculated as in (5)
12: // Feed optimistic loss
13: Feed loss LCB(`|?)

>xt to L and update LCB(`|?)
14: end for

4.3 Analysis of CG

We show that CG achieves a matching upper bound for the
regret. We first show that the empirical estimation is valid
with high probability at each round. Specifically, we have
the following lemma.

Lemma 5. Define the following event:

E1,t ,

∀k ∈ [K], i ∈ [d] :
∣∣∣ˆ̀(i)k − `(i)k ∣∣∣ ≤

√
2 log(t)

Nk

 ,

where Nk denotes the number of pulls of arm k. This event
happens with probability at least 1− dK/t2:

P [E1,t] ≥ 1− dK

t2

Proof. This is a direct application of the Hoeffding’s In-
equality with the union bound.

With the Lemma above, we proceed to show that LCB(`|?)
is a valid approximation for `|?. Concretely, we have the
following lemma.

Lemma 6. Assume that E1,t holds, we have,

LCBt(`|?)i,k ≤ `
(i)
k|? ,

`
(i)
k|? ≤ LCBt(`|?)i,k + 2

√
2 log(t)

Nt,k
+ 2

√
2 log(t)

N
.

Proof. This is a easy deduction of Lemma 5.

Theorem 7. For T ≥ dK, CG achieves a Õ(T 2/3) regret.

Proof. Recall the event E1,t defined in Lemma 5, we can
decompose the regret as follows.

E [RCG(T )] = E

[
max
i∈[d]

T∑
t=1

`
(i)
At|?

]
− `ω?|?T

≤KN + E

max
i∈[d]

∑
t≥KN

`
(i)
At|?1{¬E1,t}


+ E

max
i∈[d]

∑
t≥KN

`
(i)
At|?1{E1,t}

− `ω?|?T .
For the second term, due to Lemma 5, we have

E

max
i∈[d]

∑
t≥KN

`
(i)
At|?1{¬E1,t}


≤ E

 ∑
t≥KN

1{¬E1,t}

 ≤ ∑
t≥KN

dK

t2
≤ π2dK

6
.

For the third term, we first decompose the regret into a term
related to strategies of both players and the tracking error.

E

max
i∈[d]

∑
t≥KN

`
(i)
At|?1{E1,t}
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≤ E

[
max
i∈[d]

K∑
k=1

T∑
t=KN+1

`
(i)
k|?1{E1,t,At=k}

]

≤ E

[
max
i∈[d]

K∑
k=1

T∑
t=KN+1

ωt,k`
(i)
k|?1{E1,t}

]

+ E

[
max
i∈[d]

K∑
k=1

T∑
t=1+KN

(
1{At=k}−ωt,k

)
1{E1,t}`

(i)
k|?

]

≤ E

[
max
i∈[d]

K∑
k=1

T∑
t=KN+1

ωt,k`
(i)
k|?1{E1,t}

]

+ E

[
max
i∈[d]

K∑
k=1

T∑
t=1+KN

(
1{At=k} − ωt,k

)
`
(i)
k|?

]

+ E

[
max
i∈[d]

K∑
k=1

T∑
t=1+KN

(
ωt,k−1{At=k}

)
`
(i)
k|?1{¬E1,t}

]

≤ E

[
T∑

t=KN+1

max
x∈Σd

x>`|?ωt1{E1,t}

]
+K +

π2dK

6
,

(6)

where (6) adopts Lemma 15 by Garivier and Kaufmann
(2016). The first term in (6) can be further estimated.

E

[
T∑

t=KN+1

max
x∈Σd

x>`|?ωt1{E1,t}

]

≤ E

[
T∑

t=KN+1

max
x∈Σd

x>LCB(`|?)ωt1{E1,t}

]

+ E

[
2

T∑
t=KN+1

K∑
k=1

(√
2 log(T )

Nt,k

)
ωt,k

]

+ 2T

√
2 log(T )

N

≤ E

[
T∑

t=KN+1

max
x∈Σd

x>LCB(`|?)ωt1{E1,t}

]

+ 2(K2 +
√

2KT )
√

2 log(T ) + 2T

√
2 log(T )

N
(7)

≤ E

[
T∑

t=KN+1

max
x∈Σd

x>LCB(`|?)ωt

]

+2(K2+
√

2KT )
√

2 log(T )+2T

√
2 log(T )

N
+
π2

6
dK

≤ E

[
T∑

t=KN+1

x>t LCB(`|?)ω
?

]
+
√
T

+2(K2+
√

2KT )
√

2 log(T )+2T

√
2 log(T )

N
+
π2

6
dK ,

(8)

where (7) adopts Lemma 9 by Degenne et al. (2019) and (8)
uses the fact that L has regret

√
T . Now we are only left to

bound the first term in (8).

E

[
T∑

t=KN+1

x>t LCB(`|?)ω
?

]

≤ E

[
T∑

t=KN+1

x>t `|?ω
?

]
+
π2

6
dK

≤ (T −KN) max
x∈Σd

x>`|?ω
? +

π2

6
dK

= (T −KN)`ω?|? +
π2

6
dK ,

Therefore, aggregating all the terms above we have the
regret is upper bounded by O(KN + T

√
log(T )/N) =

Õ(T 2/3) by setting N = (K2T 2 log(T ))1/3.

Adaptive algorithm: The term T 2/3 comes from the
trade-off between the exploration of N rounds and the con-
fidence bonus

√
2 log(T )/N . In fact, CG does not need

time horizon T and forced exploration rounds N as inputs.
CG can be easily refined by keeping each arm pulled for at
least t2/3 rounds at time t and using a learner which is also
adaptive, e.g., AdaHedge (de Rooij et al., 2014).

5 Discussion

We studied a new setup of multi-armed bandit with vector
losses. The main purpose of the paper was to investigate a
framework for which we carefully constructed appropriate
performance measures. We derived a problem-dependent
lower bound of the sample complexity for best-arm identifi-
cation and discussed how to design asymptotically optimal
matching algorithms. We also derived a worst-case lower
bound for regret minimization and designed a minimax
game algorithm that achieves matching upper bound.

We are mainly interested in the maximum of different losses
in this work. One possible future direction is to study how
can we extend to a more general objective function instead
of taking the maximum. Another interesting problem is
to investigate whether we can derive a problem-dependent
lower bound for regret minimization, for which the alterna-
tive bandit problem has a different optimal weight instead
of a different single optimal arm.
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A More details on best-arm identification algorithm

We provide an improved algorithm for best-arm identification. The idea is to view the problem again as a minimax game as
for regret minimization, which is also a natural observation from the lower bound: given a bandit model `, at each time
step a learner plays an arm, and a fictive opponent, tries to fool the learner by playing an alternative bandit model λ with a
different correct answer. Such framework allows to obtain algorithms that adapt to any structure with asymptotic optimality
guarantees, and is extensively studied recently for best-arm identification (Degenne et al., 2019; Degenne and Koolen, 2019;
Ménard, 2019; Degenne et al., 2020a).

In Algorithm 2, we show one instance of such gamified sampling rule by Degenne and Koolen (2019), adopted to our setting,
along with the decision rule and the stopping rule we described in Section 3.

By applying the game scheme, we can actually approach the minimax saddle-point

ω?(`) = arg max
ω∈ΣK

inf
λ∈Alt(`)

 ∑
k∈[K]

∑
i∈[d]

ωkd(`
(i)
k , λ

(i)
k )


step by step by leveraging an iterative algorithm for both the real learner and the fictive opponent.

We first need to implement a learner Liω for each possible answer i ∈ I, for which we can apply choose to use AdaHedge
again (as for regret minimization). Not to enter into details, AdaHedge is a regret minimizing algorithm of the exponential
weights family, that achieves a O(

√
T ) regret for bounded losses (de Rooij et al., 2014). At each time step, we get a weight

vector ωt from Litω where it is the empirical best answer. However, a bandit algorithm cannot play a fraction vector. We can
incorporate a tracking procedure (see line 20 in Algorithm 2) to circumvent this difficulty. For the opponent learner, we
choose to use the best response, that is the most confusing model as formalized in Line 14 of the pseudo-code.

The present procedure involves also an optimization problem, but simpler than that of D-Tracking, and is computationally
more feasible in practice (note that other combination of sub-algorithms for both opponents are possible, see e.g. Degenne
et al. 2019; Ménard 2019).

Sample complexity. In this paper, since we assume that our model ` ∈ [0, 1]d×K , there exists constants γ` and D`, that
only depend on the model `, such that for all y ∈ [0, 1], the function x 7→ d(x, y) is γ`-Lipschitz on [0, 1] and d(x, y) ≤ D`
(see Appendix F of Degenne et al. 2019 for detailed discussions).

According to Theorem 2 of Degenne et al. (2019), the sample complexity of Algorithm 2 at the stopping time τδ is
bounded by Tδ as defined in Theorem 8, which is a non-asymptotic bound that depends on regrets incurred by both the
AdaHedge learner and the best response learner. For AdaHedge, the regret incurred is Rk(t) =

√
t log(dK) log(t), and

the best-response learner has zero-regret: Rλ(t) ≤ 0. And with β(t, δ) ≈ log(1/δ) + o(t), the asymptotic optimality of
Algorithm 2 is also retained. We do not intend to reproduce the proof here since it can be (almost) adopted directly from the
proof of Theorem 2 by Degenne et al. (2019) (up to a factor of d).

Theorem 8. The sample complexity of Algorithm 2 on model ` is

E`[τδ] ≤ Tδ + CST .

The quantity Tδ is defined as

Tδ , max
{
t ∈ N : t ≤ β(t, δ)/D` + C`(R

λ(t) +Rk(t) +O(t log(t)))
}

where C`3 depends on the model `.

B A simple algorithm for regret minimization and its analysis

B.1 A combinatorial lemma

We now describe in detail an algorithm based on the proof idea of Theorem 4. As we stressed, it is more viable to consider
the proportion (weight) of arm pulls, in particular the optimal weight of arm pulls for regret minimization. To simplify the
problem, we first show that the optimal distribution is a linear combination over d arms.

3See Appendix D of Degenne et al. (2019) for an exact definition.
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Algorithm 2 A gamified algorithm for best-arm identification
1: Input: Learners for each possible answer (Liω)i∈I , threshold function β(·, δ), exploration bonus f(·), number of forced

exploration rounds N
2: pull each arm N rounds
3: for t > KN do
4: // Stopping rule
5: if at time t, we have

max
k∈[K]

inf
λ∈Alt( ˆ̀

t−1)

 ∑
k∈[K]

∑
j∈[d]

Nt−1,kd(ˆ̀(j)
t−1,k, λ

(j)
k )

 > β(t− 1, δ)

then
6: stop and return
7: ı̂ = i?( ˜̀

t−1)
8: end if
9: // Best answer

10: it = i?( ˜̀
t−1)

11: // The learner plays
12: Get ωt from Litω and update Wt = Wt−1 + ωt
13: // Best response from the nature
14:

λt ∈ arg min
λ∈Alt( ˆ̀

t−1)

 ∑
k∈[K]

∑
j∈[d]

ωt,kd(ˆ̀(j)
t−1,k, λ

(j)
k )


15: // Feed optimistic losses
16: For k ∈ [K], let
17:

Ut,k = max

f(t− 1)

Nt−1,k
, max
ξ∈{ct,k,dt,k}

∑
j∈[d]

d(ξ, λ
(j)
t,k)


18: Feed −

∑
k∈[K] ωkUt,k to learner Litω

19: // Track the weights
20: Pull At ∈ arg mink∈[K]Nt−1,k −Wt,k

21: end for

Lemma 9. In the case of d losses, there exists a ω? such that it has at most d non-zero elements.

Proof. We first define the quadrant H+ , {x|xi ≥ 0} and we define an addition operation of two sets A and B as
A+B , {a+ b|a ∈ A, b ∈ B}. For any compact set X we note that

inf
x∈X

max(x1, ..., xd) = inf
y∈(X+H+)

⋂
Diag

y1 ,

where Diag , {x|x1 = x2 = ... = xd}. Let A , Conv

({
`k|?

}
k∈[K]

)
be the convex hull over the relative losses of all

K arms. Then we have
`ω?|? = inf

y∈(A+H+)
⋂

Diag
y1 .

Therefore, there exists ω ∈ A and h ∈ H+ such that `ω?|? = ω>`
(i)
|? + hi for all i ∈ [d]. Moreover, it is obvious that there

is at least one i ∈ [d] such that hi = 0. Thus, here ω is an optimal weight, i.e., `ω?|? = `ω|?. Furthermore, the vector
ω>`

(i)
|? is not an interior point of A, since this would enable a (−1, ...,−1) direction translation, thus ω>`(i)

|? is on a surface
of A, a convex hull of finite points in a d − 1 dimension space, we conclude that there exists such an ω with at most d
non-zero elements.
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B.2 A straightforward algorithm

We assume that K ≥ d. According to Lemma 9, we only need to consider linear combinations of d arms. We define a
combinatorial arm c ∈ C as a set of d arms where C = {{c1, ..., cd} ⊆ [K]|c1 < c2 < . . . < cd}. For all c ∈ C, we are
interested in the quantity `(i)c|? , minα∈Σd α

>`
(i)
c|?, where `(i)

c|? = (`
(i)
c1|?, . . . , `

(i)
cd|?) is the vector of the i-th relative losses of

arm set c. We further denote by `c|? = maxi∈[d] `
(i)
c|? the `∞-norm of the relative loss and `(i)c = `

(i)
c|? + `

(i)
?i the absolute

loss of the combinatorial arm.

A straightforward idea of algorithm for regret minimization is to track the values of `c|? for every c ∈ C. We thus need to
have a good estimate of the relative loss of all d combinations of arms. We propose Combinatorial Play (CP) as shown in
Algorithm 3. The empirical relative loss of arm c ∈ C w.r.t. ?̂i is defined as

ˆ̀
c|?̂ = max

i∈[d]
min
α∈Σd

α> ˆ̀(i)
c|?̂ . (9)

Let α̂c denote the value of α.

Our algorithm thus chooses among c ∈ C and calculates the empirical optimal allocation α̂c ∈ Σd among c. Then we use
the tracking procedure from the literature (see e.g. Garivier and Kaufmann 2016) to decide which real arm to pull.

Algorithm 3 The algorithm of CP
1: Input: time horizon T and number of forced exploration rounds N
2: pull each arm N rounds
3: ?̂i = arg mink∈[K]

ˆ̀(i)
k for i ∈ [d]

4: for all c ∈ C, we calculate its estimate ˆ̀
c|?̂ and its optimal allocation α̂c based on Eq. (9)

5: ĉ ∈ arg minc∈C
ˆ̀
c|?̂ and the corresponding optimal allocation α̂ĉ.

6: for t = KN + 1, · · · , T do
7: Pull arm At according to probability distribution α̂ĉ over ĉ.
8: end for

B.3 Analysis of CP

We analyze CP in this section. Our main result is stated below.

Theorem 10. Assume that ˆ̀(i)
k ∈ [0, 1] for all k ∈ [K] and i ∈ [d], CP achieves a Õ(T 2/3) regret.

Proof. First, according to Lemma 5, we have P [E1,t] ≥ 1− dK/t2. When E1,t holds, we have for all c ∈ C

ˆ̀
c|?̂ = max

i∈[d]
min
α∈Σd

α> ˆ̀(i)
c|?̂ ≥ max

i∈[d]
min
α∈Σd

(
α>`

(i)
c|? − 2

√
2 log(t)

N

)
= `c|? − 2

√
2 log(t)

N
.

And similarly, we have

ˆ̀
c|?̂ ≤ `c|? + 2

√
2 log(t)

N
.

Then the regret is

E [RCP(T )] ≤ KN +

T∑
t=KN+1

E
[
1{¬E1,t}

]
+ (`c|? − `ω?|?)(T −KN)E

[
1{∀t,E1,t}

]
≤ KN +

T∑
t=KN+1

dK

t2
+ (ˆ̀

c|?̂ −min
c
`c|?)(T −KN)E

[
1{∀t,E1,t}

]
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+ 2

√
2 log(t)

N
(T −KN)E

[
1{∀t,E1,t}

]
≤ KN +

d

N
+

(
ˆ̀
c|?̂ −min

c

(
ˆ̀
c|?̂ − 2

√
2 log(t)

N

))
(T −KN)E

[
1{∀t,E1,t}

]
+ 2

√
2 log(t)

N
(T −KN)E

[
1{∀t,E1,t}

]
≤ KN +

d

N
+ 4

√
2 log(T )

N
(T −KN) ,

which completes the proof by setting N = (32T 2 log(T )/K2)
1
3 .
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