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ABSTRACT

Reflectance confocal microscopy (RCM) allows fast data ac-

quisition with a high resolution of the skin. In fact, RCM

images are becoming more and more used for lentigo diag-

nosis. In this paper, we propose a new classification method

to automate specific steps in lentigo diagnosis. Our method

is based on a convolutional neural network (CNN) on In-

ceptionV3 architecture combined with data augmentation and

transfer learning. The experimental validation showed the ef-

ficiency of our model by reaching an accuracy of 98.14%.

Index Terms— RCM, Lentigo detection, CNN classifica-

tion, InceptionV3.

1. INTRODUCTION

Reflectance Confocal Microscopy (RCM) [1] is a modality in-

creasingly used in medical imaging. In vivo RCM technique

is easy to use during the patient examination and acquires

high resolution skin images in a short time. This modality

can be used to help dermatologists diagnose different skin

diseases. However, it takes a long time for dermatologists to

make full use of the possibilities of this technique for diag-

nostic purposes. Our work aims to develop a new tool to auto-

mate certain diagnostic steps required using deep learning [2].

On the other side, the lentigos are age spots that mainly ap-

pear on the hand or on the areas most frequently exposed to

the sunlight. On the surface, they appear as a darker spot.

Inside the skin layers, it is mainly at the level of the dermis-

epidermis junction that the differences can be visible [3].

Therefore, the distinction of lentigos can be made using the

RCM images. Several deep learning architectures, especially

convolutional neural network (CNN) [4] show great potential

in medical imaging classification. In this paper, we propose

a new 3D RCM image (2D + depth) classification method

for lentigo detection. The method is based on a CNN on

InceptionV3 architecture [5]. Until now, little works have

been proposed for lentigo/healthy classification of RCM im-

ages. In [6], the authors perform a two-dimensional wavelet

decomposition. Then a generalized Gaussian distribution

was applied to the wavelet coefficients in order to perform

a quantitative analysis assisted by a support vector machine

(SVM) to classify RCM images obtaining an accuracy of

84.4%. Another approach in [7] explores a new unsupervised

Bayesian algorithm for the joint reconstruction and classifica-

tion of RCM images. The resulting algorithm for healthy and

lentigo classification reached an accuracy percentage of 97%.

Beside, the paper [8] automatically diagnosed lentigo by us-

ing three separate feature extraction methods like Wavelets,

Haralick and CNN by Transfer Learning. The healthy/lentigo

classification results reached an accuracy of 76%.

The present paper is organized as follows. Section 2 presents

the problem formulation of lentigo diagnosis. Section 3

detailed the proposed lentigo detection method. Section 4

presents the experiment validation of our method. Finally,

conclusion and some perspectives are drawn in Section 5.

2. RELATED WORK

2.1. Lentigo detection

Lentigo is a lesion that occurs in the dermal epidermal junc-

tion between the dermis and the epidermis involving a high

concentration of melanocytes in the dermal papillae walls.

Most forms of lentigo are benign [9] like lentigo simplex as

Fig. 1 (a) and solar lentigo as Fig. 1 (b). They are usually

removed for cosmetic purposes. However, certain types such

as lentigo maligna [10] as Fig. 1 (c) may be harmful and must

be removed.

(a) (b) (c)

Fig. 1: Lentigo simplex (a), Solar lentigo (b) and Lentigo

maligna (c).

Usually, lentigo is diagnosed using dermatoscopy [11]. Sadly,

non-pigmented melanocytes with this modality can go com-

pletely unnoticed leading to complications in identifying the

lesion contours with precision. Hispathology [12] is also

used to confirm the diagnosis, but it can be inconvenient due

to the fact that it is an in vitro technique involving performing

a biospy from the pigmented areas. For these reasons, the

RCM modality emerged to solve the problems encountered



before. Therefore, this modality allows the expert to carry

out a real-time 3D data acquisition and to facilitate the full

observation of the biological structures in deformation over

time. Due to all of these reasons, our approach is based on

images acquired thanks to this modality.

In [6, 7], the authors propose two RCM lentigo detection

methods based on the statistical and Bayesian models re-

spectively. The methods have proved complicated and hard

to implement. They require manual procedures like feature

selection and data preparation. To this regard, we propose

here a method for RCM image classification using a CNN

architecture. Indeed, CNNs have proven their capacity to ef-

ficiently solve several complex problems in medical imaging.

2.2. Convolutional neural networks

The CNN [4] is a deep learning architecture that is primar-

ily used for image classification and object detection. Fig. 2

displays a general CNN architecture, where one can easily

identify the following layers:

Fig. 2: The CNN architecture model.

• The convolutional layers: a key component of a CNN

architecture, used for automatic feature extraction.

• The rectified linear units (ReLU): used after each con-

volutional layer. Each layer combines nonlinear layers

and rectification layers to add nonlinearity to the sys-

tem.

• The pooling layers: used for feature selection by maxi-

mum or/and average pooling.

• The fully connected layers: also known as dense lay-

ers receiving the flattened (1D) feature map. Usually,

the final fully connected layer has the same number of

output nodes as the class numbers.

• The Softmax function: calculates the probabilities of

each target class over all possible classes. This function

helps determine the target class for the given inputs.

3. PROPOSED METHOD FOR LENTIGO

DETECTION

The proposed method consists of classifying RCM images

into healthy/lentigo classes using an InceptionV3 architec-

ture. Our lentigo detection method combines the InceptionV3

model with other known deep learning techniques like trans-

fer learning [13] and data augmentation [14]. Fig. 3 presents

the different steps used in the proposed lentigo detection

method. The following subsections give detailed descriptions

of each step.

Fig. 3: Pipeline of the proposed method.

3.1. Data Preparation

The input RCM images for the training procedure combines

two sets such as a 73% traning set and a 14% validation set.

The remaining 13% is dedicated to the prediction phase. In

order to avoid overfitting, a validation set is added to our train-

ing phase because the non linear InceptionV3 model will pos-

sibly achieve 100% training accuracy and overfit.

3.2. Data Preprocessing

In the first step of the preprocessing procedure, the RCM im-

ages of the training set are resized to fit in the InceptionV3

network. A normalization step is added to help the CNN bet-

ter process the input images, in order that all feature values

have the same range and the system needs only one global

learning rate multiplier. Afterwards, the data augmentation

step is proposed to improve our classification results. This

step prevents accuracy decay and overfitting. In [15] the au-

thors demonstrate the importance of data augmentation as a

regulazier in the CNN classification model.

3.3. InceptionV3 model

As shown in Fig. 4, the InceptionV3 model consists of a com-

bination of three main modules.



Fig. 4: Architecture of the Inceptionv3 model.

The first one (Module A) uses two smaller convolution

layers (3× 3) to decrease the computational cost by reducing

the number of parameters to improve performance. Module B

divides each convolution layer of n × n size to two layers of

1× n and n× 1 dimensions to have a less complex network.

Finally, Module C reduces the representational bottleneck by

expanding the filters in order to evade information loss.

More upgrades are also proposed by the InceptionV3 net-

work other than the smart factorization methods such as:

• RMSProp optimizer allows a faster convergence of the

model thus allowing a higher learning rate.

• BatchNorm reduces the covariance shift and allows

each network layer to learn a little independently of the

others.

• Label Smoothing is a regularizing component applied

to the loss formula to prevent overfitting.

3.4. Transfer Learning

As shown in Fig. 3, transfer learning [16] is proposed in order

to ensure better performance of the model. The model needs

lots of labeled images to be capable of solving complex prob-

lems. This has proved to be challenging especially when the

available dataset is small. Transfer learning is a deep learning

method, in which a model developed for a task is reused for

a second task. This technique uses pre-trained models as a

starting point for other medical imaging tasks given the vast

computational and time resources required to develop CNN

models on these problems.

3.5. Prediction Model

In the prediction phase, the RCM images test set are resized

and provided to the trained CNN. Our system calculates a pre-

diction score for each test image after resizing it and compares

it with the threshold T equal to 0.5. The threshold value is

chosen that way due to the fact that we are performing a bi-

nary classification. The classification condition is as follows:

if the predicted score (PS) value of the image test is lower than

T then this RCM image is classified as lentigo and conversely.

4. EXPERIMENTAL VALIDATION

This section evaluates the validation of the proposed lentigo

detection method on real RCM data. In our work, the dataset

is provided from Lab. Pierre Fabre.

In this experiment, the data include 428 RCM images which

high spatial resolutions and annotation on each image into

two healthy and lentigo classes. The images were acquired

with a Vivascope 1500 apparatus. Each RCM image shows

a field of view of 500 × 500 µm with 1000 × 1000 pixels.

A selection of 45 wemen aged 60 years were recruited. All

participants have offered their informed consent to the RCM

skin test. We split these data into three main sets:

• A 314 images training set divided into two classes of

160 healthy images and 154 lentigo images.

• A validation set of 60 images, divided equally between

two classes of lentigo and healthy. The validation set

has been added to evaluate our training procedure. The

main objective is to prevent over-fitting.

• A 54 RCM images testing set divided equally for

healthy and lentigo classes.

Our classification method based on the InceptionV3 network

is build using the Keras library. The InceptionV3 model is

configured to accept the greyscale RCM images. As initial-

ization, all RCM images were resized into new dimensions of

299 × 299 pixels and rescaled to help CNN processing. The

parameter values of data augmentation step are presented in

Tab 1.

Table 1: Data augmentation parameters.

Parameter value

Shear 0.2

Zoom 0.2

Rotation degree 20°

Horizontal translation 0.2

Vertical translation 0.2

The shear, zoom and translation ranges vary from 0 to 1. We

choose the value of 0.2 for each to enrich the dataset without

altering the image main features and confusing the system.

The rotation range varies to 0° from 180° and a small rotation

angle was proposed for the same reasons.

Fig. 5 displays the accuracy curves of the training and vali-

dation sets, as well as the training loss. The accuracy curves

suggest that our system converged after 40 epochs. The sys-

tem reached an accuracy value of 94% for training and 69%

for validation. Hence, the reported values indicate that our

system learns well without over- or under-fitting.



Fig. 5: Proposed method accuracy graph and loss graph for

training and validation sets after each epoch.

The performance of the proposed method is indicated by the

test set according to the ability to correctly diagnose the pro-

vided skin tissues. The reported values in Tab. 2 indicate the

performance of our classification method. Therefore, 53 out

of 54 images test set were correctly classified with an accu-

racy of 98,14%.

Table 2: Confusion matrix.

Lentigo Sane

Lentigo 27/27= 100% (TP) 1/27= 3,7% (FN)

Sane 0/27= 0% (FP) 26/27= 96,3% (TN)

In Tab. 2, TP, TN, FP and FN represent respectively true posi-

tives, true negatives, false positives and false negatives. Based

on the confusion matrix, Accuracy, Precision, Specificity, Re-

call and F-score values are reported in Tab 3. All the men-

tioned measures indicate a good performance of the proposed

method with values equal or very close to one.

Table 3: Quantitative evaluation of the proposed method per-

formance.

Accuracy (TP+TN)/(TP+TN+FP+FN) 0.98

Precision (P) TP/(TP+FP) 1

Specificity TN/(FP+TN) 1

Recall (R) TP/(TP+FN) 0.96

F-score (2 × P × R)/(P+R) 0.97

Fig. 6 presents four correct classification examples of RCM

images from the test set. The reported values shown with each

test image indicate the prediction score (PS). The displayed

images correspond to different PS ranges. We can notice that

the model performs well both for images with PS close to 0

or 1, but also for images with PS close to 0.5 (images (b) and

(d)).
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Fig. 6: Correct classification examples of RCM images

for Healthy and Lentigo patients classified by the proposed

method.

Fig. 7 shows the only image wrongly classified using our pro-

posed method. This image shows some type of skin deforma-

tion similar to the changes the skin undergoes due to lentigo.

Hence, the network interpreted it as a lentigo lesion.

Fig. 7: The only false classification (PS=0.0005).

For the sake of further evaluation, we compare the accuracy

of the test with related works that used the same dataset. The

reported values in Tab. 4 show that our model outperforms in

comparison with the other methods. Specifically, we compare

our results with those reported in [6] where the authors used



a Statistical model combined with an SVM classifier and [7]

where the authors use an unsupervised Bayesian approach.

Table 4: Comparison performance with state of the art meth-

ods.

Lentigo detection method Accuracy

Halimi et al 2017 [6] 84.4%

Halimi et al 2017 [7] 97.7%

Proposed method 98,14%

5. CONCLUSION

In this paper, we proposed a new method to classify RCM im-

ages into healthy and lentigo skins. This method is based on

the InceptionV3 CNN architecture. The network was trained

with a dataset of 374 images and tested on 54 images of dif-

ferent stacks and depths. The suggested CNN method shows

huge potential and very promising results. In future work,

we will focus on applying the proposed approach to larger

datasets and comparisons to other deep architectures.
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