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Abstract

Randomizable encryption lets anyone randomize a ciphertext so it is distributed
like a fresh encryption of the same plaintext. Signatures on randomizable cipher-
texts (SORC), introduced by Blazy et al. (PKC’11), let one adapt a signature on a
ciphertext to a randomization of the latter. Since signatures can only be adapted to
ciphertexts that encrypt the same message as the signed ciphertext, signatures obliv-
iously authenticate plaintexts. SORC have been used as a building block in e-voting,
blind signatures and (delegatable) anonymous credentials.

We observe that SORC can be seen as signatures on equivalence classes (JoC’19),
another primitive with many applications to anonymous authentication, and that
SoRC provide better anonymity guarantees. We first strengthen the unforgeability
notion for SORC and then give a scheme that provably achieves it in the generic
group model. Signatures in our scheme consist of 4 bilinear-group elements, which is
considerably more efficient than prior schemes.

1 Introduction

A standard approach for anonymous authentication is to combine signatures, which yield authentica-
tion, with zero-knowledge proofs, which allow to prove possession of a signature without revealing
information about the latter and thus provide anonymity. This approach has been followed for
(multi-show) anonymous credentials schemes, for which several showings of the same credential
cannot be linked (in contrast to one-show credentials, e.g. [Bra00, BL13]).

The zero-knowledge proofs for these schemes are either instantiated using X-protocols [CLO03,
CL04] (and are thus interactive or in the random oracle model) or in the standard model [BCKLO0S]
using Groth-Sahai proofs [GS08]. As this proof system only supports very specific types of state-
ments in bilinear (“pairing-friendly”) groups, signature schemes whose verification is of this type
have been introduced: structure-preserving signatures [AFGT10] sign messages from a group G and
are verified by checking equivalences of products of pairings of group elements from the verification
key, the message and the signature.

Equivalence-class signatures. Hanser and Slamanig [HS14] extended this concept to structure-
preserving signatures on equivalence classes (later improved in [FHS19]) for messages from G2, by
adding a functionality called signature adaptation: given a signature on a message m € G2 and a
scalar r, anyone can “adapt” the signature so it verifies for the message r - m. A signature thus
authenticates the equivalence class of all multiples of the signed message.

Equivalence-class signatures (ECS) enable anonymous authentication that completely forgoes
the layer of zero-knowledge proofs and thus yields considerable efficiency gains. Consider anonymous
credentials. A credential is a signature on a message m (which typically contains a commitment to
the user’s attributes). In previous schemes, when authenticating, the user proves in zero knowledge



that she knows a message m (and an opening of the contained commitment to the attributes she
wants to show) as well as a signature on m; several authentications with the same credential are thus
unlinkable. Using ECS, this is possible without using any proof system [FHS19]: the user simply
shows r - m for a fresh random r together with an adapted signature. Anonymity is implied by the
following property of ECS: to someone that is given m and a signature on m, the pair consisting
of m’ := r - m for a random r and the signature adapted to m’ is indistinguishable from a random
element m” from G? together with a fresh signature on m”.

Besides the first attribute-based anonymous credential scheme for which the complexity of show-
ing is independent of the number of attributes [FHS19], ECS have also been used to build very
efficient blind signatures with minimal interaction between the signer and the user that asks for the
signature [FHS15, FHKS16], revocable anonymous credentials [DHS15], as well as efficient construc-
tions [FGKO17, DS18] of both access-control encryption [DHO16] and dynamic group signatures
[BSZ05].

The most efficient construction of ECS is the one from [FHS19], which was proven secure in
the generic group model [Sho97]. A signature consist of 3 elements from a bilinear group, which
the authors show to be optimal by relying on a result by Abe et al. [AGHO11]. Moreover, there
is strong evidence that structure-preserving signatures of this size cannot be proved secure by a
reduction to non-interactive assumptions [AGO11], meaning a proof in the generic group model is
the best we can hope for. Less efficient constructions of EQS from standard assumptions have since
then been given in the standard model by weakening the security guarantees [FG18| and in the
common-reference string model [KSD19] (with signatures 6 times longer than [FHS19]).

Signatures with flexible public key [BHKS18] and mercurials signatures [CL19] are extensions of
ECS that allow signatures to be adapted not only to multiples of the signed message, but also to
multiples of the verification key. This has been used to build delegatable anonymous credentials
[BCCT09] in [CL19]. Delegatable credentials allow for hierarchical structures, in which users can
delegate obtained credentials to users at lower levels.

Shortcomings of ECS. While schemes based on ECS offer (near-)optimal efficiency, a drawback
is their weak form of anonymity. Consider a user who asks for a signature on m = (moG,mG)
(where G is the generator of the group (G, +)). If the user later sees a randomization (M, M) of
this message, she can easily identify it as hers by checking whether m; M} = moM]. The notion of
anonymity (which is called class-hiding in ECS) that can be achieved for these equivalence classes is
thus akin to what has been called selfless anonymity [CG05] in the context of group signatures: in
contrast to full anonymity [BMWO03], signatures are only anonymous to those that do not know the
secret values used to construct them (the signing key for group signatures; the values mgy and my
in our example above).

This weakness can have concrete repercussions on the anonymity guarantees provided by schemes
built from ECS, for example delegatable credentials. In previous instantiations [BCCT09, Fucll]
of the latter, the showing of a credential is anonymous to anyone, in particular to a user that has
delegated said credential to the one showing it. However, in the construction from the ECS variant
mercurial signatures [CL19], if Alice delegates a credential to Bob, she can identify Bob whenever
he uses the credential to authenticate, which represents a serious infringement to Bob’s privacy.
In fact, anonymity towards the authority issuing (or delegating) credentials has been considered a
fundamental property of anonymous credential schemes.

In [CL19], when Alice delegates a credential to Bob, she uses her secret key (zg,x1) € (Z‘TGQQ
to sign Bob’s pseudonym under her own pseudonym (Fy, P1) = (rzoG,rz1G) for a random r,
which becomes part of Bobs credential. When Bob shows it, he randomizes Alice’s pseudonym to
(P}, P{) := (r'Py,r'Py) for arandom 7', which Alice can recognize by checking whether 1 P = o P;.

Signatures on randomizable ciphertexts. To overcome this weakness in anonymity in ECS,
we use a different type of equivalence class. Consider an ElGamal [EIG85] encryption (Cy,C1) =
(rG, M + rP) of a message M under an encryption key P. Such ciphertexts can be randomized by
anyone, that is, without knowing the underlying message, a fresh encryption of the same message can



be computed by choosing r’ and setting (C{, C1) := (Co+7'G, C1+1'P) = ((r+r")G, M+ (r+r")P).
All possible encryptions of a message form an equivalence class, which, in contrast to multiples
of pairs of group elements, satisfy a “full” anonymity notion: after randomization, the resulting
ciphertext looks random even to the one that created the original ciphertext (see Proposition 1).

If such equivalence classes yield better anonymity guarantees, the question is whether we can
have adaptable signatures on them, that is, signatures on ciphertexts that can be adapted to ran-
domizations of the signed ciphertext. It turns out that this concept exists and even predates that of
ECS and is called signatures on randomizable ciphertexts (SoORC) [BFPV11]. Since their introduc-
tion, SORC have been extensively used in e-voting [CCFG16, CFL19, CGG19, HPP20] and other
primitives, such as blind signatures and extensions thereof [BFPV13]. Blazy et al. [BFPV11] prove
their instantiation of SORC unforgeable under standard assumptions in bilinear groups. Its biggest
drawback is that it only allows for efficiently signing messages that consist of a few bits.

Our contribution. Our aim was to construct a scheme of signatures on randomizable ciphertexts
with a large message space and short signatures. But first we strengthen the notion of signature
unforgeability. In SoRC, signatures are produced (and verified) on pairs of encryption keys and
ciphertexts (ek, c). In the original unforgeability notion [BEPV11] the adversary is given a signa-
ture verification key and a set of encryption keys eki, ..., ek, and can then make queries (i,c) to
get a signature for (ek;,c). Its goal is to return (i*,c¢*) and a signature for (ek;«,c*), so that c¢*
encrypts a message of which no encryption has been submitted to the signing oracle. Signatures
thus authenticate plaintexts irrespective of the encryption key.

In more detail, once a query (1, Enc(ek;, m)) was made, a signature for (ekq, Enc(eks, m)) is not
considered a forgery. In contrast, in our new definition (Def. 6), this is considered a forgery, since
we view a signature as (obliviously) authenticating a message for a particular encryption key. That
is, if from a signature on an encryption of a message for one key one can forge a signature on the
same message for another key, this is considered a break of the scheme. A further difference is that,
while in [BFPV11] encryption keys are generated by the challenger, we let the adversary choose (in
any, possibly malicious, way) the encryption keys (in addition to the ciphertexts) on which it wishes
to see a signature, as well as the key for its forgery.

We then construct a scheme which signs ElGamal ciphertexts and whose signatures consist of 4
elements of an (asymmetric) bilinear group (3 elements from G; and 1 from G3). Our scheme (given
in Fig. 3) is inspired by the original equivalence-class signature scheme [FHS19], whose equivalence
classes only provide “selfless” anonymity. We show that signatures adapted to a randomization of
a ciphertext are equivalently distributed to fresh signatures on the new ciphertext (Proposition 2).
We then prove that our scheme satisfies our strengthened unforgeability notion in the generic group
model (Theorem 1).

Comparison with Blazy et al. Apart from the stronger unforgeability notion we achieve, the
main improvement of our scheme over [BFPV11] concerns its efficiency. The Blazy et al. scheme
builds on (a new variant of ) Waters signatures [Wat05] and Groth-Sahai proofs [GS08], which allows
them to prove unforgeability from standard assumptions. However, encrypting and signing a k-bit
message yields a ciphertext/signature pair consisting of 12 + 12k group elements of an asymmetric
bilinear group. In our scheme, a message is a group element (as for ElGamal encryption), which
lets us encode 128-bit messages (or messages of unbounded length by hashing into the group). A
ciphertext/signature pair consists of 6 group elements. We also propose a generalization to messages
of n group elements for which a ciphertext/signature pair consists of n 4+ 5 group elements.

The price we pay for this length reduction by a factor of over 250 (for 128-bit messages or
longer) is an unforgeability proof in the generic group model. But, as we argue next, this is to
be expected. Since we sign group elements and verification consists in checking pairing-product
equations, our scheme is structure-preserving [AFGT10]. Signatures for such schemes must at least
contain 3 group elements [AGHO11] and schemes with such short signatures cannot be proved
from non-interactive (let alone standard) assumptions [AGO11]. Our 4-element signatures, which
provide additional functionalities, and its unforgeability proof are therefore close to being optimal.



We also note that a security reduction to computational hardness assumptions for schemes satisfying
our unforgeability notion seems challenging, as the challenger cannot efficiently decide whether the
adversary has won (in contrast to the weaker notion [BFPV11]).

2 Premilinaries

A function e: N — R is called negligible if for all ¢ > 0 there is a kg such that ¢(k) < % for all
k > ko. By a < S, we denote that a is picked uniformly at random from a set S. By y <~ A(z)
we denote running a probabilistic algorithm A on input z and assigning the output to y. We write
A(z;7) to make the randomness r explicit.

Bilinear groups. We assume the existence of a probabilistic polynomial-time (p.p.t.) algorithm
BGGen that takes as input an integer A in unary and outputs a description of an (asymmetric)
bilinear group (p,G,G, G, G,GT,e) consisting of groups (G,+) and (G,—i—), generated by G and
G, resp., and (Gr,-), all of cardinality a prime number p € {2*,...,2**1}, and a bilinear map
e:GxG— Gr, such that e(G, @) generates G, called pairing.

The decisional Diffie-Hellman assumption for BGGen states that no p.p.t. adversary A can
distinguish a triple (dG,rG,drG) for d,r <* Z, from a random triple from G? with better than
negligible advantage (see also Fig. 4).

Rational fractions. We start with defining the total degree of a polynomial P(Xy,...,X,,) =
> i L1 X;j € Zp[X1,..., X as degP := max { >t ij}.
ieNm iENT  ayy i EpO
In our main proof (Theorem 1), we make extensive use of multivariate rational fractions from
Zp(X1, ..., Xy,) and argue using their degrees, for which we will use the “French” definition [AW9S]:
For (P,Q) € Zp[X1,...,Xm] X (Zp[Xy,..., Xm] \ {0}), we define

P
degé :=deg P —deg () .

We recall some properties of this definition:

— It generalizes the one for polynomials.

— The degree does not depend on the choice of the representative.

— As for polynomials, we have deg(F} - F») = deg F1 + deg F» and
deg(Fy + F») < max{deg F,deg F»} .

We use subscripts for degrees in a specific indeterminate, e.g., deg,, denotes the degree in variable z;.

3 Signatures on randomizable ciphertexts

We start with the definition of a signatures on randomizable cipherterts scheme, which consists of a
randomizable public-key encryption scheme and a signature scheme, whose signatures are computed
and verified on pairs (encryption key, ciphertext). In addition, there is an algorithm Adapt, which
lets one adapt a signature on a ciphertext to any randomization of the latter.

3.1 Syntax

Definition 1. We denote by PP the set of public parameters, and for pp € PP we let My, be the
set of messages, DKp, the set of decryption keys, EKpp, the set of encryption keys, Cpp the set of
ciphertexts, Rpp the set of ciphertext randomness, SKpp, the set of signature keys, VICp, the set of
verification keys and Sy, the set of signatures.

A scheme of signatures on randomizable ciphertexts SRC consists of the following probabilistic
algorithms, of which all except Setup are implicitly parameterized by an element pp € PP.



IND-CPA% () b) : CL-HIDZ (), D) :

01 pp <& Setup(1?*) 01 pp <& Setup())

02 (dk, ek) <= KeyGen(pp) 02 (dk, ek) <= KeyGen(pp)

03 (mg, mq, st) < A(ek) 03 (c,st) < A(ek)

04 1T & Ryp 04 co <& Cpp

05 ¢ := Enc(ek, myp, ) 05 r <~ Rp,p 5 ¢1 := Rndmz(ek, ¢, r)
06 b <& A(st, c) 06 b <& A(st, cp)

07 Return b’ 07 Return b’

Figure 1: Games for ciphertext-indistinguishability and class-hiding

Setup: N — PP
KeyGen: ) — DK, x ELpp SKeyGen: () — SKpp x VK,
Enc: ELpp X Mpp X Rpp = Cpp Sign: SKpp X EKpp X Cpp — Spp
Rndmz: EKX,p x Cpp X Rpp — Cpp Verify: VKpp x EKpp % Cpp X Spp — {0,1}
Dec: DKpp x Cpp — Mpp Adapt: Spp X Rpp — Spp

We define the equivalence class [c]ek of a ciphertext ¢ under encryption key ek as all randomizations
of ¢, that is, [c]ex := {¢' | 37 € Rpp : ¢ = Rndmz(ek, ¢, )}

3.2 Correctness and security definitions

Correctness of SORC requires that the encryption scheme and the signature scheme are correct.

Definition 2. A SoRC scheme is correct if for all pp € PP, for all pairs (ek,dk) and (sk, vk) in
the range of KeyGen(pp) and SKeyGen(pp), respectively, and all m € Mpp, 7 € Rpp and ¢ € Cpp:

Dec(dk, Enc(ek,m,r)) =m and Pr [Verify(vk, ek, ¢, Sign(sk, ek, c)) = 1] =1.

Note that together with signature-adaptation (Def. 5 below), this implies that adapted signatures
verify as well. We also require that the encryption scheme satisfies the standard security notion.

Definition 3. Let game IND-CPA be as defined in Fig. 1. A SoRC scheme is IND-CPA secure
if for all p.p.t. adversary A the following function is negligible in A:

| Pr [IND-CPAZrc (A, 1) = 1] — Pr [IND-CPAZR(\,0) = 1] .

Class-hiding is a property of equivalence-class signatures that states that given a representative of
an equivalence class, then a random member of that class is indistinguishable from a random element
of the whole space. We give a stronger definition, which we call fully class-hiding (analogously to
full anonymity). Whereas in the original notion [FHS19, Def. 18], the representative is uniformly
picked by the experiment, in our notion it is chosen by the adversary.

Definition 4. Let game CL-HID be as defined in Fig. 1. A SoRC scheme is fully class-hiding if
for all p.p.t. adversary A, the following function is negligible in \:

| Pr [CL-HIDZg (A, 1) = 1] — Pr [CL-HIDZg (A, 0) = 1]] .

Signature-adaptation requires that signatures that have been adapted to a randomization of the
signed ciphertext are distributed like fresh signatures on the randomized ciphertext. A strengthening
is the following variant, which also holds for maliciously generated verification keys [FHS19, Def. 20].

Definition 5. A SoRC scheme is signature-adaptable (under malicious keys) if for all pp € PP,
all (vk, ek, c,sig) € VKpp x EKpp X Cpp X Spp that satisfy Verify(vk, ek, c,sig) = 1 and all r € Rpp,
the output of Adapt(sig, r) is uniformly distributed over the set

{sigj € Spp ‘ Verify(vk, ek, Rndmz(ek, c,r),sig’) = 1} .

5



EUF4;:()) : Sign(sk, ek, ¢)

01 Q:=0; pp < Setup(1?) 01 Q= Q U {ek} x[c]ek
02 (sk, vk) < SKeyGen(pp) 02 Return Sign(sk, ek, ¢)
03 ((ek™,c*),sig") < Astenshn) (e

04 Return (Verify(vk, ek™, c*,sig") =1 A (ek™,c*) € Q)

Figure 2: Unforgeability game

Note that if Sign outputs a uniform element in the set of valid signatures (which is the case in
the ECS scheme from [FHS19] and our scheme) then Def. 5 implies that for all honestly generated
(sk, vk) and all ek, ¢ and r the outputs of the following two procedures are distributed equivalently:

Adapt(Sign(sk, ek, c), ') and Sign sk, ek, Rndmz(ek, ¢, r')) .

Together, full class-hiding and signature-adaptability under malicious keys imply that for an
adversary that creates a signature verification key as well as a ciphertext and a signature on it, a
randomization of this ciphertext together with an adapted signature looks like a random ciphertext
with a fresh signature on it. (In contrast, for equivalence-class signatures, this was only true if the
signed message was not chosen by the adversary [FHS19].)

Unforgeability. Finally, we present our strengthened notion of unforgeability, which is defined
w.r.t. keys and equivalence classes. That is, after the adversary queries a signature for (ek,c), all
tuples (ek, ) with ¢ € [¢]ex (that is, ¢ encrypts the same message as ¢ under ek) are added to a
set @ of signed objects. The adversary’s goal is to produce a signature on a pair (ek™,c*) that is
not contained in Q. (In the original definition [BFPV11], @ would contain the equivalence classes
of ¢ under all encryption keys, i.e., all encryptions of the plaintext of ¢ under all keys.)

Definition 6. Let EUF be the game defined in Fig. 2. A SoRC scheme is unforgeable is for all
p.p.t. adversary A the following function is negligible in A:

Pr [EUF&c(\) =1] .

4 Instantiation

Our instantiation of SORC is given in Fig. 3. Its signatures sign ElGamal ciphertexts (Cp, C1), and
the signature elements (Z, S, 5) constitute a structure-preserving signature on (Cp,Cy) similar to
the optimal scheme from [AGHO11]. (And removing G from the definition of Z would yield the
equivalence-class scheme from [FHS19]: note that, without G, multiplying Z by r yields a signature
on the message 7+ (Cp, C1).) The new element 7" in our scheme allows for adaptation of signatures to
randomizations of the signed ciphertext. Randomization implicitly defines the following equivalence
classes: for P € EK,, and (Co, C1), (Ch, CY) € Cpp:

(Cy,C1) € [(Co,C1)] p <= TreZy:(Cy,C1) = (Co+rG, Cy +1P) .

P

5 Security of our scheme

Correctness of our scheme follows by inspection. Moreover, ElGamal encryption [EIG85] satisfies
IND-CPA if the decisional Diffie-Hellman (DDH) assumption holds for BGGen.

Proposition 1. If DDH holds for BGGen then the scheme in Fig. 3 is fully class-hiding (Def. 4).

Proof. We first recall the game DDH, which formalizes the DDH assumption in Fig. 4 (left). Next,
we instantiate CL-HID with our scheme from Fig. 3 and rewrite it in Fig. 4 (right). In particular,
instead of choosing ¢y <& G2, we compute it as ¢ + ¢}, for a uniform cf, < G2.



Setup(1?): Return pp = (p,G,G,G,é,GT,e) < BGGen(1?), which define My, := G, Cp, := G2,
Rop = Ly, SKyp 1= (Z5)2, Vpp := (G*)2, EKpp := G, DKy 1= 27 and Spp := GxG*xG*xG.
KeyGen(pp): Parse pp as (p,G,G,G, G, Gr,e)
dk :=d <*Zy ; ek = P = dG ; return (dk, ek)
Enc(P, M,r): Return (rG,M + rP)
Dec(d, (Cy,C4)): Return M := C; — dCy
Rndmz(P, (Cy, C1),r"): Return (Co +1'G,Cy +1'P)

SKeyGen(pp): Parse pp as (p, G, G,G,G, Gr,e)

sk = (wo,21) & (Z3)? 5 vk:= (X0 = 120G, X1 = 21@G) ; return (sk, vk)
Sign((zo,21), P, (Co,C1)): s < Z5 ; return (Z, S, S, T) with

7= %(Gmoco +2:C1) Si=sG  S:=sG T:= é(xonlp)
Adapt((Z, S,S‘,T),r'): s' <% Zy ; return (z',8",8,T") with

7' = é(Z—&—r'T) §=58 §=45 T .= éT

Verify((X'o,Xl), P, (Cy,C4),(Z, S, S, T)): Return 0 if P =0 or S = 0; return 1 if the following equa-
tions hold and 0 otherwise:

e(Z,8) = e(G, @)e(Co, Xo)e(Ch, X1) e(G,5) =e(S,G)
e(T,8) = e(G, Xp)e(P, X1)

Figure 3: Our instantiation SRC of SoRC

Let A be an adversary against CL-HID. We define an adversary B against DDH, which upon
receiving a challenge (P, R, S), sends P to A to get ¢ and then sends ¢ + (R, S) to A. Finally, B

returns A’s output bv'. B
Since for all A and b we have that DDHZE, (), b) and CL-HID% (), b) follow the same distribu-
tion, B’s advantage in breaking DDH is the same as A’s advantage in breaking full class-hiding. [

Proposition 2. The SoRC scheme in Fig. 3 is signature-adaptable under malicious keys (Def. 5).

Proof. Let pp = (p,G, G, GA, @,(@T,e) € PP, let vk = (a:oé',xlé), ek = dG, Cy = G, C1 = 1G
and sig = (Z=2G,5=sG, S=35G, T=1tG) be such that Verify(vk, ek, (Co, C1), sig) = 1. Taking the
logarithms in basis e(G, G) of the verification equations yields § = s and, using this,

zs =28 =1+ coxg + c171 (1)
ts =ts = xg + dx1 (2)

DDHggee, (A, b) : CL-HIDZ,,(\,b) :

0t (p,G,G,G,G,Gr,e) < BGGen(\) 01 pp < Setup()\)

02 P&G 02 (d, P) ¢ KeyGen(pp)

03 r & Z, 03 (c,st) <& A(P)

04 S8y :=rP 04 ¢y << GxG

05 Sp <&+ G 05 1<~ Ryp ; ¢ = (rG,rP)

06 b < B(pp, (P,rG, Sy)) ; Return ¥’ 06 b & A(st,c+c,) ; Return v/

Figure 4: Games for decisional Diffie-Hellman and class-hiding instantiated with SRC from Fig. 3



Let us now consider a uniform random element sig’ = (2 =2'G, S’ =5'G, 5 =§G,T' =t @) from
the set {sig’ € Spp ’ Verify (vk, ek, Rndmz(ek, c,r), sig’) = 1}. Again considering logarithms of the
verification equation yields 8’ = s’ and

1),(2
2's' =1+ (co+r)zo + (c1 + rd)zy = 1+ como + 121 + (20 + dz7) (1)) 28 +rts

t's' = xo+ dxy @ 4
Moreover, by signature validity, we have s # 0 and s’ # 0. We thus have Z’ = 5(Z + rT) and
T = 5T, as well as §' = S/S and §' = S—IS’ (since § = s and § = §'). In other words, sig’ is a
unlform element from the set {(Z(Z + rT) s*S, s*S, T = 4 +T) | s* € Z3}. Since Adapt(sig,r)
outputs a uniform random element from that set, this concludes the proof. O

Proof of unforgeability

Our main technical result is to prove that our scheme satisfies unforgeability (Def. 6) in the generic
group model [Sho97] for asymmetric (“Type-3”) bilinear groups (for which there are no efficiently
computable homomorphisms between G and G) In this model, the adversary is only given handles
of group elements, which are just uniform random strings. To perform group operations, it uses an
oracle to which it can submit handles and is given back the handle of the sum, inversion, etc of the
group elements for which it submitted handles.

Theorem 1. A generic adversary A that computes at most q group operations and makes up to
k queries to its signature oracle cannot win the game EUF?RC()\) from Fig. 2 for SRC defined in
Fig. 3 with probability greater than 27> (2k + 1) (¢ + 3k + 3)2.

Proof. We consider an adversary that only uses generic group operations on the group elements it
receives. After getting a verification key (Xo = x9G, X1 = l’lG) and signatures (Zi,Si,Si,ﬂ)le

computed with randomness s; on queries ((P(i), (C(()i), C(l)))) the adversary outputs an encryp-

=1’
tion key P*+1) | a ciphertext ((C(kH) C’(k+1))) and a signature (Z* S, 5 T*) for them. As it must
compute any new group element by Comblnlng received group elements, it must choose coefficients

(4) (4) (4) i) (4) (4) i)
w(l w(117"'7w21 17/‘7/{‘917" w Z 17'¢t17-"7 t74 177()77,£Z)17"‘77z1 1)7§17"'773z 177}517"'7’)%(1 1>
k@, (2)1, 2 1,/48%,..., Sg 1,/@9,.. /fl(”) L forall i € {1,...,k+1}, as well as 0,0,1,...,
Oz,kyOs,1y-++30s5kyOt1y-sO0tky TyTzlyer-sTzkyTs 1y Tsky Tt 1y 5Ttk Csz,lw"aCZ,k:aCs,la"'v

Cs,k‘a Ct,lv R Ct,k’v (Z)v ¢07 ¢17 ¢S,17 HRE 7¢8,k7 which define
k

l):d}(Z) Zl( Z+¢(18 WLQ[)t] ) _CG (CZ]Z +CSJS +Ct] )
J Jj=1
@) _ (), =) (i) (i) k
G’ =16+ (=52t 0558 t g Ty) 8T =0+ X (02525 + 0555 + 01iT))
Jj= J=
(i) _ SN0 0 0) k
Cy’ = Z( 125+ kg S+ Ky T) T =7G+ Zl(TzJZjJrTs,ijJth,ﬂ})
: j:

A~ ~ A gt k A
5% = oG + poXo + 01 X1 + > ¢5,55;
i=1

Using this, we can write, for all 1 < i < k, the discrete logarithms z; and ¢; in basis G of the
elements Z; = 5—11 (G + :L'()Céz) + a:lC’{z)) and T; = (:L‘OG + :L‘lP(’)) from the oracle answers.

i—1
Zi:;<1+$0( -I-Zl 7zjzy+7£])51+7t(]) ))""xl( ()"’Z ’{ sz Sﬂ—i_ﬁgﬂ)tj))) (3)

ti:l<x0+x1( 1>+Z YWz + s + it ))) (4)
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We interpret these values as multivariate rational fractions in variables xq, z1, $1, . . . , Sk. A successful
forgery (Z*,S*,S*,T*) on (P(k“), (C’ékﬂ), C’fkﬂ))) satisfies the verification equations

e(Z*,5%) = (G, G)e(CSV Xo)e(CH Xy) (G, S8%) = e(S*, )
e(T*, 8%) = e(G, Xo)e(PH*D X))

Using the coefficients defined above and considering the logarithms in base e(G, @) we obtain:

k
(C ) (G + Cogss + Ct,jtj)) (¢ + ¢oxo + P11 + Z Ps 181) =1+ 2oy T 4o MY (5)
=1

¢+ ¢oxo + 121 + Z Ps,isi = 0 + Z (052 + 05585 + o1,5t5)  (6)

i=1 j=1
k k
(T + Z (7252 + Ts.jSj + Te,jt )) (¢ + ¢oxo + P11 + Z Os zsz> = 1z + 21dFY (7)
j=1 i=1
4 . NS .
where for all i € {1,...,k+1}: c((f) = log C(()Z) =~ + 3 (Vg‘zj + ’VS;SJ + ’Vt(]) i) (8)
j=1

, il
cgl) = k() 4 Zl (ng)jz]—i-n(l)s]—kmgj) tj) and d@ =log P() = ¢ +Z (v ij]—i-w sj-i-l/)t] )
]:

We follow the standard proof technique for results in the generic group model and now consider
an “ideal” game in which the challenger treats all the (handles of) group elements as elements of
Zp(S1,--.,8k To,21), that is, rational fractions whose indeterminates represent the secret values
chosen by the challenger.

We first show that in the ideal game if the adversary’s output satisfies the verification equa-
tions, then the second winning condition, (P(kH), (C’(()kﬂ),kaH))) ¢ @, is not satisfied, which
demonstrates that the ideal game cannot be won. We then compute the statistical distance from
the adversary’s point of view between the real and the ideal game at the end of the proof.

In the ideal game we thus interpret the three equalities (5), (6) and (7) as polynomial equal-

ities over the field Zy(s1,..., sk, zo,x1). More precisely, we consider the equalities in the ring
Zp(S1,- -, 8kK)|[To, z1], that is, the polynomial ring with ¢ and z; as indeterminates over the field
Zp(s1,...,5k). (Note that this interpretation is possible because xy and z never appear in the de-

nominators of any expressions.) As one of our proof techniques, we will also consider the equalities
over the ring factored by (g, 1), the ideal generated by x and z1:*

Zp(sl) L) Sk)[l‘o:xl]/(mo:xl) = Zp(817 . ‘78k) .

From (3) and (4), over this quotient we have z; = % and t; = 0 and thus (5)—(7) become

k
(c+3 (o -+ s )(¢+Z¢szsz) - (9)

7=1
¢+Z¢szsz U+Z Uzzl-f-USlS) (10)

=1

(7- + zk: (Tz,ié + Ts,isi)) <¢ + zk: ¢s,i5i) =0 (11)
i=1 ’ i=1

! Considering an equation of rational fractions over this quotient can also be seen as simply setting zo = 1 = 0.
Everything we infer about the coefficients from these modified equations is also valid for the original equation, since
these must hold for all values (xo, 1, s1,...,sx) and so in particular for (0,0, s1,...,Sk).

Yet another interpretation when equating coefficients in equations modulo (zo, z1) is that one equates coefficients
only of monomials that do not contain zg or z;.




We first consider (10). By equating coefficients, we deduce:
=0 Vie{l,...,k}: ¢si=0s; and o0,;=0 (12)

We now turn to (9) and first notice that

(¢+ Ek: bisi) 0, (13)
=1

because it is a factor of a non-zero product in (9). We next consider the degrees of the factors in (9),
using the fact that the degree of a product is the sum of the degrees of the factors. Leti € {1,...,k}.

k k
Since deg,, (1) = 0 and deg,, (¢ + > ¢s5:) > 0, we have deg,, (C+ > (Cz,js%_ + (s,585)) <0, from
i=1 j=1

which we get
Vie{l,...,k}: (i =0. (14)

2
5 1) = 1.) We next show that there is at most one ¢, ; that is
Nnon-zero. Suppose there exist i1 # iy € {1 ., k} such that ¢g; # 0 and ¢, # 0. This implies

(Note that deg,, (s% + 5;) = deg,, (Hs

that degs (¢+ Z s lsl) = degs (gf) + Z O Zsz) = 1. By considering these degrees in (9), the left
factor must be of degree —1, that is (recall that (s; = 0 for all ¢ by (14)):

k k
deg,,, (¢ + ;cz,j;) =1 and deg,, (C+ ]Zl <z,jjj) — 1 (15)

This is a contradiction since the former implies that ¢, ;, # 0, While the latter implies that (. ;, = 0,

as we show next. Consider the expression deg% ((C + Z (ZJS )sZ2 + ¢ Z2) = deg% ((C +
J=1,j#i2

Z Cz,gs )siy) = —1 +degs,, (si,) = 0, by using (15). This implies (¢ + 12# Cojt 5 ) = 0 and thus
] 5712
Cz 4, = 0, which was our goal.

Therefore, there exists iy such that, for all ¢ # ig, ¢s; = 0 and by (12):

ViE{1,...,k}\{i0}2057i:¢57i:0. (16)

Together with (14), this means that we can rewrite (9) as (¢ + Z CZJS ) (¢ + ¢s,i95iy) = 1. Since
for all ¢ # ig, s; does not appear in 1, we have

We now consider equation (6) modulo (z1). Since, by (12), ¢ = 0 and ¢s; = 0, for all i, two terms
cancel on both sides. Moreover, by (12), 0.; = 0 for all ¢ and thus, using ¢; mod (z1) = 2 for all
1, yields

k
T
P00 ; Thiy (18)
By identifying coefficients, we deduce that

ViE{l,...,k}iamzd)Q:O. (19)

Using all of this in the original equation (6) (that is, “putting back” x; in (18) and applying (19))
yields ¢121 = 0 and thus
$1=0. (20)

10



k
We now turn to (11), in which by (13) we have (7 + Y (7.; L + 75,5;)) = 0. From this we get by
i=1 !

equating coeflicients:
Vie{l,...,k} 1 ;=T7s;,=7=0.

Going back to equation (7) and applying the latter, as well as (19), (20) and (16) yields

k
(ZTM z) ¢+¢szoszo)—x0+xl( (k1) +Z k+1 J+’¢)k+1 ]+wtl;+1 )) . (21)
7j=1

k
Computing this modulo (x1) and recalling ¢; mod (z1) = % yields ( > Tt7i§—9)(gb + 05,0 Si) = X0,
1 121 k2
and thus

i)
E ¢7_t i + § ¢s o Tt,iSig— s, + ¢s,io7_t,i0x0 =X -

i=1,i7#i0 v

By equating the coefficients for xg, we deduce that
Gs,ioTtio = 1 (and thus ¢, # 0 and 74, # 0). (22)

Moreover, for all i € {1,...,k}\ {io}, we deduce ¢ ;,7; = 0 and ¢, = 0, which by applying (22)
to both yields

Vie{l,....k}\{io}:7:=0 and ¢=0. (23)

Using this, the left-hand side of (21) becomes ¢ i, T,iotio Sig» Which, applying (22) and (4), becomes

L(wo + 21d))s;,. This means that (21) becomes zg + 21d) = x4+ ;d*+Y), which implies
%0

x1(d0) — dk+1)) = 0. Since a polynomial ring over a integral domain such as Zp(s1,...,8E) is an

integral domain, and x; # 0, the last equality implies d(®) = d(*+1), This means

plio) — pk+1) (24)

that is, the encryption key of the forgery is the same as used in the 7p-th query. We next show that

the ciphertext (C’ékﬂ), C£k+1)) of the forgery is a randomization of the one from the ig-th query.
Consider equation (9). Since (,; = 0 for i # ig (by (17)), all {;; = 0 (by (14)), ¢ =0 (by (23))
and ¢5; = 0 for i # ig (by (16)), it simplifies to

1
(C + Cz,ig ;)‘ﬁs,z‘osio = C¢s,i03io + Cz,io¢s,io =1 5 (25)
i0

from which we deduce
Coig®Psip =1 and (=0. (26)

We now consider (5) modulo (z1) and apply what we have deduced so far, that is ¢ = 0 by (26),

the coefficients previously mentioned above (25) and ¢9 = 0 by (19). The left-hand side of (5)
k

modulo (z1) becomes thus (Cz,iozio + > Ct,jtj)¢s,i08i0 mod (z1). Using moreover (26), we get that
j=1

(5) modulo (z1) becomes

k
ZigSig + (ZCt,jtj)tbs,iOSz‘o mod (z1)

J=1

k
14 (7(%1 I Z ,sz;rl 2 +7§k+1)5] +’Yt(lj+1) j)) mod (z1), (27)

J=1

11



(%)
and using z; mod (z1) = HC%IO mod (z1) and ¢; mod (z1) = £ for all ¢ (cf. (3) and (4)) we get

(1 + C $0 + <Z€t,] )¢s i0Sio mod (.751)

()
:1+$0( (k+1) +Z< k+1)1+070f30+ (chrl)SJJr (k+1)5->) mod (z1) . (28)
84 J

Let ¢ > ip and let us consider the monomials of degree —1 in s; and degree 0 in s;, for all j > 1.

Note that all monomials of cé - 7(3 + Z (7Z 020+ vgjg)sg + 7(])tg) are of degree 0 in sy, for £ > j.
( ()
Therefore, we do not consider any Tj for j < i (because they do not contain the term s;) nor CSO—J

for j > i (since the contained monomials are of degree —1 in s; for j > 4). For the monomials of
degree —1 in s; and degree 0 in s; for j > ¢ in (28) we thus have

(4)
K3 S, [ ]-
Vi > g M (5 yﬂt{@ﬂ)?) mod (1) =0 .
(k+1)

Multiplying by s; yields (. izo¢s,iySi; — To (wgﬂ)(l + ZZ?()C(()i)) + Vi 0) mod (z1) =0 and after

reordering the monomials according to their degree in zg we get

Vi >ip: —xp (ygkfl) (@) + t(lzﬂ)) + xg (Ct,igi)s,ioslo 72 ;L )) mod (1) =0 . (29)

Considering the linear coefficient in x¢, and recalling that ¢, ;, # 0 by (22), we deduce

Vi>ig: ygf“jl) =(i=0. (30)
Applying this to equation (29) yields z2 ’ygzﬂ) mod (z1) = 0 for all ¢ > ig, and therefore
Vi>ig: v =0. (31)

Since by (30) and (31) for all ¢ > ig: (;; = fyik:rl) ,Yt(f;ﬂ) = 0, we can rewrite (27) as

0
ZioSig + (ZCt,iti>¢s,i05io mod (z1)

i=1
=1+ xo< (k1) 4 Z vzkfl zi + ’ytliﬂ )+ szz si) mod (z1) . (32)

For 7 > ig, from the coefficients of xgs; we get ’y(kH) = 0. Applying this, (30) and (31) to (8) yields

8,1

k+1) (k+1) (k+1 +1
( k“)—i—z %z zl—l—’ym )sl+'yt(l )t) (33)

70
and the right-hand side of (32) becomes 1+ (7(k+1)+ Z (’Y£11+1)Zz+7§]z+l) H‘%(kH) x0)> mod (x1).

Si

(%)
Since z; mod (z1) = stioco mod (z1) and t; mod (1) = 2, for all ¢, (32) becomes

1+ ZL‘oC(ZO ( Z Ct i )d)s i0Sio mod (371)

(4)
1
= 1+:L’o( (e+1) 4 E ( (k+1) 7+ 0% +7§i+1) 8; + ISI:H)S*?)) mod (1) .

12



We will now look at the coefficients of s;, and of si For this, we first note that for j > 4 no s;
ig

appears in cg) (cf. (8)) and therefore for all i < i : cg) is constant in s;,. From the coefficients of
54, and of % we thus get, respectively:
0

i0—1
k
¢s )10 Z (t i = gljl) (34)
0=z (’ygcgl)(l +x C(ZO)) + Vt(’:rl)xo) mod (x1) (35)
(k+1) _ . A
From (34) we get 7., ~* = 0 and, since ¢, # 0 by (22),

Vi < g : Ct,i =0, (36)
and from (35) we get ’yikl;rl) = 0 (from the coefficient of zy) and therefore %fkﬂ) = 0. Together,
this lets us rewrite (33) as

i0—1
(D) (k) Z 7Zlc;ﬂ)zlJr7(1g+1)81+%£1§+1) 0) . (37)

. A . . k .
Recall that S* = ¢G + ¢ Xo + 1 X1 + > ¢s,75; and Z* = (G + Z (CZJZ + (555 + G 5T, ) By
J=1 J=1
(23), (19), (20) and (16) we have S5* = ¢ ;,Si, Moreover, by (26), (17), (14), (30) and (36) we have
Z* = CsioZiy + CriigLi,- We can now rewrite (5) as:

k+1 k+1
(Czﬂ'ozio + Ct,iotio)(¢8,i03io) =1+ {L‘()C(() ) + wlcg = :

Since, by (26), (z,iy®s,io = 1 and plugging in the definitions of z;, and t;,, this yields

1+ xocéio) + xlcgio) + Ct ioPs.io (xo + xld(io)) =1+z cékﬂ) + xlcgkﬂ) , and thus
T (Co + Ctio®s,io — (kH)) = -1 (c1 W) 4 CrripDsig A0 — cgkﬂ)) . (39)

By considering the above modulo (x1), plugging in the definition of c(()i) from (8) and using (37), we get

Ct zo¢s io T C(’LO) C(()kJrl) mod (371)

io—1
i i k 7 k 7 k
= Crio®s,io + 710 — YED 157 (11 — &)z 4 (310 4B s 4 () By
j=1
mod (x1)
= Cryig®s,i + 10 — 4EHD)
io—1 ()
(k+1), (1 + Zocy i k1 i k+1)\ Z0
T Z < fYZJ - ,J+ ))( Iy ) + (’Y( y 7§J+ )) S5+ (’Yt(,;')) _7§,j+1))?> mod (21) . (39)
J J
Taking the above modulo (xg) we get
io—1
% i k 1 i k
Grin®sio + 75 =7 #F 1 3L = A5 =+ (1) = A)sy) mod (wo,20) = 0.
=1 !

By looking at the coefficients of the constant monomial and of ?12 and s; for all ¢ < ip, we deduce
the following:

Ct i0¢8 20 + ’Y(ZO) - (k+1) = 0 (40)
Vi<ip: 70— 4% =0 and 4 - »ygfj.“) —0 (41)

13



i9—1

This lets us rewrite (39) as ) (%E?) - vt(lj-ﬂ))% mod (1) = 0, and equating the coefficients of 7%
]:1 ) ). J J

for all j < ig yields
Vi < i : yt(ff) = 'yt(’iﬂ) . (42)

Applying (40), (41) and (42) to (37) yields

i0—1
k+1 ' ‘ ' '
e = Grigsio + 70+ 30 (3192 + W s 4+ 40t))
=1

Recalling the definition of c((]io) form (8), we can conclude that:

CékH) = Ct,ioPs,io T Céio) :

Therefore (38) becomes 0 = —x (cgio) + Ct,i0¢s7iod(i0) — cgkﬂ)), in other words
Cgk—H) = Ct,io¢s,iod(i0) + Cgio) .

The last two equations mean that (C’ékﬂ), C’fkﬂ)) = (C’(()io) +rG, C’Ylo) + TP(iO)), for 1 = Ct.ig Ps.igs
which together with (24) means that

(PM+D (D, e )) e [P} x (5, CFN)] ey € Q -

We have thus shown that in the “ideal” model, the attacker cannot win the game. It remains to
upper-bound the statistical distance from the adversary point of view between these two models.

Difference between ideal and real game. We start with upper-bounding the degree of the
denominators and numerators of the rational fractions that can be generated by the adversary.

We first show that by induction on the number of queries k, that all the elements returned by
the challenger in the ideal game are divisors of Hle s;. In the base case, when no queries are made,
no s; appears and the elements returned by the adversary are polynomials. For the induction step,
assume the statement holds for ¢ queries. Consider the reply to the (£ + 1)-th query: Syy; and
5'£+1 are monomials; Zy11 and Ty are sums of polynomials and elements output by the adversary
divided by s¢41. Using the induction hypothesis on the adversary’s outputs, we deduce that the
denominators divide Hfill Si. O

Similarly, we can show that the numerators of each element output by the challenger can be
written as a sum of divisors of $15+1 m]f'H Hle S;.

The “ideal” model and the generic group model differ if and only if two elements are distinct as
rational fractions but identical as (handle of a) group element. That is, if we evaluate two different
rational fractions at scalar values xzg, x1, 1, . . ., S and obtain the same result.

Any such equality of rational fractions generated during the game can be rewritten as a poly-
nomial equation of degree 3k + k + 2 (3k + 2 upper-bounding the degree of the numerator and &
that of the denominator). Because the values xg, 1, s1, ..., s, are uniformly random (and hidden
from the adversary), the Schwartz-Zippel lemma [Sch80] yields that the probability of this equality
holding is at most A‘p’i—‘?.

If the adversary computes at most q group operations, then there are at most ¢ + 3 + 3k group
elements, where 3 comes from the generator and the verification key, and 3k corresponds to the
answers to the signing queries (note that S and S correspond to the same monomial). There are
therefore

3(a+ 3k +3)(q + 3k +2)

pairs of rational fractions. Using the union bound, we conclude that the adversary can distinguish

the two models with probability at most 2%’;1‘%) (g+3k+3)(¢g+3k+2) < %(q + 3k + 3)2, since

p— 1> 2* which is the bound claimed by the theorem. O

14



Generalization of our scheme. We conclude by mentioning that our scheme easily generalizes
to ElGamal encryptions of vectors of group elements without increasing the size of signatures: for
an encryption key (Pi,...,P,) and a signing key (xo,...,y), a ciphertext consisting of Cy = rG
and C; = M; +rP; for 1 <1 < n, a signature on randomizable ciphertexts is defined as:

7 = E(G + gxi@) S = sG S = sG; T := %(xoG + ;:;%Pz)
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