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Since its emergence in China, the COVID-19 pandemic has spread rapidly around

the world. Faced with this unknown disease, public health authorities were forced to

experiment, in a short period of time, with various combinations of interventions at

different scales. However, as the pandemic progresses, there is an urgent need for tools

and methodologies to quickly analyze the effectiveness of responses against COVID-19

in different communities and contexts. In this perspective, computer modeling appears

to be an invaluable lever as it allows for the in silico exploration of a range of intervention

strategies prior to the potential field implementation phase. More specifically, we argue

that, in order to take into account important dimensions of policy actions, such as the

heterogeneity of the individual response or the spatial aspect of containment strategies,

the branch of computer modeling known as agent-based modeling is of immense

interest. We present in this paper an agent-based modeling framework called COVID-19

Modeling Kit (COMOKIT), designed to be generic, scalable and thus portable in a variety

of social and geographical contexts. COMOKIT combines models of person-to-person

and environmental transmission, a model of individual epidemiological status evolution,

an agenda-based 1-h time step model of human mobility, and an intervention model. It

is designed to be modular and flexible enough to allow modelers and users to represent

different strategies and study their impacts inmultiple social, epidemiological or economic

scenarios. Several large-scale experiments are analyzed in this paper and allow us to

show the potentialities of COMOKIT in terms of analysis and comparison of the impacts

of public health policies in a realistic case study.

Keywords: COVID-19, agent-based modeling (ABM), epidemiological modeling, GAMA platform, computer

simulation (CS)
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1. INTRODUCTION

1.1. Context: The COVID-19 Pandemic
In December 2019, human infections by an unknown agent
causing pneumonia were reported in Wuhan, China (1). The
infectious pathogen, later known as SARS-COV-2, is a novel
coronavirus responsible for causing the new COVID-19 disease.

While the first human cases appeared to be related to a seafood
market, the following cases were not, indicating that SARS-
COV-2 is capable of sustained human-to-human transmission
(2). This preliminary investigation of the Wuhan outbreak in
mid-January reported a baseline reproductive index (R0) of 2.2,
meaning that the introduction of an infected individual into
a fully susceptible population would result in an average of
2.2 additional infections. This strongly suggests that outbreaks
could have grown exponentially if interventions and containment
strategies had not been put in place early enough.

Given the initial lack of knowledge about the COVID-19
disease, the differences in preparedness, practices and cultural
background of their populations, countries have naturally
chosen different intervention policies to fight the pandemic.
For instance, South Korea decided to move to massive drive-
through virus testing programs after a fast increase of the number
of infected cases (3), while France chose a late lockdown of
the whole country [see (4) for an interesting overview of the
strategies of 11 EU countries]. China imposed a lockdown to
the most impacted city, Wuhan (followed by a lockdown of the
entire province of Hubei) and implemented a strategy of contact
tracing through the use of a smartphone application giving
the exact location of an individual through time, allowing fast
identification of contacts of an infected case (5). In Hong Kong,
the fast implementation of border restrictions, isolations and
quarantine, coupled with school closures and social distancing,
has been shown really effective to reduce the transmission (6).
Singapore initially chose to keep schools open, but performed
health checks, reduced social gatherings, canceled large scale
events, and traced contacts of infected cases, allowing the public
to know the exact location of a known case once reported (7).
Finally, Vietnam quickly chose to limit exchanges with China
and applied very localized policies: for every identified infected
individual, authorities tracked all the persons in contact with it
and quarantined them. They also decided very early to lockdown
full communes (e.g., Son Loi and Ha Loi in the province of Vinh
Phuc) (8–10), an intervention similar to China but at a much
smaller scale.

1.2. Proposal: An Agent-Based, Spatially
Explicit, Modeling Kit
The wide range of possible interventions makes it extremely
difficult to decide which ones are most appropriate in a given
context. In this regard, computer modeling is an invaluable
tool for exploring a range of intervention strategies in silico
before the potential field implementation phase (11–13). It has
been widely used, for example, to justify public health policies
based on locking down entire populations (6, 14). However,
while classical compartmentalized epidemiological models (15)
or highly simplified individual-based models (16) seem to be

relevant at the scale of an entire country, they are paradoxically
not relevant at smaller scales, where it is of utmost importance to
be able to accurately predict the impact of localized interventions.
As a matter of fact, when an intervention is applied on a
small population, the individual and social heterogeneities in
terms of social or economic characteristics, medical profiles (17),
spatial distribution (18), behaviors, opinion, or compliance to
the public rules (19), are crucial factors to take into account in
models. Moreover, among these features, some might remain
constant (e.g., spatial distribution) but others can evolve during
the intervention itself (e.g., compliance), making it difficult
to approximate them with average values: models that only
consider the evolution of the epidemic through the interactions
between aggregated variables (representing compartments or
other subsets of the population) are unable to represent these
heterogeneities, let alone their evolution, and thus to use them for
analysing, comparing, or even proposing possible interventions.

The urgent need of tools and methodologies that enable fast
analysis of the effectiveness of the responses against COVID-
19 across different communities and contexts, including small-
scale ones, made us adopt an approach based on the design
and simulation of agent-based computational models (20), where
the profiles of people and households, their interactions, their
evolution in time and space, are explicitly represented and serve
as a basis for describing the dynamics of the epidemic. This
is a “complex systems” perspective (21), where this dynamics
is not only the result of a transmission mechanism, but
also that of the non-linear interactions between actors with
complex relationships and mechanisms across numerous levels
of organization, which act and interact with each other and with
their environment.

This has led us to design COMOKIT (COVID-19 MOdeling
KIT) based on the agent-basedmodeling and simulation platform
GAMA (22). As stated in Drogoul et al. (23), COMOKIT follows
a set of principles:

• be as close as possible to public decision making by having the
possibility to answer to concrete questions;

• be based on a detailed and realistic representation of space
(public health policies are also predominantly spatial);

• rely on spatial and social data that can be collected easily
and quickly;

• be generic, flexible, and applicable to possibly any case study;
• be trustable by relying on inner mechanisms that can be

isolated and validated separately;
• be open and modular enough to support

interdisciplinary cooperation;
• offer an easy access to large-scale experimentation and

statistical validation by facilitating the exploration of
its parameters;

This article is organized as follows. In section 2, we propose a
rapid state of the art, which allows us to point out the limitations
of existing models (whether mathematical or agent-based) in
terms of decision support and realism in representing the impacts
of interventions against COVID-19. Section 3 then presents the
main structure and processes of the COMOKIT model, designed
not only to overcome these limitations but also to provide a
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basis from which more comprehensive models can be built.
In section 4, we present a set of experiments carried out on
COMOKIT with two ambitions: the first to show its dynamic
characteristics (in terms of sensitivity to certain parameters,
stochasticity and the need for replication), the second to show
its potentialities in terms of studying and comparing the impact
of public health policies in different scenarios. On the basis of
these very encouraging initial results, section 5 concludes by
listing some of the limitations of version V1.0 of the model
and presenting its prospects for evolution and application to
different contexts.

2. STATE OF THE ART

Several modeling studies have been undertaken at very early
stages of the pandemic in order to study the impact of different
policies against COVID-19 and to better prepare public health
systems. Most of them relied on well-known mathematical
models. As a matter of fact, at least in epidemiology,
mathematical models are tools that can be developed very
rapidly to answer a limited range of questions in critical
and urgent situations. For example, such a model, using the
meta-population of different cities represented by a Susceptible
Exposed Infectious Recovered (SEIR) compartment model, was
developed in less than a month to predict the spread of
COVID-19 in a region or country and estimate the number
of cases exported from Wuhan through human mobility and
flights (24). This model was useful in showing whether and
to what extent cases were likely to occur in areas other than
Wuhan. Another mathematical model was used to represent
the risk of virus introduction and the effectiveness of symptom
screening in travelers (25). This probabilistic process model
showed that, because of asymptomatic and pre-symptomatic
infections, symptom screening alone was not sufficient to prevent
the introduction of infected persons. Mathematical models
have also been used to study control and non-pharmaceutical
interventions in Europe, Wuhan and more abstract contexts (4,
26–28). For example, a model was designed taking into account
the different contacts between the age groups represented in
the SEIR compartments and examining the effect of control
strategies implemented in Wuhan (27). Another model studied
the effect of lockdown in European countries, assuming that the
effect was the same regardless of the country of implementation,
using a Bayesian approach (4). Health care capacity in the
United States has also been studied using compartmentalized
models representing individuals in the same age category in
different states with different age-contact matrices (29). Finally,
mathematical modeling was also applied prospectively to study
the post-pandemic situation, examining seasonality and herd
immunity (30, 31).

While mathematical models are particularly useful for rapid
response and when there is a high degree of uncertainty in the
different parameters, they also assume a certain homogeneity
of individuals in a population, which can be a weakness
when it comes to representing dynamics that rely heavily on
individual aspects. While the use of age matrices in different

compartmentalized models has countered this phenomenon,
taking into account the fact that older populations appear to
have a higher risk of developing a severe and more fatal form
of the disease (4–6) while children are less likely to develop
symptoms (32, 33), these models are still unable to take into
account heterogeneities between individuals in terms of social
relationships, behaviors, and attitudes toward the disease (34).

For example, intervention policies, such as lockdown
are effective when everyone acts in accordance with policy
statements. However, studies show that age groups may respond
differently to containment, which may increase the risk of
infection for that particular group (35, 36). This is particularly
important because super-spreading events (infections of several
people by one individual) have been reported in several locations
(37). It is therefore essential to add complexity and heterogeneity
in the models in terms of social relationships, spatialization, and
individual characteristics. Although more complex to design and
to explore (because of a generally more stochastic approach) than
mathematical models, individual-based models have begun to be
used to study COVID-19.

In Hellewell et al. (38), an individual branch process model
is proposed to examine the possibility of preventing the
introduction of the disease into a totally disease-free population
by applying isolation and contact tracing. Interventions have also
been studied in different contexts. For example, in Ferguson et al.
(6), an ABM representing the population with different contact
settings (school, work, home, etc.) for high-income countries has
been designed to study the impact of different interventions to
mitigate epidemics, including social distance, isolation of cases,
quarantine and school closure. The model took into account
spatialization but also individual characteristics to represent
the risk profile, using the number of patients in intensive
care units (ICUs), hospitalizations and deaths as indicators.
However, the possibility of environmental transmission was
not taken into account in the model. Indeed, several studies
have shown that the virus can survive in the environment
and on different types of surfaces (39, 40), possibly leading
to environmental contamination and transmission, but also to
nosocomial infections (41, 42). This type of transmission has
already been reported in other coronaviruses, such as SARS and
MERS (43, 44), and infections of several health care workers have
also been reported (45). In addition, evidence of the viability
of aerosolized virus transmission has also been provided (46).
Another limitation of this model is that it does not account for
hospitalizations, although it is known that some deaths are due to
lack of hospital capacity. Finally, no information on recreational
activities was represented, although bars, restaurants, nightclubs,
cinemas and the like can be important contamination sites (47).

In Wang et al. (48), another model is presented, representing
2,000 people in four different states (susceptible-latent-
infectious-removed) and examining a possible set of
interventions, such as personal protection, isolation and
quarantine, containment and social distance, and their
cost-effectiveness after importation of infected cases. Again,
intensive care and hospitalizations were used as indicators,
but sociological aspects were not represented in this model.
Transmission occurred in the community without taking into
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account households, workplaces or other social gathering events
known to facilitate the spread of the disease, and again, no
environmental contamination was represented.

Modeling of pandemic transmission and control was also
the objective of another study using ABM in Australia (19).
In this model, interventions, such as school closures, travel
bans, social distancing and case isolation were studied using an
influenza-derived model representing a synthetic population of
24 million individuals with their own characteristics and social
context. Nevertheless, no environmental contamination was
represented due to the large scale of the model, which prevents
the representation of buildings and other places. In addition,
the model did not take into account the possibility of leisure
activities, which can be explained by the fact that each stage
corresponds to several hours (day and night periods). Finally, no
dynamics concerning hospitalization capacity were represented.

Finally, another agent-based model, derived from influenza,
was used in a study in Singapore (11), representing transmission
during 12-h cycles for a set of buildings visited by infected
persons. Again, school closure, quarantine and isolation of cases
were studied, with an interesting aspect of the model being
the focus on high-risk locations. However, as with the two
models previously mentioned, no recreational activities were
represented, as the temporal representation was done by day and
night steps. In addition, environmental contamination was also
not taken into account.

This rapid state of the art, far from being exhaustive due to the
proliferation of more or less similar models, nevertheless makes
it possible to highlight several limitations of existing models in
terms of decision support:

• The limited and usually not flexible representation of
individual activities does not allow these models to faithfully
reproduce many social dynamics known to be at risk in terms
of transmission: group leisure activities (karaoke, dance halls,
restaurants, bars, etc.), groups at school or in companies,
religious celebrations, etc.

• The often too large time step (day or half-day) cannot
account for the shorter contacts or interactions
that nevertheless constitute the bulk of our daily
interactions. The resulting “averaging” effect erases
any representation of the behavioral heterogeneity
of individuals.

• In these models, individuals, even if their behaviors are
different, are assumed not only to react in the same way to
health authorities’ injunctions, but also to do so in the same
way regardless of when these injunctions are issued. However,
a crucial point in the implementation of intervention policies
is precisely to know how to anticipate the population’s
acceptance or rejection, and to be able to measure the effects of
habituation, exasperation, or even revolt toward these policies.

• No environmental transmission is envisaged in any
of these models, which raises the problem of their
realism, especially when they take as a case study urban
environments, where the opportunities for transmission
through synthetic surfaces handled by many people (lifts,
public transport, vending machines, handrails, counters, etc.)
are legion.

COMOKIT has been primarily designed to meet these
limitations. The following section presents version V1.0 of
the model1 in more detail.

3. MODEL

3.1. Overview of the Model
COMOKIT aims to simulate and compare the application of
policies to mitigate the spread of COVID-19 at the scale of an
urban area, with the disease beingmodeled at the individual scale.
Its objective is to answer questions, such as: Is the containment
of a neighborhood more effective than that of an entire village?
Does school closure reduce transmission peaks? How does the
wearing of masks affect the dynamics of the epidemic? What
should be the ideal duration of containment? What proportion
of the population should be allowed to engage in activities during
a containment?

COMOKIT combines a sub-model of direct person-to-
person transmission, a sub-model of environmental transmission
through the built environment, a policy design model, and an
agenda-based model of mobility and occupation of people at
a rate of 1 h. A key point is that it allows the representation
of heterogeneities in individual characteristics (gender, age,
household), agendas (based on social structures, available
services or age categories), social relations behaviors (e.g.,
compliance with policies), and response to COVID-19.

3.2. Description of the Model Entities
The central entity of the model is the Individual type (or
species) of agents: it represents the individual inhabitants of the
area under consideration with their individual characteristics
(age, sex, occupational status) and their epidemiological
status, whether they have been tested, and other individual
epidemiological values (e.g., latent_time, infectious_time
. . .more details in section 3.3.3). They carry out their daily
activities (e.g., going to work, school, shopping, eating out,
etc.) according to their personal agenda. This agenda is a set of
generated activities that can be shared by several people (for
example, going out to eat with friends), depending on the age
and family status of the Individual agent. Attributes of Individual
agents include their parents (their family, which in our model
corresponds to the other Individual agents living in the same
apartment in a Building), friends (with whom they can share
activities), colleagues (co-workers or classmates), and their
home, workplace, and school Buildings. An overview of the
structure of the model is presented in the form of a UML class
diagram in Figure 1.

Building agents are spatial entities where Individual agents can
perform an Activity, which depends on the type of Building. Two
special types of Buildings have been defined because they play an
important role in the simulation: The Outside, which houses the
activities performed by individuals outside the modeled area, and
the Hospital, where sick Individual agents with critical symptoms

1The complete description of the COMOKIT model, using the classical O.D.D.

protocol (49), is available at the address: https://comokit.org/ressources/ODD-

COMOKIT_v1.pdf.
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FIGURE 1 | Class diagram of the COMOKIT entities.

can be contained and treated. In order to take into account the
possible transmission of the virus through the environment, all
Buildings are equipped with a viral load, which can be used by the
epidemiological sub-model (see section 3.3.3).

Individuals’ hourly behaviors are determined by their
agendas, which associate Activities with hours. Individuals have
preferences for certain types of Activities that can be set
according to their age and gender: for a leisure activity, a child
may prefer to go to a play center while an older personmay prefer
to go to the cinema. The Building where Individuals carry out
an Activity can be chosen at random (uniformly), as the closest,
or according to a probability (negative function of distance and
positive function of the area of the target place). COMOKIT also
defines a number of specific Activities to represent some classical
ones: visiting_a_neighbour, working, staying_at_home, studying,
visiting_a_friend. Of course, custom activities can also be created
from the generic Activity species.

In COMOKIT, particular attention is paid to policies that
change the behavior of the population in order to reduce contact
and thus infections between people: an Individual’s ability to
engage in a particular Activity is limited by the authorization of
the Authority agent. Authorization to engage in specific activities
depends on the Policy adopted and managed by this Authority.
Examples of Policy include total containment, schools closure,
working places closure . . . These Policies may be limited to a
given area (using SpatialPolicy) or may be more or less tolerant
(for example, containment may be complete or complete but
for some people, or a certain percentage of the population,
using PartialPolicy).

3.3. Description of the Model Processes
3.3.1. Initialization
A simulation is initialized by creating Building agents from
shapefiles, Authority and Policy agents, and setting other
parameters from data files. The Individual agents with their
demographic attributes are created from a synthetic population
generator [either an ad hoc generator coded in the model
or by the Gen* generator using available data (50)]. Agendas
are created using an ad hoc generator: they are composed
by seven daily agendas depending on the Individuals’ age
and employment status: students and workers have an agenda
composed of working days and leisure days (i.e., a day with
activities different from working, learning or staying home);
retired and unemployed Individuals have an agenda full of
leisure days. Individuals that are too young have an empty
agenda. The choice of activities outside of work and study will
depend on the age and gender of the Individual. It is indeed
possible to parameterize (through a CSV file) the fact that young
people will, for example, favor leisure activities while elders
will favor shopping activities. For each activity, a list of fellow
Individual agents sharing the same activity can be defined to
represent for example a group of friends or colleagues eating
at the same table in a restaurant. Lastly, the simulation is
initialized with N (a parameter) infected (but not yet infectious)
Individual agents.

3.3.2. Process Overview and Scheduling
The dynamics of the model is entirely represented by three
interconnected but nevertheless independent sub-models: ESM,
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the epidemiological submodel (which combines infection,
hospitalization and transmission processes), ASM, the activity
submodel, and PSM, the policy submodel (which combines
application and adoption processes). The simulation step is set
to 1 h.

A simulation step starts by the evolution of the viral load
in a building (it decreases over time, before disappearing).
Then the Individual agents first evaluate whether they are
infected. If they are, they may infect other Individuals and/or
contaminate the current building in which they are located.
Depending on their updated epidemic status, individuals will
revise their behavior (e.g., wearing a mask) and execute their
daily activities: they find the activity corresponding to the current
hour, ask the Authority whether they are allowed to execute
it and act in accordance. Finally, the Authority agent checks
its current Policy and tries to apply it (e.g., executing a mass
testing campaign).

3.3.3. ESM, the Epidemiological Submodel
As the virus is capable of surviving for long periods in the
environment (39, 46), we consider two possible pathways
of viral transmissions: either human-to-human transmission,
through interactions between neighboring Individual agents,
or, because of the potential persistence of the virus in the
environment, through contacts between co-located Individual
and Building agents, the latter of which being provided
with a dynamic viral load (increased by the long-term co-
location of infectious individuals, and decreasing according to
some decay).

In our model, the disease-related state of the Individual
agents follows a slightly modified SEIR model (15) (Figure 2).
First, we assume that the whole population starts the simulation
in the Susceptible state (S): as this is an emergent disease,
nobody is immunized. When an Individual is in contact with
an infectious Individual or located in an infected Building,
it can become infected and move to the Latent state (L) (a
renaming of the traditional Exposed compartment), depending
on the success of the transmission, defined by the probability
for one Individual at a given step to be infected by an infectious
Individual in the same Building, or by a Building with a positive
viral load.

Once the latent period is expired, an Individual transitions
to one out of three possible infectious states (whereas the
traditional SEIR model contains only a single one): it can
become asymptomatic (IA), pre-symptomatic (IP) or
symptomatic (IS). If the serial interval value is negative, it
becomes pre-symptomatic for a short time, equal to the
absolute value of the serial interval, before transitioning to
the symptomatic state. The Individual remains in these states
during the serial interval (for pre-symptomatic ones) or
the infectious period for symptomatic and asymptomatic

ones. Finally, we consider that asymptomatic and pre-

symptomatic Individuals share the same transmission
rate, i.e., the chance of infecting a neighboring susceptible
Individual, while symptomatic agents have a much
higher one.

After the infectious period, Individual agents become
Removed (R): they are not infectious anymore and fall into one
out of two sub-compartments, Recovered (RR) orDead (RD).

During their infectious period, symptomatic individuals can
go through different clinical states: not needing hospitalization
(NH), needing hospitalization (HN) and needing ICU
(HI). Previous asymptomatic agents (la) become directly
Recovered, as we assume that they cannot die from COVID-19
without showing symptoms, whereas symptomatic ones have a
probability to recover or die (Figure 3). This probability depends
on the (given) severity of the disease for the age category of the
agent and the care it has been provided with (i.e., hospitalization
and ICU). We consider that Individuals needing intensive
care will become Dead if they do not get it. On the contrary,
symptomatic Individuals that do not need intensive care (i.e.,
not needing hospitalization or needing hospitalization without
intensive care treatment) become Recovered.

It is important to note that ESM, despite the fact that it is
a more detailed model than most of those used in agent-based
models (19, 48), makes certain assumptions, some of which are
shared with other epidemiological models because of a lack of
knowledge about the disease, others because we assume that they
have no influence on the model itself.

1. Effective contact rate

(a) Presymptomatic and asymptomatic individuals share the
same contact rate

(b) The contact rate does not differ during the
infectious period.

(c) Masks do not deliver any protection, but rather reduce
the effective contact rate of an infectious individual and
its viral release in the environment.

2. Environmental transmission

(a) Individuals can be infected by a contaminated
environment, and for a maximal viral contamination in
one building, the effective contact rate is the same as one
infectious Individual.

(b) The viral release of an Individual in its environment
(in our model, in Buildings) is the same for all
infectious Individuals

3. Homogeneity of the population

(a) The sex of individuals does not have any impact on the
epidemiological model.

(b) The age of individuals does not have any impact on the
incubation period, the proportion of asymptomatic cases,
and the effective contact rate for human to human and
environmental transmission

(c) Asymptomatic and symptomatic individuals share the
same infectious period distribution

4. Recovery and death

(a) Recovered Individuals are totally immunized against the
infection.

(b) Infection can lead to death only for Individuals expressing
a need for intensive care.

Frontiers in Public Health | www.frontiersin.org 6 September 2020 | Volume 8 | Article 563247

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Gaudou et al. COMOKIT: COVID-19 Modeling KIT

FIGURE 2 | Epidemiological model of an Individual agent.

FIGURE 3 | Additional states of Individuals, used and manipulated by the HospitalizationPolicy when it exists.

(c) Testing is performed only for virus isolation, not
antibodies, therefore recovered people are not
considered positive.

3.3.4. ASM, the Activities Submodel
The Individual agents in COMOKIT are an extremely simplified
representation of their actual counterparts; their daily activities
are ultimately only the dynamic support of their role as disease
spreaders. These activities, as discussed in section 3.3.3, are
organized in the form of a weekly agenda that can distinguish
between days off and days worked, and provides an hour-by-
hour activity for all the agents. Once the weekly and daily agendas
are created, at each simulation step, and unless they have already

been enrolled in a collective Activity, Individual agents obtain the
Activity corresponding to the current day and time, request the
authorization from the Authority agent to perform it, and find a
nearby building associated with this specific Activity. Individual
agents can also enroll certain agents to participate in the Activity
(e.g., colleagues, friends . . . ) who are expected to have a closer
relationship, and therefore have a higher probability of being
infected. Since we have set the time step at 1 h, we decided not
to represent the movement itself from one place to another :
Individuals are translated directly from their current location to
the building chosen to perform their new Activity.

This last choice may appear to be a limitation (or at least a
somewhat too restrictive assumption), but it is consistent with the
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scale at which wemodel the disease and the control policy. Public
transport, which represents one of the main risks of transmission
in large conurbations or on national and international scales, is
not used in small or medium-sized towns, which are the current
target of COMOKIT.

3.3.5. PSM, the Policy Submodel
The Authority is responsible for implementing one or more
mitigation policies that may impact the simulation in two ways:
at each step, on one hand, the Authoritymay proactively perform
certain actions, for example by conducting a given number of
tests on the population, and on the other hand, each Individual
agent asks the Authority whether it is authorized to perform a
given activity.

We have chosen a modular approach to defining policies: a
general policy is based on a small set of specialized, concrete
policies (e.g., the DetectionPolicy that authorizes all activities,
but performs tests at each step, or the ActivitiesListingPolicy that
limits activities within a given set of authorized activities)
that are composed using the composite (implemented
by CompoundPolicy) and nesting (by ForwardingPolicy)
design patterns:

• CompoundPolicy is a policy composed of a list of other policies.
It applies the policies listed in order and allows an activity for
a given individual if and only if it is allowed by all policies.

• ForwardingPolicy is a policy that embeds another policy and
can change its enablement dynamically (for example, the
specialized SpatialPolicy restricts the application of its target
policy in a given geographical space, while TemporaryPolicy
does it within a limited period of time).

Among the different policies delivered with the standard
version of COMOKIT is the one that explicitly links to the
epidemiological sub-model ESM (without being necessary for
its operation). This is the HospitalizationPolicy, which depends
on the existence of at least one hospital Building in the
dataset, and which takes care of the Individuals that need to be
hospitalized after a certain period of time following symptom
onset, given by a distribution, and remain hospitalized until they
are recovered or dead. Hospitalized Individuals are considered
Recovered after having tested negative for a given number of
consecutive days, and not showing symptoms (i.e., not being in
the Symptomatic state).

The availability of these policies and the ease with which
they can be combined make it possible to represent complex
and realistic public policies. For instance, a “realistic lockdown”
experiment was created to test the impact of a 60-days lockdown
policy, in which positive individuals are not allowed to travel,
others are only allowed to stay at home or shop, and only
10% of the total population is allowed to work. The policy of
the Authority in this experiment is therefore constructed as a
TemporaryPolicy, limiting the application of a CompoundPolicy
within a 60-days period. This nested composite policy was
composed of:

• A policy applying a given number of tests at each step of the
simulation (this policy allows any activity).

• A policy prohibiting any activity other than shopping and
staying home, nested in another policy that limits its
application to 90% of the population (the remaining 10% are
free to engage in any activity).

• A policy prohibiting any activity for those who have
tested positive.

• The hospitalization policy described above.

3.4. Input Data
All input data files used to initialize a COMOKIT simulation
are summarized in Table 1. In addition to the geographic data
(buildings.shp, boundary.shp, and satellite.png), the files describe
either the synthetic population of Individuals generated by an
external tool or the parameters of the generators integrated
in COMOKIT.

3.4.1. Spatial Data
The initialization of the spatial environment of the model
requires one main input: a shapefile describing the buildings
of the studied area. This shapefile must obligatorily contain
two attributes: the type of building, which will be used in the
definition of activities (each type of activity will be linked to
one or more types of buildings), and the number of apartments
per building, which is used to locate the households inside (one
household per apartment). COMOKIT provides a spatial data
generation tool, allowing, from a spatial boundary given as a
shapefile, to download existing OSM2 data of the area and put
it in the right format so that it can be directly used in the
simulations. The existing tool also allows the vectorization of
images (e.g., GoogleMap) to enrich the OSM data.

3.4.2. Demographic Data
The simulation initialization can use a CSV file describing
the synthetic population, where each line (also called record)
corresponds to a unique individual with age, gender, household
identifier and employment status. The Gen* library (50) can be
used to generate such a population file from an IPUMS3 open-
access population sample file and the marginal distributions of
the demographic attributes available on the given case study. The
generation of this synthetic population follows the combinatorial
optimization approach described in Williamson et al. (51).
Among the various algorithms available, we chose a simple
random draw in order to fit the actual population sample to
a known aggregate distribution of attributes. This algorithm
begins with a random population (containing the desired number
of individuals) composed of households uniformly selected
from the sample; we then exchange n records of the synthetic
population with records drawn from the sample. This operation
is repeated until either a minimum matching is obtained or
a maximum number of iterations has been performed. In the
different experiments we made, we found that the algorithms

2OSM stands for OpenStreetMap. The data have been accessed and retrieved

from the website: https://www.openstreetmap.org/, using the provided Application

programming interface (API).
3 https://ipums.org/
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TABLE 1 | Overview of the dataset.

Data file Data type Description Source

Buildings.shp GIS shapefile Geometries of buildings, with their type and number

of flats as attributes

OpenStreetMap, Google Maps, and hand

digitalization from Google satellite image.

For Ben Tre, the initial data come from the

Land Use map (produced by the DONRE*

in 2010)

Population.csv CSV tabular file The synthetic population generated from a sample

using the Gen* library. Each line corresponds to a

single individual with age, sex, and household id

https://international.ipums.org/

international/ https://www.gso.gov.vn/

default_en.aspx?tabid=774

Population parameter.csv CSV tabular file The set of parameters to define the population of

Individuals

See O.D.D. description for more details

Activity parameter.csv CSV tabular file The set of parameters to define the activity of

Individual

See O.D.D. description for more details

Activity type weights.csv CSV tabular file According to the age (interval) and sex, the weight

of the different activities

See O.D.D. description for more details

Building type weights.csv CSV tabular file According to the age (interval) and sex, the weight

of the building type

See O.D.D. description for more details

Epidemiological Parameters.csv CSV tabular file The set of epidemic parameters for the COVID-19 Various sources from the literature (see

O.D.D. description for more details)

*DONRE stands for Department Of Natural Resources and Environment. This is a department of the Vietnamese Ministry Of Natural Resources and Environment.

performed well with n equal to 5% of the population size and a
maximum number of iterations equal to 100.

The obtained population contains only demographic
variables. These are supplemented by built-in COMOKIT
generators for location, social network, and agenda.

3.4.3. Epidemiological Data
The epidemiological parameter file is a table of parameters.
For each parameter, the following values are provided: (i) the
name of the parameter, (ii) the lower limit of the age category,
(iii) whether the value of the parameter is given or whether
it is to be chosen from a given probability distribution (and
in this case the distribution considered), (iv) its value (if of
a given value type) or the first parameter of the distribution,
and (v) the second parameter (of the distribution). These
data contain in particular the parameters that will make it
possible to specify, in different case studies, the human-to-
human transmission (within households, during activities) and
environmental transmission processes.

3.5. Outputs
Much of the rapid assessment of a model’s relevance depends
on its ability to display results in a way understandable by its
designers, programmers and users. When COMOKIT is used in
the form of a dashboard or a demonstrator, the user interface
of the simulations that each experiment runs can be completely
defined and specialized according to the needs of its users. As
the model was primarily designed to evaluate and compare
policies, most experiments run several simulations in parallel
with different parameter values. The user interface then contains
a display of the spatial evolution of the disease for each parameter
value and a graph plotting the evolution of the number of infected
individuals over time. Figure 4 shows an example of such an
interface considering five different proportions of unconfined

individuals. It is also possible to display decreases in activity for
different types of activities (compared to a baseline where no
policy would be applied). Many other visualizations are possible,
both in 2D and 3D, using the declarative approach proposed by
GAMA. Some of them are provided in the model as a base, but
can be enriched according to the needs of the users in order to
compose real dashboards.

4. EXPERIMENTS

In order to illustrate how COMOKIT can be used, we conducted
a series of experiments for Son Loi Commune in Vinh Phuc
Province, Vietnam. Son Loi is a rural commune of about
10,600 inhabitants and has 3,000 buildings of different types
(houses, schools, temples, administrative buildings, industries...).
Returning from a business trip to China, the first two cases were
identified on January 17, 2020 (9). After the identification of nine
other cases (on the 13th of February), the provincial authorities
decided to lockdown the entire commune: the inhabitants were
advised to stay at home and could not leave the commune; their
state of health was checked daily and the authorities organized
the supply of food and masks. After 18 days with no new cases
identified, the lockdown was lifted on the 2nd of March.

To initialize the simulations, we first obtained spatial data
on the buildings of the commune from the buildings present
in Google Map and Bing data. The population input data
file was generated using the Gen* library to produce a set
of individuals grouped into households. We then used an
approach based on combinatorial optimization to find a trade-
off between maintaining the consistency of the microdata
sample at the household and individual levels, while trying
to match the census marginals (e.g., number of men/women,
frequency of age category). In our case study, we used the
IPUMS sample of individuals in households available for the
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FIGURE 4 | Example of the graphical interface of a COMOKIT experiment on Son Loi commune. The experiment compares five simulations with different numbers of

unconfined people.

whole Vietnam in 2014 (15% of the total population) with age,
sex, household identification and employment status. Then, we
randomly selected households with corresponding individuals in
the sample to match the age and sex distribution at the individual
level that we found in the 2019 Vietnamese census for Son Loi.
The indicator chosen to assess the quality of the population is a
normalized Total Absolute Error (TAE)4. The normalized TAE
of the best synthetic population (that is used in the experiments
below) is 0.1. This means that in the best generated population,
when considering the distributions in each age and sex category,
the number of individuals in the synthetic population differs on
average by 10% from the aggregate census count.

As far as epidemiological parameters are concerned, most
of them come from the literature. A preliminary calibration
step is nevertheless necessary to make the disease transmission
rate matching with data available on the considered case study:
the “Successful_contact_rate_human” (the main parameter
impacting the transmission between human beings) is computed

4Consider the distribution tables of age and sex attributes in the real population

and in the synthetic population. The TAE is “the sum of absolute differences

between cells” in these two tables (51), and the normalized TAE is the TAE

divided by twice the population size. This normalized TAE represents the rate of

individuals with at least one incorrect value in a category.

given the R0 of the epidemic in the considered area and the
average number of contacts between people in the simulation5.

We used the default value for all the other parameters (see the
O.D.D. description of the COMOKIT model for the complete set
of values, c.f. section 3).

4.1. Stochasticity Sensitivity Analysis
In a first experiment, we analyze the impact of the randomness of
the simulations on the results and in particular on the dynamics
of the epidemiological status of Individuals. The main objective is
to find a threshold value of replications beyond which an increase
in the number of replications would not imply a significant
marginal decrease of the difference between the results. To
do this, we compare the global incidence (defined here as the
number of new infected individuals per time step), and the
number of Individuals recovered and dead, between replications
of the simulation. Incidence dynamics are not expected to be
smooth since the number of new infections depends on the
contacts between Individual agents, and those do not have much
contact when staying at home during the night. We undertake
this exploration with the simplest possible scenario, i.e., a free
spread of the disease without containment and two infected

5The method is detailed on the COMOKIT website: https://comokit.org/docs/

parameterize#calibration-of-the-transmission-rate-value-beta.
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FIGURE 5 | Median of the incidence and number of individuals in recovered or dead states per step for 25, 50, and 500 different repetitions.

individuals at the beginning of the simulation. We perform 500
replications of such a simulation and compare the variability of
the results for the first 25, 50, 100, 250, and 500 replications.

In Figure 5, we plot the median value (over the replications),
by time steps, of the incidence (first column), the number of
individuals recovered (middle column) and dead (last column).
The shapes are as expected for a SEIR-like epidemiological
model of the disease: the incidence increases exponentially until
a peak before decreasing to 0, and the number of Recovered
and Dead Individuals increase until a time step where they
become constant.

The results suggest that increasing the number of replications
beyond 25 does not have a great impact on the aggregate trend
of the simulated epidemic: the curves soften as the number of
replications increases, but the patterns remain the same. One of
the reasons is certainly the absence of interventions outside the
introduction of the first two cases: the dynamics of propagation
is ultimately only marginally influenced by the usual activities of
the agents. On the other hand, we can expect the simulations
to show quantitatively and qualitatively different results, or
greater variability, when interventions will be introduced (see
next section).

Figure 6 plots the simulation steps for the maximum of
incidence and the steps to reach the maximum of the number

of Dead and Recovered Individuals: it shows the median
(black line), the second and third quartiles (the box) and
the minimum and maximum peak cycle (whiskers) excluding
outliers (simulation results that differ from the median by
more than 1.5 times the IQR). We can observe that most
of the simulations show a near peak cycle, between 500 and
1,500 for incidence, 3,000 and 4,500 for recovered individuals
and 2,500–4,000 for deaths: this shows that the number of
replications does not have a large impact on the aggregate
outcome. However, after more than 100 replications, we have
observed some simulations that show a very contrasted behavior:
for example, when performing 500 replications, three simulations
have their maximum number of agents recovered at less than
1,000 cycles, which means that the epidemic is not occurring
or at least that the spread of the epidemic has been rapid
and less impacting. The probability of “extreme” outcomes
occurring (e.g., a long duration or complete absence of epidemic
spread) is obviously positively correlated with the number
of replications.

For the policy impact study presented in the following
section, we decided to set the number of replicates at 50 in
order to minimize the computation time required while trying
to maintain realistic statistical properties, in particular the
occurrence of extreme outcomes.
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FIGURE 6 | Whiskers plots and minimum/maximum excluding 1.5 IQR outliers of the simulation step of the maximum of the incidence, and the minimum step to

reach the maximum of the cumulative number of recovered and dead individuals per step for different number of repetitions.

4.2. Comparison of Policies
In this section, we illustrate the possibilities of COMOKIT, on
the same case study (Son Loi, Vietnam), for comparing the
impacts of policies and analyzing their performance against a
reference scenario where the virus would have spread freely.
The simulations presented here are limited in number, as the
objective is not to provide exhaustive results, for which an overall
sensitivity study would have been necessary, and which would in
any case make no sense for this particular case study, but to show
what can be achieved with the simulator.

4.2.1. Impact of Wearing Masks
The objective of this experiment is to evaluate the impact of
wearing masks on the spread of the epidemic. While masks
are still not recommended for the general population by the
WHO and there is scientific debate on their use (52), a
study has shown the ability of surgical masks to prevent the
exhalation of respiratory viruses (53). In addition, asymptomatic
and presymptomatic COVID-19 infections have been reported
in different locations (54–57), and are suspected to play an
important role in the persistence of epidemics (58). Therefore,
the use of masks by the population could reduce the impact of
presymptomatic and asymptomatic carriers by preventing them
from releasing aerosols when they are not yet symptomatic,
or droplets when they sneeze (not necessarily related to the
disease). Due to past events related to respiratory diseases, such
as SARS and influenza, people in Asian countries have been
extremely cautious, wearingmasks from the onset of the COVID-
19 epidemic as a hygienic practice, even when people did not
show any symptoms (52).

We therefore sought to assess the impact of the proportion
of people wearing masks on the total incidence, the number of
people recovered and the number of deaths. A comprehensive
experiment exploring one parameter of the simulation (the
proportion of individuals wearing a mask, taking a value between

0 and 1 and a step size of 0.25), was then launched. For each value
of this parameter, we ran 50 replications.

In Figure 7, even if wearing a mask does not help reduce the
total number of infections or deaths (because it only influences
disease transmission), it is found that the use of masks helps to
flatten the incidence curve. Therefore, recommending the use
of face masks would avoid overloading hospitals and intensive
care units in our model as much as possible. The most important
change in the dynamics of the incidence curve was achieved with
a probability of wearing face masks of 0.75 (and above), which
avoided the sudden increase in cases that was still noticeable
with a probability of wearing face masks of 0.5. Since the policy
applied was only to wear masks, no symptomatic individuals
were admitted to hospital. Therefore, neither hospital overload
nor the benefits of being admitted were simulated. The number
of deaths did not change, but the reduction in the number of
infected persons should avoid exceeding hospital capacity as
much as possible.

4.2.2. Impact of the Duration of the Lockdown on the

Epidemic Peak
Faced with a pandemic without specific treatment or vaccine,
public health services rarely have any choice but to choose
policies to limit transmission and “flatten the curve” of incidence
in the population. Depending on the country and region, there
is a range of measures from soft social distancing, such as
wearing masks in public spaces, avoiding congested areas or
maintaining a distance of 1 m from other public transport
users, to blanket travel restrictions, forced quarantine, total
containment and technological monitoring (59). The positive
effects of such actions on the number of hospitalizations,
intensive care admissions, deaths or on the reproduction number
have been demonstrated in different contexts, such as France
(16, 60), Wuhan in China (61) or Italy (62). While complete
lockdown appears as one of the best ways to mitigate the spread
of an epidemic, it raises serious concerns related to economic
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FIGURE 7 | Plots of the median of the incidence and cumulative incidence and deaths on the population per step for different proportions of the population wearing a

mask.

(63) and socio-psychological (64) outcomes and also questions
about the duration of its effectiveness (65) or the consequences of
a partial or total lifting of restrictions (16).

The aim of this experiment is to evaluate the impact of the
duration of a complete lockdown (i.e., when all the activities
are forbidden) on the incidence, the number of recovered and
dead Individuals. Simulations are launched with a simulation
parameter encoding the duration of the lockdown taking values
among 0 (no lockdown), 15, 30, 45, 60, and 90 days. More
specifically, we observe how lockdown duration modifies the
magnitude (e.g., lower or flatten) and time frame (e.g., happen
fast or last long) of the epidemic peak. All the simulations are
initialized with two new infected Individuals chosen randomly in
the population. The complete lock-down policy is applied at the
initial state of the simulation. The case study is also a simplified
situation as no infected Individuals, external to the commune,
can enter in the commune during the simulation.

In Figure 8, we have plotted the incidence, cumulative
incidence and deaths in the population, per step, for different
lockup durations. First of all, we can see that it is not necessary
to continue confinement after 60 days, as this is enough time
to let the disease disappear. For shorter durations, preliminary

results show that a peak in the number of infected individuals
cannot be avoided, although confinement for between 15 and
45 days tends to delay the peak (by giving the health services
more time to prepare) and flatten the curve (by avoiding
overloading hospitals).

4.2.3. Comparison of Realistic Policies
The objective of the last experiment is to compare the impact on
the same case study of three realistic public health policies:

• A combination of policies similar to that used in South Korea:
mass testing (in the model: more than 900 tests per day) with
home quarantine for households with confirmed cases. South
Korea is recognized as one of the countries with the most
effective mitigation strategies implemented: according to the
UNDP (3), it was one of the first countries to implement mass
test programs (between 15 and 20,000 tests per day) with home
quarantine guidelines for confirmed cases. The South Korean
government’s rapid and organized response has produced
excellent results in freezing the early spread of the epidemic.

• A combination of policies similar to the one used in France:
few tests (in the model: less than 200 per day) and, from 1%

Frontiers in Public Health | www.frontiersin.org 13 September 2020 | Volume 8 | Article 563247

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Gaudou et al. COMOKIT: COVID-19 Modeling KIT

FIGURE 8 | Plots of the median of the incidence, cumulative incidence and deaths on the population per step for different lockdown durations.

of confirmed cases, significant mobility restrictions applied
to 90% of the population (to take into account people who
cannot work at home and who are essential for everyday
activities). According to the French government, there have
been ∼5,000 tests per day on average from the beginning of
the epidemic, which is 4–5 times less than Korea or Germany.
Regarding the lockdown, while it was one of the first countries
to cancel major events, the closure of schools and non-essential
economic activities occurred 14 days after the first deaths
due to COVID-19, only preceding Great-Britain among the
European countries (60).

• A combination of policies similar to the one used in Malta: no
confinement for all the Individuals, but individuals belonging
to risk groups (in the model: individuals over 50 years old) are
required to stay at home.

In Figure 9, we depicted the policy consequences over the
incidence (left column) and the number of casualties (right
column). Only the policy involving a conjunction of mass testing
and confirmed cases’ household home confinement (similar to
what South Korea implemented) have been able to contain
the epidemic. However, the two other policies lead to specific
mitigation outcomes: small sample testing in conjunction with

heavy restriction on movement manages to delay and flatten the
epidemic curve, while home containment directive toward at-risk
people seems to lower the number of deaths.

All these experiences illustrate the characteristics and
capabilities of COMOKIT. First of all, we have shown that,
although the model is very stochastic, it is not very sensitive to
this randomness, which allows us to launch explorations with a
limited number (50) of replications. Second, we illustrated the
ability of COMOKIT to compare different policies, for example
by exploring the impact of the proportion of the population
wearing a mask or the duration of a lock. Finally, we highlighted
the expressive power of the model by implementing realistic
policies close to those applied in three countries and by being able
to compare their effectiveness at the scale and in the context of the
Vietnamese commune used as a case study.

5. CONCLUSION AND PERSPECTIVES

In less than 3 months after its emergence in China, the COVID-
19 pandemic spread to the entire world. In the absence of prior
experience with this new disease, public health authorities were
forced to experiment, in a short period of time and in a largely
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FIGURE 9 | Plots of the median of the incidence, cumulative incidence and deaths on the population per step for different realistic interventions (each with a duration

of 60 days).

uninformed manner, with various combinations of interventions
at different scales.

As the pandemic continues its progression, data are being
collected from a variety of sources, allowing authorities to make
adjustments to ongoing and planned interventions, but also
revealing an urgent need for tools and methodologies to quickly
analyse, understand, compare, and predict the effectiveness of
responses to COVID-19 in different communities and contexts.
In this perspective, computer modeling, and especially agent-
based approaches, allows detailed in silico exploration of these
responses prior to their potential implementation. In this paper,
we presented an agent-based modeling software built on the
GAMA platform called Covid-19 Modeling Kit (COMOKIT),
designed to be generic, scalable, and thus portable in a variety
of social and geographical contexts.

COMOKIT is an integrated model, presented in detail
in section 3, which combines a direct person-to-person
transmission sub-model, an environmental transmission sub-
model across the built environment, a policy design sub-
model, and a person mobility and activity model based on
a 1-h time step agenda. As shown in section 4, COMOKIT

offers many guarantees in terms of reproducibility of results
and sensitivity to input parameters. In addition, as we have
demonstrated by implementing and comparing different policies
and policy combinations, COMOKIT is modular and flexible
enough to allow modelers to represent different strategies
and study their impacts under several social, epidemiological
or economic scenarios. It should be noted that although
it comes with a predefined set of policies and activities
for individual agents (e.g., buying, studying, working, etc.),
adapted to most contexts, it can easily be extended to new
agents, policies or activities by editing the models written
in GAML.

Thanks to this inner flexibility and genericity, and to the
increasing availability of open data, new case studies can be
processed in COMOKIT within a few hours, allowing it to be
used in a variety of contexts and by amajority of decision-makers.
In fact, as shown in section 3, the model can work with only
a minimal (usually open) initial dataset: the built environment
and administrative boundaries of the study area can be extracted
from OpenStreetMap, while a statistically consistent synthetic
population can be generated by the Genstar Toolkit from IPUMS
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datasets. More accurate and sophisticated data can of course
be mobilized to support the design of more complex models if
required, and this can be done in a progressive and incremental
fashion. This first version of COMOKIT (version v1.0, released
in May 2020) has however some limitations that are already
identified and that we think we can gradually remove with the
help of other modelers:

• Scaling up: in computational terms, an agent-based approach
will always be more expensive than an aggregate approach,
not only in terms of execution time, but also in terms
of the necessary replications (with respect to deterministic
mathematical models). In its version 1.0, COMOKIT can
reasonably (i.e., in less than 10 min on an average laptop with
a graphical user interface enabled) simulate several months of
pandemic fighting in cities with 10–20,000 inhabitants. Why
take this standard? Quite simply because many users will test
COMOKIT in this way and they should also be able to benefit
from it. More serious experiments, varying more parameters
and exploring different scenarios, will of course require scaling
up. We are working on scaling up on two fronts: the first is to
make it as easy as possible to use an HPC architecture from
the simulator so that any user can access sufficient computing
resources to run many replications or parallelize some of
the operations of the simulations (66). This approach is the
subject of a partnership with the EDF company, which has
agreed to make its computing resources available (including
the GAIA supercomputer); the second is to allow a more
significant scaling-up of the model itself by implementing
a hybrid approach (67–69) that is capable, dynamically, of
aggregating individuals into groups of individuals according to
different criteria (belonging to the same household, presence
in the same space, sharing the same states, etc.) when this
proves possible and relevant, in order to simulate much larger
scales. As GAMA allows to couple computer models and
mathematical models within the same simulation at different
scales (70), this approach will not pose any technical problems,
but it does raise quite interesting conceptual problems (71).

• The second limitation of the model is related to the
assumptions made regarding the representation of group
activities. So far, by design, no activities can be held outside
a building and no group transportation is represented (for
obvious reasons given the size of the initial case studies). This
implies that agents cannot congregate outside buildings, nor
can they congregate by chance; when they do congregate and
have a chance to contaminate each other, it is because they are
performing the same activity and/or are located in the same
building. This strongly limits the representation of informal
activities, such as markets or street restaurants, which are
so common in Vietnam and other countries, outdoor public
events (concerts, religious gatherings, etc.) or collective leisure
activities (walks in pedestrian areas, parties, etc.), even though
some of these activities (especially religious gatherings) are
suspected to have contributed to the initial creation of clusters.
Moving to larger scales will also, of course, require taking into
account the transmission in public transport, from human to
human during travel, but also through the environment, via

the contamination of shared surfaces. These extensions are
already planned for the next version of the model, but any new
contribution is of course welcome!

The COVID-19 pandemic has resulted in countless casualties
and contaminations, imposing massive public health campaigns,
such as social isolation through widespread containment. The
differences between countries and territories in terms of the
occurrence of the virus and the number of victims are striking,
as are the approaches of governments and their effectiveness
in combating the pandemic. In such a context, it is important
to recognize the increasing importance of data-based modeling
approaches in the design of public health strategies. Platforms,
such as COMOKIT can contribute to this effort, provided, as
in this case, that they are open, transparent, easily explorable
and testable, and above all built on sound theoretical and
computational foundations.
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