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Abstract—Spherical cameras and the latest image processing
techniques open up new horizons. In particular, methods based on
Convolutional Neural Networks (CNNs) now give excellent results
for optical flow estimation on perspective images. However, these
approaches are highly dependent on their architectures and
training datasets. This paper proposes to benefit from years
of improvement in perspective images optical flow estimation
and to apply it to omnidirectional ones without training on
new datasets. Our network, OmniFlowNet, is built on a CNN
specialized in perspective images. Its convolution operation is
adapted to be consistent with the equirectangular projection.
Tested on spherical datasets created with Blender1 and several
equirectangular videos realized from real indoor and outdoor
scenes, OmniFlowNet shows better performance than its original
network without extra training.

I. INTRODUCTION

With the arrival on the market of more affordable and more
accurate 360 cameras, their use is proliferating. The latest
generation of cameras, such as Instax 360 One X, Ricoh Theta
Z1, and Samsung Gear 360, offers representative spherical
images with up to 4K resolution. Thanks to their wide field of
view, they can capture their entire environment in a single
image. These sensors are therefore used in many mobile
robotics tasks, such as image-based navigation [1], monitoring
[2] or simultaneous visual localization and mapping (SLAM)
[3].

The equirectangular projection is a simplified representation
of images taken by spherical cameras, particularly to facilitate
human interpretation. In this projection, the latitude and longi-
tude of spherical images are projected in horizontal and verti-
cal coordinates on a 2D plane. The equirectangular projection
is different from classical perspective images and suffers from
important distortions in the vicinity of the polar regions, as
shown in Fig. 1. The methods developed for perspective have
to be rethought to fit with the distortions. Distortions imply
that an object will appear differently depending on its latitude
due to the non-linearity of the equirectangular projection [4].
As a result, the image processing methods traditionally used
for perspective images cannot be applied to equirectangular
images, especially in the case of optical flow estimation.

The optical flow consists of estimating the displacement
of the scene pixels between two frames. Precisely estimated,
it gives information about the environment and the sensor’s
motion. Several methods are used to solve the aperture prob-
lem induced by the brightness constancy equation. The oldest

1https://www.blender.org

Fig. 1. Spherical and equirectangular projection of the globe. In orange
(Tissot’s indicatrix) is the amplitude of distortions [5].

is the variational method trying to constrain the problem to
be as smooth as possible [6]. Other approaches propose a
phase-based model [7]. In recent years, significant progress
has been made in the accuracy of optical flow estimation with
the apparition of convolutional neural networks (CNNs) [8]–
[11]. They now dominate optical flow evaluation in the famous
perspective datasets [12], [13]. Still, CNNs critically rely on
extensive and representative training data sets.

To deal with equirectangular distortions, networks could be
trained on spherical datasets. However, building a complete
optical flow set would be very time-consuming and expensive.
On the other hand, virtual ones often lack representativeness.

Some studies propose other approaches to deal with the
equirectangular distortions. Several methods modify the in-
put images using the Fourier transform [14] or spherical
polyhedron [15]. However, this modification of the input
images requires redefining the whole feature map for a good
estimation of the optical flow. Other methods directly modify
the shape of the kernel used for convolution. In [16], the kernel
sizes are roughly increased near the polar regions. This method
gives promising results but neglects the spherical projection
and its distortions. Therefore, [17], [18] extend this idea by
taking into account the equirectangular transformation. The
size of each sample grid is modified using a local perspective
projection on the sphere. Consequently, the shape of the kernel
is related to the amplitude of the distortion at its latitude.

In this paper, the distortion-aware convolution method is
used to implement a solution that is as universal as possible
and consistent with the equirectangular projection. The pro-
posed approach preserves the feature map and architecture of
high-performance perspective CNNs. The general idea consists
in locally projecting the spherical image onto its perspective
equivalent. The equirectangular convolution then replaces the

https://www.blender.org


usual 2D convolution by modifying the coordinates of the
kernel points used for the convolution. The main contribu-
tion of this paper is to benefit from years of improvement
in perspective optical flow estimation and to transfer it to
equirectangular images. Comparison tests are performed on
spherical datasets to demonstrate the performance of the
new network, OmniFLowNet. These datasets were built with
Blender and are the second contribution of this paper. The last
contribution of this article is the evaluation of optical flow
estimation network on real equirectangular images.

The remainder of the paper is organized as follows. Section
II reviews the optical flow estimation process with CNNs,
especially FlowNet. The proposed solution, OmniFlowNet,
is described in Section III. Section IV compares the per-
formances of the new network and its initial version on
generated datasets. Finally, Section V presents the results of
OmniFlowNet on real equirectangular images.

II. OPTICAL FLOW ESTIMATION

In the last decades, CNNs have shown their superiority
in many image processing tasks. Especially, these networks
are on top of the evaluation rankings of famous optical
flow perspective datasets [12], [13]. One of the earliest CNN
precursors is FlowNet [8]. It outperforms traditional methods
of optical flow estimation and many recent networks are based
on it [9]–[11].

Fig. 2. Two main parts of FlowNet models: the contracting part and the
expanding part. [8]

A. FlowNet

In the first version, two architectures called FlowNet-S and
FlowNet-C are proposed and compared. FlowNet-S is the
simplest network that directly stacks the two input images and
transmits them via a CNN architecture. On the other hand,
FlowNet-C first extracts the features of the two input images
separately and then combines them in a correlation layer
before transmitting to the CNN network. These convolutional
neural networks are trained end-to-end using a large data
set of image pairs and ground truth optical flow. The input
of the network is a pair of successive perspective images,
and the output is an estimate of the flow fields (uf , vf ), as
shown in Fig. 2. FlowNet architectures contain a contracting
and an expanding part, both using back-propagation. In the
expanding part, several “up-convolutional” layers increase the
resolution of the feature maps. The contracting and expanding

parts are connected to preserve both high-level information
of the coarser feature maps and low-level information of the
contracting part.

B. FlowNet2

In FlowNet2, several networks (FlowNet-S/FlowNet-C) are
stacked to form a deeper network. At the end of each network,
the second image I2 is warped to the first image I1 using the
optical flow estimated by the previous network. This way, the
next network can only focus on the remaining optical flow
between I1 and I2 after warping. Each network in the stack has
a particular architecture to perform a specialized task: some
focus more on large displacements, others on small ones. Each
network is trained solo while keeping the other CNNs weights
fixed during the process to ensure better performance.

Due to its great performances in 2017, FlowNet2 is one of
the most cited networks and has given birth to an important
family. Thus, LiteFlowNet2, the most recent network of the
FlowNet family available on GitHub2, is selected as baseline
in this paper to obtain the best performance for optical flow
estimation. Our solution is developed to be as universal as
possible, easily implemented on every network.

III. PROPOSED SOLUTION

Fig. 3. Training: FlowNet is trained with perspective images and ground
truth. Testing: OmniFlowNet is built with the architecture and weights of
the previously trained FlowNet network and adapted with the equirectangular
convolution.

Based on FlowNet networks, this paper proposes to build
OmniFlowNet: a CNN trained on perspective images and used
on spherical images for optical flow estimation. This strategy
avoids generating large and complex spherical datasets for
training and is robust against equirectangular distortions. The
overall architecture and weights of OmniFlownet come from
FlowNet models trained on perspective images and ground-
truth optical flow, as shown in the first row of Fig. 3. The
standard convolution is then replaced by the new distortion-
aware convolution to deal with equirectangular inputs. Our

2https://github.com/twhui/LiteFlowNet2
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solution is compatible with every size of kernel, stride, or
padding. Once these code modifications realized, pairs of
equirectangular images can be used in OmniFlowNet as input.
The second row of Fig. 3 presents the testing process of the
network.

A. Equirectangular convolution

Inspired by [19], this section presents the convolution
adaptation. The usual perspective kernel is modified to fit the
equirectangular distortions. To build a kernel of resolution r
and angular size α centered in a location p00 = (u00, v00)
in the equirectangular image, the center coordinates are first
transformed to spherical system ps,00 = (φ00, θ00) using

φ00 =

(
u00 −

W

2

)
2π

W
; θ00 = −

(
v00 −

H

2

)
π

H
, (1)

where W and H are respectively the width and the height of
the equirectangular image in pixels. Each point of the kernel
is defined by
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the distance from the center of the sphere to the kernel grid.
In order to cover the field of view α, the distance is set to
d = r
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2 )

. The coordinates of these points are computed
by normalizing and rotating them to align the kernel center on
the sphere. Therefore:
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, (3)

where Ra(β) stands for the rotation matrix of an angle
β around the a axis. These coordinates are transformed to
latitude and longitude in the spherical domain using

φij = arctan

(
xij
zij

)
; θij = arcsin (yij) ; (4)

and finally back-projected to the original 2D equirectangular
image
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1

2

)
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In Fig. 4, some example of kernels at different latitude and
longitude are presented. The blue point defines the center of
the kernel p00 = (u00, v00). The red points are the positions
of the elements pij = (uij , vij) in the adapted kernel, defined
as previously. The green points are the positions of elements
in a standard perspective kernel given by:

upersp,ij = u00 + ir; vpersp,ij = v00 + jr. (6)

B. OmniFlowNet convolution

The OmniFlowNet architecture is based on the implementa-
tion of open-source software shared by the LiteFlowNet2 team
[11]. It is based on the Caffe framework [20] and allows GPU
acceleration for training and testing. In the Caffe engine, the
function im2col contains the convolution operation. Updating
this function with the previously proposed models and building
the distribution allows OmniFlownet to compute the spherical
convolution.

In im2col function, the coordinates of elements on each
spatial patch are modified according to patch latitude. There-
fore, the distortion of the output matrix is the same as the
equirectangular image. In OmniFlowNet, the new distortion-
aware convolution replaces all standard convolutions in the
contracting or expanding part of the array.

Fig. 4. Example of kernels with different latitude and longitude. In blue
is the center of the kernel, in green the perspective kernel and in red the
equirectangular one. Wide distortions are visible near the poles.

IV. RESULTS ON VIRTUAL DATASETS

First, the performance of OmniFlowNet and its initial ver-
sions are tested on equirectangular data sets with a ground
truth optical flow, specially built for this study. To the best
of our knowledge, all the famous datasets available with
optical field truth flow, such as MPI Sintel [12], KITTI [13]
or FlyingThings3D [21] contains only perspective images.
Therefore, omnidirectional datasets are constructed to compare
networks.

A. Equirectangular datasets

1) Scene creation: Inspired by the realization of the MPI
Sintel dataset, Blender is used. This tool is a free and open-
source 3D computer graphics software for the creation of
animated films, visual effects, 3D printed models, interactive
3D applications, and video games. Three different scenes
called Cartoon Tree, Forest and LoyPolyModel are
generated with free 3D models available online (Fig. 5). An
equirectangular camera, simulated by Blender, moves in these
fixed scenes with different orientations given by Euler angles
(roll φ, pitch θ, yaw ψ). The sets are shown in TABLE II. The
image resolution is 768 × 384 to maintain a width to height
ratio of 2.



TABLE I
AE (DEFINED IN EQ.7, IN DEGREES) AND EE (DEFINED IN EQ.8 COMPUTED FOR BOTH LITEFLOWNET2 AND OMNIFLOWNET NETWORKS ON THE

THREE SCENES. THE RESULTS ARE AVERAGED ON CASES.

Cartoon Tree Forest Low Poly Model
LiteFlowNet2 OmniFlowNet LiteFlowNet2 OmniFlowNet LiteFlowNet2 OmniFlowNet
AE EE AE EE AE EE AE EE AE EE AE EE

Case 1 61.67 3.76 53.87 3.05 58.81 16.56 54.47 15.65 58.22 7.29 54.62 6.87
Case 2 62.65 4.22 56.07 3.16 57.91 8.23 53.99 7.37 57.66 6.89 53.54 6.41
Case 3 64.16 7.41 55.89 6.03 57.73 8.47 56.32 7.64 57.55 7.51 55.42 6.99
Case 4 63.78 7.01 53.14 5.7 57.99 9.18 55.42 8.23 58.68 8.96 57.25 8.65

Average on Cases 63.07 5.60 54.74 4.49 58.11 10.61 55.05 9.72 58.03 7.66 55.21 7.23
AE diff EE diff AE diff EE diff AE diff EE diff

Average on Cases 8.32 1.11 3.06 0.89 2.82 0.43

TABLE II
CAMERA’S ORIENTATION FOR DIFFERENT DIRECTIONS (GIVEN AS EULER

ANGLES) IN DIFFERENT SCENES.
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Fig. 5. 3D models used to generated Forest datasets.

2) Ground truth extraction: The Vector Pass given by
the Blender Cycles Renderer is used to extract the ground
truth optical flow, as presented in [22]. This render pass is
usually helpful to produce motion blur by giving the motion
of every pixel in the image. Here, the Vector Pass returns
the pixel displacement in the horizontal and vertical directions
perpendicular to the camera axis, the ground truth optical flow.
Fig. 6 presents an example of images generated by the scene
Forest and their ground truth optical flow.

B. Evaluation

1) Metrics: To evaluate OmniFlowNet, two classical met-
rics are used [23]: the average Angle Error (AE) and the
average Endpoint Error (EE). The AE between a flow vector
(uf , vf ) and the ground-truth flow (ufgt, vfgt) is the angle
in 3D space between (uf , vf , 1.0) and (ufgt, vfgt, 1.0). This
error is computed by taking the dot product of the vectors,
dividing by the product of their lengths, and then taking the

Fig. 6. Example of two image pairs and their optical flow ground truth
generated by the scene Forest with different camera orientations.

inverse cosine:

AE = cos−1

 1 + uf · ufgt + vf · vfgt√
1 + u2f + v2f

√
1 + ufgt + vfgt

 (7)

The goal of the AE is to provide a relative measure of
performance that avoids the “divide by zero” problem for zero
flows. Errors in large flows are penalized less in AE than errors
in small flows. We also compute an absolute error, the EE:

EE =
1

N

∑
N

√
(ufgt − uf )2 + (vfgt − vf )2 (8)

Although the use of AE is common, the EE measure is also
appropriate to understand the magnitude of flow errors.

For ease of reading and comparison, the AE difference
is set by comparing the AE values between FlowNet and
OmniFlowNet. The result is an angle, positive if OmniFlowNet
performs better than FlowNet, negative if not.

AEdiff = AEFlowNet −AEOmniFlownet. (9)

The EE difference is also defined as the difference between the
EE of FlowNet and OmniFlowNet. If OmniFlowNet performs
better than FlowNet, the gain is a positive number of pixels,
otherwise negative.

EEdiff = EEFlowNet − EEOmniFlownet. (10)

2) Results and Analysis: Network weights come directly
from LiteFlowNet2 [11]. The SINTEL set [12] is chosen to
fit the synthetic images coming from the Blender rendering.
From this trained model, the OmniFlowNet network is created



by adapting the equirectangular convolution, as described in
Fig.3.

Both networks are tested on previously constructed equirect-
angular datasets. The angular error and the final error are com-
pared for all results. Table I presents all AE (Eq.7, degrees) and
EE (Eq.8, pixels) results and their average on orientation cases
for OmniFlowNet and its initial LiteFlowNet2 network on all
scenes. Second part of Table I directly shows the differences
in AE (Eq.9) and EE (Eq.9) between the networks.

In all averaged cases, OmniFlowNet outperforms Lite-
FlowNet2 on the average angular error, which means that it
measures better the direction of the motion vectors. As for the
average endpoint error, OmniFlowNet has better results in al-
most all of them (small under-performance in 2 configurations
in Forest). The overall gain expected, on average, is around
4.7 degrees in AE and 0.8 pixels in EE.

V. RESULTS ON REAL DATASETS

To the best of our knowledge, there is no omnidirectional
dataset with optical flow ground truth available. So we com-
pared the performances of LiteFlowNet2 and OmniFlowNet
directly on real equirectangular images. These were taken with
a RICOH THETA Z1. Two situations were mainly studied: one
with a fixed camera in a moving scene and the other with a
moving camera in an essentially rigid scene.

Fig. 7. Car 1 case: RGB input image (top) and optical flow computed
by LiteFlowNet2 (bottom-left) and OmniFlowNet (bottom-right). The optical
flow estimated in the equatorial region is similar. The two networks behaves
in the same way in low distortion areas.

A. Field protocol

Different real indoor and outdoor scenes were filmed with
the omnidirectional camera to observe motion in the polar
regions. In the cases of Apple 1 and Ball 3, a sphere is moving
next to a fixed camera in an indoor scene. In Ball 1 and Ball 2,
a moving ball is also observed but in an outdoor scene. In Car
1 and Car 2, the camera is held outside a moving car while
passing under an archway. Once acquired, the equirectangular
videos are reconstructed from the fisheye inputs using the
RICOH THETA Movie Converter application3. Then, the
videos are cut into multiple frames using FFmpeg4.

3https://support.theta360.com/en/download/
4https://ffmpeg.org/

B. Optical flow results

The same networks as in the virtual dataset evaluation
were used: LiteFlowNet2 with SINTEL weights and its Om-
niFlowNet version. A video compiles5 all the experimental
results and shows the comparison between the two networks.

In all cases, the optical flow estimated in the equatorial
region by LiteFlowNet2 and OmniFlowNet are similar as
shown in Fig.7. Our network behaves as its perspective version
in low distorted areas.

Fig. 8. Ball 1 case: RGB input image (top) and optical flow computed by
LiteFlowNet2 (bottom-left) and OmniFlowNet (bottom-right). OmniFlowNet
better estimates the optical flow in the top polar region is better. The ball is
clearly more visible and smoother in that case.

Fig. 9. Apple 1 case: RGB input image (top) and optical flow computed by
LiteFlowNet2 (bottom-left) and OmniFlowNet (bottom-right). OmniFlowNet
better estimates the optical flow in the top polar region is better. The arm is
smoother.

In polar regions, the optical flow estimated by OmniFlowNet
is smoother and, all the time, more coherent than the network
in perspective, as shown in Fig.8. Whereas the ball motion
estimated by LiteFlowNet2 is a shredded mark, OmniFlowNet
predicts a complete ball with coherent motion. In Fig.9,
the arm moving above the north pole of the camera has a
smoother predicted optical flow by the spherical network than
the perspective one. The equirectangular convolution helps the
network to better understand and calculate motion in highly
distorted areas.

5http://www.i3s.unice.fr/∼allibert/Videos/icpr20 video.mp4

https://support.theta360.com/en/download/
https://ffmpeg.org/
http://www.i3s.unice.fr/~allibert/Videos/icpr20_video.mp4


Fig. 10. Ball 1 case with blackened south pole: original RGB input image
(top-left), new RGB input image with blackened south pole (top-right) and
respective optical flow computed by OmniFlowNet (bottom-left) and Omni-
FlowNet (bottom-right). The optical flow computed with the blackened images
shows less noise in the south pole. Thus camera tripod and equirectangular
reconstruction add noise to the optical flow estimation.

The south polar region often presents optical flow noise
in the OmniFlowNet estimation. This is related to the artifacts
created by the tripod holding the camera. When reconstructing
the equirectangular image from the two fish-eye lenses, this
highly distorted region certainly brings some noise to the
final image. While LiteFlowNet interprets it as white noise,
OmniFlowNet with the equirectangular convolution probably
detects coherent motion. The Fig.10 shows that by blackening
the entire tripod region, the induced noise is reduced.

Overall, on several diverse real data sets, OmniFlowNet
outperforms its perspective version in estimating better and
smoother optical flow in polar regions and shows the same
performance in the equatorial region. Due to space limitation,
only brief but most representative parts of total results are
presented in the video6.

VI. CONCLUSION

In this paper, we present OmniFlowNet, a CNN for optical
flow estimation on omnidirectional images. Built on a proven
reference CNN, our network benefits from many previous
studies on optical flow estimation. It adapts to equirectangular
distortions using distortion-aware convolution. The high-end
methods for optical flow estimation on perspective images
are applied locally on the sphere. Thus it only uses pre-
trained weights on perspective images and does not require
extra training on equirectangular datasets. OmniFlowNet out-
performs its original network on omnidirectional sets built with
Blender and on real equirectangular sets with various scenes
and motion. Our code implementation and omnidirectional
dataset is available on GitHub7.
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