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Energy-efficient GPS synchronization for
wireless nodes

David Pallier, Vincent Le Cam, Sébastien Pillement

Abstract— Synchronization is a challenging problem for wireless nodes, especially for applications demanding good
synchronization accuracy over wide areas. In that case, the GPS is a valuable solution as the nodes can independently
synchronize to UTC. However, the energy consumption of a GPS receiver (over 100 mW when switched on) is not
sustainable on a wireless node. Therefore, in this work, we developed a synchronization scheme based on periodic
extinctions of the GPS receiver. The goal is to study the GPS power switching effect on the synchronization accuracy.
To do so, a node with dedicated timestamping hardware was designed. Two clock models were compared to predict
the node time when the GPS is off and the impact of a Kalman filter, to remove the GPS noise, was evaluated. From
experimental data, we show that the choice of the clock model depends on the accuracy needed and that the Kalman
filter improves the estimation of the clock frequency for both models. In our design, the GPS can be off from 60% up to
95% of the time for mean synchronization errors of 20 ns to 420 ns, respectively. This work demonstrates that GPS power
switching is an efficient solution to reduce energy costs while maintaining a high synchronization accuracy.

Index Terms— Clock synchronization, WSN, Energy efficiency, FPGA, GPS, Kalman filter, Structural Health Monitoring

I. INTRODUCTION

MONITORING the health of structures often implies the
deployment of many sensor nodes to sample physical

parameters such as ambient temperature, constraints, vibra-
tions, acoustic waves, electrical fields, etc. Posted to a central
supervisor, in delayed or in real-time, those samples are fed
to Structural Health Monitoring (SHM) algorithms to assess
the infrastructure health. As most of these parameters are time-
dependent and sampled from different nodes, the system needs
to have a common time reference. The following examples un-
derline the need for synchronization and the accuracy needed
for SHM applications:

1) The natural frequency range of vibrations for structural
diagnostics (modal analysis) is typically comprised be-
tween 0 and 100 Hz. Thus, accelerations are usually
sampled at 1000 Hz. To ensure good modal reconstruc-
tion, the synchronization error between nodes must be
lower than 1 ms.

2) Acoustic wave propagation is often used to localize the
crack origin in a steel bar or a wire break in bridge
cables. The method based on Time Difference Of Arrival
(TDOA) is very dependent on the sensor’s ability to
timestamp acoustic wavefronts. With a typical velocity
of 5000 m/s and a localization accuracy expected to +/-
15 cm, synchronization error between two nodes must
be lower than 30 microseconds.

3) The TDOA method is also used to monitor the localiza-
tion of lightning on high electrical voltage lines. With
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a speed of 200 000 km/s and an expected localization
of +/- 50 m, synchronization error between two nodes
must be under 250 nanoseconds.

Time-counting on an electronic device, such as a wireless
node, is mainly based on the use of an oscillator. Unfortu-
nately, oscillators are highly sensitive to environmental condi-
tions such as temperature, acceleration, or voltage supply sta-
bility [1]. Consequently, the frequency of the oscillator drifts
from its theoretical value over time. Without a synchronization
protocol, each node will have its own local time and the offset
between the clocks of the nodes increases over time. In most of
the cases, this synchronization protocol relies on timestamps
exchange between the nodes. The synchronization accuracy
that can be obtained in the network depends on the accuracy
of the timestamps exchange, the synchronization update rate,
and the stability of local oscillators.

A wireless sensor network (WSN) is a cost-effective way
to deploy sensing nodes onto already existing large structures
(bridges, wind power plants, railway lines, etc). This is why
WSNs are more and more used for SHM applications. How-
ever, synchronization between nodes is harder in wireless net-
works due to non-deterministic propagation delays. Classical
wireless synchronization protocols such as [2], [3] and [4]
cannot achieve sub-microsecond accuracy, especially in multi-
hop scenarios. In this context the Precision Time Protocol
(PTP) has been extended over 802.11 communications with
hardware timestamping [5] or synchronization over UWB
communications [6] and can achieve sub nanosecond accuracy.
While these protocols can offer good synchronization accuracy
for the monitoring of small structures, they cannot be used
for large structures like bridges, railways or power-lines, as
they need close and iterative synchronization process. For large
outdoor systems (which are most of SHM applications) a satel-
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lite navigation system, like GPS, can be used to synchronize
each node to UTC as in [7]. This method is suitable for large
infrastructures and allows timestamping accuracy up to tens
of nanoseconds. The main limitation of this technique is the
energy cost of a GPS receiver. Since energy consumption
needs to be minimized in wireless systems, GPS solution
needs to be optimized according to the required timestamping
accuracy.

In this context, we developed a new synchronization scheme
based on GPS holdover. Namely, GPS is used for precision
purpose but it will be turned off to save power. During the
off-state, the local time of the node is estimated using a
clock model. The synchronization accuracy obtained with this
scheme depends on the chosen holdover parameters: from
tens of ns to 1 ms. To further improve the estimation of
the clock model parameters, the GPS signal can be filtered
when in on-state. The contributions of this work are: (1) the
design of a node with dedicated hardware for timestamping,
(2) the accuracy and energy efficiency evaluations of our
synchronization scheme for different clock models, and (3)
the study of the impact of frequency filtering using a Kalman
filter.

The paper is organized as follows. The related works
are summarized in Section II. Node architecture, timestamps
computation, the use of GPS for periodic re-synchronization
and the experimental setup are described in Section III. Section
IV introduces the clock models, and the Kalman filter. The
results are discussed in Section V, while Section VI resumes
our contributions and outlines future perspectives.

II. RELATED WORKS

Since synchronization in distributed systems was first for-
malized in [8] and later extended in [9], numerous solutions
have been developed to tackle the problem of synchroniza-
tion in networks. The Network Time Protocol [10] and the
Precision Time Protocol [11] are the most used network syn-
chronization protocols over the wired Ethernet. It is possible
to obtain microsecond synchronization accuracy with these
protocols, and an extension of the PTP [12] aims to achieve
sub-nanosecond accuracy.

Classical synchronization protocols for WSNs are based on
the exchange of dedicated timestamped RF beacons. These
protocols can be divided into two categories: the sender to
receiver and the receiver to receiver protocols. In the sender
to receiver scheme, a node sends its time to a receiver that
timestamp the arrival of the packet using its local time.
Then, the receiver synchronizes itself by estimating the offset
between its local time and the time of the sender. To estimate
the propagation delay a two-way exchange has been developed
in [3]. The same principle is used in [4] but on a mesh
topology instead of a tree and with the estimation of the packet
processing overhead. Other works [13] [14] [15] also rely on
the same principle but are optimized for specific nodes with
constrained resources like PicoRadios [16]. In the receiver
to receiver scheme [2] [17] a third party node broadcast a
beacon that doesn’t contain a timestamp. All the receivers
timestamp the arrival of the beacon with their local clock

and then exchange their observations pairwise to calculate
their offsets. The performances of all these protocols are
limited by the propagation delays and the packet processing
overhead. The interested reader can refer to [18] that outlines
the existing implementations of these techniques and their
limitations. While some implementations of these protocols
can achieve microsecond accuracy most of them are in the
tens of microsecond range. Moreover, the accuracy decreases
with the number of hops which can be problematic on large
structures such as bridges, railways, or power-lines. Signal
processing techniques have been described in [19] to deal with
non-deterministic propagation delays but, to the best of our
knowledge, these techniques have not been implemented on
real wireless nodes.

Other works focus on the implementation of clock syn-
chronization in wireless communication norms. ZigBee is the
most used protocol in the Low Rate Wireless Area Personal
Network (LR WPAN), which adds network and application
layers on top of the 802.15.4 protocol. In [20] the Flooding
Time Synchronization Protocol (FTSP) is used to synchronize
nodes over ZigBee to obtain a timestamping accuracy of 61
µs. The use of UWB for the physical layer was added to
IEEE 802.15.4 as an amendment in 2007 and merged in
IEEE 802.15.4-2011. In [6] UWB is used to synchronize
the clocks of a pair of chips on the same PCB with an
accuracy of 374 ps (standard error of 677 ps). Several im-
plementations of synchronization protocols over IEEE 802.11
are compared in [21]. IEEE 802.11 compliant synchronization
solutions can achieve µs clock synchronization accuracy [22]
and non compliant solutions using PTP (IEEE 1588) can
achieve nanosecond accuracy [5] or sub-nanosecond accu-
racy with a hardware timestamping mechanism. While these
synchronization schemes can offer a good synchronization
accuracy on small structures, they are not suited for large
structures, where the nodes can be distant of a few hundred
meters to several kilometers. More recently, Low-Power Wide-
Area Network (LPWAN) communications have gained interest
for industrial applications. Based on LoRa, Sigfox, or NB-
IoT, these protocols allow for communications over a few
kilometers in urban areas. In [23] LoRa and NB-Iot are used
for node communications in the context of machine vibrations
monitoring. Nodes are synchronized every 10 s using LoRa
with an accuracy of 5 µs.

Another approach to wireless node synchronization is to
use a satellite navigation system, like the GPS, to make
each node synchronized to UTC. This solution has been
implemented in [7] and [24]. The clock of the node is steered
by the PPS signal coming out of its GPS receiver. To achieve
an accuracy of tens of nanosecond, dedicated hardware is
used with high-speed counters. The use of hardware induces
deterministic timestamping which removes software overhead
and thus improves the timing accuracy. While this approach is
suitable for accurate synchronization, a GPS receiver requires
a lot of energy (up to 100 mW). This cost can be affordable
for applications requiring a high synchronization accuracy,
but for less critical applications that require less accuracy,
the energy consumption needs to be optimized. In this work,
we propose an adaptive synchronization protocol based on
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automatic on/off switching of the GPS receiver to minimize
the energy consumption under a defined accuracy constraint.

Adaptable synchronization accuracy has already been de-
scribed in [17] as an extension of RBS [2]. In [25] a
Kalman filter is used to track the offset of a local clock
from timestamped message exchange and an algorithm is
developed to find the optimal message exchange rate for a
parametric accuracy. Our work differs from these solutions as
it is designed on top of GPS synchronization (although any
GNSS receiver can be used) instead of beacons exchange and
relies on dedicated timestamping hardware to achieve up to
tens of nanoseconds synchronization accuracy.

III. WIRELESS NODE

A. Node Architecture

The node design presented in this paper is similar to
the one presented in [7]. It includes a dedicated hardware
timestamping unit. The timestamping unit is connected to
a GPS receiver and has inputs connected to digital signals
that have to be timestamped (see Figure 1). The node is
synchronized with the PPS signal and the epoch transmitted on
a serial link from the GPS receiver. A rising edge on the PPS
signal corresponds to the beginning of a UTC second. The
epoch corresponds to the number of seconds elapsed since
January 6th, 1980. It is used to compute the UTC date at the
next rising edge of the PPS signal. The detection of a rising
or a falling edge on a digital input of the node is called an
event. The events are timestamped with high-speed counters
in the timestamping unit and are stored until they are read by
the main control unit of the node. This node architecture has
several advantages:

• No processing overhead: The use of dedicated hardware
on FPGA suppress processing overhead at event detec-
tion. Since the delay between the rising edge on the input
and the timestamping is deterministic and not affected by
software overhead due to process scheduling and interrupt
latency, the timestamping accuracy is improved.

• Parallel high granularity timestamping: On most micro-
controller units, the number of parallel counters able to
timestamp independent events is limited. Another limiting
factor is the time granularity fixed by the quartz oscillator
frequency. With a custom design, the number of parallel
counters is only limited by the FPGA size. The frequency
is fixed by the PLL included in the FPGA and can be
higher than the quartz oscillator frequency, allowing a
higher granularity.

• Asynchronous data fetching and main control unit inde-
pendence: Since timestamping and data processing are
separated, the main control unit can fetch data (on digital
inputs) asynchronously on the timestamping unit. Thus
any operating system and any microcontroller can be used
as long as the microcontroller is equipped with a serial
link.

In this work, we focus on the timestamp unit design. For
the main control of the node, without loss of generality and
for quick prototyping purposes, we used a Raspberry Pi.

Fig. 1: Timestamp unit

B. Timestamp computation
We define the local estimation of the PPS signal (according

to the local quartz oscillator) as the fake PPS signal. The offset
θ is then the time between a rising edge of the true PPS signal
and the next rising edge of the fake PPS signal (issued by the
GPS). It corresponds to the time difference between the local
clock and the GPS time. ∆ is the time between a rising edge
of the fake PPS signal and a rising edge on a digital input (i.e.
an event). θ and ∆ are represented in the timing diagram in
Figure 2.

Fig. 2: Timing diagram

The date t[n] of a recorded event occurring during the nth

local second is computed based on the date of the true PPS
rising edge tpps[n], that occurred during the fake PPS period
and the elapsed time between the event and this rising edge.
The elapsed time corresponds to the measured offset θ[n]
minus the measured ∆[n] for this particular event. This time
is positive when the event is detected after the true PPS edge
and negative when detected before. Hence:

t[n] = tpps[n] + θ[n] − ∆[n] (1)
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C. Timestamping unit Architecture
The above timlestamp computation is implemented on a

Spartan 6 FPGA and is shown in Fig. 1. Since this design
aims at turning off the GPS, the clock synchronization is
different from the one used in [7]. In this design, the clock
counter is not reset by the PPS but instead is bounded by
N0. This integer corresponds to the number of clock beats
counted over one second at the nominal frequency f0 of the
quartz oscillator. In the meantime, the local time offset θ is
recorded to convert the local timestamp to UTC. The fake PPS
signal is generated inside the FPGA, by dividing the local
clock frequency to obtain a 1Hz square signal. The offset
corresponds to the differential between this signal and the
true PPS signal from the GPS receiver. Tracking the local
time offset has been chosen over the control of the clock
as it allows for both offline and online synchronization. This
enables us to perform the timestamp conversion, from local
time to UTC, on the fly or post facto if the offset is recorded
alongside the events. This post facto synchronization allows
us to test different synchronization schemes from the same
events dataset for evaluation purposes.

The values θ and ∆ are not directly measured inside the
timestamp unit as they are integers corresponding to counter
values and not timing values. Let Nθ and N∆ be the counter
values corresponding to the offset counter and the event
counter, respectively. These integers are converted into time
values using the true frequency of the oscillator. Equation 1
becomes:

t[n] = tpps[n] +
1

f [n]
(Nθ[n] −N∆[n]) (2)

With Nf , Nθ and N∆ the counter values from the timestamp
unit, while tpps is obtained from the GPS receiver.

The number of local clock beats counted during a full period
of the true PPS signal is Nf . Let TGPS be the time elapsed
between two rising edges of the true PPS signal. If the true PPS
signal is perfect then TGPS is one second. The true frequency
of the local oscillator can be computed as follows:

f [n] =
Nf [n]

TGPS [n]
(3)

giving:

t[n] = tpps[n] +
TGPS
Nf [n]

(Nθ[n] −N∆[n]) (4)

If the true PPS signal is perfect, the only residual error is
due to the granularity resolution as Nf , Nθ and N∆ are integer
values. The frequency output of the PLL inside the FPGA was
set to 240MHz giving a counter resolution of 4.17 ns.

D. Periodic re-synchronization from GPS
As described in [26], GPS synchronization allows for a

timing accuracy under 60ns. However, it entails a substantial
energy cost as the GPS receiver is constantly on. When a
lower accuracy is needed, GPS can be used periodically to
re-synchronize the node. Between two synchronizations, the
GPS receiver is off to save energy. The accuracy that can be
obtained depends on the re-synchronization period. To be able

to deliver the PPS and the epoch, the GPS receiver needs to
decode parts of the navigation message broadcasted by the
GPS satellites. In normal conditions the GPS receiver has to:
• Generate PPS: In order to generate the PPS signal, the

GPS receiver needs to track the "in-view" satellites,
compute its time and position (called fix) and then lock
its clock. According to [26] the time to first fix is
under 1 second when the ephemeris are still valid. From
experimentations, we observed less than 1 second to get
a fix and less than 4 seconds to lock the clock.

• Refresh ephemeris: In order to track the in-view satellites
the receiver needs to compute its position, therefore the
ephemeris needs to be updated. In this work, we update
them at their typical update rate of two hours.

• Acquire a complete navigation message: Since the
ephemeris are already acquired every two hours the
complete navigation message is acquired once a day.

In between the above phases, we propose to turn on and
off the GPS to save energy. The off phase is called holdover
and correspond to the time between two consecutive GPS time
synchronizations. Figure 3 shows the on and off phases of the
GPS receiver for a 24 hours period. The T_NAV is 25 minutes
long every 24 hours. The T_EPH is 1 minute long every 2
hours. The GPS is on during kon seconds and in holdover
during k − kon seconds. In this mode, the GPS receiver
is switched off (except its memory to keep the ephemeris).
Equation 5 gives r, which represents the on/off ratio of the
GPS receiver over 24 hours as a function of the parameters k,
kon, TNAV and TEHP .

r = TNAV +
1

86400
.(kon.

7200− TNAV
k

+ 11.kon.
7200− TEPH

k
)

(5)

The minimum kon is 5 seconds to get at least one locked pulse
on the PPS signal, after this first delay the receiver delivers
one pulse per second. Two pulses are required to get Nθ, N∆

and Nf . The main difficulty is then to track the offset of the
fake PPS, while the GPS is in holdover mode.

Fig. 3: Synchronization process from GPS

IV. OFFSET TRACKING
A. Clock model

The offset needs to be predicted during the holdover to have
accurate timestamping. To do so a clock model is used. Let
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C(t) be the node local time as a function of the real time.

C(t) =

∫ t

0

ω(τ)dτ + θ0 (6)

With ω the clock rate and θ0 the offset at the origin. A perfect
clock would yield C(t) = t. The C(t) = ω.t + θ model is
often used [2] [4]. In this model, the clock rate is constant
but not equal to one. This is due to the fact that most of the
oscillators are not functioning at their nominal frequency, but
at a frequency supposed to be constant. While the latter is
known to be false for crystal quartz oscillator, the variations
of the frequency over a short time can be small enough to be
considered constant since ambient temperature moves slowly.
Fig. 4 represents the local time as a function of the real time for
a perfect clock, a clock with a constant rate and a clock with
a varying rate. The oscillator used in this design is an SPXO
with an overall frequency stability of +/-20 ppm. Typically,
the frequency stability of these oscillators is in the ppb range
for sampling intervals of one second [21].

Fig. 4: Constant and dynamic skew of the local time over UTC

The offset of a clock at time t is the difference between its
local time C(t) and the real time t. Thus the local time offset
θ(t) can be expressed as:

θ(t) = C(t) − t (7)

=

∫ t

0

ω(τ)dτ + θ0 − t (8)

Since the offset is sampled every second in the node, a discrete
time model is needed. Equation 8 becomes:

θ[n] =
n∑
i=1

ω[i].τ [i] −
n∑
i=1

τ [i] + θ0 (9)

With τ representing the duration of a supposed second for the
node. This duration depends on the frequency of the node’s
oscillator and can be expressed as:

τ [n] =
N0

f [n]
=

N0

Nf [n]
.TGPS [n] (10)

The clock rate ω[n] can be computed from the number of local
clock beats counted during TGPS [n]:

ω[n] =
Nf [n]

N0
(11)

Therefore:

θ[n] =
n∑
i=1

TGPS [i] −
n∑
i=1

τ [i] + θ0 (12)

If the PPS is considered perfectly synchronized to UTC,
TGPS = 1s and thus:

θ[n] = n−
n∑
i=1

N0

Nf [i]
+ θ0 (13)

In holdover mode, τ is not known since the GPS receiver is
off. The simplest method to estimate it is to use its last value
that was observed when the GPS was on. Since the error on
the offset is the sum of the error on τ , this error will grow
as τ drift away from its last observed value. In that case, the
synchronization accuracy will depend on the holdover time
and the drift rate of τ . This model will now be referred to as
the Constant Skew Clock Model (CSCM).

Another model, that will be referred to as the Linear Skew
Clock Model (LSCM), is to consider that τ is evolving
linearly during the holdover mainly due to slow variations
of the ambient temperature. In this model, the clock skew
is considered as dynamic (see Fig. 4) and approximated by a
piecewise linear function. The clock skew can be computed
as:

τ [n+ 1] = τ [n] + u (14)

with u the common difference that can be evaluated for every
holdover as:

u =
τ [n] − τ [n− k]

k
(15)

Under the hypothesis that u changes slowly, the last seen u
can be used to predict τ during the holdover.

B. Kalman filter
In the previous section, the PPS signal was considered

as perfect. In reality, this signal from the GPS receiver is
subject to jitter, which creates noise in the frequency and
offset measurement. According to [26], the RMS of the timing
accuracy is 30ns. While this noise can be neglected when the
GPS receiver is always on, it is not the case in the holdover
mode. Indeed, the absolute offset error is the sum of the offset
errors over time. The offset error growth, during holdover,
depends on the accuracy of the measured frequency of the
local oscillator at the beginning of the holdover.

To filter the noise on the PPS signal when the GPS is on,
a Kalman filter was implemented. This filter uses the good
short term accuracy of the local clock to filter the noisy PPS
observations. The behavior of the fake PPS period τ during
the short GPS on-time period is modeled by a random walk
process:

τ [n+ 1] = τ [n] + v[n] with v[n] ∼ N(0, σ2
v) (16)

Let z be the observations of τ from the noisy PPS signal:

z[n] = τ [n] + w[n] with w[n] ∼ N(0, σ2
w) (17)

The Kalman filtering process is based on the classical follow-
ing equations [27]:
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• Prediction:

τ̂n+1|n = τ̂n|n (18)
pn+1|n = pn|n + q (19)

• Update:

ỹn = z[n] − τ̂n|n−1 (20)
sn = pn|n−1 + r (21)

kn = pn|n−1.s
−1
n (22)

τ̂n|n = τ̂n|n−1 + knỹn (23)
pn|n = (1 − kn).pn|n−1 (24)

With q = σ2
v and r = σ2

w. This filter is stable [28]. The state
variable is initialized with the observation. The variables r, q
and p0 are chosen empirically.

V. RESULTS AND DISCUSSION

To evaluate the synchronization algorithms detailed in the
previous section, an experimental setup has been developed.
Two wireless nodes based on the architecture detailed in
section III were implemented on raspberry pis and spartan
6 development boards with their digital inputs connected to
the same output of a low-frequency signal generator. This
generator generates rising edges (i.e. events) every 2.34 sec
that are timestamped by the nodes.

The nodes were placed indoor and the GPS antennas on
the roof of the building. The fixed mode was used on the
GPS receivers [26]. This GPS configuration is available on
certain timing receivers from Ublox. It allows the user to
define the GPS antenna location in the receiver to enhance
the local time estimation and thus deliver a better PPS signal.
The nodes recorded events during more than 2 days. Over
2 × 105 frequency and offset samples were recorded for each
node as well as up to 8.5 × 104 event samples.

A. Clock models comparison

First, we compared the clock models. In Fig. 5 the estimated
τ with the CSCM and the LSCM are plotted against the
observed τ on a part of the dataset and for k = 1000s. The
LSCM seems to be closer to the observations than the CSCM.
However, Figure 6, which shows the same variables on another
part of the dataset, the CSCM seems closer to the observations.
The RMSE of the LSCM and the CSCM for the estimation
of τ and θ on the full dataset and for k ranging from 10 to
3000, are summarized in Table I. The RMSE for τ and θ were
computed on the difference between the predicted τ and θ and
the GPS observations.

We can see from this Table that the LSCM outperforms the
CSCM for both τ and θ, when k > 1000. The PPS noise
explained in Subsection IV-B can be seen in the observations
in both figures. The fact that the LSCM yields poorer results
than the CSCM for k 6 1000 is most probably due to this
PPS noise.

Fig. 5: Observed and predicted τ on the first part of dataset

Fig. 6: Observed and predicted τ on the second part of dataset

B. Impact of the Kalman filter

The impact of the Kalman filter on the offset tracking
performance was evaluated. As seen in Section IV-B the
Kalman filter is only used when the GPS is "on" to filter
the PPS noise. Since the performance of the filter depends
on the "on" mode duration, the effect of this duration was
studied. To do so we ran the Kalman filter for different kon
and for different k. Then the on/off ratio r was calculated
according to Eq. 5. Figure 7 shows the r against the RMSE
of the offset for different values of kon. The RMSE increases
as the ratio decrease since a longer holdover yields a poorer
synchronization accuracy but a better ratio. From these results

TABLE I: RMSE of the CSCM and LSCM

k CSCM LSCM
RMSE τ RMSE θ RMSE τ RMSE θ

10 1.3394E-08 5.8209E-08 1.8527E-08 7.8107E-08
25 1.3626E-08 1.4230E-07 1.8483E-08 1.9750E-07
50 1.3656E-08 2.8072E-07 1.8467E-08 3.9577E-07

100 1.3855E-08 5.7021E-07 1.8680E-08 8.0479E-0
250 1.4234E-08 1.4609E-06 1.8604E-08 2.0049E-06
500 1.5341E-08 3.1602E-06 1.8715E-08 4.0681E-06
1000 1.9235E-08 7.9718E-06 2.0007E-08 8.6390E-06
2000 2.9425E-08 2.3955E-05 2.5034E-08 2.0925E-05
3000 3.9110E-08 4.6289E-05 3.2004E-08 3.7230E-05
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we chose kon = 5 seconds since it seems to be the optimal
duration for a RMSE ranging from 10ns to 50 µs. A lower
kon slightly improves the ratio for longer holdover but worsen
it for shorter ones.

Fig. 7: Optimal kon depending on the ratio r

Figure 8 shows τ for k = 1000s and for the same part of
the dataset than in Fig. 6. As can be seen the filtered LSCM
seems to fit the observations better than the CSCM. Fig. 9
shows a comparison of the filtered and non-filtered models.
The RMSE of the offset is plotted against k. It can be seen
that both models can be used for the filtered and non-filtered
cases depending on the holdover duration. It can also be seen
that the Kalman Filter models yield better results than the non-
filtered models. For a holdover duration of less than 134s, the
filtered CSCM produces better results, for a holdover duration
over 134s the hypothesis of a slowing changing u seems valid
and the filtered LSCM yields better results.

Fig. 8: Observed and predicted τ using a Kalman filter

C. Timestamps
Then we compared the timestamping errors between the

different models. The timestamps are computed according
to Eq. 2. The timestamp errors are the differences between
the timestamps computed with the GPS always "on" and the
timestamps computed with the periodic GPS extinctions. Fig.
10 shows the RMSE of the timestamps errors as a function
of k for both nodes. As expected the filtered CSCM yields

Fig. 9: Offset RMSE for the different models

the best results for holdover up to around k = 200s while the
filtered LSCM produces best results above. The evolution of
the RMSE as a function of the holdover is approximately the
same for both nodes.

Finally, we computed the GPS "on"/"off" ratio for all the
models. These ratios are plotted against the RMSE on a semi-
log scale, in Fig. 11. It can be seen that for all models the
ratio decreases exponentially as the RMSE increases and that
they all converge to the limit of 2.5%. This limit corresponds
to the minimal GPS ratio according to Eq. 5. The Kalman
filter improves the ratio by a factor 3 under the microsecond
accuracy despite a longer "on" state. The filtered CSCM yields
a maximum improvement of 7% on the ratio over the filtered
LSCM under 200s and the gain of the filtered LSCM above is
marginal (0.5% max) as it happens for a RMSE greater than
300 ns. The results are similar for both nodes.

Fig. 10: Timestamps RMSE on both nodes

D. Discussion
Our synchronization solution allows for a RMSE under 10

ns with the GPS always "on". The RMSE stays under 20 ns
on both nodes with a GPS "off" 60% of the time. For a GPS
"off" 80% of the time and 95% of the time, the RMSEs are
under 50 ns and 420 ns, respectively. As the computations were
conducted offline (i.e a posteriori) to test different models,
the GPS receiver was only virtually off but our study showed
that the GPS receiver energy consumption could be divided
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Fig. 11: GPS ratio as a function of timestamps RMSE

by a factor 20 with a mean synchronization error of half a
microsecond when implemented with real-time GPS cycling.

However, the data showed that the distribution of the times-
tamps errors is not exactly normal as it has heavy tails. It was
observed that the absolute maximum error is approximately
ten times bigger than the RMSE for all our experiments. But
even with an accuracy limit ten times bigger than the RMSE,
the GPS can be switched off 60% of the time for a maximum
error under 200 ns or 95% of the time for a maximum
error under 4.2 µs. Table II summarizes the node to node
theoretical range and the accuracy of existing synchronization
protocols. TPSN, RBS, or FTSP with Berkley motes can
offer µs synchronization accuracy on small networks with low
complexity hardware. Standard IEEE 802.11 synchronization
protocols offer the same synchronization accuracy, but sub-
nanosecond accuracy can be obtained with the use of PTP.
However, the range is still limited to local networks. Sub-
nanosecond accuracy can also be obtained with UWB for an
even smaller range. For long-range and wide networks, LoRa
has been used to obtain 5 µs accuracy with synchronization
updates every 10s. In comparison, the presented GPS based
solution has a maximum accuracy of 10 ns (RMSE) and an
accuracy of 4.2 µs for synchronization updates every 100 s.

While dedicated hardware is important for multiple channel
high accuracy timestamping, the spartan 6 development board
used in this work is not the best target to implement the design
as it draws almost as much current as the GPS receiver. But
it is only a proof of concept and the timestamp unit can be
implemented on a dedicated ASIC or a smaller FPGA or a
CPLD. We already implemented this unit on a smaller FPGA
(lattice ICE40 [29]) with a slightly lower resolution for a
power consumption of 35 mW. For comparison, the ublox
receiver needs 150mW when fully ON and the active GPS
antenna draws another 10 to 60 mW (depending on the antenna
used).

VI. CONCLUDING REMARKS

Synchronization is a challenging problem for wireless
nodes, especially for applications requiring good timestamping
accuracy across wide areas. Taking into consideration these
applications we designed a node with a simple timestamping

Protocol Theorical node to node
range

Synchronization
error

Adaptable
accuracy

TPSN [3] ≈ 100 to 300 m
(Berkley motes [30])

16.9 µs avg no

RBS [2] ≈ 100 to 300 m
(Berkley motes [30])
or 20 to 150 m (802.11)

6.29 µs avg
(802.11) 29.1 µs
avg (Mica)

added in
[17]

FTSP [4] ≈ 100 to 300 m
(Berkley motes [30])

1.48 µs avg no

802.11
TSF [31]

≈ 20 to 150 m 4 µs avg (< 1 µs
std dev)

no

802.11 TA
[31]

≈ 20 to 150 m 0.5 µs avg (2.5
µs std dev)

no

PTP over
802.11 [5]

≈ 20 to 150 m 240 ps avg (531
ps std dev)

no

Sync. with
UWB [6]

≈ 10 m 374 ps avg (677
ps std dev)

no

Sync. with
LoRa [23]

≈ 1 to 15 kms 5 µs max no

Presented
solution

illimited 10 ns RMSE yes

TABLE II: Range and accuracy of synchronization protocols

dedicated hardware that uses GPS for synchronization. In order
to adapt the energy cost of the GPS receiver to the times-
tamping accuracy needed by the applications, we developed a
synchronization scheme based on periodic GPS extinction.

We found that both proposed models can be used depend-
ing on the timestamping accuracy needed. For a timestamp
RMSE shorter than 300 ns, the constant skew model shows
longer holdovers and for a RMSE above the 300ns, the linear
model shows longer holdovers. However, it was shown that
since most of the GPS ratio gains occur before 300 ns, the
linear model yields minor improvements in terms of energy
consumption. As expected the use of a Kalman filter to reduce
the GPS noise improves the estimation of the local oscillator
frequency and thus allows for longer holdover. But we also
showed that this holdover length gain compensates for the
longer required "on" state duration and overall the filtered
models yield better GPS "on"/"off" ratios. We demonstrated
that our solution can significantly reduce the energy cost of
the GPS receiver depending on the required synchronization
accuracy.

In future works, "online" implementations of our solution
will be studied to evaluate the gains in energy consumption.
Another interesting direction will be the automatic interrup-
tion of the holdover according to ambient temperature mea-
surements. This could improve our synchronization scheme,
especially for long holdovers, since it was observed that quick
temperatures changes can lower the prediction accuracy. Fi-
nally, the use of time to digital converters will be investigated
as it could allow us to lower the clock frequency inside the
FPGA while maintaining, or even improving, the granularity.
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