
HAL Id: hal-02968090
https://hal.science/hal-02968090

Submitted on 15 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MBSE with/out Simulation: State of the Art and Way
Forward

Bernard P Zeigler, Saurabh Mittal, Mamadou Kaba Traoré

To cite this version:
Bernard P Zeigler, Saurabh Mittal, Mamadou Kaba Traoré. MBSE with/out Simulation: State of the
Art and Way Forward. Systems, 2018, 6 (4), pp.40. �10.3390/systems6040040�. �hal-02968090�

https://hal.science/hal-02968090
https://hal.archives-ouvertes.fr


systems

Article

MBSE with/out Simulation: State of the Art
and Way Forward

Bernard P. Zeigler 1,*, Saurabh Mittal 2 and Mamadou Kaba Traore 3

1 Co-Director of the Arizona Center for Integrative Modeling and Simulation (ACIMS),
University of Arizona and Chief Scientist, RTSync Corp., 6909 W. Ray Road, Chandler, AZ 85226, USA

2 MITRE Corporation, 7515 Colshire Dr., McLean, VA 22102, USA; smittal@mitre.org
3 IMS CNRS UMR 5218, University of Bordeaux, 33405 Talence, France; traore@isima.fr
* Correspondence: zeigler@rtsync.com

Received: 11 October 2018; Accepted: 9 November 2018; Published: 15 November 2018
����������
�������

Abstract: The limitations of model-based support for engineering complex systems include limited
capability to develop multifaceted models as well as their analysis with robust reliable simulation
engines. Lack of such Modeling and Simulation (M&S) infrastructure leads to knowledge gaps in
engineering such complex systems and these gaps appear as epistemological emergent behaviors.
In response, an initiative is underway to bring Model-Based Systems Engineering (MBSE) closer
together with model-based simulation developments. M&S represents a core capability and is
needed to address today’s complex, adaptive, systems of systems engineering challenges. This paper
considers the problems raised by MBSE taken as a modeling activity without the support of
full strength integrated simulation capability and the potential for, and possible forms of, closer
integration between the two streams. An example of a system engineering application, an unmanned
vehicle fleet providing emergency ambulance service, is examined as an application of the kind of
multifaceted M&S methodology required to effectively deal with such systems.

Keywords: modeling and simulation; discrete event system specification; DEVS; model-based system
engineering; MBSE; internet of things; IoT; cyber physical systems; CPS; complex adaptive systems
of systems

1. Introduction

Model-based engineering originated in the 1970s and with the foundational Systems Theory
providing means and methods to incorporate simulation as integral mechanism to understand
the abstractions and conceptual alignment between various constituent parts/systems. A. Wayne
Wymore’s book [1] is generally acknowledged as the first formulation of Model-based System
Engineering (MBSE). Quite fittingly, Wymore is also one of the early System Theorists and the theory
in his book [2] proves the basis for the Discrete Event System Specification (DEVS) to be discussed
here. With the advent of Information Technology in the late 1990s, new modeling notations emerged
that helped develop IT-enabled systems using traditional systems engineering practices. With IT
now woven in every fabric of society, IT-enabled systems have grown complex and unmanageable.
These are commonly known as sociotechnical systems [3].

To describe this new class of super complex systems in a man-made world, labels such as
System of Systems (SoS), Cyber-Physical Systems (CPS), Complex Adaptive Systems (CAS), and Cyber
CAS (CyCAS) are used interchangeably [4,5]. All of them are multi-agent systems, i.e., have large
number of agents, are contextualized in an interactive environment and manifest emergent behavior.
The constituting agents are goal-oriented with incomplete information at any given moment and
interact among themselves and with the environment. SoS is characterized by the constituent
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systems under independent operational and managerial control, geographical separation between the
constituent systems and independent evolutionary roadmap. CAS is an SoS where constituent systems
can be construed as agents that interact and adapt to the dynamic environment. Cyber CAS is a CAS
that exist in a netcentric environment (for example, Internet) that incorporates human elements where
distributed communication between the systems and various elements is facilitated by agreed upon
standards and protocols. CPS is an SoS wherein the constituent physical and embedded systems are
remotely controlled through the constituent cyber components.

Model-based Systems Engineering employs model-based practices to engineer IT-enabled systems.
While they still can be created using MBSE practices, the usage of such systems is far from it. In the
sociotechnical era of Internet of Things (IoT), wherein multiple domains (for example, cyber, physical,
and computational across various societal sectors) are involved, experimenting with the model to
understand the model’s functionality and engineer the resulting complex system is a challenging task.
The existing toolsets lack the needed simulation analysis and experimentation capabilities leading
to epistemological emergent behaviors, which is a characteristic defining property of any complex
system [6]. These emergent behaviors can be both positive and negative. The negative emergent
behaviors lead to cascaded failures while positive emergent behaviors may be sustainable and improve
the complex systems’ overall function [7]. To overcome such limitations requires extending MBSE for
human machine interaction analysis and resilient system design [8].

The model-based paradigm has been successfully adopted by many disciplines when it comes
to traditional systems engineering. However, for complex systems engineering, it is still in infancy
as the tool-set support for engineering complex systems is limited [9]. These limitations range from
developing multifaceted models (including comprehensive, highly detailed simulations and highly
informative, analytic simplifications) to providing equally capable underlying simulation engines.
Lack of such M&S infrastructure leads to knowledge gaps in engineering such complex systems and
these gaps appear as epistemological emergent behaviors [10]. Many domains and disciplines are
successfully employing simulation capabilities within their domains [11]. Furthermore, strong support
for developing enterprise system of systems using architecture frameworks [12] such as Department
of Defense Architecture Framework (DoDAF), Unified Architecture Framework (UAF), etc. is now
widely available. However, these are nowhere close to addressing the requirements for multifaceted
model development and its underlying simulation and experimentation infrastructure.

For the purpose of a unifying label, we will consider the term Complex Adaptive System of
Systems (CASOS). This term emphasizes three aspects: complex, adaptive and SoS of complex
sociotechnical systems. These three are distinct characteristics that require unique infrastructure (both
hardware and software) for implementation. An SoS may be complicated but not complex i.e., SoS
may employ traditional systems engineering. The adaptive aspect is brought in the mix through
agent embodiment, situatedness and learning. These are made available in sociotechnical systems
through Artificial Intelligence, Machine learning, algorithms, or the presence of human-in-the-loop
(that complement the system functionality with guidance and participatory roles). We consider a class
of examples of such CASOS in Appendix A to illustrate the particular advances in M&S required to
support their systems engineering design.

CASOS present challenges that cannot be easily tackled using MBSE nor classical modeling,
simulation, and optimization techniques. Recent model-based system engineering has proved
inadequate due to lack of a full-strength M&S computational substrate [5]. Modeling and Simulation
(M&S) methodology has been evolving to provide increasing capability to help systems engineers
develop models of CASOS [4,11,13]. Such simulation models support design and testing of mechanisms
with learning capabilities to coordinate the interactions of the operationally and managerially
independent components. The design of such systems presents challenges to the currently employed
independent use of simplified models for formal verification or brute-force simulations which are
severely limited in the range of conditions they can test. M&S of CASOS must have a usable modeling
environment that facilitates model validation from the end-user and a robust simulation infrastructure
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that can be formally verified to ensure correct model execution. Together, they enable exhaustive
parameter evaluation and advanced experimentation. Model-based methods which support traditional
systems engineering need to be augmented with simulation-based methodologies to ensure they
support complex systems engineering that integrate discrete and continuous systems for complex
hybrid systems. CASOS engineering will not become possible unless undesired emergent behaviors
are completely removed from a computational environment or are known a priori so that they can be
knowledgeably eliminated. A computational simulation-based environment provides experimentation
opportunities to validate a CASOS model, such that it becomes predictable and eventually useful [5].
Ultimately, this is realizable in a Live, Virtual and Constructive environment with robust simulation
infrastructure and human-in-the-loop undertakings [14].

The task of integrating various simulators to perform together as a composite simulation, termed
as co-simulation, involves weaving the time series behavior and data exchanges accurately, the failure
of which will yield inaccurate simulation results. As elaborated by Mittal and Zeigler [15], in the
absence of a generic approach, every such hybrid system would require a dedicated effort to build a
co-simulation environment. Bringing various simulators together is much more than a typical software
engineering integration exercise.

In the following sections, we start with some background in M&S theory and the Discrete Event
System Specification (DEVS) formalism to lay the basis for discussion of multifaceted modeling and
the associated co-simulation infrastructure. This sets the table for considering how MBSE, DEVS
and CASOS may be unified. Then, a generic architecture and workflow are proposed for M&S
working within MBSE. This leads to a more in-depth discussion of multiobjective, multiperspective,
and multiresolution families of models supporting simulation capabilities and tools. An example
of a system engineering application, an autonomous unmanned vehicle fleet providing emergency
ambulance service, is examined as an application of the kind of multifaceted M&S methodology
required to effectively deal with such systems.

The paper is organized as follows: Section 2 describes the developments in M&S using DEVS
formalism and its application to Complex Adaptive Systems, Section 3 describes the concepts in
multifaceted M&S that facilitate development of multiresolution, multiperspective and multiobjective
modeling and simulation. Section 4 provides an overview of the State of the Art of simulation
tools. Section 5 discusses the way forward for both MBSE with, and without, simulation, followed by
conclusions in Section 6.

2. Developments in Modeling and Simulation and DEVS

A solution to the problem of developing models and associated simulation capabilities that is
gaining increased acceptance is offered by the DEVS formalism with a holistic construct called the
Modeling and Simulation Framework (MSF). Briefly summarized, the framework defines the entities
and their relationships of the enterprise of M&S and includes the relation between detailed models
and their abstractions [16]. The framework is based on mathematical systems theory and recognizes
that the complexity of a model can be measured objectively by its resource usage in time and space
relative to a particular simulator, or class of simulators. Furthermore, properties intrinsic to the model
are often strongly correlated with complexity independently of the underlying simulator. Successful
modeling can then be seen as valid simplification, i.e., reduction of complexity to enable a model to be
executed on resource-limited simulators and, at the same time, creating morphisms that preserve behavior
and/or structural properties, at some level of resolution, and within some experimental frame of interest. Indeed,
according to the framework, there is always at least one pair of models involved, which are called the
base and lumped models, in such a relationship.

The DEVS formalism is formulated within MSF and formally specifies the internal behavior
of the system as well as macro behavior of the overall system due to its closure under coupling
property. This robustness in both structural and behavioral description ensures that the unwanted
holistic behaviors, also known as negative emergent behaviors are explicitly avoided, along with
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the guaranteed manifestation of the desired (or positive) emergent behaviors [6,13,17]. The DEVS
super-formalism provides a foundation [15] that specifies an abstract simulation protocol between
the model and the simulator [16]. Thus, a requirement for M&S of CAS is to employ the principles
of the Parallel DEVS simulation protocol (as illustrated by the hybrid approach of Camus et al. [18],
for example) to support the required robust co-simulation.

2.1. MBSE, DEVS and CAS: Towards Unification

A major thrust of the MBSE community calls for formalized models to replace documents
as the fundamental building blocks of systems engineering [19] Such models support a host of
model-intensive activities such as improved communication about system artifacts among stakeholders
as well as strengthened testing and verification (both at design as well as at runtime). Practical
implementation of this thrust demands that such models eventually support all the activities typically
associated with the simulation discipline. However, as suggested, current MBSE formalisms stop
well short of this capability. One approach to bridging this gap is to enable mappings to be defined
that precisely specify simulation models that realize the models’ behaviors. Taken to a logical limit,
this approach entails building more capability into a MBSE formalism so that it eventually replicates all
capabilities associated with traditional simulation methodology. Although there are attempts to achieve
this goal [20,21], there are also fundamental reasons why it is not attainable [22,23]. An approach that
we hypothesize to work is to tie MBSE models with informal but well documented links. Furthermore,
as experience grows with such cross-linkages, it might eventually become feasible to formalize these
associations. Another complimentary approach is model-based interactive storytelling (MBIS) that
enhances MBSE and interactive storytelling to increase stakeholder participation in the systems
engineering process especially involving participants from multiple disciplines, and eventually
transdisciplines (see below) [24].

2.2. Architecture and Workflow for M&S Working within MBSE

Software defined systems must increasingly operate on large, time-varying, heterogeneous data.
Big Data enables and requires that these systems perform across an enormous variety of operating
conditions presenting engineers with multi-dimensional, hierarchical, uncertain and critical control
and decision challenges requiring transdisciplinary systems engineering [24]. Recent work has begun
to address these challenges. Kavak et al. [25] offer a structured modeling approach to produce agents
or parts thereof directly from data that focuses on individual-level data to generate agent behavioral
rules and parameter values. Generalizing from the approach that recently enabled the AlphaGo
program to defeat the world’s top ranked human Go player, Wang et al. [26] envision an AlphaGo-like
computation platform to enable artificial systems to model and evaluate complex systems, and through
the virtual-real system interaction, realize effective control and management over the complex systems.

The architecture of Figure 1 offers a generic workflow that supports Wang et al. [26] vision of
AlphaGo-like computational strength for future M&S-based systems engineering and management.
The Modeling and Simulation Framework [16], and, in particular, its system specification hierarchy
for acquiring levels of knowledge about an observed system, provides a solid basis for inference of
structures from the volumes of Big Data envisioned by Kavak et al. [25].

Figure 1’s architecture and workflow for M&S offers a vision of model production for use in MBSE.
The process starts with the development (or reuse) of a System Entity Structure (SES) that organizes a
family of simulation models for the current application of interest [27]. SES is an ontology, a language
with syntax and semantics to represent declarative knowledge [28]. The SES representation scheme
structures the search for a subset of models that are of particular concern under criteria that relate
essentially to their behavior and can’t be defined in the first instance by their structural properties.
Indeed, the behavior generated under simulation is observed within the Experimental Frame that
characterizes the criteria defining the subset of interest. Roughly, an experimental frame (EF), as defined
within the MSF, is a specification of the conditions under which the system is observed or experimented
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with. As such, experimental frames are the operational formulation of the criteria that motivate the
M&S-based pursuit of the models of interest. The SES includes coupling information that directs the
compositions of hierarchical models from components in the model-base. The combination of selection
from specializations and aspects leads to a very high combinatorial search space. Since an SES describes
a number of system configurations, the SES tree needs to be pruned to get one particular configuration,
which is called Pruned Entity Structure (PES). Pruning operations factor out a particular model
specification which can then be transformed automatically into a coupled model with components
from the model base. Such components are either DEVS models or have been wrapped in a DEVS
interface for DEVS compliance and amenability to the coupling specified by the SES. Simulation of such
a model, eventually on a high-performance platform using parallel simulations of multiple models
under testing for reasonable execution times, generates the behavior of the model and produces results
in the experimental frame of interest. These results measure the extent to which the governing criteria
are satisfied and are analyzed for guidance to direct the pruning towards a larger percentage of models
that fully satisfy the criteria. At this point, Artificial Intelligence (AI) is useful to help analyze the
results and predict which new prunings of the SES should performed at the next iteration. Built into
the iteration loop is a second cycle of transition between base and lumped models where the lumped
model can greatly accelerate the search for high-value models by enabling faster runs that provide
useful information for the more detailed base model. Some fundamental distinctions between base and
lumped models concern objectives, representation, entity attributes and variables, interaction processes,
timing mechanisms, and computational complexity [16].

As illustrated in Figure 1, the architecture envisions a collaboration between human and AI agents.
The human modeler develops the SES and the DEVS model base to span configuration space that
encompasses the subset of interest. The AI agent, under control of the user, analyses the results and
generates new prunings in order to increase the percentage of models of interest. Here, we lean on the
agent to provide the grist for patterns that humans can discern and exploit with imagination, novel
insights, and storytelling ability [24]. The modeler develops valid simplification morphisms for the
DEVS base and lumped models and decides when and how to iterate between the levels of resolution
in order to accelerate the overall process [29]. Here, a base-lumped pair of models refers to a pair of
models—the first more “complex” than the second, which are equivalent in an experimental frame of
interest in the system investigation [16]. Such equivalence allows the lumped model to stand in for the
base model for the objectives underlying the frame. Thus, while a lumped model is not necessarily a
uni-directional morphic projection of a base model, formalization and tool support of model-to-model
transformations is a promising technology to support the workflow illustrated in Figure 1 [30].

To plumb these concepts in more depth, we turn towards multiresolution modeling methodology
in the broader context of multifaceted modeling methodology [27].

Systems 2016, 4, x FOR PEER REVIEW 5 of 20 

 

combinatorial search space. Since an SES describes a number of system configurations, the SES tree 
needs to be pruned to get one particular configuration, which is called Pruned Entity Structure (PES). 
Pruning operations factor out a particular model specification which can then be transformed 
automatically into a coupled model with components from the model base. Such components are 
either DEVS models or have been wrapped in a DEVS interface for DEVS compliance and amenability 
to the coupling specified by the SES. Simulation of such a model, eventually on a high-performance 
platform using parallel simulations of multiple models under testing for reasonable execution times, 
generates the behavior of the model and produces results in the experimental frame of interest. These 
results measure the extent to which the governing criteria are satisfied and are analyzed for guidance 
to direct the pruning towards a larger percentage of models that fully satisfy the criteria. At this point, 
Artificial Intelligence (AI) is useful to help analyze the results and predict which new prunings of the 
SES should performed at the next iteration. Built into the iteration loop is a second cycle of transition 
between base and lumped models where the lumped model can greatly accelerate the search for high-
value models by enabling faster runs that provide useful information for the more detailed base 
model. Some fundamental distinctions between base and lumped models concern objectives, 
representation, entity attributes and variables, interaction processes, timing mechanisms, and 
computational complexity [16]. 

As illustrated in Figure 1, the architecture envisions a collaboration between human and AI 
agents. The human modeler develops the SES and the DEVS model base to span configuration space 
that encompasses the subset of interest. The AI agent, under control of the user, analyses the results 
and generates new prunings in order to increase the percentage of models of interest. Here, we lean 
on the agent to provide the grist for patterns that humans can discern and exploit with imagination, 
novel insights, and storytelling ability [24]. The modeler develops valid simplification morphisms for 
the DEVS base and lumped models and decides when and how to iterate between the levels of 
resolution in order to accelerate the overall process [29]. Here, a base-lumped pair of models refers to 
a pair of models—the first more “complex” than the second, which are equivalent in an experimental 
frame of interest in the system investigation [16]. Such equivalence allows the lumped model to stand 
in for the base model for the objectives underlying the frame. Thus, while a lumped model is not 
necessarily a uni-directional morphic projection of a base model, formalization and tool support of 
model-to-model transformations is a promising technology to support the workflow illustrated in 
Figure 1 [30]. 

To plumb these concepts in more depth, we turn towards multiresolution modeling 
methodology in the broader context of multifaceted modeling methodology [27]. 

 

Figure 1. Architecture and Workflow for M&S working within MBSE. 

3. Multifacetted Modeling and Simulation: Multiobjective, Multiperspective, Multiresolution 
Families of Models 

Figure 1. Architecture and Workflow for M&S working within MBSE.



Systems 2018, 6, 40 6 of 18

3. Multifacetted Modeling and Simulation: Multiobjective, Multiperspective, Multiresolution
Families of Models

Modeling and simulation are activities undertaken to support system engineering decision
making—the ability to assess the effects of constructions and interventions before they are actually
carried out and to pre-select promising ones, in view of the driving objectives. These objectives in turn
serve to orient modeling efforts. We recognize that a CASOS may be subject to a multiplicity of system
engineering objectives.

3.1. Multi-Perspective Families of Models

Multiple objectives require different levels of explanation be provided for the same system under
study. Each level of explanation can be expressed within a dedicated EF, the one that provides answers
to questions of interest from the perspective of its corresponding objective. Therefore, a family of
perspective-specific models needs to be built.

While, in practice, each of these partial models is executed in isolation to provide a given level
of explanation for the system of interest, all of them are related in reality, since they depict various
abstractions of the same system, but from different perspectives (or facets). Therefore, while each
perspective-specific model produces results within its corresponding experimental frame, partial
models can be holistically integrated within a holistic experimental frame, and questions that are
transversal to different perspectives can be accurately addressed, which is not possible in any of the
perspective taken alone.

How do we identify the facets/perspectives in a general context and in a systematic way? We review a
structured approach to building an ontology for the M&S of a domain of interest. The domain analysis
ontology must provide a formal way to capture all the knowledge that might be in the range of M&S
of the domain for which it is likely to be used. Therefore, it must capitalize on the abstractions used
for the simulation of the entire targeted domain, beyond aspect specific modeling. Thus, the generic
approach to domain analysis is a 4-layered ontology which highlights at each layer a generic key
characteristic. As depicted by the SES presented in Figure 2, the following layers are defined:

• System level, where meaningful specializations of the class of systems that characterizes the
domain of interest are highlighted,

• Facet level, where all cumulative aspects of a domain system are clearly separated,
• Scale level, where major spatial and temporal scales are emphasized, Model level, where conventional

models often originating from decades of theoretical findings are identified as reusable artefacts to
be selected and integrated in new studies.

The System level recognizes the whole complex system as a juxtaposition of multiple facets,
while various specializations can be identified as possible instances of the same integrated set of
facets in various specific contexts. For example, healthcare systems can be specialized into primary,
secondary, ternary, and home care [31], while transportation systems can be specialized into air, ground,
rail, and aquatic transport, and military systems can be specialized into air, ground, and marine forces.

The Facet level establishes three generic facets, i.e., “production facet”, “consumption facet” and
“coordination facet”. Although the identification of a system’s facets may depend on the domain
as well as the experts involved and the objectives in mind, we suggest the systematic adoption of
these generic patterns. In other words, a complex system is made up of one or various facets, each of
which being a production system (hence, leading to a ProF model), a consumption system (that gives a
ConF model), or a coordinating system between production and consumption (giving a CooF model).
These patterns encompass the traditional supply-demand duality that often characterizes complex
systems [31]. The notion of “Production” encompasses the notion of “Supply” in that it involves not
only the intentional supply of services needed, but all phenomena that produce positive and negative
impacts on the system’s stakeholders. Examples of production in healthcare include vaccination and
information diffusion (as production of ease), but also contamination and epidemics (as production of
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disease). Examples in transportation include the production of public or private transportation services,
but also the production of air pollution, land use, and accidents. Examples in military systems include
the production of security and protection, but also the production of life and infrastructure destruction.
Similarly, the notion of “Consumption” encompasses the notion of “Demand”, as consumers may not
be only users seeking intentionally for services but all stakeholders that consume what is produced by
the system. Examples of consumers are population, patients, travelers, pedestrians, territories, enemies,
etc. An important element of this multi-perspective approach is that, while perspectives have mutual
influence on each other, each perspective captures its received influences by means of parameters,
which values explicitly reflect implicit assumptions and simplifications made about other perspectives
influences. For example, when focusing on the system as a production system, the ProF model will
make use of parameters (such as the arrival rate of patients in a hospital, or the arrival rate of travelers
in a shuttle, or the arrival rate of enemies in a combat theatre) to aggregate all processes going on
in the same system when taken as a Consumption system. In its turn, the ConF model will make
use of parameters (such as the death rate of a population) to aggregate all processes going on in the
same system when considered as a Production system. Coordination can be seen as cross-organization
mechanism managing the entities and resources of existing ones, such that individual goals as well as
system-wide goals are satisfied. It is needed to the extent that specific interaction and cooperation are
required to ensure safe entangled and context-dependent behaviors.

The Scale level emphasizes on that a characteristic feature of complex systems is the occurrence
of interactions between heterogeneous components at different spatial and temporal scales with
various interpretations of the notion of scale, and a major concern about scale transfer processes where
inter-scale interactions must be properly described, as emphasized in [31]. A scale refers to a set of
relationships, which implicitly (or explicitly) point to spatial properties (such as location, shape, size,
etc.), as well as temporal properties (such as exact or approximate timing, simultaneity or sequentiality,
continuity, etc.). Thresholds between scales are critical points along the scale continuum where a shift
in the importance of variables influencing a process occurs. As a result, the generic ontology proposed
exhibits macro, meso and micro levels of abstraction both within the consumption and the production
facets, leading respectively to the generic MaConF, MeConF, MiConF, MaProF, MeProF and MiProF
models. The macro-meso-micro architecture is recognized as describing the three possible levels of
inquiry on which social scientific investigations might be based [32].
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The Model level identifies conventional models often originating from decades of theoretical
findings as reusable artefacts to be selected and integrated in new M&S studies of complex systems.
It defines the abstractions that can be directly simulated, by distinguishing four generic types of model,
i.e., entity models, flow models, functional models and spatial models. While Entity models describe
autonomous individuals with specific attributes and with or without goal-driven behavior, functional
models are formulated as mathematical equations, spatial models are composed of individuals
geographically located in a space model, and flow models capture scenarios an individual can
undergo. These models explicitly describe the temporal and spatial properties pointed out (implicitly
or explicitly) at the scale level. Consequently, the generic ontology has in each facet, entity and flow
models at the micro level of abstraction, and functional and spatial models at the macro and meso
levels of abstraction. It is worth noting that the fact that a spatial model at any macro level involves
a space model that contains abstractions detailed at lower levels (i.e., meso and micro), and that,
similarly, a spatial model at any meso level involves a space model that contains abstractions detailed
at the micro level.

The generic ontology is meant to be instantiated in the analysis of any new domain of interest
in view of its M&S. Such an instantiation provides the domain-specific ontology that will drive the
multi-perspective modeling and holistic simulation (MPM&HS) process of the targeted domain.

3.2. Multi-Resolution Families of Models

Multi-resolution modeling (MRM) is essential for exploratory analysis of CASOS design spaces
because it is neither cognitively nor computationally possible to keep track of all relevant variables
and causal relationships [33]. A typical multiresolution scenario applicable to defense investigates the
operational differences between low-level military entities such as individual tanks and the aggregated
high-level units, e.g., battalions or platoons when moving in a battlefield. Attributes of an aggregated
entity like a tank battalion are often determined by applying an aggregation mapping to the attributes
of its individual entities. The mapping can group a set of tanks to a single tank battalion together
with a function to derive holistic attribute values, e.g., an average speed of a tank battalion, from the
constituent individual tank speeds (disaggregation is the inverse mapping). Here, the base model
is typically “more capable” and requires more resources for interpretation and simulation than the
lumped model. By the term “more capable”, we mean that the base model is valid within a larger set
of experimental frames (with respect to a real system) than the lumped model. Here, we note that the
terms “base” and “lumped” are terms employed with the framework to denote the full range of possible
pairs of models in which the first is more capable (e.g., more detailed, disaggregated, high resolution,
fine grained) than the second (less detailed, aggregated, low resolution, coarse grained). We note that
MRM sometimes refers to simulation environments in which entities are aggregated or disaggregated
at runtime based on certain triggering conditions, in which case, resolution changes dynamically at
runtime. Such dynamic structure models are included within the larger category of families of models
structured at different resolutions meeting different modeling objectives.

The scope/resolution/interaction product is limited by the computational resources at hand.
Thus, typically a large scope places constraint on the resolution and interaction that can be represented,
whereas a smaller scope will permit higher resolution and interaction. Nevertheless, the trend towards
high fidelity M&S implies increasing all factors in the scope/resolution/product (as in the base model)
while lumping can reduce both scope and/or resolution independently.

Some typical distinctions often drawn between base and lumped models with respect to agent
modeling are presented in Table 1 [33,34].
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Table 1. Some fundamental distinctions between base and lumped models (in a military simulation example).

Base Model Lumped Model

Objectives

Results traceable to specific performance
data and assumptions.
Evaluate subtle differences in weapons,
sensors, or tactics,
Understand how different inputs affect
combat performance

Predict overall results
Include small numbers of parameters
Parameter values amenable to identification
from feasibly obtainable data

Representation Individual agents as separate entities Aggregate entities into groups typically
respecting command hierarchy.

Entity Attributes
and Variables

Location in space and time, position in
social or other hierarchies, perception of
the situation: threats and opportunities,
capabilities, etc. updated at event
occurrences or time steps

Averaged entity values attributed to groups,
Discrete events compounded into rates
for groups,
Global state sets, cross-products of individual
state sets

Interaction processes
Decomposed into sequences of events
and activities,
Tracking of individual behaviors

Processes aggregated into group level
formulae abstracting individual behavior

Timing mechanisms
Coordinate the event sequences for the
numerous participants so that subtle
interaction patterns can be modeled

Micro stochastic sequences can be aggregated
into macro behaviors using law of large
numbers expressed more simply in stochastic
or deterministic form

Computational
Complexity
(Scope/resolution/
interaction product)

Lean towards large scope, high resolution
and unconstrained interaction

Lean towards smaller scope, low resolution
and constrained interaction

However, the important point is that within a particular experimental frame of interest the lumped
model might be just as valid as the base model. Furthermore, the trade-off between performance and
accuracy [35] is a fundamental consideration where performance refers to the computational resources
used in a simulation run and accuracy refers to the validity of a model with respect to a referent system
within an experimental frame [16]. Use of computational resources tied to a simulator’s time and space
demands in generating the model’s behavior are correlated with its scope/resolution product where
scope refers to how much of the real world is represented, resolution refers to the number of variables
in the model and their precision/granularity.

Models should be built in an incremental manner with continuous engagement and validation
from the subject matter experts (SMEs) and their mapping to the experimental frames. This pairing
allows the selection of the correct resolution of the model. This allows the development of early insight
into the objective of the modeling, provides a holistic view of the system under study, provides a
testing framework for the target, explains the target’s behavior early in the M&S development cycle
and serves as the foundation to add more complexity to the subsequent models. Parallel development
of the experimental frames provides the experimentation and data collection requirements for the
model and the computational requirements of the underlying simulation platform.

The incremental manner from lower complexity to higher complexity works when one tries
to build models from top-down. However, there may be situations that in high fidelity models are
already present and one needs to bring them together to develop a larger SoS model. This includes
the incorporation of legacy models and simulators. In that situation, lumping needs to be carefully
managed as information is lost in aggregation if not justified by valid abstractions such as from the
underlying fundamental science (e.g., physics, chemistry, etc.). This is then further supported by
systems morphisms and homomorphisms to ensure that there is continued correspondence between
the model family (containing base, lumped and higher fidelity) and the model hierarchy. Figure 3
provides an illustration of the construction of such a model family as built up from base/lumped model
pairs. For example, a base model may be composed of multiple components each of which can be
lumped into simplified lumps and coupled together constitute a new lumped model. The base model



Systems 2018, 6, 40 10 of 18

might itself serve as a lumped component of a larger model leading to a hierarchical construction.
Moreover, a lumped model may itself serve as a base model for an abstraction that supports reduced
resolution. Thus, working together, resolution and composition operations can create a multi-resolution
family of simulation models.
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A methodology for constructing a multiresolution family of models is illustrated in Figure 4,
as follows: given requirements and constraints of the problem, consider a model that satisfies all such
requirements and constraints as the base model to be aimed for. Create lumped models by making
assumptions about the base model, including relaxing of constraints and dropping of requirements.
Create higher resolution models by removing assumptions that were previously added while including
more refined representations to address the affected constraints and requirements, meanwhile checking
for consistency of predictions between related base and lumped models. The targeted base model is the
one achieved when all assumptions that have been made are removed in this iterative process.
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Appendix A discusses this methodology in an example of a system engineering application,
an autonomous unmanned vehicle fleet providing emergency ambulance service.

4. Simulation Capabilities and Tools

Many of the enterprise architecture (EA) modeling tools (for example, Sparx Enterprise Architect,
NoMagic MagicDraw/Cameo, IBM Rational/Raphsody) adhere to the Unified Modeling Language
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(UML), Systems Modeling Language (SysML), Business Process Modeling Notation (BPMN), DoDAF
and UAF specifications [12]. Much work has gone into developing the modeling infrastructure so
that the multi-domain knowledge can be centrally managed and shared across all the stakeholders.
However, the simulation capability required to experience and experiment with the dynamic behavior
of such a model is quite rudimentary as the modeling capability still maps to traditional systems
engineering practices. This further raises questions on the adequacy of widely understood modeling
notations such as UML, SySML and BPMN for developing a complex adaptive systems model and the
simulation infrastructure required for experimentation with such a model [5]. Consequently, much of
the work done in computational analysis of system of systems M&S is done in the academic and
research community which leads the development of the accompanying infrastructure employing
High Performance Computing (HPC) and cloud environments. The SES/DEVS methodology has been
employed in a wide range of modeling and simulation applications for a range of complex systems
(known by various other labels such as adaptive systems, system of systems, complex adaptive systems,
networked system of systems, or a combination of these) through simulation and experimentation.

5. Discussion and Way Forward

Two arguments need to be made: MBSE without simulation and MBSE with simulation. Before
making the arguments, we must state unequivocally that modeling and simulation are distinct activities.
Modeling facilitates understanding of phenomena (both natural and artificial) and helps develop an
understanding (both personal and shared). This understanding when coupled with traditional systems
engineering practices gave way to the development of MBSE in its current state. Simulation subsumes
modeling, i.e., simulation is operational only when there exists a model to execute on a platform
(e.g., mental, collaborative, computational). This execution affords experimentation with the model
and provides opportunities to experience the “model” in various settings (for example, Live, Virtual
and Constructive environments [14].

MBSE without simulation, henceforth, involves effort spent in the development of the model.
In SoS, CAS, CASOS, etc. settings, due to a large number of stakeholders, this activity takes on a
whole new meaning where developing a shared understanding is an achievement in itself. IT-enabled
modeling environments commercially available provide the needed centralized repository and model
editing environments to facilitate model development. The prime objective of this activity is to bring the
stakeholders on the same page. In this regard, MBIS can exploit the immersive powers of storytelling
to convey an evolving system design and concept of operations to technically unsophisticated
stakeholders [24].

Between the MBSE without simulation and MBSE with simulation is the realm of executable models.
Formal methods are applied in this model, which lead to software implementation. This enables testing
and verification of systems under investigation during the model runtime. While they are not supported
by experimentation infrastructure, indeed they do allow experience with the system under study.

MBSE with simulation affords experimentation and experience with the model. Simulation
engineering requires an advanced computer science theory, methods and techniques to provide
a computational substrate for the model to execute. When simulation engineering is coupled
with systems theory to develop the computational platform, we get a composable simulation
platform. DEVS is such an example. In SoS, CAS, CASOS, etc. settings, the computational
platform becomes an explicit engineering exercise as new domains are brought in the simulation
environment [15]. The prime objective of this activity is to experiment with the model and gain
experience in understanding model’s behavior. Combining M&S with MBIS can enhance the ability of
models in virtual worlds to foster discovery of previously unknown interactions and dependencies
among system elements and between the system and the environment [24].

Moving forward, as long as one adheres to the primary objectives, both MBSE without simulation
and MBSE with simulation are worthy efforts that employ the art of modeling and the simulation
technology to develop an abstract understanding of the system under consideration and experiment
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with it. Current MBSE practices must extend to incorporate both multiresolution and multi-perspective
modeling within a holistic approach to contribute to complex systems engineering. MBSE, even with
simulation, is inadequate to support complex systems engineering. Complexity Science principles
incorporating concepts like nonlinearity, emergent behavior, network connectivity, etc. is being brought
in to augment MBSE practices with DEVS [17,36] and efforts are underway to develop a comprehensive
methodology for their application to next generation complex systems such as Internet of Things (IoT)
and Cyber Physical Systems (CPS). SES and DEVS provide foundational theory and technology to
engineer M&S-based complex systems in all of their different flavors (SoS, CAS, CASOS, etc.).

We examine these challenges as presentation of a way forward for DEVS M&S in the context of
the roadmap [37] formulated by the International Council on System Engineering (INCOSE).

Along these lines, Zeigler, Mittal and Traoré [31] have identified strong requirements that must be
satisfied to enable DEVS-based M&S to be practiced at its most productive level. Table 2 considers
these developments in support of maturity levels 4 and 5 in Table 3 in the light of the multi-resolution
methodology discussed above.

Table 2. DEVS-based M&S Developments to support maturity levels 4 and 5 of Table 3.

Development Description

Deal with SoS nature

The framework provides a multiperspective methodology for developing
coupled models of components from various formalisms capable of
expressing the different perspectives needed for SoS together with holistic
abstractions that support integration and coordination [17,38–41].

Develop an effective
organizational ontology

DEVS-based M&S includes the macro level facets that properly organizes
the CASOS domain and supports refinement into more detailed
components at the meso and micro levels.

Enable the ontology to support
combinatorial model compositions
and exploration

The SES/MB (Model Base) supports hierarchical composition of the
coupled model resulting from pruning that selects from the combinatorial
family of possible compositions described by the SES. The DEVS
formalism which can encompass models expressed in various formalisms
typically found to be useful in simulation studies [38]. MBIS can enhance
exploration of model behaviors in LVC settings [24].

Include the major facets major facets to
ensure representation of all levels (macro,
meso, and micro) of behavior,

The 4-layered ontology highlights at each layer a generic key
characteristic. It capitalizes on the abstractions used for the simulation of
the entire targeted domain.

Include a large spectrum of models for
combinatorial composition

An example in healthcare [31] illustrates models spanning health
diffusion, resource allocation, provider and provision modeling,
population diffusion, spatial models including agent-based models at
individual and higher level abstractions including
coordination mechanisms.

Instrument the complex system to support
on-going high quality data

The MSF includes experimental frames that can specify, collect and
aggregate the information for higher levels in a multiperspective model.
The simulation infrastructure guarantees correct execution of the
composed model and the behaviors in a transparent manner [5,17].

Include pervasive incremental
automated learning

A wide variety of mechanisms is available at different levels of abstraction
and computational complexity with typical parallels drawn to biologically
inspired learning and evolutionary processes including activity-based
credit assignment, unsupervised techniques (e.g., clustering, rule mining)
and reinforcement learning [42–45]. These can be based on the premise
that new system states are being continuously captured in timely
snapshots of data and added to an accumulated repository representing
the system knowledge supporting iterative training employing updates in
the system behavior.
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Table 3. Way forward for DEVS M&S in relation to INCOSE Roadmap.

Maturity Level INCOSE MBSE Roadmap Correlation with DEVS
M&S Development

1 Emerging MSBE Standards DEVS model standard and DEVS
simulation protocol standard

2 Matured MBSE methods and metrics: Integrated
System (Hardware/Software) models

Experimental Frame representation of
metrics, DEVS models for
Integrated Systems

3 Architecture Models Integrated with Simulation,
Analysis, and Visualization

DEVS framework for Architecture models
and support for analysis and visualization

4 Defined MBSE theory, ontology and formalisms See Table 2

5 Distributed and secure model repositories crossing
multiple domains See Table 2

6. Conclusions

As stated before, in the IoT and CPS era, the existing MBSE toolsets lack the needed simulation
analysis and experimentation capabilities leading to epistemological emergent behaviors. Accordingly,
there arises the goal of trying to manage the bad aspects of emergence while preserving its good
qualities. This is reminiscent of Whitehead and Russell’s [46] attempts to control self-reference in
Formal Mathematics in the Principia Mathematica, which they eventually proved to be paradoxical in
nature. Principia’s solution of hierarchical set constructions may suggest a way forward in the SoS case
and the DEVS formalism offers a ready-made solution for hierarchical model construction justified by
closure under coupling [6,16].

MBSE in its current state is very much tied to traditional systems engineering and needs to be
expanded to incorporate complex systems engineering practices. It seems clear that we need to get a
better handle on the whole SoS life-cycle with a more deliberate combined MBSE/DEVS approach.
This will help us focus on the problem and better understand the five attributes of SoS [47] that underlie
and interact to induce emergence in a formally defined system with explicit coupling information [48].

Still, we should recognize enormous obstacles that must be overcome to achieve these visions.
Progress may require new ways of thinking about systems that truly enable them to be developed
with reusable components, eventually leading to composable M&S solutions. We must become able to
identify the limitations in dealing with Big Data and limitations in dealing with its multi-dimensional,
hierarchical, and uncertain nature. Here, we have considered the problems raised by MBSE taken
as a modeling activity without the support of full strength integrated simulation capability and the
potential for, and possible forms of, closer integration between M&S and MBSE as expressed in
augmentation of the INCOSE roadmap for MBSE maturation with requirements for DEVS-based M&S
evolution. Working to put the infrastructure in place to meet these requirements will move both
systems and M&S communities along realistic paths towards realizing the INCOSE roadmap.
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Appendix A. Multifaceted Model Family Example

As suggested in the main text, the focus of our attention is on CASOS, complex adaptive systems
of systems. Here, we briefly present an example to illustrate the emphasized attributes. Following
Dahmann [3], consider the problem of first responders to catastrophic events providing emergency
rescue and relief. Such a service requires coordination of multiple systems (so is an SoS) with complex
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interconnected networking and requires adaptation to the different challenges posed by different calls
to service. Now, imagine that such a service is to be supported by a fleet of autonomous unmanned
vehicles (UAV) responsible for all needed transportation tasks. We restrict the focus further to the system
engineering design of such an SoS providing emergency ambulance service, as an application of the kind
of multifaceted M&S methodology required to effectively deal with such a complex adaptive SoS (CASOS).

First, consider a short list of categories of objectives relevant to the design and implementation of
a new ambulance system employing unmanned autonomous vehicles (UAVs) as outlined in Table A1.
An all-inclusive model would be able to provide the basis for decision making in each of these
categories. However, the impediments to constructing such a comprehensive model make it a near
impossibility. Instead, we can envisage a collection of partial models, each oriented to one or more
objectives [49].

The following is a subset of models that were developed to address the objectives 1–3,
and 8–10 just listed:

• UAVMotion is a discrete event model representing the motion of the UAVs as agents in space
employing only the kinetic parameters of the vehicles and the random space-time distribution of
requests to get a first order prediction of the number required to meet the demand.

• MarkovDutyCycleCTM represents the duty cycle of a typical UAV as a Markov stochastic process
with a small number of states representing its location as at the depot or in the service area and
able or not to provide service.

• Multiwork represents the UAVs as individual servers in a discrete event model with a simple
bidding protocol to coordinate response to incoming requests with the servers progressing through
a duty cycle consistent with the Markov model.

• Hierarchical Composition elaborates on the Multiwork model by incorporating states of the
vehicles (e.g., carrying patient) that bear upon speed of travel and available fuel. Hierarchical
structure results from representation of UAV as itself a composite with components representing
coordination protocols, kinetics, and fuel consumption.

• Design for Adaptive Sustainment is discussed later.

Table A1. Objectives relevant to system engineering of a UAV-based Emergency Ambulance Service.

# Objectives Models Needed

1 Determine travel and payload requirements
for UAVs and personnel

Kinetic models of UAVs, capacities for carrying
medical appliances
Paramedic capabilities

2 Select locations of depots and
deployment sites Real estate cost, distances involved, traffic characterization

3 Response policy optimization Centralized vs. distributed decision making of which UAV
to handle emergency call

4 Marketing Environment: consumer tastes, competition

5 Safety assurance Design of alarms, escape routes, fail-safe plans

6 Interfacing with existing systems Coordination mechanisms, communication
protocols, interoperability

7 Patient satisfaction Waiting time, comfort, etc.

8 Determine Emergency response required Types and frequencies of medical emergencies to be treated
Response timelines requirements and how to meet them

9 Autonomous adaptive behavior Ability to adapt to changing environments associated with
different catastrophic events

10 System sustainment, maintenance
and evolution

Pricing of services, costs of equipment, investment capital,
long term trends, unused capacity, growth potential
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These models were developed in the order of presentation above following the methodology
in Figure 4. The first model assumes vehicles are essentially point elements moving in space with
abilities to respond to requests without coordination in a neighborhood. The second is a highly lumped
model that represents the fleet in an ensemble sense similar to the ideal gas laws of physics. The third
introduces treating vehicles as individuals requiring coordination to provide service, while the fourth
elaborates on this representation to introduce more of the required constraints.

The fifth model directly relates to modeling of CASOS for system engineering design. Such a
design might search for architectures in a trade-off space involving size and cost. Here, for example,
half the number of UAVs at, say, half the cost, might be enough to ensure a response time that is
only 10% higher than nominally specified. However, rather than the systems engineer having to
determine the fleet size prior to fielding, s/he might design upper/lower brackets within which
to constrain an adaptive plan. This might be similar to the way in which the number of Uber
drivers in a town adjusts to its passenger demand. Such “design for adaptive sustainment” objectives
call for inclusion of models of the environment in which adaptation is occurring as well as of the
mechanism mediating the process. A wide variety of such representations is available at different levels
of abstraction and computational complexity with typical parallels drawn to biologically inspired
learning and evolutionary processes [43–45]. One possibility that seems especially apt here (and is
rarely considered) rests on the analogy to the carrying capacity of an ecosystem for a member species.
Here, a species dynamically adjusts to a population size in which it is in equilibrium with the resources
necessary to sustain it [42]. Analogously to build in such self-adjustment into a fleet of UAVs requires
an economic mechanism in which UAVs must “earn their keep” and means for infusion/withdrawal of
UAVs to/from the operating fleet (a direct illustration of supply/demand in the ontology of Figure 2).
Such adaptive models can be tested in simulation and fielded with little change in code using model
continuity methods.

The assumptions, limitations, and contribution of each model are listed in Table A2.
The developmental progression illustrates that addition of assumptions and removal of constraints
does not necessarily proceed in a monotonic manner but in a manner that is guided by the incremental
needs to establish bounds on predictions to come later and to develop easier structural scaffolds for
later construction.

Table A2. A subset of models developed for objectives 1–3 and 8–10 of Table A1.

Model Assumption Limitation Contribution

UAVMotion

Kinetic spatial distribution of
requests, policy employs
visibility and
spatial properties

No duty cycle
representation No
startup No
product properties

Predicts number of UAVs
required under fundamental
spatial properties

MarkovDutyCycleCTM
Combined stochastic and
deterministic representation of
duty cycle

Above limitations +
Lumps UAVS into single
number that determines
service rate

Predicts numbers required
under simple duty
cycle approximation

Multi-workflow

UAVs individually
represented as servers in duty
cycle, UAV distance to request
employed, policy employs
visibility & spatial properties

No product
properties—capacity and
abstracted work cycle

More refined prediction
including performance/cost
from Pareto frontier

Hierarchical
composition

All requirements 1–3 and 8
and constraints accounted for
to first approximation

No spatial
representation, no
account of
energy utilization

Good solution approximation
under service
requirements/constraints—
agrees with earlier predictions

Design for Adaptive
Sustainment

Extends UAVMotion model
with economic UAV “earn
their keep” mechanism and
modification of fleet size

Same as UAVMotion
plus simplification of
economics and fleet
size modification

Can predict dynamics of
“carrying capacity” including
fleet size equilibrium in fixed
demand environment
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