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Introduction

The epipolar geometry of images plays a central role in many applications in the field of photogrammetry and computer vision. In the stereo-reconstruction pipeline, it is used twice:

1. In the camera pose orientation step, when computing the relative orientation of a pair of images from their corresponding points. Assuming the projection follows the central perspective and the internal calibration is known, one can compute the epipolar geometry of the images using the essential matrix. Finally, the relative orientation is recovered (3). 2. In the image dense matching step, where the epipolar rectification simplifies the correspondence search because for any point (x 1 , y) in image I 1 , its correspondence is some point (x 2 , y) in image I 2 . Therefore, finding correspondences across images is reduced to a 1-dimensional problem (1D).

In this paper, we only look at the epipolar rectification problem and more specifically its application to a generic camera model.

Related works

Rectifying a central perspective camera stereo pair involves transforming their original epipolar geometry to a canonical form where: (a) their focal planes are coplanar, and (b) their conjugate epipolar lines are colinear, and parallel to the camera's x-axis. From the algebraic standpoint, this is equivalent to applying two 2-dimensional (2D) projective transformations to both images of the stereo pair. Several approaches to computing such transformations have been proposed over the course of the last 30 years. For a calibrated stereo pair (i.e. with known camera projection matrices), there exists a unique rectifying transformation, up to a rotation along the baseline [START_REF] Fusiello | A compact algorithm for rectification of stereo pairs[END_REF]. In an uncalibrated case, the solution is obtained by factoring out two 2D homographies from the fundamental matrix.

Unlike the central projection camera model, pushbroom-like sensors acquire each image row from a different perspective center. As a consequence, the epipolar lines are neither straight lines, nor are they conjugate across the image [START_REF] Gupta | Linear pushbroom cameras[END_REF]. One way to overcome this particularity is to simplify the projection function with a 2D affine (10; 14) or a parallel projection model [START_REF] Morgan | Epipolar resampling of space-borne linear array scanner scenes using parallel projection[END_REF]. Such approximations usually come at the price of precision, especially with the increasing camera field-of-view or in mountainous scenes. By extending the 2D affine model with two quaratic terms, Okamonoto et al. [START_REF] Okamoto | Geometric Characteristics of Alternative Triangulaion Models for Satellite Imagery[END_REF] demonstrates improved performance on SPOT images. In the context of dense image matching, de Francis et al. [START_REF] De Franchis | On stereo-rectification of pushbroom images[END_REF] improves the precision by partitioning the images into small patches, for which indepedent affine rectifictions are computed. Alternatively, and with equally good precision, Oh [START_REF] Oh | Novel Approach to Epipolar Resampling of HRSI and Satellite Stereo Imagery-based Georeferencing of Aerial Images[END_REF] uses the Rational Polynomial Coefficients (RPCs) to map the epipolar curves across the full size images with lines, in a piecewise approach, followed by a global rectification transformation using a polynomial function of 3 rd order.

Contributions

Our research work proposes an epipolar geometry rectification method that is not tied to any camera physical model. We provide a theoretical derivation and demonstrate the effectiveness of the approach on a range of models, including Pleiades images (pushbroom), the Corona images (panoramic pushbroom) and a consumer grade camera images (central perspective). The method resembles Oh's [START_REF] Oh | Novel Approach to Epipolar Resampling of HRSI and Satellite Stereo Imagery-based Georeferencing of Aerial Images[END_REF] approach in that it exploits the point correspondences to find the polynomial mapping to epipolar geometry. However, unlike the work of Oh (9), we do not require that the camera geometric model is known. We demonstrate that in some circumstances, point correspondences obtained from an image processing routine, e.g. SIFT [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF], can serve to find the epipolar resampling.

Finally, we formally derive the ambiguity of the epipolar geometry, and propose an epipolarability index that quantitatively describes the existence of epipolar geometry between a pair of images.

In the remainder of this publication, we first outlay the mathematical background of the epipolar geometry, identify conditions required for its existence and establish its degree of ambiguity (Section 2). Then, we introduce our method (Section 3), and conclude with experiments on different datasets, with and without the geometric model (Section 4).

2 The mathematics of epipolar geometry in the generic case

Formalisation and notation of projections

Fig. 1: A projection and a bundle.

We define the geometric sensor model of an image by a projection function π, that computes, for a given 3D point, its 2D projection in the image: Definition 1 (Generic geometric sensor model) Illustrated in Figure 1.

A geometric sensor model π is a C ∞ mapping from ground space (R 3 ) to image space (R 2 ):

π : R 3 → R 2 , (X, Y, Z) → (i, j) = π(X, Y, Z). (1) 
Next, we define the bundles of a projection:

Definition 2 (Bundle) For p k ∈ I k we note B k (p k ) the bundle corresponding to π -1 k (p k ).
When there is no ambiguity, we note identically B k (P ), where

P ∈ R 3 , the bundle corresponding to π -1 k (π k (P )) = B k (π k (P )).
Later, for simplicity, we will use the quasi-vertical hypothesis, which allows us to extend π to a bijective mapping of R 3 and compute its inverse.

Definition 3 (Quasi-vertical camera model) We say that the projection is quasivertical if the following mapping π is a diffeomophism of R 3 :

π : R 3 → R 3 , (X, Y, Z) → (i, j, Z) = π(X, Y, Z), with(i, j) = π(X, Y, Z). (2) 
Given 2 images I 1 and I 2 , the knowledge of their geometric models π 1 and π 2 reduces the matching between 2 images to a 1D problem. In fact, given a point p 1 in I 1 , we can compute the 3D curve B 1 (p 1 ) of ground points that project to p 1 in I 1 , and compute its homologous curve in I 2 with π 2 (B 1 (p 1 )). We now define the H-compatible relation between two points by the following definition: 2. We say that p 1 in I 1 and p 2 in I 2 are π 1 -π 2 H-compatible, and write p 1 ⇐⇒ π 1 ,π 2 p 2 , if the following condition is satisfied:

Definition 4 (H-Compatible, ⇐⇒ π 1 ,π 2 ) Illustrated in Figure
(B 1 (p 1 ) ∩ B 2 (p 2 ) = ∅) ⇔ (∃P ∈ R 3 : π 1 (P ) = p 1 , π 2 (P ) = p 2 ). (3) 
Fig. 2:

Illustration of ⇐⇒ π 1 ,π 2 .
In image matching, the relationship p 1 ⇐⇒ π 1 ,π 2 p 2 means that p 1 and p 2 are potentially homologous.

Definition of the epipolar geometry

In fact, the previous relationships are sufficient to implement all the matching techniques and (π 1 , π 2 ) can be used to define a matching process, taking advantage of the a priori knowledge of the scene geometry. That is, given a point in one image, we can easily follow its curve of potentially homologous points in the other image. This technique, which does not exploit the epipolar geometry, has the advantage of also being adaptable to multi-image matching. Epipolar geometry is therefore not strictly required for the image matching process.

The drawback of this approach is that it combines two different problems in the same procedure: the handling of the geometry and resampling and the matching process. When one is interested in the matching of a single image pair, the epipolar geometry can provide an elegant solution by separating the problem in two independent ones. Definition 5 (Epipolar Geometry) Illustrated in Figures 3 and6.

Let π 1 , π 2 be two cameras and let φ 1 , φ 2 be two diffeomorphisms of R 2 . We say that φ 1 , φ 2 are an epipolar resamplings iff:

∀e 1 = (u 1 , v 1 ), e 2 = (u 2 , v 2 ) : (v 1 = v 2 ) ⇔ (φ -1 1 (e 1 ) ⇐⇒ π 1 ,π 2 φ -1 2 (e 2 )). ( 4 
)
The matching of epipolar images is simplified because we know that the lines in two images are globally homologous.

Notation 1 (Epipolar line and curve.) We denote L k (v) as the epipolar line of E k defined by v k = v. We also denote C k (v) as the epipolar curve of I k defined by

C k (v) = φ -1 k (L k (v))
We can see that when epipolar geometry exists, the two curves C 1 (v) and C 2 (v) are globally homologous:

C 1 (v) = π 1 (π -1 2 (C 2 (v))); C 2 (v) = π 2 (π -1 1 (C 1 (v))).
(5)

Existence of the epipolar geometry

We now discuss the existence of the epipolar geometry. As it will be seen, the epipolar geometry generally does not exist, and when it does, it is not unique. We know that for any image pair following the central projection, there exists an epipolar geometry. However, with e.g. a cylindrical projection specific to many pushbroom satellites, the rigorous epipolar resampling is impossible (but close approximation generally exists).

We explain now why the epipolar geometry does not exist for any projections π 1 , π 2 and is instead an exception. Let's define the surface S k v of R 3 by:

S k v = π -1 k (C k (v)). ( 6 
)
Following the definition of epipolar geometry above, it can be seen that S 1 v and S 2 v are the same surface S v :

S 1 v = S 2 v = S v . (7) 
In fact, for any P ∈ S 1 v , set e 1 = φ 1 (π 1 (P )) = (u 1 , v) and e 2 = φ 2 (π 2 (P )) = (u 2 , v 2 ). We then have π 1 (P ) ⇐⇒ π 1 ,π 2 π 2 (P ) because they are projections of the same point. Then, v 2 = v according to Definition 5, and P ∈ S 2 v . Furthermore, the S v defines a foliation of R 3 , and it can be seen that:

∀v∀P ∈ S v : B 1 (P ) ⊂ S v , B 2 ⊂ S v , (8) 
which also leads directly from the definitions above because if P ∈ S v then π -1 k (P ) ∈ C k (v) (see Equation ( 6)), and π -1 k (π k (P )) = B k (P ) ⊂ S v . However, in general, the existence of a stable foliation for the two bundle sets, as expressed in Equation [START_REF] Morgan | Epipolar resampling of space-borne linear array scanner scenes using parallel projection[END_REF], cannot be satisfied. We illustrate it in Figure 4. Furthermore, let π 1 and π 2 be again any two projections and suppose there exists a foliation satisfying the Equation [START_REF] Morgan | Epipolar resampling of space-borne linear array scanner scenes using parallel projection[END_REF]. Then, let: P be any point in 3D space, and S v be the surface such that P ∈ S v ; P 1 = P be a point on 3D curve B 1 (P ), P 1 ∈ S v , then B 2 (P 1 ) ⊂ S v ; P 2 = P be a point on 3D curve B 2 (P ), P 2 ∈ S v , then B 1 (P 2 ) ⊂ S v .

As B 2 (P 1 ) and B 1 (P 1 ) are included in the same surface S v , they must intersect somewhere in a point Q. In the general case, the above statement is a contradiction because there is no reason that the condition B 2 (P 1 ) ∩ B 1 (P 2 ) = ∅ is satisfied for any two sets of bundles (see Figure 4, right). 

A local characterization of the epipolar existence

In this section, we derive a local formula (i.e. a differential equation) that measures the existence of an epipolar geometry. We refer to it as the epipolarability index. This section is rather theoretical and can be omitted by readers mainly interested in practical applications.

Analogously to the proof in Section 2.3, we will make a computation of two-way paths, B 1 then B 2 , as well as B 2 then B 1 . Then, we express the Taylor expansion of the intersection distance between these two paths. For sake of simplicity, let's suppose that we are in a quasi-vertical acquisition geometry stated in definition 31 , and in Figure 5, the point P is any point in R 3 . We then denote: the first path (P, P 1 , Q 1 ) following B 1 (P ) then B 2 (P 1 ), making a progression δ 1 on B 1 (P ) and δ 2 on B 2 (P 1 ) ; a second path (P, P 2 , Q 2 ) following B 2 (P ) then B 1 (P 2 ), making a progression δ 2 on B 2 (P ) and δ 1 on B 1 (P 2 ) ; ---→ t 1 (P ) = (x, y, 1) as the tangent to the bundle B 1 in point P (and similarly -→ t 2 (P )); and write ∂F ∂z1 to refer to the coordinate system (i 1 , j 1 , z) = π -1 1 (x, y, z), idem for ∂F ∂z2 , and obviously as they are two different coordinate systems, we have in general ∂F ∂z1 = ∂F ∂z2 . Now, for any pair of "small" values (δ 1 , δ 2 ), we compute (δ 1 , δ 2 ) which minimize the distance |Q 1 , Q 2 | and express the canceling of the second degree Taylor expansion of this distance (the first degree can always be canceled out as we will see). Noting δ the max of all δ, the second degree Taylor expansion gives : Fig. 5: Notation for local characterization of the epipolar existence.

P 1 = P + δ 1 ---→ t 1 (P ) + δ 1 2 2 ∂ - → t 1 ∂z 1 (P ) + O(δ 3 ) (9) 
Q 1 = P 1 + δ 2 ----→ t 2 (P 1 ) + δ 2 2 2 ∂ - → t 2 ∂z 2 (P 1 ) + O(δ 3 ) (10) ----→ t 2 (P 1 ) = ---→ t 2 (P ) + δ 1 ∂ - → t 2 ∂z 1 (P ) + O(δ 2 ) ( 11 
)
Putting together Equations ( 9), [START_REF] Ono | Epipolar resampling of high resolution satellite imagery[END_REF], [START_REF] Rupnik | Refined satellite image orientation in the free opensource photogrammetric tools Apero/MicMac[END_REF] we can perform a Taylor expansion of the path P to Q 1 :

Q 1 = P + δ 1 ---→ t 1 (P ) + δ 2 ---→ t 2 (P ) + δ 1 2 2 ∂ - → t 1 ∂z 1 (P ) + δ 2 2 2 ∂ - → t 2 ∂z 2 (P ) + δ 1 δ 2 ∂ - → t 2 ∂z 1 (P ) + O(δ 3 ) (12 
) And similarly for P to Q 2 :

Q 2 = P + δ 2 ---→ t 2 (P ) + δ 1 ---→ t 1 (P ) + δ 2 2 2 ∂ - → t 2 ∂z 2 (P ) + δ 1 2 2 ∂ - → t 1 ∂z 1 (P ) + δ 1 δ 2 ∂ - → t 1 ∂z 2 (P ) + O(δ 3 ) (13) The first degree Taylor expansion of Q 2 -Q 1 gives : Q 2 -Q 1 = (δ 1 -δ 1 ) ---→ t 1 (P ) + (δ 2 -δ 2 ) ---→ t 2 (P ) + O(δ 2 ) ( 14 
)
To minimize

|Q 2 -Q 1 |, the first step is to cancel the first degree terms of Q 2 -Q 1 .
We assume that ---→ t 2 (P ) and ---→ t 1 (P ) are independant vectors 2 and we must then make δ 2 -δ 2 and δ 1 -δ 1 second degree terms:

2 Otherwise, it would be a degenerate case for stereovision

∆ 1 = δ 1 -δ 1 = O(δ 2 ) ; ∆ 2 = δ 2 -δ 2 = O(δ 2 ) ( 15 
)
To develop Q 2 -Q 1 we can use the following identities that are direct consequences of Equation ( 15):

δ 1 δ 2 -δ 1 δ 2 = O(δ 3 ) ; δ 1 2 -δ 1 2 = O(δ 3 ) ; δ 2 2 -δ 2 2 = O(δ 3 ) (16) 
Subtracting Equation ( 12) from Equation ( 13), and using Equation ( 16), we can write :

Q 2 -Q 1 = ∆ 1 ---→ t 1 (P ) + ∆ 2 ---→ t 2 (P ) + δ 1 δ 2 ( ∂ - → t 2 ∂z 1 (P ) - ∂ - → t 1 ∂z 2 (P )) + O(δ 3 ) (17)
We now translate the intersection of paths by canceling the second degree Taylor expansion in Q 2 -Q 1 . We have three vectors, and their weighted sum can be null iff they are colinear.

Theorem 1 (Existence of epipolar geometry) The epipolar geometry exists iff the following determinant is null:

-→ t 1 -→ t 2 ∂ - → t2 ∂z1 -∂ - → t1 ∂z2 = 0 (18)
Remark 1 (Epipolar equation with central perspective camera) As an illustration on an easy case, we can see that this condition is trivially satisfied for a pair of central perspective cameras as we have the canceling of both terms as shown in Equation ( 19). This is because for a given point P , and any point P 1 on B 1 (P ), ----→ t 2 (P 1 ) belongs to the epipolar plane P. We have ----→ t 2 (P 1 ) ∈ P, so ∂ -→ t2 ∂z1 ∈ P, and as we have also ---→ t 1 (P ) ∈ P, ---→ t 2 (P ) ∈ P, the collinearity between ---→ t 1 (P ) , ---→ t 2 (P ) and ∂ -→ t2 ∂z1 (P ) is thus proven:

-→ t 1 -→ t 2 ∂ - → t2 ∂z1 = -→ t 1 -→ t 2 ∂ - → t1 ∂z2 = 0 (19)

Ambiguity of the epipolar geometry

When the epipolar geometry exists, the epipolar resampling is not unique. To demonstrate that our rectification method handles this ambiguity rigorously, we first describe it formally. Let φ 1 , φ 2 and φ 1 , φ 2 be two epipolar resamplings. Following the depiction in Figure 6, for any v, consider the pair of lines L 1 (v), L 2 (v) for which:

φ -1 k (L k (v)) is the curve C k (v) by definition of epipolar resampling; and φ k (C k (v)) = φ k (φ -1 k (L k (v)
) is a line, also by definition of epipolar resampling; and in analogy,

φ 1 (φ -1 1 (L 1 (v))) = φ 2 (φ -1 2 (L 2 (v))
). Consequently we have the following constraints between two pairs of epipolar ressampling:

φ 1 φ -1
1 and φ 2 φ -1 2 are diffeomorphisms transforming lines into lines;

φ 1 φ -1 1 and φ 2 φ -1 2 define the same global transformation on lines (i.e. if φ 1 (φ -1 1 (L 1 (v))) = φ 2 (iφ -1 2 (L 2 (v)))
). Vice versa, let φ 1 , φ 2 be an epipolar resampling and let Λ 1 , Λ 2 be diffeomorphisms that are stable for lines and make globally the same transformation on lines. We can thus note that Λ 1 •φ 1 and Λ 2 •φ 2 are also an epipolar resampling (see Figure 6).

Having devised the exact ambiguity, we can now define two constraints to impose on a unique epipolar resampling:

1. Constraint on the uniqueness of the deformation inside each line

. For instance, one can impose that the colums remain constant (i.e. the deformation is only made on y), as given in Equations ( 20) and (21); 2. Constraint on the global deformation of lines 3 . For instance, by fixing the transformation of one image, as given in Equation ( 6).

Theorem 2 (Unique epipolar constraint) If the epipolar geometry exists, there exists a unique epipolar resampling φ 1 , φ 2 satisfying the following three constraints:

φ 1 (x, y) = (x, y ) (20) φ 2 (x, y) = (x, y ) (21) φ 1 (0, y) = (0, y) (22) 
3 Proposed method for epipolar geometry resampling 3.1 Hypothesis and layout

Principles

The principle of the method is to use H-Compatible points p 1 , p 2 to calculate a pair of functions φ 1 , φ 2 that comply with the epipolar constraint, i.e. "φ 1 (p 1 ) and φ 2 (p 2 ) are on the same line". As these epipolar functions are not unique, we parameterize the φ k in Theorem 2, accordingly: This parametrization implements the constraints of Equations ( 20) and (21). We will account for the constraint of Equation ( 22) in Section 3.2.1. To compute V 1 , V 2 , for any pair of H-Compatible points, we add an observation that constrains V 1 and V 2 :

φ k (i, j) = (i, V k (i, j)); V k : R 2 → R (23) 
V 1 (p 1 ) = V 2 (p 2 ). (24) 

Hypothesis

The method takes two camera models π 1 and π 2 as inputs. These models are considered black-boxes that satisfy Equation (1), and for which no specific assumption is made on the physical model of the camera. In our C++ implementation, the cameras are considered to be pure virtual classes offering the interface to Equation (1). In this paper, the examples processed by our method are pushbroom satellite models known by their RPCs and the central perspective. However, the only restriction imposed on the generic nature of the model is that the projection function is "smooth", i.e.:

π are C ∞ functions, and the directions of epipolar curves vary within a limited range (for example, less than π 2 ).

Figure 7 illustrates the latter constraint. The left image presents a set of epipolar lines with too large direction variations. The right images represent pairs of epipolar lines whose directions change within a small range, therefore suitable for the proposed resampling method.

Fig. 7: Epipolar lines. Left: not handled by our method; Right: acceptable by our method.

Estimation of the center and the global direction

Before calculating the rectifying functions V k , we need to compute a coordinate system where epipolar lines are globaly horizontal. This requirement is a consequence of equation ( 23), and is illustrated by Figure 8:

The left image of Figure 8 presents a case where epipolar curve are quasivertical and for which an epipolar correction of Equation ( 23), without an initial rotation, is impossible;

The center image of Figure 8 presents a case where epipolar curve are slanted; In this case epipolar correction according to equation ( 23) is possible but leads to important distorsion in the image, as can be seen in the image on the right.

Therefore, for each image we estimate the average direction D k of their epipolar lines, and a rotation R k is applied on the input set of points p:

R k (p) = p -C k D k , ( 25 
)
where C k is the centroid of the set of points. The epipolar lines are now globally horizontal and the subsequent epipolar deformation is computed on the rotated data points. 

Layout

The layout of the method follows three steps: (1) estimate the global direction of epipolar lines; (2) estimate F 1 , F 2 as the local epipolar rectification in the coordinate system linked to the global direction; (3) estimate the final epipolar rectification as a composition of F 1 , F 2 and the rotation. A more formalized description of the algorithm is given in Algorithm 1.

Algorithm 1 Epipolar(π 1 ,π 2 ). Layout of the algorithm for computing the epipolar rectification from camera models Use π 1 , π 2 to estimate a set of H-Compatible points H = {(p 1 , p 2 )} : Estimate centers C 1 and C 2 ; Estimate global direction of epipolars D 1 and D 2 , Estimate rotations R 1 , R 2 according to Equation (25) for all p 1 , p 2 ∈ H do set:

q 1 = R 1 (p 1 ), q 2 = R 2 (p 2 ) add equation: V 1 (q 1 ) = V 2 (q 2 ) end for estimate with the least squares method V 1 and V 2 set F k (x, y) = (x, V k (x, y)) set φ k = F k • R k return (φ 1 , φ 2 )

Why does our method work?

Intuitively, it may not be obvious that the system of equations in Equation ( 24) is well posed. In fact, if there was a functional relationship between p 1 and p 2 , as p 1 = F (p 2 ), an infinity of solutions for (V 1 , V 2 ) would exist, because for any function V : R 2 → R we can generate a solution (V, V • F ).

However, note that due to the 3D aspect of p 1 and p 2 , there is no functional relationship between them which conduct to a more constrained system of equations. Instead of a functional relationship, we can generate "one to many" (and "many to one") correspondences as illustrated in Figure 9. For example, for a given point p 1 , following the curve π 2 (B 1 (p 1 )), we can generate several points on the bundle (potentially an infinity) which results in many correspondences. To illustrate, if we take p k 2 to be k homologous points of p 1 , we then have the equation:

V 1 (p 1 ) = V 2 (p 1 2 ) ; V 1 (p 1 ) = V 2 (p 2 2 ) ; V 1 (p 1 ) = V 2 (p 3 2 ) . . . , (26) 
which in fact enforces this constraint:

V 2 (p 1 2 ) = V 2 (p 2 2 ) = V 2 (p 3 2 ) . . . (27) 
If we now look at left image of Figure 9, we see that Equation (27) imposes the constraint that a "piece of curve" is horizontal. In Section 3.3.1, we will see a more detailed analysis explaining how the method can work even with configurations different than those depicted in Figure 9. 

Detailed implementation

Choice of a parametric functional space

We need to select a space of parametric functions to represent V 1 , V 2 . The only constraint is that V 1 , V 2 are C ∞ functions, and that the additional constraint in Equation ( 22) is valid. Classically, when parameterizing a set of functions C ∞ , a "natural" candidate is the set of polynomials of a given degree. We know that the function will be C ∞ and, according to the Stone-Weierstrass theorem (15; 13) (which says that the space of polynomials is dense in the space of continuous functions), with a sufficiently high degree we will be able to accurately approximate any continuous function. A possible limitation of selecting high degree polynomial is over-fitting, which may lead to unwanted high frequency behavior. In our case, this problem should never arise as the measurements are synthesized from the projection functions π 1 , π 2 , which provides sufficient redundancy (for instance, hundreds of times more measurements than constraints). Note, however, that some precautions must be taken with respect to the polynomial degree when using our method with image correspondences, without the geometric model (see Section 3.3.1).

If d is the selected degree, the two vectors of unknowns C 1 a,b , C 2 a,b , corresponding to coefficients of the polynomials are:

V k (p) = V k (i, j) = d a=0 d-a b=0 C k a,b i a j b . (28)

Imposing constraints on global lines deformation

When applying the constraint of equation ( 22) to equation (28), we have i = 0, hence we can suppress all terms i a for a = 0. The constraint equation then reads:

V 1 (0, j) = j = N b=0 C 1 0,b j b (29)
In the equation above, j on the left and the sum on the right are both polynomials. If the two polynoms are equal on a interval, their coefficient must be equal . This constraint fixes the C 1 0,k : C 1 0,1 = 1 and C 1 0,k = 0 otherwise. Using the Kronecker delta, we can write:

C 1 0,k = δ 1,k (30) 

Generation of points, computation of the direction and centers

The points from π 1 and π 2 are generated twice, using each image as the master.

The bundles are always generated from the master images. The Algorithm 2 presents the generation of the points with I 1 as the master, as well as the computation of the global direction and the points' centers.

Algorithm 2 GenerateData(). Compute a list L 1,2 of π 1 -π 2 H-compatible pairs with I 1 as the master image. Compute also the center C 1 of points in I 1 and the global direction D 2 for epipolar curves of I 2 .

L 1,2 ← () ; C 1 ← (0, 0) ; D 2 ← ---→ (0, 0) ; N ← 0 for p 1 .x = 0 to X 1 Step δ x,y do for p 1 .y = 0 to Y 1 Step δ x,y do for z = Z 0 to Z 1 Step δ z do p 2 = π 2 ( π -1 1 (p 1 , Z)) p 2 = π 2 ( π -1 1 (p 1 , Z + δ z )) if p 2 ∈ I 2 ∧ p 2 ∈ I 2 then L 1,2 .append((p 1 , p 2 )) C 1 ← C 1 + p 1 D 2 ← D 2 + --→ p2p 2 |p2p 2 | N ← N + 1 end if end for end for end forC 1 ← C1 N ; D 2 ← D2 N
Once the centers C 1 , C 2 , directions D 1 , D 2 and the list L 1,2 are computed, they are used to normalize the measurements and make the direction globally horizontal by applying Equation ( 25) to all elements of the list.

Estimating the rectification

As the measurements are synthetic and without outliers, we can directly solve the equations with the linear least squares method. Let's sum up all previous steps. Let d be the degree of the polynomials, and the unknowns are the coefficient of the polynomials V 1 and V 2 . There are (d+1)(d+2) 2 unknowns for V 2 and (d+1)(d+2) 2 -(d + 1) for V 1 , taking into account the constraint in Equation (30). For each pair of normalized points q 1 , q 2 (see Algorithm 1) we add the Equation (28) to the least squares equation system. We then estimate the V 1 , V 2 and obtain:

ϕ k (p) = ϕ k (i, j) = (i, V k (i, j)) ; φ k = ϕ k • R k (31)
Estimating the inverse function

The natural way to resample I k in E k (see Figure 2) is to write:

E k (p) = I k (φ -1 k (p)).
(32) Therefore, to rectify an image, we also need to calculate the inverse function. The inverse of R k is obvious. For computing the inverse of ϕ k , we exploit the fact that if ϕ is invariant for the column, then ϕ -1 is invariant too. Consequently, we can parametrize it with a function W : R 2 → R as:

ϕ -1 k (p) = ϕ -1 k (u, v) = (u, W k (u, v)) (33 
) To estimate W , we follow the same rationale as in Section 3.2.1, and use the base of a polynomial function. Once the V k are known, we generate for each point p k = (i, j) in L 1,2 an observation:

W k (i, V k (i, j)) = j
(34) If we want to ensure that the computed inverse is sufficiently close to the "real" inverse, we can increase the polynomial's degree (in our implementation, we typically use the degree of d + 4). It has no side effects as long as we maintain high redundancy.

Epipolar resampling without the geometric model

Resampling with image correspondences only

"Is it possible to use the proposed method to compute the epipolar geometry if we have image point correspondences (i.e., image features) between the image pairs but we don't know their geometric models?" There is NO straightforward answer to whether it is possible or not. In general, it is not possible, but it becomes possible when the relief (i.e., the 3D scene) is not smooth and we constraint the resampling be more or less smooth.

The rationale behind trying to use exclusively image correspondences comes directly from Algorithm 1. As one can see, it does not matter if the point correspondences are extracted with the help of some geometric model (as with Algorithm 2) or from an image processing method not requiring any a priori information on image geometry, e.g. SIFT [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. Hence, as long as we know the directions of the epipolar lines, our method is applicable.

However, when the point correspondences are computed with an image processing routine, there exists some functional relationship between them. Suppose that the 3D scene can be described by a function Z = Z(X, Y ), and denote S Z as the corresponding surface. For a point p 1 of I 1 , denote π Z 1 (p 1 ) as the intersection of B 1 (p 1 ) and the surface S Z . Here, the function π Z 1 is the inverse of the projection π 1 which relates the image I 1 and the surface S Z . We now see that there exists a functional relationship between all the point correspondences (p 1 , p 2 ) and it follows this equation:

p 2 = (π 2 • π Z 1 )(p 1 ) = F Z (p 1 ). (35) 
Therefore, as discussed in Section 3.1.5, in the most general case, it is impossible to recover the epipolar geometry from a set of correspondences. This said, until now we have ignored what we said in Section 3.1.5, namely, that in the proposed method the functions V 1 and V 2 have to be "smooth". Let's reason again and suppose we have computed an epipolar geometry:

e k = (u k , v k ) = φ k (p k ) = (x k , V k (y k ) with v 1 = v 2
and V k being a "smooth" function. We now want to analyse whether the geometry was ambiguous. We have

e 2 = (φ 2 • π 2 • π Z 1 • φ -1 1
)(e 1 ) = P (e 1 ), and so, we can write

(u 2 , v 2 ) = P (u 1 , v 1 ) = (u 1 + p x (u 1 , v 1 ), v 1 ),
where p x is what is usually called the "parallax function". As in Section 3.1.5, for any function W 2 : R 2 → R, let W 1 be the function defined by W 1 = W 2 • P . Then, for any (e 1 , e 2 ), (u 1 , W 1 (u 1 , v 1 )) and (u 2 , W 2 (u 2 , v 2 )), we also satisfy the epipolar constraint as

W 1 (u 1 , v 1 )) = W 2 (P (u 1 , v 1 )) = W 2 (u 2 , v 2 ).
Is it possible that W 2 and W 2 • P are both smooth functions? This depends on the smoothness of P . If P is itself a smooth function, then obviously for any smooth W 2 , W 2 • P will also be smooth and the epipolar resampling will be ambiguous. If we take the canonical example of a flat 3D scene, then p x = 0, P = Id and as W 1 = W 2 , W 1 is smooth if W 2 is smooth. In this case the epipolar geometry is also ambiguous. However, if the scene has high frequency depth changes, then P also has high frequencies, and W 2 and W 2 • P cannot both be smooth. This can be seen more formally by the following equation:

∂W 2 • P ∂u = ∂P ∂u ∂W 2 ∂u • P. (36) 
As an example, for any point where the scene is not differentiable, we have ∂P ∂u = ∞, and from the equation above, the term ∂W2 ∂u = 0, because W 2 • P is said to be smooth. With a polynomial W 2 of a limited degree and with a sufficient number of points, the term ∂W2 ∂u = 0 leads to the realisation that W 2 depends only on v. Finally, including Equation ( 22), we have the polynomial W 2 = Id, which shows the uniqueness of the solution.

Estimating the directions without model

To use the resampling method with image features, we need a way to estimate the global directions of the epipolar lines, as it is done in Section 3.1.3 with the help of the geometric model. In the provided implementation we allow the user to provide the directions, or else the directions are computed automatically. For instance, in satellite along-track acquisitions, the user can easily deduce the directions, and it is certainly the "safer" option. The automated option is based in discretizing a number of directions in each image of a stereo pair, followed by a combinatorial exploration of all possible pairs of directions. For each direction pair, epipolar models (c.f., Section 3.2) with polynomials of degree 0 are computed. The residuals (i.e., the y-parallax) calculated on all image features serve as quality criterion in choosing the final global directions. Since the image features may contain outliers, residuals are evaluated using L1 norm .

Once the directions are known, the resampling polynomial is robustly calculated with a weighted iterative least-square approach as follows :

1. start with 1 st degree polynomial and evaluate it with L1 norms; 2. then, use the previous solution to weight the observations and evaluate 3 rd degree polynomial with the weighted least-squares method; 3. then, use the previous solution to weight the observations and evaluate 5 th degree polynomial with the weighted least-square method; 4. etc.

Experiments

We demonstrate the performance of the algorithm in two scenarios: with and without the geometric model of the camera. The results are evaluated in terms of the remaining y-parallaxes, and compared to competetitors: the method by Oh (9) for pushbroom geometries, and a resampling method implemented in MicMac for calibrated central perspective geometries (we refer to it as the classical method). The latter is equivalent of the epipolar resampling proposed by Fusiello (3) with the exception that it handles camera distortion parameters, hence, it does not require the undistorting of the images prior to the rectification. We evaluate our method against the central perspective geometry only for comparison purposes, because we dispose of ground truth epipolar geometries for this camera model. In practice, the classical method, which is founded on physical modeling with a minimal number of unknown, should be preferred.

To generate points correspondences in Algorithm 2, when the camera geometry is known, the points in the image space are defined as a grid of 100 × 100. The Z is the mean depth of the scene, and the step δ Z is set such that 3 evenly distributed depths spaning the 3D space are obtained. Additionally, each image point is assigned a 4 th , random depth for evaluation. The min/max depths representing the envelope of the 3D scene, can be inferred from the RPCs or from depths of the sparse structure (see Z buf f in Table 1).

Influence of different geometries of acquisition.

Five Pléiade-1A images with their corresponding RPC geolocations are first refined in a RPC-bundle adjustment [START_REF] Rupnik | Refined satellite image orientation in the free opensource photogrammetric tools Apero/MicMac[END_REF]. We then form pairs of images of varying base-to-height ratios ( B /H) in the range ∈ 0.1, 0.45 , and carry out epipolar resampling with Ours and Oh's methods. We also distinguish between single orbit and multiple orbit configurations. In Table 1 the maximum values of the remaining y-parallax are reported. The y-parallax is computed on a grid of image points generated with Algorithm 2. Note that these points are nonoverlapping with the grid used for estimating the resampling polynomials. We can see that Our method outperforms the method by Oh in all instances and is insensitive to the acquisition geometry.

Comparison of resampling with and without the camera geometry.

To evaluate the performance of the proposed method on images without known camera geometry, we run epipolar resampling twice: with the camera model, and using SIFT features [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. In the latter scenario, the resampling polynomial was found across 6 iterations by progressively increasing the degree (the final polynomial being of 6 th degree). The comparison is done on a pair of Pléiade-1A images. In Figure 10 the per-pixel y-parallaxes are given. In all three scenarios the remaining parallax is of the same magnitude, error y < |0.05| pixel. The Oh and Ours method with the camera model give comparable results, while the approach with SIFT correspondences is clearly the best. The experiments with the camera model reveal a correlation between the remaining y-parallax and the 3D scene geometry. We believe this is due to unmodelled errors in RPC camera model. The approach based on SIFT correspondences uses points and is independent of the camera model hence no systematic error is present in the y-parallax map.

Epipolar resampling of panoramic pushbroom camera

Corona KH-4B images are analog images captured by the american reconnaissance satellites in the Cold War period [START_REF] Fj Madden | The corona camera system: Itek's contribution to world stability[END_REF]. Since 1995 many Corona images are declassified and available to the public. Image processing and photogrammetry with Corona images remains difficult because the camera geometry is complex [START_REF] Sohn | Mathematical modelling of historical reconnaissance corona kh-4b imagery[END_REF], and camera calibration certificates are rarely provided. In the absence of the known camera parameters, epipolar rectification with image features is an interesting alternative to allow for stereo-reconstruction. Figure 11 shows the image pair in its native geometry (i.e., panoramic pushbroom), the SIFT features extracted on the full resolution images, as well as the epipolar curves. The resampling polynomial was found across 9 iterations by progressively increasing its degree (the final polynomial being of 9 th degree). As no ground truth is available, we evaluate the dataset visually in Figure 12 by providing a semi-global matching stereo-reconstruction and by drawing some epipolar lines. Because the images are subject to various distortions (i.e., panoramic, image scanning or image motion compensation distortions) as explained in (4), the remaining y-parallax in Figure 10(c) manifests systematic errors up to |0.5| pix. Such errors cannot be modelled with the chosen polynomial functions.

Epipolar resampling of central perspective camera

The experiments with the central perspective camera have a double objective. First we show that the proposed method works with pinhole cameras, and second we demonstrate the ambiguity of epipolar resampling when the scene can be represented by a smooth function, e.g., when it is flat (see Section 3.3.1). In Figure 13 the experiments are referred to as Stairs and Floor. The Stairs is an image pair of a staircase, so it is not flat. The Floor, as the name suggests, corresponds to the image pair of a floor, which is globally planar. We can observe that the epipolar resamplings computed with the camera models are comparable to the epipolar resampling with the classical method.

The experiment with the SIFT features is a confirmation of the theoretical analysis developped in 3.3 : with tie point only, it is possible to recover the epipolar geometry if and only if the relief contains high frequencies. Here method based on the SIFT features works well when the scene has a relief, and as expected fails on the planar scene (see the deformed epipolar image pair and the respective epipolar curves in Figure 13(c),(f)).

Discussion and perspective

We have presented of rigorous mathematical analysis of the epipolar resampling problem. In particular, we established the necessary and sufficient condition for the existence of an exact epipolar resampling and, when this condition is satisfied, established the degree of ambiguity of epipolar resampling. From this analysis we have derived a method for epipolar resampling of a generic pair of sensors that works as long a the existence criteria is approximately satisfied. The method computes the resampling functions by fitting analytical models which induce no deformation along the x-axis, and minimizes the y-parallax . We have demonstrated that the approach performs well on various camera geometries (central perspective, pushbroom, pushbroom panoramic). Experiments also showed suitability of the approach to resampling images with only image correspondences, when camera geometry is unknown. Note that the proposed method is not suitable for resampling images with large variations in the epipolar line directions. Future works include applying the method to multi-modal images, e.g. optical and radar. 
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 3 Fig. 3: Illustration of epipolar geometry.

Fig. 4 :

 4 Fig. 4: Path closure. Left: in the epipolar case, the bundles are on the same level of the foliation and the intersection. Right: in the generic case, the paths don't intersect and no epipolar geometry exists.

Fig. 6 :

 6 Fig. 6: Ambiguity of the epipolar geometry: two possible epipolar resamplings for a single stereo pair.

Fig. 8 :

 8 Fig. 8: Left: Quasi-vertical epipolar curve for which correction with Equation (23) is impossible. Middle and right: slanted curves for which epipolar rectification with Equation (23) is possible but generates significant distortion.

Fig. 9 :

 9 Fig. 9: Left: For each p 1 , we generate several 3D points on B 1 (p 1 ). Middle: The multiple correspondences in I 2 . Right: A dense network of curves in I 2 .

Fig. 10 :

 10 Fig. 10: Comparison of epipolar resampling with and without the camera geometry. (c)-(d) correspond to the per-pixel y-parallax computed with dense image matching in the direction perpendicular to the epipolar line.

Fig. 11 :

 11 Fig. 11: Corona KH-4B stereo pair.

Fig. 12 :

 12 Fig. 12: Epipolar images generated from a Corona KH-4B stereo pair, its stereo-reconstruction and the remaining y-parallax. Epipolar lines are marked in white.

Fig. 13 :

 13 Fig. 13: Two experiments (Staircase and Floor ) with the consumer grade camera. Epipolar pairs are obtained with three methods: the classical being equivalent of the resampling proposed by Fusiello (3) for calibrated cameras, Ours with the camera model, and Ours with the SIFT features. In (e) and (f) the black background corresponds to the overlapping zones in the image pairs.

Table 1 :

 1 Maximum value of the remaining y-parallax [pix]. Z buf f corresponds to half the depth of the volumne used in the resampling calculation and was set to 270m.

Note that we could use curvilinear abscissa when this assumption is not be satisfied.