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Abstract

We propose a generic method for epipolar resampling that is not tied
to a specific camera model. We demonstrate the effectiveness of the
approach on a central perspective, pushbroom and pushbroom panoramic
camera models. We also devise an epipolarability index that measures
the suitability of an image pair for epipolar rectification, and provide
a formal derivation of the ambiguity bound to epipolar resampling.

Keywords: epipolar rectification, generic camera, pushbroom sensor, central
perspective

1 Introduction

The epipolar geometry of images plays a central role in many applications in
the field of photogrammetry and computer vision. In the stereo-reconstruction
pipeline, it is used twice:

1. In the camera pose orientation step, when computing the relative orien-
tation of a pair of images from their corresponding points. Assuming the
projection follows the central perspective and the internal calibration is
known, one can compute the epipolar geometry of the images using the
essential matrix. Finally, the relative orientation is recovered (3).

2. In the image dense matching step, where the epipolar rectification simpli-
fies the correspondence search because for any point (x1, y) in image I1,
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its correspondence is some point (x2, y) in image I2. Therefore, finding
correspondences across images is reduced to a 1-dimensional problem (1D).

In this paper, we only look at the epipolar rectification problem and more
specifically its application to a generic camera model.

1.1 Related works

Rectifying a central perspective camera stereo pair involves transforming their
original epipolar geometry to a canonical form where: (a) their focal planes
are coplanar, and (b) their conjugate epipolar lines are colinear, and parallel
to the camera’s x-axis. From the algebraic standpoint, this is equivalent to
applying two 2-dimensional (2D) projective transformations to both images of
the stereo pair. Several approaches to computing such transformations have
been proposed over the course of the last 30 years. For a calibrated stereo pair
(i.e. with known camera projection matrices), there exists a unique rectifying
transformation, up to a rotation along the baseline (3). In an uncalibrated
case, the solution is obtained by factoring out two 2D homographies from the
fundamental matrix.

Unlike the central projection camera model, pushbroom-like sensors acquire
each image row from a different perspective center. As a consequence, the
epipolar lines are neither straight lines, nor are they conjugate across the
image (5). One way to overcome this particularity is to simplify the projec-
tion function with a 2D affine (10; 14) or a parallel projection model (8).
Such approximations usually come at the price of precision, especially with
the increasing camera field-of-view or in mountainous scenes. By extending the
2D affine model with two quaratic terms, Okamonoto et al. (1) demonstrates
improved performance on SPOT images. In the context of dense image match-
ing, de Francis et al. (2) improves the precision by partitioning the images into
small patches, for which indepedent affine rectifictions are computed. Alterna-
tively, and with equally good precision, Oh (9) uses the Rational Polynomial
Coefficients (RPCs) to map the epipolar curves across the full size images with
lines, in a piecewise approach, followed by a global rectification transformation
using a polynomial function of 3rd order.

1.2 Contributions

Our research work proposes an epipolar geometry rectification method that is
not tied to any camera physical model. We provide a theoretical derivation and
demonstrate the effectiveness of the approach on a range of models, including
Pleiades images (pushbroom), the Corona images (panoramic pushbroom) and
a consumer grade camera images (central perspective). The method resembles
Oh’s (9) approach in that it exploits the point correspondences to find the
polynomial mapping to epipolar geometry. However, unlike the work of Oh (9),
we do not require that the camera geometric model is known. We demonstrate
that in some circumstances, point correspondences obtained from an image
processing routine, e.g. SIFT (6), can serve to find the epipolar resampling.
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Finally, we formally derive the ambiguity of the epipolar geometry, and propose
an epipolarability index that quantitatively describes the existence of epipolar
geometry between a pair of images.

In the remainder of this publication, we first outlay the mathematical back-
ground of the epipolar geometry, identify conditions required for its existence
and establish its degree of ambiguity (Section 2). Then, we introduce our
method (Section 3), and conclude with experiments on different datasets, with
and without the geometric model (Section 4).

2 The mathematics of epipolar geometry in the
generic case

2.1 Formalisation and notation of projections

Fig. 1: A projection and a bundle.

We define the geometric sensor model of an image by a projection function
π, that computes, for a given 3D point, its 2D projection in the image:

Definition 1 (Generic geometric sensor model) Illustrated in Figure 1.
A geometric sensor model π is a C∞ mapping from ground space (R3) to image

space (R2):

π : R3 → R2, (X,Y, Z)→ (i, j) = π(X,Y, Z). (1)

Next, we define the bundles of a projection:

Definition 2 (Bundle) For pk ∈ Ik we note Bk(pk) the bundle corresponding to
π−1
k (pk). When there is no ambiguity, we note identically Bk(P ), where P ∈ R3, the

bundle corresponding to π−1
k (πk(P )) = Bk(πk(P )).
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Later, for simplicity, we will use the quasi-vertical hypothesis, which allows us
to extend π to a bijective mapping of R3 and compute its inverse.

Definition 3 (Quasi-vertical camera model) We say that the projection is quasi-
vertical if the following mapping π̃ is a diffeomophism of R3:

π̃ : R3 → R3, (X,Y, Z)→ (i, j, Z) = π̃(X,Y, Z), with(i, j) = π(X,Y, Z). (2)

Given 2 images I1 and I2, the knowledge of their geometric models π1 and
π2 reduces the matching between 2 images to a 1D problem. In fact, given
a point p1 in I1, we can compute the 3D curve B1(p1) of ground points that
project to p1 in I1, and compute its homologous curve in I2 with π2(B1(p1)).
We now define the H-compatible relation between two points by the following
definition:

Definition 4 (H-Compatible, ⇐⇒π1,π2) Illustrated in Figure 2.
We say that p1 in I1 and p2 in I2 are π1−π2 H-compatible, and write p1

⇐⇒
π1,π2p2,

if the following condition is satisfied:

(B1(p1) ∩ B2(p2) 6= ∅)⇔ (∃P ∈ R3 : π1(P ) = p1, π2(P ) = p2). (3)

Fig. 2: Illustration of ⇐⇒π1,π2.

In image matching, the relationship p1
⇐⇒
π1,π2p2 means that p1 and p2 are

potentially homologous.

2.2 Definition of the epipolar geometry

In fact, the previous relationships are sufficient to implement all the match-
ing techniques and (π1, π2) can be used to define a matching process, taking
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Fig. 3: Illustration of epipolar geometry.

advantage of the a priori knowledge of the scene geometry. That is, given a
point in one image, we can easily follow its curve of potentially homologous
points in the other image. This technique, which does not exploit the epipolar
geometry, has the advantage of also being adaptable to multi-image matching.
Epipolar geometry is therefore not strictly required for the image matching
process.

The drawback of this approach is that it combines two different problems
in the same procedure: the handling of the geometry and resampling and the
matching process. When one is interested in the matching of a single image
pair, the epipolar geometry can provide an elegant solution by separating the
problem in two independent ones.

Definition 5 (Epipolar Geometry) Illustrated in Figures 3 and 6.
Let π1, π2 be two cameras and let φ1, φ2 be two diffeomorphisms of R2. We say

that φ1, φ2 are an epipolar resamplings iff:

∀e1 = (u1, v1), e2 = (u2, v2) : (v1 = v2)⇔ (φ−1
1 (e1)⇐⇒π1,π2φ

−1
2 (e2)). (4)

The matching of epipolar images is simplified because we know that the lines
in two images are globally homologous.

Notation 1 (Epipolar line and curve.) We denote Lk(v) as the epipolar line of Ek
defined by vk = v. We also denote Ck(v) as the epipolar curve of Ik defined by
Ck(v) = φ−1

k (Lk(v))
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We can see that when epipolar geometry exists, the two curves C1(v) and C2(v)
are globally homologous:

C1(v) = π1(π−1
2 (C2(v))); C2(v) = π2(π−1

1 (C1(v))). (5)

2.3 Existence of the epipolar geometry

We now discuss the existence of the epipolar geometry. As it will be seen, the
epipolar geometry generally does not exist, and when it does, it is not unique.
We know that for any image pair following the central projection, there exists
an epipolar geometry. However, with e.g. a cylindrical projection specific to
many pushbroom satellites, the rigorous epipolar resampling is impossible (but
close approximation generally exists).

We explain now why the epipolar geometry does not exist for any pro-
jections π1, π2 and is instead an exception. Let’s define the surface Skv of R3

by:

Skv = π−1
k (Ck(v)). (6)

Following the definition of epipolar geometry above, it can be seen that S1
v

and S2
v are the same surface Sv:

S1
v = S2

v = Sv. (7)

In fact, for any P ∈ S1
v , set e1 = φ1(π1(P )) = (u1, v) and e2 = φ2(π2(P )) =

(u2, v2). We then have π1(P )⇐⇒π1,π2π2(P ) because they are projections of the
same point. Then, v2 = v according to Definition 5, and P ∈ S2

v . Furthermore,
the Sv defines a foliation of R3, and it can be seen that:

∀v∀P ∈ Sv : B1(P ) ⊂ Sv,B2 ⊂ Sv, (8)

which also leads directly from the definitions above because if P ∈ Sv then
π−1
k (P ) ∈ Ck(v) (see Equation (6)), and π−1

k (πk(P )) = Bk(P ) ⊂ Sv. How-
ever, in general, the existence of a stable foliation for the two bundle sets, as
expressed in Equation (8), cannot be satisfied. We illustrate it in Figure 4.
Furthermore, let π1 and π2 be again any two projections and suppose there
exists a foliation satisfying the Equation (8). Then, let:

� P be any point in 3D space, and Sv be the surface such that P ∈ Sv;
� P1 6= P be a point on 3D curve B1(P ), P1 ∈ Sv, then B2(P1) ⊂ Sv;
� P2 6= P be a point on 3D curve B2(P ), P2 ∈ Sv, then B1(P2) ⊂ Sv.

As B2(P1) and B1(P1) are included in the same surface Sv, they must intersect
somewhere in a point Q. In the general case, the above statement is a contra-
diction because there is no reason that the condition B2(P1) ∩ B1(P2) 6= ∅ is
satisfied for any two sets of bundles (see Figure 4, right).
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Fig. 4: Path closure. Left: in the epipolar case, the bundles are on the same
level of the foliation and the intersection. Right: in the generic case, the paths
don’t intersect and no epipolar geometry exists.

2.4 A local characterization of the epipolar existence

In this section, we derive a local formula (i.e. a differential equation) that mea-
sures the existence of an epipolar geometry. We refer to it as the epipolarability
index. This section is rather theoretical and can be omitted by readers mainly
interested in practical applications.

Analogously to the proof in Section 2.3, we will make a computation of
two-way paths, B1 then B2, as well as B2 then B1. Then, we express the Taylor
expansion of the intersection distance between these two paths. For sake of
simplicity, let’s suppose that we are in a quasi-vertical acquisition geometry
stated in definition 31, and in Figure 5, the point P is any point in R3. We
then denote:

� the first path (P, P1, Q1) following B1(P ) then B2(P1), making a progression
δ1 on B1(P ) and δ2 on B2(P1) ;

� a second path (P, P2, Q2) following B2(P ) then B1(P2), making a progression
δ′2 on B2(P ) and δ′1 on B1(P2) ;

�

−−−→
t1(P ) = (x, y, 1) as the tangent to the bundle B1 in point P (and similarly
−→
t2 (P ));

� and write ∂F
∂z1

to refer to the coordinate system (i1, j1, z) = π̃−1
1 (x, y, z),

idem for ∂F
∂z2

, and obviously as they are two different coordinate systems, we

have in general ∂F
∂z1
6= ∂F

∂z2
.

Now, for any pair of ”small” values (δ1, δ2), we compute (δ′1, δ
′
2) which

minimize the distance |Q1, Q2| and express the canceling of the second degree
Taylor expansion of this distance (the first degree can always be canceled out
as we will see). Noting δ the max of all δ, the second degree Taylor expansion
gives :

1Note that we could use curvilinear abscissa when this assumption is not be satisfied.
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Fig. 5: Notation for local characterization of the epipolar existence.

P1 = P + δ1
−−−→
t1(P ) +

δ1
2

2

∂
−→
t1
∂z1

(P ) +O(δ3) (9)

Q1 = P1 + δ2
−−−−→
t2(P1) +

δ2
2

2

∂
−→
t2
∂z2

(P1) +O(δ3) (10)

−−−−→
t2(P1) =

−−−→
t2(P ) + δ1

∂
−→
t2
∂z1

(P ) +O(δ2) (11)

Putting together Equations (9), (10), (11) we can perform a Taylor expansion
of the path P to Q1:

Q1 = P + δ1
−−−→
t1(P ) + δ2

−−−→
t2(P ) +

δ1
2

2

∂
−→
t1
∂z1

(P ) +
δ2

2

2

∂
−→
t2
∂z2

(P ) + δ1δ2
∂
−→
t2
∂z1

(P ) +O(δ3)

(12)
And similarly for P to Q2 :

Q2 = P + δ′2
−−−→
t2(P ) + δ′1

−−−→
t1(P ) +

δ′2
2

2

∂
−→
t2
∂z2

(P ) +
δ′1

2

2

∂
−→
t1
∂z1

(P ) + δ′1δ
′
2

∂
−→
t1
∂z2

(P ) +O(δ3)

(13)
The first degree Taylor expansion of Q2 −Q1 gives :

Q2 −Q1 = (δ′1 − δ1)
−−−→
t1(P ) + (δ′2 − δ2)

−−−→
t2(P ) +O(δ2) (14)

To minimize |Q2 − Q1|, the first step is to cancel the first degree terms of

Q2 − Q1. We assume that
−−−→
t2(P ) and

−−−→
t1(P ) are independant vectors2 and we

must then make δ′2 − δ2 and δ′1 − δ1 second degree terms:

2Otherwise, it would be a degenerate case for stereovision
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∆1 = δ′1 − δ1 = O(δ2) ; ∆2 = δ′2 − δ2 = O(δ2) (15)

To develop Q2 − Q1 we can use the following identities that are direct
consequences of Equation (15):

δ1δ2 − δ′1δ′2 = O(δ3) ; δ1
2 − δ′1

2
= O(δ3) ; δ2

2 − δ′2
2

= O(δ3) (16)

Subtracting Equation (12) from Equation (13), and using Equation (16), we
can write :

Q2 −Q1 = ∆1

−−−→
t1(P ) + ∆2

−−−→
t2(P ) + δ1δ2(

∂
−→
t2
∂z1

(P )− ∂
−→
t1
∂z2

(P )) +O(δ3) (17)

We now translate the intersection of paths by canceling the second degree
Taylor expansion in Q2 −Q1. We have three vectors, and their weighted sum
can be null iff they are colinear.

Theorem 1 (Existence of epipolar geometry) The epipolar geometry exists iff the
following determinant is null: [−→

t1
−→
t2

∂
−→
t2
∂z1
− ∂
−→
t1
∂z2

]
= 0 (18)

Remark 1 (Epipolar equation with central perspective camera) As an illustration
on an easy case, we can see that this condition is trivially satisfied for a pair of
central perspective cameras as we have the canceling of both terms as shown in
Equation (19). This is because for a given point P , and any point P1 on B1(P ),
−−−−→
t2(P1) belongs to the epipolar plane P. We have

−−−−→
t2(P1) ∈ P, so ∂

−→
t2
∂z1
∈ P, and as we

have also
−−−→
t1(P ) ∈ P,

−−−→
t2(P ) ∈ P, the collinearity between

−−−→
t1(P ) ,

−−−→
t2(P ) and ∂

−→
t2
∂z1

(P )
is thus proven: [−→

t1
−→
t2

∂
−→
t2
∂z1

]
=

[−→
t1
−→
t2

∂
−→
t1
∂z2

]
= 0 (19)

2.5 Ambiguity of the epipolar geometry

When the epipolar geometry exists, the epipolar resampling is not unique. To
demonstrate that our rectification method handles this ambiguity rigorously,
we first describe it formally.

Let φ1, φ2 and φ′1, φ
′
2 be two epipolar resamplings. Following the depiction

in Figure 6, for any v, consider the pair of lines L1(v),L2(v) for which:

� φ−1
k (Lk(v)) is the curve Ck(v) by definition of epipolar resampling;

� and φ′k(Ck(v)) = φ′k(φ−1
k (Lk(v)) is a line, also by definition of epipolar

resampling;



Springer Nature 2021 LATEX template

10 Epipolar rectification of a generic camera

� and in analogy, φ′1(φ−1
1 (L1(v))) = φ′2(φ−1

2 (L2(v))).

Consequently we have the following constraints between two pairs of
epipolar ressampling:

� φ′1φ
−1
1 and φ′2φ

−1
2 are diffeomorphisms transforming lines into lines;

� φ′1φ
−1
1 and φ′2φ

−1
2 define the same global transformation on lines (i.e. if

φ′1(φ−1
1 (L1(v))) = φ′2(iφ−1

2 (L2(v)))).

Vice versa, let φ1, φ2 be an epipolar resampling and let Λ1,Λ2 be diffeomor-
phisms that are stable for lines and make globally the same transformation on
lines. We can thus note that Λ1◦φ1 and Λ2◦φ2 are also an epipolar resampling
(see Figure 6).

Having devised the exact ambiguity, we can now define two constraints to
impose on a unique epipolar resampling:

1. Constraint on the uniqueness of the deformation inside each line
. For instance, one can impose that the colums remain constant (i.e. the
deformation is only made on y), as given in Equations (20) and (21);

2. Constraint on the global deformation of lines3. For instance, by fixing
the transformation of one image, as given in Equation (6).

Theorem 2 (Unique epipolar constraint) If the epipolar geometry exists, there exists
a unique epipolar resampling φ1, φ2 satisfying the following three constraints:

φ1(x, y) = (x, y′) (20)

φ2(x, y) = (x, y′) (21)

φ1(0, y) = (0, y) (22)

3 Proposed method for epipolar geometry
resampling

3.1 Hypothesis and layout

3.1.1 Principles

The principle of the method is to use H-Compatible points p1, p2 to calculate a
pair of functions φ1, φ2 that comply with the epipolar constraint, i.e. ”φ1(p1)
and φ2(p2) are on the same line”. As these epipolar functions are not unique,
we parameterize the φk in Theorem 2, accordingly:

φk(i, j) = (i, Vk(i, j)); Vk : R2 → R (23)

3i.e. where each line is transformed globally to another line
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Fig. 6: Ambiguity of the epipolar geometry: two possible epipolar resamplings
for a single stereo pair.

This parametrization implements the constraints of Equations (20) and (21).
We will account for the constraint of Equation (22) in Section 3.2.1. To com-
pute V1, V2, for any pair of H-Compatible points, we add an observation that
constrains V1 and V2:

V1(p1) = V2(p2). (24)

3.1.2 Hypothesis

The method takes two camera models π1 and π2 as inputs. These mod-
els are considered black-boxes that satisfy Equation (1), and for which no
specific assumption is made on the physical model of the camera. In our
C++ implementation, the cameras are considered to be pure virtual classes offer-
ing the interface to Equation (1). In this paper, the examples processed by our
method are pushbroom satellite models known by their RPCs and the central
perspective. However, the only restriction imposed on the generic nature of
the model is that the projection function is ”smooth”, i.e.:

� π are C∞ functions, and
� the directions of epipolar curves vary within a limited range (for example,

less than π
2 ).
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Figure 7 illustrates the latter constraint. The left image presents a set of epipo-
lar lines with too large direction variations. The right images represent pairs of
epipolar lines whose directions change within a small range, therefore suitable
for the proposed resampling method.

Fig. 7: Epipolar lines. Left: not handled by our method; Right: acceptable by
our method.

3.1.3 Estimation of the center and the global direction

Before calculating the rectifying functions Vk, we need to compute a coordi-
nate system where epipolar lines are globaly horizontal. This requirement is a
consequence of equation (23), and is illustrated by Figure 8:

� The left image of Figure 8 presents a case where epipolar curve are quasi-
vertical and for which an epipolar correction of Equation (23), without an
initial rotation, is impossible;

� The center image of Figure 8 presents a case where epipolar curve are
slanted; In this case epipolar correction according to equation (23) is pos-
sible but leads to important distorsion in the image, as can be seen in the
image on the right.

Therefore, for each image we estimate the average direction ~Dk of their
epipolar lines, and a rotation Rk is applied on the input set of points p:

Rk(p) =
p− Ck
~Dk

, (25)

where Ck is the centroid of the set of points. The epipolar lines are now
globally horizontal and the subsequent epipolar deformation is computed on
the rotated data points.

Fig. 8: Left: Quasi-vertical epipolar curve for which correction with
Equation (23) is impossible. Middle and right: slanted curves for which epipolar
rectification with Equation (23) is possible but generates significant distortion.
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3.1.4 Layout

The layout of the method follows three steps: (1) estimate the global direction
of epipolar lines; (2) estimate F1, F2 as the local epipolar rectification in the
coordinate system linked to the global direction; (3) estimate the final epipolar
rectification as a composition of F1, F2 and the rotation. A more formalized
description of the algorithm is given in Algorithm 1.

Algorithm 1 Epipolar(π1,π2). Layout of the algorithm for computing the
epipolar rectification from camera models

Use π1, π2 to estimate a set of H-Compatible points H = {(p1, p2)} :
Estimate centers C1 and C2;
Estimate global direction of epipolars ~D1 and ~D2,
Estimate rotations R1, R2 according to Equation (25)
for all p1, p2 ∈ H do

set: q1 = R1(p1), q2 = R2(p2)
add equation: V1(q1) = V2(q2)

end for
estimate with the least squares method V1 and V2

set Fk(x, y) = (x, Vk(x, y))
set φk = Fk ◦Rk return (φ1, φ2)

3.1.5 Why does our method work?

Intuitively, it may not be obvious that the system of equations in Equation (24)
is well posed. In fact, if there was a functional relationship between p1 and p2,
as p1 = F (p2), an infinity of solutions for (V1, V2) would exist, because for any
function V : R2 → R we can generate a solution (V, V ◦ F ).

However, note that due to the 3D aspect of p1 and p2, there is no func-
tional relationship between them which conduct to a more constrained system
of equations. Instead of a functional relationship, we can generate ”one to
many” (and ”many to one”) correspondences as illustrated in Figure 9. For
example, for a given point p1, following the curve π2(B1(p1)), we can generate
several points on the bundle (potentially an infinity) which results in many
correspondences. To illustrate, if we take pk2 to be k homologous points of p1,
we then have the equation:

V1(p1) = V2(p1
2) ; V1(p1) = V2(p2

2) ; V1(p1) = V2(p3
2) . . . , (26)

which in fact enforces this constraint:

V2(p1
2) = V2(p2

2) = V2(p3
2) . . . (27)

If we now look at left image of Figure 9, we see that Equation (27) imposes
the constraint that a ”piece of curve” is horizontal. In Section 3.3.1, we will
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see a more detailed analysis explaining how the method can work even with
configurations different than those depicted in Figure 9.

Fig. 9: Left: For each p1, we generate several 3D points on B1(p1). Middle:
The multiple correspondences in I2. Right: A dense network of curves in I2.

3.2 Detailed implementation

3.2.1 Choice of a parametric functional space

We need to select a space of parametric functions to represent V1, V2. The only
constraint is that V1, V2 are C∞ functions, and that the additional constraint
in Equation (22) is valid.

Classically, when parameterizing a set of functions C∞, a ”natural” candi-
date is the set of polynomials of a given degree. We know that the function
will be C∞ and, according to the Stone-Weierstrass theorem (15; 13) (which
says that the space of polynomials is dense in the space of continuous func-
tions), with a sufficiently high degree we will be able to accurately approximate
any continuous function. A possible limitation of selecting high degree poly-
nomial is over-fitting, which may lead to unwanted high frequency behavior.
In our case, this problem should never arise as the measurements are synthe-
sized from the projection functions π1, π2, which provides sufficient redundancy
(for instance, hundreds of times more measurements than constraints). Note,
however, that some precautions must be taken with respect to the polyno-
mial degree when using our method with image correspondences, without the
geometric model (see Section 3.3.1).

If d is the selected degree, the two vectors of unknowns C1
a,b, C

2
a,b,

corresponding to coefficients of the polynomials are:

Vk(p) = Vk(i, j) =

d∑
a=0

d−a∑
b=0

Cka,bi
ajb. (28)

3.2.2 Imposing constraints on global lines deformation

When applying the constraint of equation (22) to equation (28), we have i = 0,
hence we can suppress all terms ia for a 6= 0. The constraint equation then
reads:



Springer Nature 2021 LATEX template

Epipolar rectification of a generic camera 15

V1(0, j) = j =

N∑
b=0

C1
0,bj

b (29)

In the equation above, j on the left and the sum on the right are both
polynomials. If the two polynoms are equal on a interval, their coefficient must
be equal . This constraint fixes the C1

0,k : C1
0,1 = 1 and C1

0,k = 0 otherwise.
Using the Kronecker delta, we can write:

C1
0,k = δ1,k (30)

3.2.3 Generation of points, computation of the direction and
centers

The points from π1 and π2 are generated twice, using each image as the master.
The bundles are always generated from the master images. The Algorithm 2
presents the generation of the points with I1 as the master, as well as the
computation of the global direction and the points’ centers.

Algorithm 2 GenerateData(). Compute a list L1,2 of π1 − π2 H-compatible
pairs with I1 as the master image. Compute also the center C1 of points in I1
and the global direction ~D2 for epipolar curves of I2.

L1,2 ← () ; C1 ← (0, 0) ; ~D2 ←
−−−→
(0, 0) ; N ← 0

for p1.x = 0 to X1 Step δx,y do
for p1.y = 0 to Y1 Step δx,y do

for z = Z0 to Z1 Step δz do
p2 = π2(π̃−1

1 (p1, Z))
p′2 = π2(π̃−1

1 (p1, Z + δz))
if p2 ∈ I2 ∧ p′2 ∈ I2 then

L1,2.append((p1, p2))
C1 ← C1 + p1

~D2 ← D2 +
−−→
p2p

′
2

|p2p′2|
N ← N + 1

end if
end for

end for
end forC1 ← C1

N ; ~D2 ←
~D2

N

Once the centers C1, C2, directions ~D1, ~D2 and the list L1,2 are computed,
they are used to normalize the measurements and make the direction globally
horizontal by applying Equation (25) to all elements of the list.
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3.2.4 Estimating the rectification

As the measurements are synthetic and without outliers, we can directly solve
the equations with the linear least squares method. Let’s sum up all previ-
ous steps. Let d be the degree of the polynomials, and the unknowns are

the coefficient of the polynomials V1 and V2. There are (d+1)(d+2)
2 unknowns

for V2 and (d+1)(d+2)
2 − (d + 1) for V1, taking into account the constraint in

Equation (30). For each pair of normalized points q1, q2 (see Algorithm 1) we
add the Equation (28) to the least squares equation system. We then estimate
the V1, V2 and obtain:

ϕk(p) = ϕk(i, j) = (i, Vk(i, j)) ; φk = ϕk ◦Rk (31)

Estimating the inverse function

The natural way to resample Ik in Ek (see Figure 2) is to write:

Ek(p) = Ik(φ−1
k (p)). (32)

Therefore, to rectify an image, we also need to calculate the inverse function.
The inverse of Rk is obvious. For computing the inverse of ϕk, we exploit
the fact that if ϕ is invariant for the column, then ϕ−1 is invariant too.
Consequently, we can parametrize it with a function W : R2 → R as:

ϕ−1
k (p) = ϕ−1

k (u, v) = (u,Wk(u, v)) (33)

To estimate W , we follow the same rationale as in Section 3.2.1, and use the
base of a polynomial function. Once the Vk are known, we generate for each
point pk = (i, j) in L1,2 an observation:

Wk(i, Vk(i, j)) = j (34)

If we want to ensure that the computed inverse is sufficiently close to the
”real” inverse, we can increase the polynomial’s degree (in our implementation,
we typically use the degree of d + 4). It has no side effects as long as we
maintain high redundancy.

3.3 Epipolar resampling without the geometric model

3.3.1 Resampling with image correspondences only

”Is it possible to use the proposed method to compute the epipolar geometry if
we have image point correspondences (i.e., image features) between the image
pairs but we don’t know their geometric models?” There is NO straightforward
answer to whether it is possible or not. In general, it is not possible, but it
becomes possible when the relief (i.e., the 3D scene) is not smooth and we
constraint the resampling be more or less smooth.

The rationale behind trying to use exclusively image correspondences comes
directly from Algorithm 1. As one can see, it does not matter if the point
correspondences are extracted with the help of some geometric model (as with
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Algorithm 2) or from an image processing method not requiring any a priori
information on image geometry, e.g. SIFT (6). Hence, as long as we know the
directions of the epipolar lines, our method is applicable.

However, when the point correspondences are computed with an image
processing routine, there exists some functional relationship between them.
Suppose that the 3D scene can be described by a function Z = Z(X,Y ), and
denote SZ as the corresponding surface. For a point p1 of I1, denote π̃Z1 (p1)
as the intersection of B1(p1) and the surface SZ . Here, the function π̃Z1 is the
inverse of the projection π1 which relates the image I1 and the surface SZ .
We now see that there exists a functional relationship between all the point
correspondences (p1, p2) and it follows this equation:

p2 = (π2 ◦ π̃Z1 )(p1) = FZ(p1). (35)

Therefore, as discussed in Section 3.1.5, in the most general case, it is
impossible to recover the epipolar geometry from a set of correspondences.

This said, until now we have ignored what we said in Section 3.1.5, namely,
that in the proposed method the functions V1 and V2 have to be ”smooth”.
Let’s reason again and suppose we have computed an epipolar geometry:
ek = (uk, vk) = φk(pk) = (xk, Vk(yk) with v1 = v2 and Vk being a ”smooth”
function. We now want to analyse whether the geometry was ambiguous. We
have

e2 = (φ2 ◦ π2 ◦ π̃Z1 ◦ φ−1
1 )(e1) = P (e1),

and so, we can write

(u2, v2) = P (u1, v1) = (u1 + px(u1, v1), v1),

where px is what is usually called the ”parallax function”. As in Section 3.1.5,
for any function W2 : R2 → R, let W1 be the function defined by W1 = W2 ◦P .
Then, for any (e1, e2), (u1,W1(u1, v1)) and (u2,W2(u2, v2)), we also satisfy the
epipolar constraint as

W1(u1, v1)) = W2(P (u1, v1)) = W2(u2, v2).

Is it possible that W2 and W2 ◦P are both smooth functions? This depends
on the smoothness of P . If P is itself a smooth function, then obviously for any
smooth W2, W2 ◦ P will also be smooth and the epipolar resampling will be
ambiguous. If we take the canonical example of a flat 3D scene, then px = 0,
P = Id and as W1 = W2, W1 is smooth if W2 is smooth. In this case the
epipolar geometry is also ambiguous. However, if the scene has high frequency
depth changes, then P also has high frequencies, and W2 and W2 ◦ P cannot
both be smooth. This can be seen more formally by the following equation:

∂W2 ◦ P
∂u

=
∂P

∂u

∂W2

∂u
◦ P. (36)
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As an example, for any point where the scene is not differentiable, we have
∂P
∂u = ∞, and from the equation above, the term ∂W2

∂u = 0, because W2 ◦ P
is said to be smooth. With a polynomial W2 of a limited degree and with a
sufficient number of points, the term ∂W2

∂u = 0 leads to the realisation that W2

depends only on v. Finally, including Equation (22), we have the polynomial
W2 = Id, which shows the uniqueness of the solution.

3.3.2 Estimating the directions without model

To use the resampling method with image features, we need a way to estimate
the global directions of the epipolar lines, as it is done in Section 3.1.3 with the
help of the geometric model. In the provided implementation we allow the user
to provide the directions, or else the directions are computed automatically.
For instance, in satellite along-track acquisitions, the user can easily deduce
the directions, and it is certainly the ”safer” option. The automated option
is based in discretizing a number of directions in each image of a stereo pair,
followed by a combinatorial exploration of all possible pairs of directions. For
each direction pair, epipolar models (c.f., Section 3.2) with polynomials of
degree 0 are computed. The residuals (i.e., the y-parallax) calculated on all
image features serve as quality criterion in choosing the final global directions.
Since the image features may contain outliers, residuals are evaluated using
L1 norm .

Once the directions are known, the resampling polynomial is robustly
calculated with a weighted iterative least-square approach as follows :

1. start with 1st degree polynomial and evaluate it with L1 norms;
2. then, use the previous solution to weight the observations and evaluate 3rd

degree polynomial with the weighted least-squares method;
3. then, use the previous solution to weight the observations and evaluate 5th

degree polynomial with the weighted least-square method;
4. etc.

4 Experiments

We demonstrate the performance of the algorithm in two scenarios: with and
without the geometric model of the camera. The results are evaluated in terms
of the remaining y-parallaxes, and compared to competetitors: the method by
Oh (9) for pushbroom geometries, and a resampling method implemented in
MicMac for calibrated central perspective geometries (we refer to it as the clas-
sical method). The latter is equivalent of the epipolar resampling proposed by
Fusiello (3) with the exception that it handles camera distortion parameters,
hence, it does not require the undistorting of the images prior to the rectifica-
tion. We evaluate our method against the central perspective geometry only
for comparison purposes, because we dispose of ground truth epipolar geome-
tries for this camera model. In practice, the classical method, which is founded
on physical modeling with a minimal number of unknown, should be preferred.



Springer Nature 2021 LATEX template

Epipolar rectification of a generic camera 19

To generate points correspondences in Algorithm 2, when the camera geom-
etry is known, the points in the image space are defined as a grid of 100×100.
The Z is the mean depth of the scene, and the step δZ is set such that 3
evenly distributed depths spaning the 3D space are obtained. Additionally,
each image point is assigned a 4th, random depth for evaluation. The min/-
max depths representing the envelope of the 3D scene, can be inferred from
the RPCs or from depths of the sparse structure (see Zbuff in Table 1).

Influence of different geometries of acquisition.

Five Pléiade-1A images with their corresponding RPC geolocations are first
refined in a RPC-bundle adjustment (11). We then form pairs of images of
varying base-to-height ratios (B/H) in the range ∈ 〈0.1, 0.45〉, and carry out
epipolar resampling with Ours and Oh’s methods. We also distinguish between
single orbit and multiple orbit configurations. In Table 1 the maximum values
of the remaining y-parallax are reported. The y-parallax is computed on a grid
of image points generated with Algorithm 2. Note that these points are non-
overlapping with the grid used for estimating the resampling polynomials. We
can see that Our method outperforms the method by Oh in all instances and
is insensitive to the acquisition geometry.

Comparison of resampling with and without the camera geometry.

To evaluate the performance of the proposed method on images without known
camera geometry, we run epipolar resampling twice: with the camera model,
and using SIFT features (6). In the latter scenario, the resampling polynomial
was found across 6 iterations by progressively increasing the degree (the final
polynomial being of 6th degree). The comparison is done on a pair of Pléiade-
1A images. In Figure 10 the per-pixel y-parallaxes are given. In all three
scenarios the remaining parallax is of the same magnitude, errory < |0.05|
pixel. The Oh and Ours method with the camera model give comparable
results, while the approach with SIFT correspondences is clearly the best. The
experiments with the camera model reveal a correlation between the remaining
y-parallax and the 3D scene geometry. We believe this is due to unmodelled
errors in RPC camera model. The approach based on SIFT correspondences
uses points and is independent of the camera model hence no systematic error
is present in the y-parallax map.

Epipolar resampling of panoramic pushbroom camera

Corona KH-4B images are analog images captured by the american reconnais-
sance satellites in the Cold War period (7). Since 1995 many Corona images
are declassified and available to the public. Image processing and photogram-
metry with Corona images remains difficult because the camera geometry is
complex (12), and camera calibration certificates are rarely provided. In the
absence of the known camera parameters, epipolar rectification with image fea-
tures is an interesting alternative to allow for stereo-reconstruction. Figure 11
shows the image pair in its native geometry (i.e., panoramic pushbroom), the
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SIFT features extracted on the full resolution images, as well as the epipolar
curves. The resampling polynomial was found across 9 iterations by progres-
sively increasing its degree (the final polynomial being of 9th degree). As
no ground truth is available, we evaluate the dataset visually in Figure 12
by providing a semi-global matching stereo-reconstruction and by drawing
some epipolar lines. Because the images are subject to various distortions
(i.e., panoramic, image scanning or image motion compensation distortions)
as explained in (4), the remaining y-parallax in Figure 10(c) manifests sys-
tematic errors up to |0.5| pix. Such errors cannot be modelled with the chosen
polynomial functions.

Epipolar resampling of central perspective camera

The experiments with the central perspective camera have a double objective.
First we show that the proposed method works with pinhole cameras, and
second we demonstrate the ambiguity of epipolar resampling when the scene
can be represented by a smooth function, e.g., when it is flat (see Section 3.3.1).
In Figure 13 the experiments are referred to as Stairs and Floor. The Stairs is
an image pair of a staircase, so it is not flat. The Floor, as the name suggests,
corresponds to the image pair of a floor, which is globally planar. We can
observe that the epipolar resamplings computed with the camera models are
comparable to the epipolar resampling with the classical method.

The experiment with the SIFT features is a confirmation of the theoretical
analysis developped in 3.3 : with tie point only, it is possible to recover the
epipolar geometry if and only if the relief contains high frequencies. Here
method based on the SIFT features works well when the scene has a relief,
and as expected fails on the planar scene (see the deformed epipolar image
pair and the respective epipolar curves in Figure 13(c),(f)).

5 Discussion and perspective

We have presented of rigorous mathematical analysis of the epipolar resam-
pling problem. In particular, we established the necessary and sufficient
condition for the existence of an exact epipolar resampling and, when this
condition is satisfied, established the degree of ambiguity of epipolar resam-
pling. From this analysis we have derived a method for epipolar resampling of
a generic pair of sensors that works as long a the existence criteria is approx-
imately satisfied. The method computes the resampling functions by fitting
analytical models which induce no deformation along the x-axis, and mini-
mizes the y-parallax . We have demonstrated that the approach performs well
on various camera geometries (central perspective, pushbroom, pushbroom
panoramic). Experiments also showed suitability of the approach to resampling
images with only image correspondences, when camera geometry is unknown.
Note that the proposed method is not suitable for resampling images with
large variations in the epipolar line directions. Future works include applying
the method to multi-modal images, e.g. optical and radar.
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Oh (9) Ours

B/H B/H
0.1 0.15 0.25 0.45 0.1 0.15 0.25 0.45

0.0055 0.0156 0.0144 0.0010 0.0036 0.0026 0.0026 0.0020

(a) Acquisitions from a single orbit.

Oh (9) Ours

B/H B/H
0.13 0.2 0.3 0.4 0.13 0.2 0.3 0.4

0.0381 0.0311 0.0343 0.0340 0.0101 0.0171 0.0143 0.0154

(b) Acquisitions from multiple orbits.

Table 1: Maximum value of the remaining y-parallax [pix]. Zbuff corresponds
to half the depth of the volumne used in the resampling calculation and was
set to 270m.

Fig. 10: Comparison of epipolar resampling with and without the camera
geometry. (c)-(d) correspond to the per-pixel y-parallax computed with dense
image matching in the direction perpendicular to the epipolar line.

Fig. 11: Corona KH-4B stereo pair.
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Fig. 12: Epipolar images generated from a Corona KH-4B stereo pair, its
stereo-reconstruction and the remaining y-parallax. Epipolar lines are marked
in white.
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