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TODO :

1. dcrire mthode de calcul automatique des directions dans le cas sans modle;

2. Allgation : marche aussi sans modle, minimise globalement le critre d’erreur, formulation
thorique de l’ambiguit et des condition d’existence d’un crire pipolaire; mesure de ”l’pipolarabilit”
d’un couple;

1 Introduction

The epipolar geometry of images plays a central role in many applications in the field of photogram-
metry and computer vision. In the stereo-reconstruction pipeline, it is used twice:

1. In the camera pose orientation step, when computing the relative orientation of a pair of images
from their corresponding points. Assuming the projection follows the central perspective and
the internal calibration is known, one can compute the epipolar geometry of the images using
the essential matrix. Finally, the relative orientation is recovered [?].

2. In the image dense matching step, where the epipolar rectification simplifies the correspondence
search because for any point (x1, y) in image I1, its correspondence is some point (x2, y) in image
I2. Therefore, finding correspondences across images reduces to a 1-dimensional problem (1D).

In this paper, we only study the epipolar rectification problem and more specifically its application
to a generic camera model.
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1.1 Related works

Rectifying a central perspective camera stereo pair involves transforming their original epipolar
geometry to a canonical form where: (a) their focal planes are coplanar, and (b) their conjugate
epipolar lines are colinear, and parallel to the camera’s x-axis. From the algebraic standpoint, this
is equivalent to applying two 2-dimensional (2D) projective transformations to both images of the
stereo pair. Several approaches to computing such transformations have been proposed over the
course of the last 30 years.

For a calibrated stereo pair (i.e. with known camera projection matrices), there exists a unique
rectifying transformation, up to a rotation along the baseline [?]. In an uncalibrated case, the solution
is obtained by factoring out two 2D homographies from the fundamental matrix. Because there are
no two unique homographies, the common practice is to parametrize these transformations such that
the distortions caused by the rectification process are minimized. For instance, Loop and Zhang [?]
decompose the rectifying homographies to a combination of the projective, similarity and shearing
transforms, with the condition that the prrojective transform remains (close to) affine. Hartley [?]
satisfies the condition that for a neighborhood of a point (e.g. the center of an image), the computed
homography is a rigid transformation. Building on this work, Isgro and Trucco’s [?] approach obtains
a unique solution by minimizing the x-disparity without having to explicitly calculate the fundamental
matrix. Instead of minimizing the disparity in the first coordinate, Wu and Yu [?] recycle an idea
first introduced by Hartley [?] which requires that the aspect ratio of the images before and after
rectification is constant. More recently, Fusiello and Irsara [?] introduced the camera matrices back
into the equation and proposed a quasi -Euclidean approach for uncalibrated cameras, similar to that
of the calibrated cameras case. Their projective transformations are parametrized by five angles and
a focal length. Monasse et al. [?] break down the one-time rotation of [?] to a three step procedure,
and prove increased robustness by using a geometric error measure (i.e., camera rotation angle) to
reduce the rectifying error distortions.

Unlike the central projection camera model, pushbroom-like sensors acquire each image row from
a different perspective center. As a consequence, the epipolar lines are neither straight lines, nor
are they conjugate across the image [?]. One way to overcome this particularity is to simplify the
projection function with a 2D affine [?, ?] or a parallel projection model [?]. Such approximations
usually come at the price of precision, especially with the increasing camera field-of-view or in
mountainous scenes. By extending the 2D affine model with two quaratic terms, Okamonoto et
al. [?] demonstrates improved performance on SPOT images. In the context of dense image matching,
de Francis et al. [?] improves the precision by partitioning the images into small patches, for which
indepedent affine rectifictions are computed. Alternatively, and with equally good precision, Oh [?]
uses the Rational Polynomial Coefficients (RPCs) to map the epipolar curves across the full size
images with lines, in a piecewise approach, followed by a global rectification transformation using a
polynomial function of 3rd order.

1.2 Contributions

Our research work proposes an epipolar geometry rectification method that is not tied to any camera
physical model. We demonstrate that on a range of models, including Pleiades images (pushbroom),
the Corona images (panoramic pushbroom), a consumer grade camera images (central perspective)
as well as Sentinel-1 radar images (pushbroom). The method resembles Oh’s [?] approach in that it
exploits the point correspondences to find the polynomial mapping to epipolar geometry. However,
unlike the work of Oh [?], we do not require that the camera geometric model is known. We
demonstrate that in some circumstances, point correspondences obtained from an image processing
routine, e.g. SIFT [?], can serve to find the epipolar resampling.
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In the remainder of this publication, we first outlay the mathematical background of the epipolar
geometry and identify cases when epipolar geometry does not exist or is ambiguous (Section 2).
Then, we introduce our method (Section 3), and finally present the experiments on different datasets
with and without the geometric model (Section 4). The results are compared against the Oh’s [?]
method with respect to the y-parallax remaining after the resampling to the epipolar geometry.

2 The mathematics of epipolar geometry in the generic case

2.1 Formalisation and notation of projections

Figure 1: A projection and a bundle.

We define the geometric sensor model of an image by a projection function π, that computes, for
a given 3D point, its 2D projection in the image:

Definition 1 (Generic geometric sensor model). Illustrated in Figure 1.
A geometric sensor model π is a C∞ mapping from ground space (R3) to image space (R2):

π : R3 → R2, (X, Y, Z)→ (i, j) = π(X, Y, Z). (1)

Next, we define the bundles of a projection:

Definition 2 (Bundle). For pk ∈ Ik we note Bk(pk) the bundle corresponding to π−1k (pk). When there
is no ambiguity, we note identically Bk(P ), where P ∈ R3, the bundle corresponding to π−1k (πk(P )) =
Bk(πk(P )).

Later, for simplicity, we will use the quasi-vertical hypothesis, which allows us to extend π to a
bijective mapping of R3 and compute its inverse.

Definition 3 (Quasi-vertical camera model). We say that the projection is quasi-vertical if the
following mapping π̃ is a diffeomophism of R3:

π̃ : R3 → R3, (X, Y, Z)→ (i, j, Z) = π̃(X, Y, Z), with(i, j) = π(X, Y, Z). (2)

Given 2 images I1 and I2, the knowledge of their geometric models π1 and π2 reduces the matching
between 2 images to a 1D problem. In fact, given a point p1 in I1, we can compute the 3D curve B1(p1)
of ground points that project to p1 in I1, and compute its homologous curve in I2 with π2(B1(p1)).
We now define the H-compatible relation between two points by the following definition:

3
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Definition 4 (H-Compatible, ⇐⇒π1,π2). Illustrated in Figure 2.
We say that p1 in I1 and p2 in I2 are π1 − π2 H-compatible, and write p1

⇐⇒
π1,π2p2, if the following

condition is satisfied:

(B1(p1) ∩ B2(p2) 6= ∅)⇔ (∃P ∈ R3 : π1(P ) = p1, π2(P ) = p2). (3)

Figure 2: Illustration of ⇐⇒π1,π2

In image matching, the relationship p1
⇐⇒
π1,π2p2 means that p1 and p2 are potentially homologous.

2.2 Definition of the epipolar geometry

In fact, the previous relationships are sufficient to implement all the matching techniques and (π1, π2)
can be used to define a matching process, taking advantage of the a priori knowledge of the scene
geometry. That is, given a point in one image, we can easily follow its curve of potentially homologous
points in the other image. This technique, which does not exploit the epipolar geometry, has the
advantage of also being adaptable to multi-image matching. Epipolar geometry is therefore not
strictly required for the image matching process.

The drawback of this approach is that it combines two different problems in the same procedure:
the handling of the geometry and resampling and the matching process. When one is interested
in the matching of a single image pair, the epipolar geometry can provide an elegant solution by
separating the problem in two independent ones.

Definition 5 (Epipolar Geometry). Illustrated in Figures 3 and 6.
Let π1, π2 be two cameras and let φ1, φ2 be two diffeomorphisms of R2. We say that φ1, φ2 are

epipolar resamplings iff:

∀e1 = (u1, v1), e2 = (u2, v2) : (v1 = v2)⇔ (φ−11 (e1)
⇐⇒
π1,π2φ

−1
2 (e2)). (4)

The matching of epipolar images is simplified because we know that the lines in two images are
globally homologous.

Notation 1 (Epipolar line and curve.). We denote Lk(v) as the epipolar line of Ek defined by vk = v.
We also denote Ck(v) as the epipolar curve of Ik defined by Ck(v) = φ−1k (Lk(v))

We can see that when epipolar geometry exists, the two curves C1(v) and C2(v) are globally homol-
ogous:

C1(v) = π1(π
−1
2 (C2(v))); C2(v) = π2(π

−1
1 (C1(v))). (5)
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Figure 3: Illustration of epipolar geometry.

2.3 Existence of the epipolar geometry

We now discuss the existence of the epipolar geometry. As you will see, the epipolar geometry
generally does not exist, and when it does, it is not unique. It is well known that:

� for any image pair following the central projection, there exists an epipolar geometry;

� not all image pairs can be resampled to epipolar geometry. For example, a cylindrical projec-
tion, applicable to many push-broom satellites, generally does not allow for epipolar resampling.

We explain now why the epipolar geometry does not exist for any π1, π2 and is instead an exception.
Let’s define the surface Skv of R3 by:

Skv = π−1k (Ck(v)). (6)

By the definition of epipolar geometry above, it can be seen that S1
v and S2

v are the same surface Sv:

S1
v = S2

v = Sv. (7)

For any P ∈ S1
v , set e1 = φ1(π1(P )) = (u1, v) and e2 = φ2(π2(P )) = (u2, v2). We then have

π1(P )⇐⇒π1,π2π2(P ) because they are projections of the same point. Then, v2 = v according to Definition 5
and P ∈ S2

v . Furthermore, the Sv defines a foliation of R3, and it can be seen that:

∀v∀P ∈ Sv : B1(P ) ⊂ Sv,B2 ⊂ Sv, (8)

which also leads directly from the definitions above. If P ∈ Sv then π−1k (P ) ∈ Ck(v) (see equation (6)),
then π−1k (πk(P )) = Bk(P ) ⊂ Sv. However, in general, the existence of a stable foliation for the two
bundle sets, as expressed in Equation (8), cannot be satisfied, as illustrated in Figure 4. To explain
further, let π1 and π2 be any two projections and suppose there exists a foliation satisfying the
Equation (8). Then, let:

� P be any point in 3D space, and Sv be the surface such that P ∈ Sv;

� P1 6= P be a point on B1(P ), P1 ∈ Sv, then B2(P1) ⊂ Sv;
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� P2 6= P be a point on B2(P ), P2 ∈ Sv, then B1(P2) ⊂ Sv.

As B2(P1) and B1(P1) are included in the same surface Sv, they must intersect somewhere in a point
Q. In the general case, the above is a contradiction because there is no reason that the condition
B2(P1) ∩ B1(P2) 6= ∅ is satisfied for any two sets of bundles (see Figure 4,right).

Figure 4: Path closure. Left: in the epipolar case, the bundles are on the same level of the foliation
and the intersection. Right: in the generic case, the paths don’t intersect and no epipolar geometry
exists.

2.4 A local characterization of the epipolar existence

In this section, we compute a local formula (i.e. a differential equation) that provides conditions
for the existence of an epipolar geometry. This section is rather theoretical and can be omitted by
readers mainly interested in practical applications.

Analogously to the proof in Section 2.3, we will make a computation of two-way paths, B1 then
B2, as well as B2 then B1. Then, we express the Taylor expansion of the intersection distance between
these two paths . Let’s consider the following (see Figure 5):

� we make the quasi-vertical assumption (note that we could use curvilinear abscissa when this
assumption can not be satisfied);

Figure 5: Notation for local characterization of the epipolar existence
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� let P be any point in R3;

� consider the first path (P, P1, Q1) following B1 then B2, making a progression dz1 on B1 and dz2
on B2 ;

� consider a second path (P, P2, Q2) following B2 then B1, making a progression dz′2 on B1 and
dz′1 on B2 ;

� we denote
−−−→
t1(P ) = (x, y, 1) as the tangent to the bundle B1 in point P (and similarly

−→
t2 (P ));

� when we write ∂F
∂z1

, we will refer to the coordinate system (i1, j1, z) = π̃−11 (x, y, z), idem for ∂F
∂z2

,

and obviously as they are two different coordinate systems, we have in general ∂F
∂z1
6= ∂F

∂z2
.

Now, for any pair of ”small” values (δ1, δ2), we compute (δ′1, δ
′
2) which minimize the distance

|Q1, Q2| and express the canceling of the second degree Taylor expansion of this distance (the first
degree can always be canceled out as we will see). Noting δ the max of all δ, the second degree
Taylor expansion gives :

P1 = P + δ1
−−−→
t1(P ) +

δ1
2

2

∂
−→
t1
∂z1

(P ) +O(δ3) (9)

Q1 = P1 + δ2
−−−→
t2(P1) +

δ2
2

2

∂
−→
t2
∂z2

(P1) +O(δ3) (10)

−−−→
t2(P1) =

−−−→
t2(P ) + δ1

∂
−→
t2
∂z1

(P ) +O(δ2) (11)

Putting together Equations (9), (10), (11) we can perform a Taylor expansion of the path P to Q1:

Q1 = P + δ1
−−−→
t1(P ) + δ2

−−−→
t2(P ) +

δ1
2

2

∂
−→
t1
∂z1

(P ) +
δ2

2

2

∂
−→
t2
∂z2

(P ) + δ1δ2
∂
−→
t2
∂z1

(P ) +O(δ3) (12)

And similarly for P to Q2 :

Q2 = P + δ′2
−−−→
t2(P ) + δ′1

−−−→
t1(P ) +

δ′2
2

2

∂
−→
t2
∂z2

(P ) +
δ′1

2

2

∂
−→
t1
∂z1

(P ) + δ′1δ
′
2

∂
−→
t1
∂z2

(P ) +O(δ3) (13)

The first degree Taylor expansion of Q2 −Q1 gives :

Q2 −Q1 = (δ′1 − δ1)
−−−→
t1(P ) + (δ′2 − δ2)

−−−→
t2(P ) +O(δ2) (14)

To minimize |Q2 −Q1|, the first step is to cancel the first degree terms of Q2 −Q1. We assume that
−−−→
t2(P ) and

−−−→
t1(P ) are independant vectors1 and we must then make δ′2 − δ2 and δ′1 − δ1 second degree

terms:

∆1 = δ′1 − δ1 = O(δ2) ; ∆2 = δ′2 − δ2 = O(δ2) (15)

To develop Q2−Q1 we can use the following identities that are direct consequences of Equation (15):

δ1δ2 − δ′1δ′2 = O(δ3) ; δ1
2 − δ′1

2
= O(δ3) ; δ2

2 − δ′2
2

= O(δ3) (16)

1Otherwise, it would be a degenerate case for stereovision
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Subtracting Equation (12) from Equation (13), and using Equation (16), we can write :

Q2 −Q1 = ∆1

−−−→
t1(P ) + ∆2

−−−→
t2(P ) + δ1δ2(

∂
−→
t2
∂z1

(P )− ∂
−→
t1
∂z2

(P )) +O(δ3) (17)

We now translate the intersection of paths by canceling the second degree Taylor expansion inQ2−Q1.
We have three vectors, and their weighted sum can be null iff they are colinear.

Theorem 1 (Existence of epipolar). The epipolar geometry exists iff the following determinant is
null: [ −→

t1
−→
t2

∂
−→
t2
∂z1
− ∂

−→
t1
∂z2

]
= 0 (18)

Remark 1 (Epipolar equation with central perspective camera). As an illustration in an easy case,
we can see that this condition is trivially satisfied for a pair of central perspective cameras as we have
the canceling of both terms as shown in Equation (19). This is because for a given point P , for any

point P1 on B1(P ),
−−→
t2P1 belongs to the epipolar plane P. We have

−−→
t2P1 ∈ P, so ∂

−→
t2
∂z1
∈ P, and as we

have also
−−−→
t1(P ) ∈ P ,

−−−→
t2(P ) ∈ P, the collinearity between

−−−→
t1(P ) ,

−−−→
t2(P ) and ∂

−→
t2
∂z1

(P ) is thus proven.[ −→
t1
−→
t2

∂
−→
t2
∂z1

]
=

[ −→
t1
−→
t2

∂
−→
t1
∂z2

]
= 0 (19)

2.5 Ambiguity of the epipolar geometry

When the epipolar geometry exists, the epipolar resampling is not unique. To demonstrate that our
rectification method handles this ambiguity rigorously, we first describe it formally.

Let φ1, φ2 and φ′1, φ
′
2 be two epipolar resamplings, then, for any v consider the pair of lines

L1(v),L2(v):

� φ−1k (Lk(v)) is the curve Ck(v) by definition of epipolar resampling;

� and φ′k(Ck(v) = φ′k(φ
−1
k (Lk(v))) is a line, also by definition of epipolar resampling;

� and still by definition φ′1(φ
−1
1 (L1(v))) = φ′2(φ

−1
2 (L2(v)));

Consequently we have the following constraint between two pairs of epipolar ressampling:

� φ′1φ
−1
1 and φ′2φ

−1
2 are diffeomorphisms transforming lines into lines;

� φ′1φ
−1
1 and φ′2φ

−1
2 define the same global transformation on lines (i.e. if φ′1(φ

−1
1 (L1(v))) =

φ′2(iφ
−1
2 (L2(v)))).

Vice versa, let φ1, φ2 be an epipolar resampling and let Λ1,Λ2 be diffeomorphisms that are stable
for lines and make globally the same transformation on lines. We can thus note that Λ1 ◦ φ1 and
Λ2 ◦ φ2 are also an epipolar resampling.

Having devised the exact ambiguity, we can now define two constraints to impose on a unique
epipolar resampling:

1. Constraint on the uniqueness of the deformation inside each line . For instance, one can
impose that the colums remain constant (i.e. the deformation is only made on y), as given in
Equations (20) and (21);

2. Constraint on the global deformation of lines2. For instance, by fixing the transformation of
one image, as given in Equation (6).

8
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Figure 6: Ambiguity of the epipolar geometry: two possible epipolar resamplings for a single stere-
opair.

Theorem 2 (Unique epipolar constraint). If the epipolar geometry exists, there exists a unique
epipolar resampling φ1, φ2 satisfying the following three constraints:

φ1(x, y) = (x, y′) (20)

φ2(x, y) = (x, y′) (21)

φ1(0, y) = (0, y) (22)

3 Proposed method for epipolar geometry resampling

3.1 Hypothesis and layout

3.1.1 Principles

The principle of the method is to use H-Compatible points p1, p2 to calculate a pair of functions φ1, φ2

that comply with the epipolar constraint, i.e. ”φ1(p1) and φ2(p2) are on the same line”. As these
epipolar functions are not unique, we parameterize the φk in Theorem 2 accordingly:

φk(i, j) = (i, Vk(i, j)); Vk : R2 → R (23)

This parametrization implements the constraints of Equations (20) and (21). We will account for
the constraint of Equation (22) in Section 3.2.13. To compute V1, V2, for any pair of H-Compatible

2i.e. where each line is transformed globally to another line
3See Equations (29), (30).
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Figure 7: Left: a set of epipolar lines not handled by our method. Right: a perfectly acceptable pair
of epipolar lines.

Figure 8: Left: quasi-vertical epipolar curve for which correction with Equation (23) is impossible.
Middle and right: oblique curves for which epipolar rectification with Equation (23) is possible but
generates significant distortion.

points, we add an observation that constrains V1 and V2:

V1(p1) = V2(p2). (24)

3.1.2 Hypothesis

The method takes two camera models π1 and π2 as inputs. These models are considered black-boxes
that satisfy Equation (1), and for which no specific assumption is made on the physical model of the
camera. In our C++ implementation, the cameras are considered to be pure virtual classes offering
the interface to Equation (1). In this paper, the examples processed by our method are pushbroom
satellite models known by their RPCs, the central perspective and radar models. However, the only
restriction imposed on the generic nature of the model is that the projection function is ”smooth”,
i.e.:

� π are C∞ functions, and

� the directions of epipolar curves vary within a limited range (for example, less than π
2
).

Figure 7 illustrates the latter constraint. The left image presents a set of epipolar lines with too
large direction variations. The right image represents a pair of epipolar lines whose directions change
within a small range, therefore suitable for the proposed resampling method.

3.1.3 Estimation of the center and the global direction

To begin with, the method estimates the centers C1, C2 of a set of points p1 and p2. This is done by
calculating the average of all points’ coordinates. Then, the computations continue in the coordinate
systems centered at C1, C2. After this ”normalisation”, the constraint in Equation 22 is applied at
these centers.

—————————————BEGIN-BEGIN-BEGIN
Then we need to compute a coordinate system where epipolar lines are globaly horizontal. This

requirement is a consequence of equation (23), and is illustrated by Figure 8:

� left image of figure 8 presents a case where epipolar curve are quasi vertical and for which an
epipolar correction, without initial rotation, according to equation (23) would be impossible;

10
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� middle image of figure 8 presents a case where epipolar curve are oblique, in this case epipolar
correction according to equation (23) would be possible but would lead to important distorsion
in the image, as can be seen on left image.

So for each image we estimate the average direction ~Dk of its epipolar lines, and using Equa-
tion (25), a rotation Rk is applied to the input point.

Rk(p) =
p− Ck
~Dk

(25)

The epipolar lines are now globally horizontal and the subsequent epipolar deformation can be
computed on the rotated data points.

END-END-END————————————————

3.1.4 Layout

The layout of the method follows three steps: (1) estimate the global direction of epipolar lines;
(2) estimate F1, F2 as the local epipolar rectification in the coordinate system linked to the global
direction; (3) estimate the final epipolar rectification as a composition of F1, F2 and the rotation. A
more formalized description of the algorithm is given in Algorithm 1.

Algorithm 1 Epipolar(π1,π2). Layout of the algorithm for computing the epipolar rectification from
camera models

Use π1, π2 to estimate a set of H-Compatible points H = {(p1, p2)} :
Estimate centers C1 and C2;
Estimate global direction of epipolars ~D1 and ~D2,
Estimate rotations R1, R2 according to Equation (25)
for all p1, p2 ∈ H do

set: q1 = R1(p1), q2 = R2(p2)
add equation: V1(q1) = V2(q2)

end for
estimate with the least squares method V1 and V2
set Fk(x, y) = (x, Vk(x, y))
set φk = Fk ◦Rk

return (φ1, φ2)

3.1.5 Why does our method work?

Intuitively, it may not be obvious that the system of equations in Equation (24) is well posed. In
fact, if there was a functional relationship between p1 and p2, as p1 = F (p2), an infinity of solutions
for (V1, V2) would exist, because for any function V : R2 → R we can generate a solution (V, V ◦ F ).

However, note that due to the 3D aspect of p1 and p2, there is no functional relationship between
them and, consequently, there are more constraints on (V1, V2). Instead of a functional relationship,
we can generate ”one to many” (and ”many to one”) correspondences as illustrated in Figure 9. For
example, for a given point p1, following the curve π2(B1(p1)), we can generate several points on the
bundle (potentially an infinity) which results in many correspondences. To illustrate, if we take pk2
to be multiple homologous points of p1, we then have the equation:

V1(p1) = V2(p
1
2) ; V1(p1) = V2(p

2
2) ; V1(p1) = V2(p

3
2) . . . , (26)

11
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Figure 9: Left: for each p1, we generate several 3D points on B1(p1). Middle: the multiple corre-
spondences in I2. Right: a dense network of curves in I2.

which in fact enforces this constraint:

V2(p
1
2) = V2(p

2
2) = V2(p

3
2) . . . (27)

If we now look at left image of Figure 9, we see that Equation (27) imposes the constraint that a
”piece of curve” is horizontal. In Section 3.3.1, we will see a more detailed analysis explaining how
the method can work even with configurations different than those depicted in Figure 9.

3.2 Detailed implementation

3.2.1 Choice of a parametric functional space

We need to select a space of parametric functions to represent V1, V2. The only constraint is that
V1, V2 are C∞ functions, and that the additional constraint in Equation (22) is valid.

Classically, when parameterizing a set of functions C∞, a ”natural” candidate is the set of polyno-
mials of a given degree. We know that the function will be C∞ and, according to the Stone-Weierstrass
theorem [?, ?] (which says that the space of polynomials is dense in the space of continuous func-
tions), with a sufficiently high degree we will be able to accurately approximate any continuous
function. A possible limitation of selecting high degree polynomial is over-fitting, which may lead to
unwanted high frequency behavior. In our case, this problem should never arise as the measurements
are synthesized from the projection functions π1, π2, which provides sufficient redundancy (for in-
stance, hundreds of times more measurements than constraints). Note, this will be a different issue,
and we will have to take care of degree, when we use the method with tie points and without model
in section 3.3.1

If d is the selected degree, we have two vectors of unknowns C1
a,b, C

2
a,b, corresponding to coefficients

of the polynomials:

Vk(p) = Vk(i, j) =
d∑
a=0

d−a∑
b=0

Ck
a,bi

ajb. (28)

3.2.2 Imposing constraints on global lines deformation

When applying the constraint of equation (22) to equation (28), we have i = 0, thence we can
suppress all terms ia for a 6= 0. The constraint equation then reads:

V1(0, j) = j =
N∑
b=0

C1
0,bj

b (29)

In Equation (29), j on the left and the sum on the right are both polynomials, so if their functions
are equal on a segment, they must be equal term by term. The constraint then comes to force a

12
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number the unknowns C1
0,k which have known values: 1 for C1

0,1 and 0 otherwise. Using the Kronecker
delta, we can write:

C1
0,k = δ1,k (30)

3.2.3 Generation of points, computation of the direction and centers

The points from π1 and π2 are generated twice, using each image as the master. The bundles are
always generated from the master images. The Algorithm 2 presents the generation of the points
with I1 as the master, as well as the computation of the global direction and the points’ centers.

Algorithm 2 GenerateData(). Compute a list L1,2 of π1 − π2 H-compatible pairs with I1 as the

master image. Compute also the center C1 of points in I1 and the global direction ~D2 for epipolar
curves of I2.

L1,2 ← () ; C1 ← (0, 0) ; ~D2 ←
−−−→
(0, 0) ; N ← 0

for p1.x = 0 to X1 Step δx,y do
for p1.y = 0 to Y1 Step δx,y do

for z = Z0 to Z1 Step δz do
p2 = π2(π̃

−1
1 (p1, Z))

p′2 = π2(π̃
−1
1 (p1, Z + δz))

if p2 ∈ I2 and p′2 ∈ I2 then
L1,2.append((p1, p2))
C1 ← C1 + p1
~D2 ← ~D2 +

−−→
p2p′2
|p2p′2|

N ← N + 1
end if

end for
end for

end forC1 ← C1

N
; ~D2 ←

~D2

N

Once the centers C1, C2, directions ~D1, ~D2 and the list L1,2 are computed, they are used to
normalize the measurements and make the direction globally horizontal by applying Equation (25)
to all elements of the list.

3.2.4 Estimating the rectification

As the measurements are synthetic and without outliers, we can directly solve the equations with
the linear least squares method, thus merging all previous steps:

� let d be the degree of the polynomials;

� the unknowns are the coefficient of the polynomials V1 and V2. There are (d+1)(d+2)
2

unknowns

for V2 and (d+1)(d+2)
2

− (d+ 1) for V1, taking into account the constraint in Equation (30);

� for each pair of normalized points q1, q2 we add the Equation (28) to the least squares equation
system.

We then estimate the V1, V2 and obtain:

ϕk(p) = ϕk(i, j) = (i, Vk(i, j)) ; φk = ϕk ◦Rk (31)

13
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Estimating the inverse function The natural way to resample Ik in Ek is to write:

Ek(p) = Ik(φ
−1
k (p)). (32)

Therefore, to rectify an image, we also need to calculate the inverse function. The inverse of Rk is
obvious. For computing the inverse of ϕk, we exploit the fact that if ϕ is invariant for the column,
then ϕ−1 is invariant too. Consequently, we can parametrize it with a function W : R2 → R as:

ϕ−1k (p) = ϕ−1k (u, v) = (u,Wk(u, v)) (33)

To estimate W , we follow the same rationale as in Section 3.2.1, and use the base of a polynomial
function. Once the Vk are known, we generate for each point pk = (i, j) in L1,2 an observation:

Wk(i, Vk(i, j)) = j (34)

If we want to ensure that the computed inverse is sufficiently close to the ”real” inverse, we can
increase the polynomial’s degree (in our implementation, we typically use the degree of d + 4). It
has no side effects as long as we maintain high redundancy.

—————————————BEGIN-BEGIN-BEGIN

3.3 Epipolar resampling without the geometric model – not too happy
with this section me neither (;-)

3.3.1 Possibility with only tie-points

Ideally, there is no bullet-ing but full sentences.
”Is it possible to use the proposed method to compute the epipolar geometry if we have point

correspondences between the image pairs but we don’t know the geometric model?” There is NO a
straightforward answer to whether it is possible or not. The answer is that is not possible in general,
but it becomes possible when the relief is not smooth and we add the contraint that the ressampling
is smooth enough.

Pro: Algorithm 1 uses only point correspondences and a direction to compute the epipolar ge-
ometry. It does not matter if the point correspondences are extracted from the geometric model (as
with Algorithm 2) or from an image processing method, e.g. SIFT [?], which does not require any
a priori information on image geometry. Hence, as long as we know the directions, our method can
be used.

Cons: When the point correspondences are computed with an image processing routine, there
exists some functional relationship between them. Suppose that:

� the 3D scene can be described by a function Z = Z(X, Y ), and denote SZ as the corresponding
surface;

� for a point p1 of I1, denote π̃Z1 (p1) as the intersection of B1(p1) and the surface SZ ; π̃Z1 is the
inverse of the restriction π1 as function from I1 to SZ .

We now see that there exists a functional relationship between all the point correspondences (p1, p2)
and it follows the equation:

p2 = (π2 ◦ π̃Z1 )(p1) = FZ(p1). (35)

Therefore, as discussed in Section 3.1.5, in the most general case, it is impossible to recover the
epipolar geometry from a set of correspondences.

Pro & Cons: If we go back to Section 3.1.5, we can see that we missed the fact that in the
proposed method, the functions V1 and V2 have to be ”smooth”. Let’s reason again:

14
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� suppose we have computed an epipolar geometry: ek = (uk, vk) = φk(pk) = (xk, Vk(yk), with
v1 = v2 and Vk being a ”smooth” function and we try to analyze if the geometry was ambiguous;

� we have e2 = (φ2 ◦ π2 ◦ π̃Z1 ◦ φ−11 )(e1) = P (e1)

� we write the previous equation as (u2, v2) = P (u1, v1) = (u1 + px(u1, v1), v1), where px is what
is usually called the ”parallax function”;

� as in Section 3.1.5, for any function W2 : R2 → R, let W1 be the function defined by W1 =
W2 ◦ P ;

� then, for any e1, e2, (u1,W1(u1, v1)) and (u2,W2(u2, v2)), we also satisfy the epipolar constraint
as W1(u1, v1)) = W2(P (u1, v1)) = W2(u2, v2).

Is it possible that W2 and W2 ◦ P are both smooth functions? This depends on the smoothness
of P . If P is itself a smooth function, then obviously for any smooth W2, W2 ◦P will also be smooth
and the epipolar resampling will be ambiguous. If we take the canonical example of a flat 3D scene,
then px = 0, P = Id and as W1 = W2, W1 is smooth if W2 is smooth. In this case the epipolar
geometry is also ambiguous. However, if the scene has high frequency depth changes, then P also
has high frequencies, and W2 and W2 ◦ P cannot both be smooth. This can be seen more formally
by the following equation:

∂W2 ◦ P
∂u

=
∂P

∂u

∂W2

∂u
◦ P (36)

As an archetype case, for any point where the scene is not differentiable, we have ∂P
∂u

= ∞ and

Equation (36) which lead to ∂W2

∂u
= 0 because W2 ◦ P is supposed to be smooth. If W2 is a polynom

of limited degree, and we have sufficient number of points with, ∂W2

∂u
= 0, then it will conduct to the

fact that W2 depends only of v, adding finally equation (22), we have the W2 = Id, which show the
uniqueness of the solution.

3.3.2 Estimating the directions without model

For using our methods, with tie-points, we need also a way to estimate the global directions, as it is
done in section ?? when we have the geometric models.

In the implemantation we provide, we give two options to the user : provide it or let the programm
compute it automatically. Obviously the providing option can be safer when the user has sufficient
knowledge on the acquisition; it can be used for examle with like satellite along the track , like in
the example we provide with Corona acquisition. The automatic option is based on a discretization
of possible directions and combinatorial exploration of all the pair of possible direction ; for a given
pair, a quality criterion is computed on residual of epipolar ressampling with degree 0 TO CHECK
!!! , using a L1 norm (to be more robust to outliers).

Faut il donner un algorithme ? Ou est-ce suffisement simple pour tre potentiellement clair ?
END-END-END————————————————

4 Experiments

Datasets:

� Corona, +MPD, les courbes (teorique fait par Benjamin)

� Pleiades, residu
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Oh [?] Ours
B/H B/H

Zbuff [m] 0.1 0.15 0.25 0.45 0.1 0.15 0.25 0.45
50 0.0070 0.0142 0.0156 0.0084 0.0017 0.0017 0.0017 0.0012
100 0.0065 0.0144 0.0157 0.0092 0.0019 0.0018 0.0017 0.0012
200 0.0057 0.0151 0.0164 0.0098 0.0027 0.0022 0.0022 0.0014
270 0.0055 0.0156 0.0144 0.0010 0.0036 0.0026 0.0026 0.0020

Table 1: Maximum value of the remaining y-parallax [pix] for acquisitions from a single orbit.
Zbuff corresponds to half the depth of the volumne used in the resampling calculation.

Oh [?] Ours
B/H B/H

Zbuff [m] 0.13 0.2 0.3 0.4 0.13 0.2 0.3 0.4
50 0.0297 0.0059 0.0178 0.0112 0.0021 0.0021 0.0021 0.0021
100 0.0284 0.0088 0.0183 0.0134 0.0029 0.0037 0.0034 0.0034
200 0.0325 0.0196 0.0252 0.0232 0.0064 0.0010 0.0086 0.0088
270 0.0381 0.0311 0.0343 0.0340 0.0101 0.0171 0.0143 0.0154

Table 2: Maximum value of the remaining y-parallax [pix] for acquisitions from multiple orbits.
Zbuff corresponds to half the depth of the volumne used in the resampling calculation.

Single orbit Multiple orbits
B/H B/H

Zbuff [m] 0.1 0.15 0.25 0.45 0.13 0.2 0.3 0.4
50-270 1.6e−5 0.8e−5 0.3e−5 0.1e−5 2.0e−5 0.7e−5 0.5e−5 0.2e−5

Table 3: Epipolarability indices for acquisitions from a single and multiple orbits.

� Spot

� nous

� Oh

Exemple de rsultats avec rsidus. + qq crop d’images rectifiees.

4.1 Satellite images

C’est la que c’est vraiment utile ....

4.2 Radar images

?

4.3 Images without the geometric model

Corona KH-4B images Expos precis avec modele analytique:
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* calcul des points homologues, en 3D =¿ direction moyenne * resolution par moindres carress
avec degres lev, degr sup pour l’inverse * Utilit du 3D, precision en fonction de la nappes, possibilit
d’utiliser un modle 3D grossier .

Figure 10: Corona KH-4B steropair and the point correspondences (top); the epipolar curves in the
original geometry of the stereopair (middle); and the stereopair resampled to the epipolar geometry,
rotated by 90◦ (bottom).

Pléiades images

Consumer grade camera

5 Discussion and perspective

Avantage de la methode : modeles analyique, minimise deformation et residu, peut tre appliquee si
on a que les points homologues (photo escalier ?).

Inconvenient ? Cas comme 7 pas gere, peut tre le sont il par Oh ?
Future work =¿ use MNT ? Test sur configuration plus compliques : orbites differentes ? Radar

? Radar/visible ?
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Figure 11: dddd consumer grade cam
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