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In this paper, we establish a new summation formula for Schur processes, called the complete summation formula. As an application, we obtain the generating function and the asymptotic formula for the number of doubled shifted plane partitions, which can be viewed as plane partitions "shifted at the two sides". We prove that the order of the asymptotic formula depends only on the diagonal width of the doubled shifted plane partition, not on the profile (the skew zone) itself. By using the same methods, the generating function and the asymptotic formula for the number of symmetric cylindric partitions are also derived.

Introduction

An ordinary plane partition (resp. A defective plane partition) is a filling ω = (ω i,j ) of the quarter plane Λ = {(i, j) | i, j ≥ 1} (resp. of a connected area of the quarter plane Λ) with nonnegative integers such that rows and columns decrease weakly, and the size |ω| = ω i,j is finite. The enumeration of various defective plane partitions have been widely studied (see [START_REF] Andrews | Plane partitions I: The MacMahon conjecture[END_REF][START_REF] Gessel | Cylindric partitions[END_REF][START_REF] Stanley | Theory and application of plane partitions: Part 1, 2[END_REF][START_REF] Stanley | The conjugate trace and trace of a plane partition[END_REF]). In particular, the generating functions for the following five types of defective plane partitions (see Fig. 1) have been obtained since MacMahon:

(A) the ordinary plane partitions (MacMahon [START_REF] Macmahon | Partitions of numbers whose graphs possess symmetry[END_REF], Stanley [START_REF] Stanley | Theory and application of plane partitions: Part 1, 2[END_REF]); (B) the skew plane partitions (Sagan [START_REF] Sagan | Combinatorial proofs of hook generating functions for skew plane partitions[END_REF]); (C) the skew shifted plane partitions (Sagan [START_REF] Sagan | Combinatorial proofs of hook generating functions for skew plane partitions[END_REF]); (D) the symmetric plane partitions (Andrews [START_REF] Andrews | Plane partitions I: The MacMahon conjecture[END_REF], Macdonald [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF]); (E) the cylindric partitions (Gessel and Krattenthaler [START_REF] Gessel | Cylindric partitions[END_REF], Borodin [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF]).

In the literature there are several approaches to deriving the generating functions for various defective plane partitions, such as: (1) Determinant evaluation and nonintersecting lattice paths [START_REF] Andrews | MacMahon's conjecture on symmetric plane partitions[END_REF][START_REF] Gessel | Cylindric partitions[END_REF]; [START_REF] Andrews | Plane partitions I: The MacMahon conjecture[END_REF] Hook lengths and combinatorial proofs [START_REF] Sagan | Combinatorial proofs of hook generating functions for skew plane partitions[END_REF][START_REF] Stanley | The conjugate trace and trace of a plane partition[END_REF]; (3) Schur functions and Schur processes [START_REF] Betea | The free boundary schur process and applications I[END_REF][START_REF] Stanley | Theory and application of plane partitions: Part 1, 2[END_REF]. (4) Lozenge tilings and Kuo condensation [START_REF] Ciucu | Enumeration of lozenge tilings of hexagons with cut-off corners[END_REF]. The Schur process was first introduced by Okounkov and Reshetikhin [START_REF] Okounkov | Infinite wedge and random partitions[END_REF][START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF] in 2001. Later, they used the Schur process to derive the cyclic symmetry of the topological vertex by considering a certain type of plane partitions [START_REF] Okounkov | Quantum Calabi-Yau and classical crystals[END_REF]. This result was further developed by Iqbal et al., for providing a short proof of the Nekrasov-Okounkov formula [START_REF] Iqbal | Generalizations of Nekrasov-Okounkov identity[END_REF][START_REF] Nekrasov | Seiberg-Witten theory and random partitions[END_REF]. Borodin [4] used the Schur process to derive the generating function for cylindric partitions, introduced by Gessel and Krattenthaler [START_REF] Gessel | Cylindric partitions[END_REF]. The Macdonald process, which is a (q, t)-generalization of the Schur process, was first introduced by Vuletić [START_REF] Vuletić | A generalization of MacMahon's formula[END_REF], and further developed by Corteel, Savelief, Vuletić and Langer [START_REF] Corteel | Plane overpartitions and cylindric partitions[END_REF][START_REF] Langer | Enumeration of cylindric plane partitions -part II[END_REF][START_REF] Vuletić | The shifted Schur process and asymptotics of large random strict plane partitions[END_REF] in the study of weighted cylindric partitions and plane overpartitions. Finally, a survey of Macdonald processes was published by Borodin and Corwin [START_REF] Borodin | Macdonald processes[END_REF].

The Schur process approach is shown to be a powerful tool in the study of various kinds of defective plane partitions. In fact, the above generating functions for defective plane partitions (A-E) are specializations of two general summation formulas for Schur processes, namely, the open summation formula (2.1) and the cylindric summation formula (2.3). Formulas (2.1) and (2.3) have been developed by Okounkov, Reshetikhin, Borodin, Corteel, Savelief, Vuletić and Langer [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF][START_REF] Corteel | Plane overpartitions and cylindric partitions[END_REF][START_REF] Langer | Enumeration of cylindric plane partitions -part II[END_REF][START_REF] Okounkov | Infinite wedge and random partitions[END_REF][START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF][START_REF] Vuletić | The shifted Schur process and asymptotics of large random strict plane partitions[END_REF][START_REF] Vuletić | A generalization of MacMahon's formula[END_REF]. For convenience, they are also reproduced in Theorem 2.1.

In the present paper we establish a new summation formula for Schur processes, called the complete summation formula (2.2). As an application, we obtain the generating functions for the skew doubled shifted plane partitions and the symmetric cylindric partitions (see Fig. 1 

(F)/(G)/(H)).

Let us reproduce some classical formulas in this introduction (see, e.g., [START_REF] Sagan | Combinatorial proofs of hook generating functions for skew plane partitions[END_REF][START_REF] Stanley | Enumerative combinatorics[END_REF]). The generating functions for ordinary plane partitions (PP), shifted plane partitions (ShiftPP) and symmetric plane partitions (SPP) are the following respectively:

ω∈PP z |ω| = ∞ i=1 ∞ j=1 1 1 -z i+j-1 = ∞ k=1 (1 -z k ) -k ; (1.1) ω∈ShiftPP z |ω| = ∞ k=1 1 1 -z k 1≤i<j≤∞ 1 1 -z i+j ; (1.2) ω∈SPP z |ω| = ∞ k=1 1 1 -z 2k-1 1≤i<j≤∞ 1 1 -z 2(i+j-1) . (1.3)
As a byproduct of our complete summation formula (2.2) we can further derive the following generating function for doubled shifted plane partitions of width m (see Fig. 1 (F) and Section 3 for the definition).

Theorem 1.1. Let DSPP m be the set of all doubled shifted plane partitions ω of width m (i.e., skew doubled shifted plane partitions with profile δ = (-1) m-1 ). Then

(1.4) ω∈DSPPm z |ω| = ∞ k=1 1 1 -z k × ∞ k=0 1≤i<j≤m-1 1 1 -z 2mk+i+j .
Inspired by the works of Dewar, Murty and Kotěšovec [START_REF] Dewar | An asymptotic formula for the coefficients of j(z)[END_REF][START_REF] Kotěšovec | A method of finding the asymptotics of q-series based on the convolution of generating functions[END_REF], we establish some useful theorems for asymptotic formulas in [START_REF] Han | Some useful theorems for asymptotic formulas and their applications to skew plane partitions and cylindric partitions[END_REF] (see Theorem 4.2). Furthermore, the following asymptotic formula for the number of doubled shifted plane partitions can also be obtained.

Theorem 1.2. Let DSPP m (n) be the number of doubled shifted plane partitions ω of width m and size n. Then,

(1.5) DSPP m (n) ∼ C(m) × 1 n exp π (m 2 + m + 2)n 6m ,
where C(m) is a constant independent of n given by the following expression:

C(m) =   m-2 i=1 m-i-1 j=i+1 sin i + j 2m π   -1 √ m 2 + m + 2 2 (m 2 -3m+14)/4 √ 3m .
For example, the generating function and asymptotic formula for doubled shifted plane partitions of width m = 3 (see Fig. 2, case DSPPa) are

ω∈DSPP3 z |ω| = k≥1 1 (1 -z k )(1 -z 6k-3 ) ; (1.6) DSPP 3 (n) ∼ √ 7 24 exp(π √ 7n 3 ) n . (1.7)
The proofs of Theorems 1.1 and 1.2 will be given in Section 4. In fact, Theorems 1.1 and 1.2 can be extended to skew doubled shifted plane partitions (see Sections 3 and 4). The asymptotic formulas for two other skew doubled shifted plane partitions, together with some ordinary plane partitions (PP), cylindric partitions (CP) and symmetric cylindric partitions (SCP) are also reproduced next. The proofs of those asymptotic formulas can be found in Sections 4 and 5 for DSPP and SCP respectively, and in [START_REF] Han | Some useful theorems for asymptotic formulas and their applications to skew plane partitions and cylindric partitions[END_REF] for PP and CP. PPa ∼ 1.93 n 3 e The skew doubled shifted plane partitions have some nice properties. (1) The order of the asymptotic formula depends only on the width of the doubled shifted plane partition, not on the profile (the skew zone) itself. The similar property holds for ordinary plane partitions. We may think that this is natural by intuition. However, the cylindric partitions (CP and SCP) show that this is not always the case. [START_REF] Andrews | Plane partitions I: The MacMahon conjecture[END_REF] We empirically observe that, the asymptotic formula for doubled shifted plane partitions gives already good approximative values for the numbers of DSPP, even for small integer n. While the asymptotic formula for PP needs a large integer n to produce an acceptable value, as shown in the following The rest of the paper is arranged in the following way. In Section 2 we establish the complete summation formula for Schur processes. The basic notation and the trace generating functions for skew doubled shifted plane partitions can be found in Section 3. We derive the generating functions and the asymptotic formulas for the numbers of skew doubled shifted plane partitions and symmetric cylindric partitions, in Sections 4 and 5, respectively.

Summation formulas for skew Schur functions

For the definitions and basic properties of skew Schur functions we refer to the books [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF][START_REF] Stanley | Enumerative combinatorics[END_REF]

. Let Ψ(X, Y ) = i,j (1 -x i y j ) -1 , Φ(X) = i (1 -x i ) -1 i<j (1 -x i x j ) -1 ,
where X = {x 1 , x 2 , . . .} and Y = {y 1 , y 2 , . . .} are two alphabets. Each ±1-sequence δ = (δ i ) 1≤i≤h of length h ≥ 1 is called a profile. Let |δ| 1 (resp. |δ| -1 ) be the number of letters 1 (resp. -1) in δ. Therefore, h = |δ| 1 + |δ| -1 . The following theorem contains three fundamental summation formulas for skew Schur functions, namely, the open summation formula (2.1), the cylindric summation formula (2.3) and the complete summation formula (2.2). The open and cylindric formulas have already been derived by Okounkov, Reshetikhin, Borodin, Corteel, Savelief, Vuletić and Langer [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF][START_REF] Corteel | Plane overpartitions and cylindric partitions[END_REF][START_REF] Langer | Enumeration of cylindric plane partitions -part II[END_REF][START_REF] Okounkov | Infinite wedge and random partitions[END_REF][START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF][START_REF] Vuletić | The shifted Schur process and asymptotics of large random strict plane partitions[END_REF][START_REF] Vuletić | A generalization of MacMahon's formula[END_REF]. For convenience, they are also reproduced next. Our main contribution is the complete summation formula (2.2).

Theorem 2.1. Let h be a positive integer, δ = (δ i ) 1≤i≤h be a profile of length h, and Z 1 , . . . , Z h be a sequence of alphabets. Write

Z := Z δ -+ Z δ + = 1≤i≤h Z i as the union of Z 1 , Z 2 , . . . , Z h , Z δ -:= i: δi=-1 Z i , and Z δ + := i: δi=1 Z i . For a sequence of partitions λ 0 , λ 1 , λ 2 , . . . , λ h , let s δ i denote the skew Schur function s λ i /λ i-1 if δ i = 1 and s λ i-1 /λ i if δ i = -1. We have λ 1 ,...,λ h-1 h i=1 s δ i (Z i ) = 1≤i<j≤h δi>δj Ψ(Z i , Z j ) × γ s λ 0 /γ (Z δ -)s λ h /γ (Z δ + ); (2.1) λ 0 ,...,λ h z |λ h | h i=1 s δ i (Z i ) = 1≤i<j≤h δi>δj Ψ(Z i , Z j ) × Φ(Z δ -) k≥1 Φ(z k Z) 1 -z k ; (2.2) λ 0 ,...,λ h λ 0 =λ h z |λ h | h i=1 s δ i (Z i ) = 1≤i<j≤h δi>δj Ψ(Z i , Z j ) × k≥1 Ψ(z k Z δ -, Z δ + ) 1 -z k . (2.3)
Actually, Theorem 2.1 is equivalent to the following Theorem 2.2, since with

X i-1 = ∅ and Y i-1 = Z i if δ i = 1; Y i-1 = ∅ and X i-1 = Z i if δ i = -1,
we recover Theorem 2.1. Therefore we just need to prove Theorem 2.2.

Theorem 2.2. Suppose that X 0 , X 1 , . . . , X h-1 and Y 0 , Y 1 , . . . , Y h-1 are 2h al- phabets. Let X = h-1 i=0 X i and Y = h-1 i=0 Y i be the union of X 0 , X 1 , . . . , X h-1 and Y 0 , Y 1 , . . . , Y h-1 respectively. Then we have λ 1 ,...,λ h-1 µ 0 ,...,µ h-1 h-1 i=0 s λ i /µ i (X i )s λ i+1 /µ i (Y i ) (2.4) = 0≤i<j≤h-1 Ψ(Y i , X j ) γ s λ 0 /γ (X)s λ h /γ (Y). λ 0 ,...,λ h µ 0 ,...,µ h-1 z |λ h | h-1 i=0 s λ i /µ i (X i )s λ i+1 /µ i (Y i ) (2.5) = 0≤i<j≤h-1 Ψ(Y i , X j ) × Φ(X) k≥1 Φ(z k (X + Y)) 1 -z k . λ 0 ,...,λ h λ 0 =λ h µ 0 ,...,µ h-1 z |λ h | h-1 i=0 s λ i /µ i (X i )s λ i+1 /µ i (Y i ) (2.6) = 0≤i<j≤h-1 Ψ(Y i , X j ) × k≥1 Ψ(z k X, Y) 1 -z k .
To give the proof of Theorem 2.2, let us recall the following two formulas stated in Macdonald's book [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF] (see p. 93, ex. 26(1) and ex. 27(3)).

ρ s ρ/λ (X)s ρ/µ (Y ) = Ψ(X, Y ) ρ s λ/ρ (Y )s µ/ρ (X), (2.7) ρ s ρ/ν = Φ(X) ρ s ν/ρ . (2.8)
First we use (2.8) to prove some lemmas.

Lemma 2.3. We have µ,τ z |µ| s µ/τ (X) = k≥1 Φ(z k X) 1 -z k . (2.9)
Proof. Let F (X) be the left-hand side of (2.9). Then, by (2.8) we have

F (X) = µ,τ z |µ| s µ/τ (X) = τ z |τ | µ s µ/τ (zX) = Φ(zX) τ z |τ | ρ s τ /ρ (zX) = Φ(zX)F (zX).
Hence, we obtain µ,τ

z |µ| s µ/τ (X) = k≥1 Φ(z k X) × F (∅). Since F (∅) = µ,τ z |µ| s µ/τ (∅) = µ z |µ| = k≥1 1 1 -z k , then (2.9) is proved. Lemma 2.4. We have (2.10) λ,µ,γ z |µ| s µ/γ (X)s λ/γ (Y ) = Φ(Y ) k≥1 Φ(z k (X + Y )) 1 -z k .
Proof. By (2.8) and Lemma 2.3 we have

λ,µ z |µ| γ s µ/γ (X)s λ/γ (Y ) = µ z |µ| γ s µ/γ (X) λ s λ/γ (Y ) =Φ(Y ) µ z |µ| γ s µ/γ (X) τ s γ/τ (Y ) =Φ(Y ) µ z |µ| τ s µ/τ (X + Y ) =Φ(Y ) k≥1 Φ(z k (X + Y )) 1 -z k .
Remark. Formula (2.10) is similar to the following formula stated in Macdonald's book [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF] (see p. 94, ex. 28(a)), which has two free partitions λ and γ:

(2.11) λ,γ z |λ| s λ/γ (X)s λ/γ (Y ) = k≥1 Ψ(z k X, Y ) 1 -z k .
Now we are ready to give the proof of Theorem 2.2.

Proof of the Theorem 2.2. Let F (X 0 , X 1 , . . . , X h-1 , Y 0 , Y 1 , . . . , Y h-1
) be the lefthand side of (2.4). By (2.7) we have

F (X 0 , X 1 , . . . , X h-1 , Y 0 , Y 1 , . . . , Y h-1 ) = λ 1 ,...,λ h-2 µ 0 ,...,µ h-1 h-3 i=0 s λ i /µ i (X i )s λ i+1 /µ i (Y i ) × s λ h-2 /µ h-2 (X h-2 )s λ h /µ h-1 (Y h-1 ) λ h-1 s λ h-1 /µ h-2 (Y h-2 )s λ h-1 /µ h-1 (X h-1 ) = Ψ(Y h-2 , X h-1 ) λ 1 ,...,λ h-2 µ 0 ,...,µ h-1 h-3 i=0 s λ i /µ i (X i )s λ i+1 /µ i (Y i ) × s λ h-2 /µ h-2 (X h-2 )s λ h /µ h-1 (Y h-1 ) λ h-1 s µ h-2 /λ h-1 (X h-1 )s µ h-1 /λ h-1 (Y h-2 ) = Ψ(Y h-2 , X h-1 ) λ 1 ,...,λ h-1 µ 0 ,...,µ h-3 h-3 i=0 s λ i /µ i (X i )s λ i+1 /µ i (Y i ) × µ h-2 s λ h-2 /µ h-2 (X h-2 )s µ h-2 /λ h-1 (X h-1 ) µ h-1 s λ h /µ h-1 (Y h-1 )s µ h-1 /λ h-1 (Y h-2 ) = Ψ(Y h-2 , X h-1 ) λ 1 ,...,λ h-1 µ 0 ,...,µ h-3 h-3 i=0 s λ i /µ i (X i )s λ i+1 /µ i (Y i ) × s λ h-2 /λ h-1 (X h-2 + X h-1 )s λ h /λ h-1 (Y h-2 + Y h-1 ) = Ψ(Y h-2 , X h-1 ) λ 1 ,...,λ h-2 µ 0 ,...,µ h-2 h-3 i=0 s λ i /µ i (X i )s λ i+1 /µ i (Y i ) × s λ h-2 /µ h-2 (X h-2 + X h-1 )s λ h /µ h-2 (Y h-2 + Y h-1 ) = Ψ(Y h-2 , X h-1 )F (X 0 , . . . , X h-3 , X h-2 + X h-1 , Y 0 , . . . , Y h-3 , Y h-2 + Y h-1 ) = • • • = 0≤i<j≤h-1 Ψ(Y i , X j ) F (X 0 + . . . + X h-1 , Y 0 + . . . + Y h-1 ) = 0≤i<j≤h-1 Ψ(Y i , X j ) γ s λ 0 /γ (X 0 + . . . + X h-1 )s λ h /γ (Y 0 + . . . + Y h-1 ).
Therefore, identity (2.4) is true. Then identities (2.5) and (2.6) hold by (2.4), (2.11) and Lemma 2.4.

Definitions for skew doubled shifted plane partitions

In this section we give the definition and the trace generating function of skew doubled shifted plane partitions. Each profile δ is associated with a connected area ∆ := ∆(δ) of the quarter plane Λ in a unique manner. For a given profile

δ = 1 a0 (-1) b1 1 a1 (-1) b2 . . . 1 ar-1 (-1) br with a 0 , b r ≥ 0, a i , b i ≥ 1 for 1 ≤ i ≤ r -1, let ∆ 1 = r-1 i=1 {(c, d) ∈ Λ : r-i-1 j=1 a r-j ≤ c ≤ r-i j=1 a r-j , 1 ≤ d ≤ i j=1 b i }, ∆ 2 = {(c, d) ∈ Λ : c -d > r-1 i=0 a i }, ∆ 3 = {(c, d) ∈ Λ : d -c > r i=1 b i }.
The connected area ∆ is defined to be ∆ := Λ \ (∆ 1 ∪ ∆ 2 ∪ ∆ 3 ). For example, with the profile δ = (1, -1, -1, 1, -1, 1, -1, 1), the four areas ∆ 1 , ∆ 2 , ∆ 3 , ∆ are illustrated in Fig. 3.

Let λ and µ be two integer partitions. We write λ µ or µ ≺ λ if λ/µ is a horizontal strip (see [START_REF] Langer | Enumeration of cylindric plane partitions -part II[END_REF][START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF][START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF][START_REF] Stanley | Enumerative combinatorics[END_REF]). Definition 3.1. Let δ = (δ i ) 1≤i≤h be a profile. A skew doubled shifted plane partition (DSPP) with profile δ is a filling ω = (ω i,j ) of ∆(δ) with nonnegative integers such that the size |ω| = (i,j) ω i,j is finite, and the rows and columns are weakly decreasing, i.e., ω i,j ≥ ω i,j+1 , ω i,j ≥ ω i+1,j whenever these numbers are well-defined.

The set of all DSPP with profile δ is denoted by DSPP δ . Recall that the Schur process for plane partitions was first introduced by Okounkov and Reshetikhin [START_REF] Okounkov | Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram[END_REF] (see also [START_REF] Langer | Enumeration of cylindric plane partitions -part II[END_REF]); the main idea was to read the plane partitions along the diagonals. When reading the DSPP ω with profile δ along the diagonals from left to right, we obtain a sequence of integer partitions (λ 0 , λ 1 , . . . , λ h ) such that λ i-1 ≺ λ i (resp.

λ i-1 λ i ) if δ i = 1 (resp. δ i = -1), and |ω| = h i=0 |λ i |.
For simplicity, we identify the skew doubled shifted plane partition ω and the sequence of integer partitions by writing ω = (λ 0 , λ 1 , . . . , λ h ).

The (diagonal) width of the skew doubled shifted plane partition ω is defined to be h + 1.

For example, with the DSPP ω given in Fig. 3, we obtain a sequence of partitions: (4, 1) ≺ (5, 4) (

≺ (4, 1) (2) ≺ (2, 2) 5, 2) (3) 
(2, 1) ≺ (5, 2, 1). Hence, ω = (4, 1), (5, 4), (5, 2), ( 3), (4, 1), ( 2), (2, 2), (2, 1), (5, 2, 1) is a DSPP of width 9 with profile δ = (1, -1, -1, 1, -1, 1, -1, 1). For a sequence of parameters u i (i ≥ 0), write U j = u 0 u 1 • • • u j-1 (j ≥ 0). Let DSPP δ (λ 0 , λ h ) denote the set of the skew doubled shifted plane partitions ω = (λ 0 , λ 1 , . . . , λ h ) starting from λ 0 and ending at λ h with profile δ. Letting Z i = {U -δi i } in Theorem 2.1, we obtain the following trace generating functions for skew doubled shifted plane partitions. Theorem 3.1. Let δ = (δ i ) 1≤i≤h be a profile. We have

ω∈DSPP δ (λ 0 ,λ h ) h i=0 u |λ i | i = U |λ h | h+1 1≤i<j≤h δi>δj 1 1 -U -1 i U j (3.1) × γ s λ 0 /γ ({U i : δ i = -1})s λ h /γ ({U -1 i : δ i = 1}); ω∈DSPP δ h i=0 u |λ i | i = 1≤i<j≤h δi>δj 1 1 -U -1 i U j (3.2) × Φ({U i : δ i = -1}) k≥1 Φ({U -δi i U k h+1 : 1 ≤ i ≤ h}) 1 -U k h+1 ; ω∈DSPP δ (λ 0 =λ h ) h i=0 u |λ i | i = 1≤i<j≤h δi>δj 1 1 -U -1 i U j (3.3) × k≥1 Ψ({U i U k h+1 : δ i = -1}, {U -1 j : δ j = 1}) 1 -U k h+1 .
The above theorem implies many classical results on various defective plane partitions, including the trace generating function of ordinary plane partitions (PP) (Stanley [23]), and the generating functions of symmetric plane partitions (SPP) (Andrews [START_REF] Andrews | Plane partitions I: The MacMahon conjecture[END_REF], Macdonald [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF]), skew plane partitions (Sagan [START_REF] Sagan | Combinatorial proofs of hook generating functions for skew plane partitions[END_REF]) and skew shifted plane partitions (Sagan [21]).

Formulas for skew doubled shifted plane partitions

Let u i = z for i ≥ 0 in (3.2). We then derive the generating function for DSPP δ :

ω∈DSPP δ z |ω| = 1≤j<i≤h δi<δj 1 1 -z i-j × Φ({z i : δ i = -1}) (4.1) × k≥1 Φ({z (h+1)k+i : δ i = -1} + {z (h+1)k-j : δ j = 1}) 1 -z (h+1)k .
The right-hand side of the above identity can be further simplified. For each profile δ = (δ i ) 1≤i≤m-1 , we define the following multisets as

W 1 (δ) := {m} ∪ {i | δ i = -1} ∪ {m -i | δ i = 1}; W 2 (δ) := { i + j | 1 ≤ i < j ≤ m -1, δ i = δ j = -1} ∪ {2m -i -j | 1 ≤ i < j ≤ m -1, δ i = δ j = 1} ∪ {2m + i -j | 1 ≤ i < j ≤ m -1, δ i < δ j } ∪ { j -i | 1 ≤ i < j ≤ m -1, δ i > δ j }.
Therefore, Eq. (4.1) implies the following theorem.

Theorem 4.1. The generating function for the skew doubled shifted plane partitions with profile δ = (δ i ) 1≤i≤m-1 is

ω∈DSPP δ z |ω| = k≥0   t∈W1(δ) 1 1 -z mk+t     t∈W2(δ) 1 1 -z 2mk+t   . Define (4.2) ψ n (v, r, b; p) := v p(1 -p) 2π r b+(1-p)/2 n b+1-p/2 exp(n p r 1-p ) for n ∈ N, v, b ∈ R, r > 0, 0 < p < 1.
Inspired by the works of Dewar, Murty and Kotěšovec [START_REF] Dewar | An asymptotic formula for the coefficients of j(z)[END_REF][START_REF] Kotěšovec | A method of finding the asymptotics of q-series based on the convolution of generating functions[END_REF], we have established the following useful result for asymptotic formulas in [START_REF] Han | Some useful theorems for asymptotic formulas and their applications to skew plane partitions and cylindric partitions[END_REF].

Theorem 4.2 ([11]

). Let m be a positive integer. Suppose that x i and y i (1 ≤ i ≤ m) are positive integers such that gcd(x 1 , x 2 , . . . , x m , y 1 , y 2 , . . . , y m ) = 1. Then, the coefficients d n in the following infinite product

m i=1 k≥0 1 1 -q xik+yi = ∞ n=0 d n q n
have the following asymptotic formula

d n ∼ v 1 2 √ 2π r b+1/4 n b+3/4 exp( √ nr), (4.3) 
where v = m i=1 Γ(y i /x i ) √ x i π ( x i 2 ) yi/xi , r = m i=1 2π 2 3x i , b = m i=1 ( y i 2x i - 1 4 
).

By applying the above two results, our next theorem gives asymptotic formulas for the number of skew doubled shifted plane partitions. For simplicity, write

(δ) := - i δ i i = δi=-1 i - δj =1 j.
Then we obtain the following result. Theorem 4.3. Let m ≥ 2 be a positive integer and δ = (δ j ) 1≤j≤m-1 be a profile of length m -1. We denote by DSPP δ (n) the number of skew doubled shifted plane partitions ω with profile δ and size n. Then,

DSPP δ (n) ∼ C 1 (δ)C 2 (m) × 1 n exp π (m 2 + m + 2)n 6m ,
where C 1 (δ) and C 2 (m) are two constants with respect to n:

C 1 (δ) = 2 -(δ) m -|δ|1 × t∈W1(δ) Γ( t m ) t∈W2(δ) Γ( t 2m ), C 2 (m) = 2 m 2 -3m+14 π m 2 -m -1 4 × m 2 + m + 2 3 .
Proof. By the definitions of W 1 (δ) and W 2 (δ) we have

#W 1 (δ) = m; #W 2 (δ) = m -1 2 ; t∈W1(δ) t = m(|δ| 1 + 1) + (δ); t∈W2(δ) t = (m -2) (δ) + 2m |δ| 1 2 + 2m 1≤i<j≤m-1 δi<δj 1.
Hence, (

1 m + t∈W2(δ) 1 2m = m m + 1 2m m -1 2 = m 2 + m + 2 4m . Furthermore, t∈W1 4.4) t∈W1(δ) 
t 2m = 1 + |δ| 1 + |δ| 1 2 + 1≤i<j≤m-1 δi<δj 1 + (δ) 2 . (δ) t m + t∈W2(δ) 
If we exchange any two adjacent letters in δ, the sum of the last two terms doesn't change, therefore it is equal to

1 2 m 2 -|δ|1+1 2 
. Then we obtain

t∈W1(δ) t m + t∈W2(δ) t 2m = m 2 -m + 4 4 and (4.5) t∈W1(δ) 
( t 2m - 1 4 ) + t∈W2(δ) 
( t 4m - 1 4 ) = 1 4 .
By Theorems 4.2 and 4.1 the number of DSPP with profile δ and size n is asymptotic to

v 1 2 √ 2π r b+1/4 n b+3/4 exp( √ nr), where v = t∈W1(δ) Γ(t/m) √ mπ ( m 2 ) t/m t∈W2(δ) Γ(t/(2m)) √ 2mπ (m) t/(2m) = 2 -(δ) m -|δ|1-1-1 2 ( m-1 2 ) m 1/2 π (-m 2 +m-2)/4 × t∈W1(δ) Γ( t m ) t∈W2(δ) Γ( t 2m ), r = t∈W1(δ) 2π 2 3m + t∈W2(δ) 2π 2 6m = (m 2 + m + 2)π 2 6m , b = t∈W1(δ) t 2m - 1 4 + t∈W2(δ) t 4m - 1 4 = 1 4 .
This achieves the proof.

For example, consider the three skew doubled shifted plane partitions (DSPPa)-(DSPPc) given in Fig. 2. Their profiles, generating functions and asymptotic formulas are respectively:

(a) Fig. 2, case DSPPa. δ = (1, 1),

W 1 (δ) = {3, 2, 1}, W 2 (δ) = {3}, ω∈DSPPa z |ω| = k≥0 1 (1 -z k+1 )(1 -z 6k+3 ) , DSPPa(n) ∼ √ 7 24 exp(π √ 7n 
3 ) n .

(b) Fig. 2, case DSPPb.

δ = (1, -1), W 1 (δ) = {3, 2, 2}, W 2 (δ) = {1}, ω∈DSPPb z |ω| = k≥0 1 (1 -z 3k+3 )(1 -z 3k+2 ) 2 (1 -z 6k+1 ) , DSPPb(n) ∼ √ 2α × √ 7 24 exp(π √ 7n 3 ) n ,
where

α = 2 -11 6 √ 3π -3 2 Γ( 2 3 ) 2 Γ( 1 6 ) = 0.8908 • • • (c) Fig. 2, case DSPPc. δ = (-1, 1), W 1 (δ) = {3, 1, 1}, W 2 (δ) = {5}, ω∈DSPPc z |ω| = k≥0 1 (1 -z 3k+3 )(1 -z 3k+1 ) 2 (1 -z 6k+5 ) , DSPPc(n) ∼ √ 2α -1 × √ 7 24 exp(π √ 7n 
3 ) n .

Theorems 1.1 and 1.2 for doubled shifted plane partitions are specializations of Theorems 4.1 and 4.3 for skew doubled shifted plane partitions when taking the profile δ = (-1) m-1 .

Proof of Theorems 1.1 and 1.2. Take δ = (-1) m-1 . Then we have

W 1 (δ) = {1, 2, 3, . . . , m}, W 2 (δ) = {i + j : 1 ≤ i < j ≤ m -1}. Therefore Theorem 4.1 implies Theorem 1.1. Since Γ(z)Γ(1 -z) = π sin(zπ) and m-1 j=1 sin( jπ m ) = m 2 m-1 , we have t∈W1(δ) Γ( t m ) = π m-1 m-1 j=1 sin( jπ m ) = (2π) m-1 m and t∈W2(δ) Γ( t 2m ) = π (m-1)(m-2)/4   m-2 i=1 m-i-1 j=i+1 sin i + j 2m π   -1
.

Since δ = (-1) m-1 , by Theorem 4.3 we verify that

C 1 (δ) = 2 -(δ) m -|δ|1 × t∈W1(δ) Γ( t m ) t∈W2(δ) Γ( t 2m ) = π (m 2 -m)/4 √ m   m-2 i=1 m-i-1 j=i+1 sin i + j 2m π   -1
, and that C 1 (δ)C 2 (m) is equal to C(m) given in Theorem 1.2.

For example, consider the three skew doubled shifted plane partitions (DSPPa)-(DSPPc) given in Fig. 2. Their profiles, generating functions and asymptotic formulas are respectively:

(a) Fig. 2, case DSPPa. δ = (1, 1),

W 1 (δ) = {3, 2, 1}, W 2 (δ) = {3}, ω∈DSPPa z |ω| = k≥0 1 (1 -z k+1 )(1 -z 6k+3 ) , DSPPa(n) ∼ √ 7 24 exp(π √ 7n 
3 ) n .

(b) Fig. 2, case DSPPb.

δ = (1, -1), W 1 (δ) = {3, 2, 2}, W 2 (δ) = {1}, ω∈DSPPb z |ω| = k≥0 1 (1 -z 3k+3 )(1 -z 3k+2 ) 2 (1 -z 6k+1 ) , DSPPb(n) ∼ √ 2α × √ 7 24 exp(π √ 7n 
3 ) n ,

where

α = 2 -11 6 √ 3π -3 2 Γ( 2 3 ) 2 Γ( 1 6 ) = 0.8908 • • • (c) Fig. 2, case DSPPc. δ = (-1, 1), W 1 (δ) = {3, 1, 1}, W 2 (δ) = {5}, ω∈DSPPc z |ω| = k≥0 1 (1 -z 3k+3 )(1 -z 3k+1 ) 2 (1 -z 6k+5 ) , DSPPc(n) ∼ √ 2α -1 × √ 7 24 exp(π √ 7n 
3 ) n .

Remark 4.1. In Theorem 1.2, we derive an asymptotic formula for bounded m and large n. We would like to mention that, a recent paper of Fang, Hwang and Kang [START_REF] Fang | Phase transitions from exp(n 1/2 ) to exp(n 2/3 ) in the asymptotics of banded plane partitions[END_REF] generalized our Theorem 1.2 and obtained stronger asymptotic formulas for all possible values of m, n with m ≤ n.

Formulas for symmetric cylindric partitions

Cylindric partitions were introduced by Gessel and Krattenthaler [START_REF] Gessel | Cylindric partitions[END_REF]. They obtained the generating function for cylindric partitions of some given shape that satisfy certain row bounds as some summation of determinants related to q-binomial coefficients. Later, Borodin gave an equivalent definition [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF] and obtained the generating function for cylindric partitions. A cylindric partition (CP) with profile δ is a DSPP ω = (λ 0 , λ 1 , . . . , λ h-1 , λ h ) with profile δ such that λ 0 = λ h . The size of such partition is defined by |ω| = h-1 i=0 |λ i | (notice that λ h is not counted here). The following generating function for cylindric partitions, first proved by Borodin [START_REF] Borodin | Periodic Schur process and cylindric partitions[END_REF], later by Tingley [START_REF] Tingley | Three combinatorial models for sln crystals, with applications to cylindric plane partitions[END_REF] and Langer [START_REF] Langer | Enumeration of cylindric plane partitions -part II[END_REF], can be obtained by letting u i = z (0 ≤ i ≤ h -1) and u h = 1 in (3.3). Theorem 5.1 (Borodin[4]). Let δ = (δ i ) 1≤i≤h be a profile. Then the generating function for the cylindric partitions with profile δ is

ω∈CP δ z |ω| = k≥0 t∈W3(δ) 1 1 -z hk+t , where W 3 (δ) is the following multiset W 3 (δ) := {h} ∪ {j -i : i < j, δ i > δ j } ∪ {h + i -j : i < j, δ i < δ j }. A symmetric cylindric partition (SCP) with profile δ = (δ 1 , δ 2 , . . . , δ h ) is a DSPP ω = (λ h , λ h-1 , . . . , λ 1 , λ 0 , λ 1 , . . . , λ h-1 , λ h ) with profile (-δ h , -δ h-1 , . . . , -δ 2 , -δ 1 , δ 1 , δ 2 , . . . , δ h-1 , δ h ).
Notice that a symmetric cylindric partition is always a cylindric partition, and when λ h = ∅, the SCP ω becomes an SyPP. The size of the symmetric cylindric partition ω is defined by By Lemma 2.4, this is equal to the right hand side of (5.1).

|ω| = |λ 0 | + 2 h i=1 |λ h |.
The right-hand side of the above identity can be further simplified. For each profile δ = (δ i ) 1≤i≤m-1 , let W 4 (δ) and W 5 (δ) be the following multisets:

W 4 (δ) = {2m -1} ∪ {2i -1 | δ i = -1} ∪ {2m -2i | δ i = 1}; W 5 (δ) = {2i + 2j -2 | 1 ≤ i < j ≤ m -1, δ i = δ j = -1} ∪ {4m -2i -2j | 1 ≤ i < j ≤ m -1, δ i = δ j = 1} × t∈W4(δ) Γ( t 2m -1 ) t∈W5(δ) Γ( t 2(2m -1)
).

Remark 5.1. The term r depends only on the width of the symmetric cylindric partitions, not on the profile itself, while the term b depends on the profile. It is interesting to compare these phenomena with the asymptotic formula for cylindric partitions [START_REF] Han | Some useful theorems for asymptotic formulas and their applications to skew plane partitions and cylindric partitions[END_REF]. There, b depends only on the width, and r depends on the profile.

For example, consider the three symmetric cylindric partitions (SCPa)-(SCPc) given in Fig. 2. Their profiles, generating functions and asymptotic formulas are respectively:

(a) Fig. 2, case SCPa. δ = (-1, -1). W 4 (δ) = {1, 3, 5} and W 5 (δ) = {4}. 
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 1 Fig. 1. Various kinds of defective plane partitions.
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 1233 Fig. 3. A skew doubled shifted plane partition.
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 52 The generating function for symmetric cylindric partitions with profile δ isω∈SCP δ z |ω| = i<j δi>δj 1 1 -z 2(j-i) Φ({z 2i-1 : δ i = -1}) (5.1) × k≥1 Φ(z (2h+1)k ({z -2i+1 : δ i = 1} + {z 2i-1 : δ i = -1})) 1 -z (2h+1)k .Proof. By (3.1), we haveω∈SCP δ z |ω| = λ 0 ,λ h z -|λ 0 | ω ∈DSPP δ (λ 0 ,λ h ) h+1)|µ|-|λ| γ⊂λ,µ s λ/γ ({z 2i : δ i = -1})s µ/γ ({z -2i : δ i = 1})s λ/γ ({z 2i-1 : δ i = -1})s µ/γ ({z -2i+1 : δ i = 1}).

ω∈SCPa z |ω| = k≥0 1 ( 1 -Fig. 2 ,|ω| = k≥0 1 ( 1 -Fig. 2 ,|ω| = k≥0 1 ( 1 -

 11211211 z 5k+1 )(1 -z 5k+3 )(1 -z 5k+5 )(1 -z 10k+4 ) , SCPa(n) ∼ Γ( case SCPb. δ = (1, -1). W 4 (δ) = {3, 4, 5} and W 5 (δ) = {2}. ω∈SCPb z z 5k+3 )(1 -z 5k+4 )(1 -z 5k+5 )(1 -z 10k+2 ) , case SCPc. δ = (1, 1). W 4 (δ) = {2, 4, 5} and W 5 (δ) = {6}. ω∈SCPc z z 5k+2 )(1 -z 5k+4 )(1 -z 5k+5 )(1 -z 10k+6 ) ,

table .

 . It is amazing how the orders of the asymptotic formulas for CP and SCP differ. For the CP, the exponents of n in the denominator are always 1, but the exponents of e differ. While for the SCP, the exponents of n differ, but the exponents of n are constant. Let us summarize these observations in the following table.

		n Const e Const √	n	Fast Convergence
	PP	Yes	Yes		No
	CP	Yes	No		Yes
	SCP	No	Yes		Yes
	DSPP	Yes	Yes		Yes
	n	5	10	15	20
	#PPa	21	319	3032	22371
	Asymptotic ∼ 319 ∼ 2449 ∼ 17062 ∼ 103112
	#CPa	7	42	176	627
	Asymptotic	∼ 8	∼ 48	∼ 198	∼ 692
	#SCPa	4	17	56	161
	Asymptotic	∼ 4	∼ 18	∼ 59	∼ 169
	#DSPPa	9	64	314	1244
	Asymptotic	∼ 10	∼ 70	∼ 336	∼ 1325
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Then we obtain the following result.

Theorem 5.3. The generating function for symmetric cylindric partitions with profile δ = (δ i ) 1≤i≤m-1 is

By the definitions of W 4 and W 5 , it is easy to verify that |W 4 (δ)| = m and

By Theorems 4.2 and 5.3 we obtain the following asymptotic formula for the number of SCP with size n. Theorem 5.4. Let m ≥ 2 be a positive integer and δ = (δ j ) 1≤j≤m-1 be a profile of length m -1. Let SCP δ (n) denote the number of symmetric cylindric partitions with profile δ and size n. Then

where r, b, v are given below:

),