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Reweighting samples under covariate shift using a

Wasserstein distance criterion

Julien Reygner and Adrien Touboul

ABSTRACT. Considering two random variables with different laws to which we only have

access through finite size iid samples, we address how to reweight the first sample so that

its empirical distribution converges towards the true law of the second sample as the size

of both samples goes to infinity. We study an optimal reweighting that minimizes the

Wasserstein distance between the empirical measures of the two samples, and leads to

an expression of the weights in terms of Nearest Neighbors. The consistency and some

asymptotic convergence rates in terms of expected Wasserstein distance are derived, and

do not need the assumption of absolute continuity of one random variable with respect to

the other. These results have some application in Uncertainty Quantification for decoupled

estimation and in the bound of the generalization error for the Nearest Neighbor Regression

under covariate shift.

1. Introduction

1.1. Covariate shift in UQ. A common task in Uncertainty Quantification (UQ) for Com-

puter Experiments [6, 8] is the evaluation of a quantity of interest QI of the form

QI = E[φ(Y )],

where Y ∈ R
e is a random vector which is typically the output of a numerical simulation

with uncertain inputs and parameters, and φ : Re → R is the observable. Generically, the

random vector Y writes

Y = f(X,Θ),

whereX ∈ R
d represents the inputs of the numerical simulation, Θ is the set of parameters

of this simulation (which takes its values in some measurable space Θ), and f : Rd×Θ →

R
e is the numerical model, which is the function actually evaluated by the computer code.

We denote by µX and µΘ the respective probability distributions of X and Θ and assume

that these variables are independent. Virtually, if one is able to sample iid realizations

(X1,Θ1), . . . , (Xn,Θn) from µX ⊗ µΘ, then QI can be estimated by the direct Monte

Carlo estimator

Q̂In :=
1

n

n∑

i=1

f(Xi,Θi).

The present work is motivated by the study of UQ in complex engineering systems,

where

• the inputX can be itself the output of possibly several other “upstream” numerical

simulations,

• each evaluation of the function f is costly.

This research work has been carried out under the leadership of the Technological Research Institute SystemX,

and therefore granted with public funds within the scope of the French Program ”Investissements d’Avenir”.
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When X is modeled by a deterministic variable, this problem can be treated by the so-

called Collaborative Optimization methods [4, 20] in Multidisciplinary Analysis and Op-

timization. When X is a random variable, the implementation of the direct Monte Carlo

method is impossible because, in practice, the law µX is unknown and one cannot wait

for a sample X1, . . . , Xn to be generated by the upstream numerical simulations before

starting running one’s own simulation. In contrast, we however assume that µΘ is known

and that one is able to sample iid realizations Θ1, . . . ,Θn from this distribution. This

naturally leads one to generate a synthetic sample X ′
1, . . . , X

′
noff

according to some user-

chosen probability measure µX′ on R
d, and evaluate the numerical model f on the sample

(X ′
1,Θ1), . . . , (X

′
noff

,Θnoff
) to obtain a corresponding set of realizations Y ′

1 , . . . , Y
′
noff

during some offline phase. Once actual realizations X1, . . . , Xnon become available in a

subsequent online phase, they have to be used in combination with the synthetic sample

to construct an estimator of QI, but evaluations of the numerical model f are no longer

allowed.

The assumption that the sequence Θ1, . . . ,Θnoff
be independent from X ′

1, . . . , X
′
noff

then ensures that for all x ∈ R
d,

Law(Y ′|X ′ = x) = Law(f(x,Θ)) = Law(Y |X = x).

This situation is known in the statistical learning literature as a covariate shift [4], [15,

Section 1.4].

1.2. Density ratio estimation. Inspired by the importance sampling technique, an intu-

itive approach to estimate QI from the synthetic sample {(X ′
j ,Θj;Y

′
j ), 1 ≤ j ≤ noff}

consists in writing

QI =

∫

Rd×Θ

φ(f(x, θ))dµX (x)dµΘ(θ)

=

∫

Rd×Θ

φ(f(x′, θ))
dµX

dµX′

(x′)dµX′(x′)dµΘ(θ),

so that assuming that µX is absolutely continuous with respect to µX′ , an unbiased and

consistent (in the noff → +∞ limit) estimator of QI is given by

1

noff

noff∑

j=1

ρX,X′(X ′
j)φ(Y

′
j ), ρX,X′(x′) :=

dµX

dµX′

(x′).

Of course, the Radon–Nikodym derivative ρX,X′ is actually not known in this situation,

and it has to be estimated in the online phase thanks to the sample X1, . . . , Xnon . Observe

that this problem no longer involves neither Θ1, . . . ,Θnoff
nor Y ′

1 , . . . , Y
′
noff

.

The theoretical issue of estimating the Radon–Nikodym derivative ρX,X′ from inde-

pendent samples Xnon := (X1, . . . , Xnon) and X
′
noff

:= (X ′
1, . . . , X

′
noff

) is known in the

statistical learning literature as density ratio estimation [16]. A rather generic procedure

consists in fixing some distance-like function d on the set of probability measures on R
d,

writing

ρX,X′ = argmin
ρ

d (ρµX′ , µX) ,
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FIGURE 1. Example in which µX is not absolutely continuous with re-

spect to µX′ but its support is included in the support of µX′ .

and estimating ρX,X′ by

ρ̂Xnon ,X
′
noff

:= argmin
ρ

d

(
ρµ̂X′

noff
, µ̂Xnon

)
,

with the empirical measures

µ̂Xnon
:=

1

non

non∑

i=1

δXi , µ̂X′
noff

:=
1

noff

noff∑

j=1

δX′
j
.

Since the quantity which is minimized only depends on ρ through the measure ρµ̂X′
noff

,

and thus through the values ρ(X ′
1), . . . , ρ(X

′
noff

), the actual output is a vector of weights

ŵnoff
:= (ŵ1, . . . , ŵnoff

) which approximate the values of ρX,X′ at the pointsX ′
1, . . . , X

′
noff

,

and therefore yield the estimator

(1) Q̂Inoff ,non
:=

1

noff

noff∑

j=1

ŵjφ(Y
′
j )

of QI. This approach has been applied with several choices of distance-like functions d,

such as moment/kernel matching, L2 distance, Kullback–Leibler divergences; we refer

to [16] for an extensive review supplemented with a detailed list of references. Since the

primary purpose of these methods is the approximation of the density ratio ρX,X′ , the

existence of this ratio (and often the existence of positive densities for µX and µX′ with

respect to the Lebesgue measure, at least on some bounded subset of Rd) is almost always

a necessary condition for their theoretical analysis.

However, in the Computer Experiment context in which we are interested, this ratio

need not exist. Indeed, while some prior information on the law µX may be known, such

as bounds on its support, mean or dispersion, it may happen for example that some compo-

nents of the vectorX be tied to each other by deterministic relations of the form h(X) = 0,

so that the actual support of µX might be contained in a low-dimensional manifold and dif-

ficult to determine precisely, see Figure 1.

Therefore, designing a synthetic probability distribution µX′ with respect to which µX

is absolutely continuous may actually turn out to be impossible. Nevertheless, one may

retain the idea to approximate QI by an estimator of the form (1), where the weights
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(ŵ1, . . . , ŵnoff
) only depend on the samples Xnon and X

′
noff

, and are determined by mini-

mizing some distance between the empirical measure µ̂Xnon
and weighted empirical mea-

sures of the form

µ̂
wnoff

X′
noff

=
1

noff

noff∑

j=1

wjδX′
j
, wnoff

:= (w1, . . . , wnoff
).

This idea was for example applied in the UQ context in [1, 2]. Notice that for µ̂
wnoff

X′
noff

to be

a probability measure, the weights (w1, . . . , wnoff
) must satisfy

(2) ∀j ∈ J1, noffK, wj ≥ 0, and

noff∑

j=1

wj = noff .

In this paper, we follow this approach and study the estimator Q̂Inoff ,non
of QI ob-

tained by minimizing the Wasserstein distance, whose definition is recalled below, between

µ̂Xnon
and µ̂

wnoff

X′
noff

. The main reason for this choice is that, unlike Kullback–Leibler or more

general φ-divergences, or Lp distances, the Wasserstein distance between two probability

measures onRd is not sensitive to whether these measures have densities with respect to the

Lebesgue measure, or are absolutely continuous with respect to one another. The optimal

weights can be expressed terms of Nearest Neighbor and our estimator can be interpreted

as the Monte Carlo evaluation of a Nearest Neighbor Regression under covariate shift, for

which we bound the error explicitly.

1.3. Organization of the paper. The Wasserstein distance is introduced in Section 2, as

well as the explicit form of the optimal weights and their reformulation in terms of Nearest

Neighbor. Section 3 is devoted to the analysis of the convergence of the weighted empirical

measure to µX , in terms of Wasserstein distance. The consistency is studied in Section 3.1

and we state our main result in Section 3.2, namely the asymptotic rates of convergence.

The link between these results and the estimation of QI is discussed in Sections 4.1, 4.2

and 4.3, with the computation of rates of convergence for Q̂Inoff ,non
. Some links with

the Nearest Neighbor literature are highlighted in Section 4.4. Numerical experiments are

performed in Section 5, in which the impact of the difference between µX and µX′ is

investigated.

1.4. Notation. Throughout this paper, we denote by N the set of the natural integers in-

cluding zero and by N
∗ = N \ {0} the set of the positive integers. Given two integers

n1 ≤ n2, the set of the integers between n1 and n2 is written Jn1, n2K = {n1, . . . , n2}.

For x ∈ R, ⌈x⌉ (resp. ⌊x⌋) is the unique integer verifying x ≤ ⌈x⌉ < x + 1 (resp.

x− 1 < ⌊x⌋ ≤ x). For (x, y) ∈ R
2, we use the join and meet notation x ∧ y = min(x, y)

and x ∨ y = max(x, y). The supremum norm of φ : Rd → R is denoted by ‖φ‖∞ =

supx∈Rd |φ(x)|.

2. Wasserstein distance minimization and Nearest Neighbor Regression

2.1. Optimal weights for Wasserstein distances. We begin by recalling the definition of

the Wasserstein distance. Throughout this article, we fix a norm | · | on R
d, which need not

be the Euclidean norm.
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Definition 2.1 (Wasserstein distance). Let P(Rd) be the set of probability measures on R
d

and, for any q ∈ [1,+∞), let

Pq(R
d) =

{
ν ∈ P(Rd) :

∫

Rd

|x|qdν(x) < +∞

}
.

The Wasserstein distance of order q between µ and ν ∈ Pq(R
d) is defined as

Wq(µ, ν) = inf

{∫

Rd×Rd

|x− x′|qdγ(x, x′) : γ ∈ Π(µ, ν)

}1/q

,

where Π(µ, ν) is the set of probability measures on R
d × R

d with marginals µ and ν.

We refer to [19, Section 6] for a general introduction to Wasserstein distances.

This definition allows for an explicit resolution of the minimization problem on wnoff
,

which relies on the notion of Nearest Neighbor. For x ∈ R
d and k ∈ J1, noffK, we denote

by NN
(k)
X′

noff

(x) the k-th Nearest Neighbor (k-NN) of x among the sample X′
noff

, that is to

say the k-th closest point to x among X ′
1, . . . , X

′
noff

for the norm | · |. If there are several

such points, we define NN
(k)
X′

noff

(x) to be the point X ′
j with lowest index j. We omit the

superscript notation (k) when referring to the 1-NN, i.e.

NNX′
noff

(x) = NN
(1)
X′

noff

(x).

In the next statement, for any i ∈ J1, nonK and l ∈ J1, noffK, we denote by j
(l)
i the (lowest)

index j such that X ′
j = NN

(l)
X′

noff

(Xi).

Proposition 2.2 (Optimal vector of weights). Let the k-NN vector of weights w
(k)
noff =

(w
(k)
1 , . . . , w

(k)
noff ) be defined by, for all j, k ∈ J1, noffK,

(3) w
(k)
j :=

noff

knon

non∑

i=1

k∑

l=1

1
{j=j

(l)
i }

.

The vector w
(k)
noff satisfies (2) and verifies, for all q ∈ [1,+∞),

(4) W q
q

(
µ̂Xnon

, µ̂
w

(k)
noff

X′
noff

)
≤

1

knon

non∑

i=1

k∑

l=1

∣∣∣Xi −NN
(l)
X′

noff

(Xi)
∣∣∣
q

.

For k = 1, the equality is reached

(5) W q
q

(
µ̂Xnon

, µ̂
w

(1)
noff

X′
noff

)
=

1

non

non∑

i=1

∣∣∣Xi −NNX′
noff

(Xi)
∣∣∣
q

,

and the vector is optimal in the sense that for any wnoff
= (w1, . . . , wnoff

) which also

satisfies (2), we have

(6) Wq

(
µ̂Xnon

, µ̂
w

(1)
noff

X′
noff

)
≤Wq

(
µ̂Xnon

, µ̂
wnoff

X′
noff

)
.

In other words, for a given j ∈ J1, noffK, w
(k)
j is proportional to the number of points

Xi of which X ′
j is one of the first k Nearest Neighbors. We refer to [13] for a numerical

illustration of the use of the vector of weights w
(1)
noff in the context of classification under

covariate shift.
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Proof. For a general vector of weights wnoff
= (w1, . . . , wnoff

) which satisfies (2), the

Wasserstein distance W q
q

(
µ̂Xnon

, µ̂
wnoff

X′
noff

)
is the solution of the following optimal trans-

port problem

inf
(γi,j)(i,j)∈J1,nonK×J1,noffK

non∑

i=1

noff∑

j=1

γi,j |Xi −X ′
j |
q,

∀i ∈ J1, nonK,

noff∑

j=1

γi,j =
1

non
(marginal condition on µ̂Xnon

),

∀j ∈ J1, noffK,

non∑

i=1

γi,j =
wj

noff
(marginal condition on µ̂

wnoff

X′
noff

),

∀(i, j) ∈ J1, nonK × J1, noffK, γi,j ≥ 0,

(7)

where γi,j is the coefficient of the discrete transport plan between δXi and δX′
j
. For the

k-NN vector of weights w
(k)
noff defined by (3), the transport plan

γ
(k)
i,j =

1

knon

k∑

l=1

1
{j=j

(l)
i }

satisfies the two marginal conditions. Reordering the terms in the associated cost gives the

upper bound of Equation (4).

We now prove the equality (5) and optimality (6) of w
(1)
noff at the same time. For a given

wnoff
, if we drop the marginal condition on µ̂

wnoff

X′
noff

, the values of (γi,j)j∈J1,noff K for a given

i do not constrain the values of (γi′,j)j∈J1,noff K for another i′ 6= i. Thus, the optimal values

can be found by minimizing separately the following subproblem for i ∈ J1, nonK

inf
(γi,j)j∈J1,noff K

noff∑

j=1

γi,j |Xi −X ′
j |
q,

noff∑

j=1

γi,j =
1

non
,

∀j ∈ J1, noffK, γi,j ≥ 0,

the solution of which is trivially 1
non

|Xi − NNX′
noff

(Xi)|q . As a consequence, we get the

estimate

(8) W q
q

(
µ̂Xnon

, µ̂
wnoff

X′
noff

)
≥

1

non

n∑

i=1

|Xi −NNX′
noff

(Xi)|
q

for any wnoff
satisfying Equation (2). Taking wnoff

= w
(1)
noff in the left-hand side and

combining this inequality with (4) for k = 1, we obtain both the equality (5) and optimal-

ity (6). �

Remark 2.3. In order to alleviate notation, from now on we shall write µ̂
(k)
X′

noff

= µ̂
w

(k)
noff

X′
noff

.

2.2. NNR reformulation. With the choice of weightsw
(k)
noff introduced in Proposition 2.2,

the resulting estimator of QI writes

Q̂I
(k)

noff ,non
=

1

non

non∑

i=1

1

k

k∑

l=1

φ
(
Y ′

j
(l)
i

)
,
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which makes the method very close to Nearest Neighbor Regression (NNR) [3, Chapter 9],

since it may be reformulated as the following two-step procedure:

(1) define the regression function ψ of φ(Y ) on X by, for any x ∈ R
d,

(9) ψ(x) := E [φ(Y )|X = x] = E [φ (f(x,Θ))] ,

and let the k-NNR estimator of ψ(x) be given by

(10) ψ̂(k)
noff

(x) :=
1

k

k∑

l=1

φ
(
Y ′
j(l)(x)

)
,

where j(l)(x) is the (lowest) index j such that X ′
j = NN

(l)
X′

noff

(x);

(2) approximate the expectation

QI = E[φ(Y )] = E[ψ(X)]

by the empirical mean

1

non

non∑

i=1

ψ̂(k)
noff

(Xi) = Q̂I
(k)

noff ,non
.

In this context, the peculiar fact that the law of the evaluation set X1, . . . , Xnon differs

from the law of the training set X ′
1, . . . , X

′
noff

is referred to as domain adaptation [15].

From a UQ point of view, the first step may be reinterpreted as the construction, based on

the Nearest Neighbor approach, of a metamodel for the regression function ψ.

3. Convergence analysis

As is evidenced by its reformulation in terms of NNR, the method does not actually

depend on the choice of the observable φ ◦ f , and its primary purpose is rather the direct

estimation of the law µX by the weighted empirical measure µ̂
(k)
X′

noff

. Rewriting

QI = E[φ(Y )] =

∫

Rd

ψ(x)dµX(x),

we observe that estimates on the approximation of QI by Q̂I
(k)

noff ,non
which are uniform in

φ can be obtained from estimates on the approximation of µX by µ̂
(k)
X′

noff

. Therefore, we

turn our attention to the convergence, when the sizes noff and non of the two samples go

to ∞, of µ̂
(k)
X′

noff

to µX . We naturally work with Wasserstein distances.

3.1. Consistency. Let us fix q ∈ [1,+∞) and use Jensen’s inequality to write

(11)

E

[
W q

q

(
µX , µ̂

(k)
X′

noff

)]
≤ 2q−1

(
E
[
W q

q

(
µX , µ̂Xnon

)]
+ E

[
W q

q

(
µ̂Xnon

, µ̂
(k)
X′

noff

)])
.

As soon as there exists s > q such that E[|X |s] < +∞, the first term E[W q
q

(
µX , µ̂Xnon

)
]

is known to converge to 0 when non → +∞ and explicit rates are available [9], see also

the discussion in Subsection 4.1 below. We therefore focus on the second term and first

observe that, by Proposition 2.2, we have

(12)

E

[
W q

q

(
µ̂Xnon

, µ̂
(1)
X′

noff

)]
= E

[
1

non

non∑

i=1

∣∣∣Xi −NNX′
noff

(Xi)
∣∣∣
q
]

= E

[∣∣∣X − NNX′
noff

(X)
∣∣∣
q]
,
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for k = 1, and

(13)

E

[
W q

q

(
µ̂Xnon

, µ̂
(k)
X′

noff

)]
≤ E

[
1

knon

non∑

i=1

k∑

l=1

∣∣∣Xi −NN
(l)
X′

noff

(Xi)
∣∣∣
q
]

=
1

k

k∑

l=1

E

[∣∣∣X −NN
(l)
X′

noff

(X)
∣∣∣
q]
,

for k ≥ 2. Observe that the right-hand side of both (12) and (13) no longer depend on non.

We now formulate two crucial assumptions and then state our first main result. For all

x ∈ R
d and r ≥ 0, we denote B(x, r) := {x′ ∈ R

d : |x − x′| ≤ r}, and recall that the

support of a probability measure ν ∈ P(Rd) is defined by

supp(ν) :=
{
x ∈ R

d : ∀r > 0, ν(B(x, r)) > 0
}
.

Assumption 3.1 (Support condition). We have supp(µX) ⊂ supp(µX′).

Assumption 3.2 (Min-integrability). There exists an integer m0 ≥ 1 such that

E

[
min

j∈J1,m0K
|X ′

j |

]
< +∞.

Theorem 3.3 (Consistency). Let Assumptions 3.1 and 3.2 hold. For all q ∈ [1,+∞) such

that E[|X |q] < +∞, and any sequence of positive integers (kn)n≥1 such that kn/n → 0

when n→ ∞, we have

lim
noff→+∞

E

[
W q

q

(
µ̂Xnon

, µ̂
(knoff

)

X′
noff

)]
= 0,

uniformly in non.

Remark 3.4 (On Assumption 3.2). Assumption 3.2 is obviously satisfied if X ′ has a fi-

nite first order moment, but also for some heavy-tailed distributions. It writes under the

equivalent form ∫ ∞

0

P(|X ′| > r)m0dr < +∞,

which may be easier to check. An example of a random variable which does not satisfy

this assumption, in dimension d = 1, is X ′ = exp(1/U) where U is a uniform random

variable on [0, 1].

Theorem 3.3 is proved in Subsection 3.3.

3.2. Rates of convergence. The next step of our study consists in complementing Theo-

rem 3.3 with a rate of convergence. We first discuss the case k = 1. Following (12), we

start by writing

E

[
W q

q

(
µ̂Xnon

, µ̂
(1)
X′

noff

)]
= E

[∣∣∣X −NNX′
noff

(X)
∣∣∣
q]

(14)

= E

[
E

[ ∣∣∣X −NNX′
noff

(X)
∣∣∣
q∣∣∣X

]]
,

and observe that for any x ∈ supp(µX), |x − NNX′
noff

(x)| = minj∈J1,noff K |x −X ′
j |. If

there is an open set U of Rd containing x and such that µX′(· ∩ U) has a density pX′ with
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respect to the Lebesgue measure which is continuous at x, then an elementary computation

shows that, for all r ≥ 0,

lim
noff→+∞

P

(
noff

1/d min
j∈J1,noff K

|x−X ′
j | > r

)
= exp

(
−rdvdpX′(x)

)
,

where vd denotes the volume of the unit sphere of Rd for the norm | · |. If pX′(x) > 0 then

this indicates that the correct order of convergence in Theorem 3.3 should be noff
−q/d. If

pX′(x) = 0, or if the measure µX′(· ∩ U) is not absolutely continuous with respect to the

Lebesgue measure, it is easy to construct elementary examples yielding different rates of

convergence; see also [3, Chapter 2] for the singular case. We leave these peculiarities apart

and work under the following strengthening of the support condition of Assumption 3.1.

Assumption 3.5 (Strong support condition). There exists an open set U ⊂ R
d which

contains supp(µX) and such that:

(i) the measure µX′(· ∩ U) has a density pX′ with respect to the Lebesgue measure;

(ii) the density pX′ is continuous and positive on U ;

(iii) there exist κ ∈ (0, 1] and rκ > 0 such that, for any x ∈ U , for any r ∈ [0, rκ],

P (X ′ ∈ B(x, r)) ≥ κpX′(x)vdr
d.

Obviously, Assumption 3.5 implies Assumption 3.1 because then supp(µX) ⊂ U ⊂

supp(µX′). Part (iii) of Assumption 3.5 was introduced in [10] in the context of Nearest

Neighbor Classification, and called Strong minimal mass assumption there.

Under Assumption 3.5, for all x ∈ supp(µX), a positive random variable Z such that

P(Z > r) = exp(−rdvdpX′(x)) has moments

E [Zq] =
Γ(1 + q/d)

(vdpX′(x))q/d
,

where Γ denotes Euler’s Gamma function. Therefore, one may expect the normalized

quantity

noff
q/d

E

[
W q

q

(
µ̂Xnon

, µ̂
(1)
X′

noff

)]

to converge, when noff → +∞, to

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
,

so that as soon as the expectation in the right-hand side is finite, the rate of convergence

in Theorem 3.3 is noff
−q/d. In order to prove this convergence we shall actually need the

following stronger integrability assumption.

Assumption 3.6 (Moments). Under Assumption 3.5, we have

E

[
1 + |X |q

pX′(X)q/d

]
< +∞.

Assumptions 3.5 and 3.6 are discussed in more detail below. We now state our second

main result.
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Theorem 3.7 (Convergence rates for k = 1). Let Assumptions 3.2 and 3.5 hold, and let

q ∈ [1,+∞) be such that Assumption 3.6 holds. Then we have

lim
noff→+∞

noff
q/d

E

[
W q

q

(
µ̂Xnon

, µ̂
(1)
X′

noff

)]
=

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
.

Theorem 3.7 is proved in Subsection 3.3.

We now discuss the estimation of µ̂Xnon
by the weighted empirical measure µ̂

(k)
X′

noff

for

an arbitrary k ∈ J1, noffK. By (8), we first observe that we always have

Wq

(
µ̂Xnon

, µ̂
(k)
X′

noff

)
≥Wq

(
µ̂Xnon

, µ̂
(1)
X′

noff

)
,

so that the estimation of µ̂Xnon
is deteriorated by increasing the number of neighbors.

Still, in the asymptotic regime of Theorem 3.3, a bound of the same order of magnitude as

Theorem 3.7 may be obtained.

Corollary 3.8 (Convergence rates for k-NN). Under the assumptions of Theorem 3.7,

for any nondecreasing sequence of positive integers (kn)n≥1 such that kn/n → 0 when

n→ ∞, we have

lim sup
noff→+∞

(
noff

knoff

)q/d

E

[
W q

q

(
µ̂Xnon

, µ̂
(knoff

)

X′
noff

)]
≤ cd,q

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
,

with some constant cd,q > 1.

Corollary 3.8 is proved in Subsection 3.3, where the explicit expression of the constant

cd,q is also given.

Let us conclude this subsection with some comments on Assumptions 3.5 and 3.6.

When X has a compact support, Assumptions 3.5 and 3.6 are verified as soon as µX′

has a continuous density pX′ which is bounded from below on U ; these results are sim-

ilar to the case µX = µX′ in [3, Section 2]. It is however interesting to note that these

assumptions also hold in some nontrivial noncompact cases.

An example of a sufficient condition for Assumption 3.5 is given in the next statement,

which is proved in Subsection 3.3.

Lemma 3.9 (Sufficient condition for Assumption 3.5). Let ‖ · ‖ be a norm on R
d, not

necessarily identical to | · |, induced by an inner product. If µX′ has a density pX′ with

respect to the Lebesgue measure on R
d, which writes pX′(x) = h(‖x−x0‖) for some x0 ∈

R
d and h : [0,+∞) → R continuous, positive and nonincreasing, then Assumption 3.5

holds with U = R
d.

We also refer to [10, Section 2.4] for a discussion of this assumption.

Assumption 3.6 gives a relationship between µX and pX′ to ensure the convergence. In

essence, it asserts that the tail of µX must be quite lightweight compared to the tail of pX′ .

For instance, if X and X ′ are centered Gaussian vectors with respective covariance σ2Id

and σ′2Id, then by Lemma 3.9, Assumption 3.5 is satisfied with U = R
d, and it is easy to

check that for q ∈ [1,+∞), Assumption 3.6 holds if and only if σ′2 > σ2q/d.
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3.3. Proofs. In this subsection, we present the proofs of Theorems 3.3 and 3.7, Corol-

lary 3.8 and Lemma 3.9.

Proof of Theorem 3.3. We begin our proof with the constant case kn = 1 for all n and then

extend it to the general case. We recall that by (12),

E

[
W q

q

(
µ̂Xnon

, µ̂
(1)
X′

noff

)]
= E

[∣∣∣X −NNX′
noff

(X)
∣∣∣
q]

= E

[
min

j∈J1,noff K
|X −X ′

j |
q

]
.

By Assumption 3.1, X ∈ supp(µX′) almost surely, so that we deduce from Lemma 2.2

in [3, Chapter 2] that

min
j∈J1,noff K

|X −X ′
j |
q a.s

−→
noff→+∞

0.

Let m0 be the integer given by Assumption 3.2, we have

min
j∈J1,noff K

|X −X ′
j |
q ≤ 2q−1

(
|X |q + min

j∈J1,noffK
|X ′

j |
q

)
.

The random variable |X |q is integrable by assumption and for noff ≥ ⌈q⌉m0, the inequality

E

[
min

j∈J1,noffK

∣∣X ′
j

∣∣q
]
≤ E

[
min

j∈J1,noff K

∣∣X ′
j

∣∣⌈q⌉
]q/⌈q⌉

≤ E

[
min

j∈J1,m0K

∣∣X ′
j

∣∣ min
j∈Jm0+1,2m0K

∣∣X ′
j

∣∣ · · · min
j∈J(⌈q⌉−1)m0+1,⌈q⌉m0K

∣∣X ′
j

∣∣
]q/⌈q⌉

≤ E

[
min

j∈J1,m0K

∣∣X ′
j

∣∣
]q
< +∞

holds. Then by the dominated convergence theorem,

E

[
min

j=J1,noff K
|X −X ′

j |
q

]
−→

noff→+∞
0.

For the general case kn/n → 0, we adapt directly the proof of [3, Theorem 2.4] to the

context µX 6= µX′ . Let us fix l ∈ J1, noff/2K and partition the set {X ′
1, . . . , X

′
noff

} into 2l

sets of size n1, . . . , n2l with, for all j ∈ J1, 2lK,

⌊noff/2l⌋ ≤ nj ≤ ⌊noff/2l⌋+ 1.

We denote by NN
(1,j)
X′

noff

the 1-NN among the subset j. By the definition of NN
(l)
X′

noff

, there

are at least l subsets j for which

|X −NN
(l)
X′

noff

(X)| ≤ |X −NN
(1,j)
X′

noff

(X)|,

therefore

|X −NN
(l)
X′

noff

(X)|q ≤
1

l

2l∑

j=1

|X −NN
(1,j)
X′

noff

(X)|q,

and consequently

E

[∣∣∣X −NN
(l)
X′

noff

(X)
∣∣∣
q]

≤ 2E
[∣∣∣X −NNX′

⌊noff/2l⌋
(X)

∣∣∣
q]
.
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Finally, we deduce from (13) that, as soon as knoff
≤ noff/2,

E

[
W q

q

(
µ̂Xnon

, µ̂
(knoff

)

X′
noff

)]
≤

1

knoff

knoff∑

l=1

E

[∣∣∣X −NN
(l)
X′

noff

(X)
∣∣∣
q]

≤
2

knoff

knoff∑

l=1

E

[∣∣∣X −NNX′
⌊noff/2l⌋

(X)
∣∣∣
q]

≤ 2E
[∣∣∣X −NNX′

⌊noff/2knoff
⌋
(X)

∣∣∣
q]
,

(15)

which goes to 0 as a consequence of the first part of the proof when noff/2knoff
goes to

infinity. �

Proof of Theorem 3.7. By (12), we have

E

[
noff

q/dW q
q (µ̂Xnon

, µ̂
(1)
X′

noff

)
]
= E

[
E

[
noff

q/d min
j∈J1,noff K

∣∣X −X ′
j

∣∣q
∣∣∣∣X
]]

=

∫

Rd

∫ +∞

0

P(noff
q/d min

j∈J1,noff K
|x−X ′

j |
q > t)dtdµX(x)

=

∫

Rd

∫ +∞

0

P(noff
q/d|x−X ′|q > t)noffdtdµX(x),

(16)

by independence of theX ′
j . The proof consists in computing the pointwise limit of P(noff

p/d|x−

Y |p > t)noff for (x, t) ∈ supp(µX) × R
+ and then establishing the convergence of the

integral via the dominated convergence theorem.

Pointwise convergence. We have

P(noff
q/d|x−X ′|q > t)noff =

(
1− P(|x−X ′| ≤ t1/q/noff

1/d)
)noff

= exp
(
noff log

(
1− P(|x−X ′| ≤ t1/q/noff

1/d)
))

.

By Assumption 3.5, we have

P(|x−X ′| ≤ t1/q/noff
1/d) = pX′(x)vdt

d/q/noff + o(1/noff),

with vd the volume of the unit sphere. Thus

noff log
(
1− P(|x−X ′| ≤ t1/q/noff

1/d)
)
= −pX′(x)vdt

d/q + o(1),

and we conclude that

P(noff
q/d|x−X ′|q > t)noff −→

noff→+∞
exp

(
−pX′(x)vdt

d/q
)
.

Dominated convergence. Let rκ > 0 be given by Assumption 3.5. We split the integral

in the right-hand side of (16) and study each term separately
∫

Rd

∫ +∞

0

P(noff
q/d|x−X ′|q > t)noffdtdµX(x) = I + II

with

I :=

∫

Rd

∫ rqκnoff
q/d

0

P(|x−X ′| > t1/q/noff
1/d)noffdtdµX(x),

II :=

∫

Rd

∫ +∞

rqκnoff
q/d

P(|x−X ′| > t1/q/noff
1/d)noffdtdµX .
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Convergence of I. For t ∈ [0, rqκnoff
q/d], we have t1/q/noff

1/d ≤ rκ and thus

P(|x−X ′| > t1/q/noff
1/d)noff =

(
1− P(|x−X ′| ≤ t1/q/noff

1/d)
)noff

≤

(
1−

pX′(x)vdκt
d/q

noff

)noff

by Assumption 3.5.

Using the elementary inequality (1 − a/n)n ≤ exp(−a) for a ≤ n, we can write

P(|x−X ′| > t1/q/noff
1/d)noff ≤ exp(−κvdpX′(x)td/q).

This bound does not depend on noff and the integral
∫

Rd

∫ +∞

0

exp
(
−κvdpX′(x)td/q

)
dtdµX(x) =

∫

Rd

Γ(1 + q/d)

(κvdpX′(x))q/d
dµX(x)

=
Γ(1 + q/d)

(κvd)q/d
E

[
1

pX′(X)q/d

]
,

is finite by Assumption 3.6. We therefore deduce from the dominated convergence theorem

that

I −→
noff→+∞

∫

Rd

∫ +∞

0

exp
(
−pX′(x)vdt

d/q
)
dtµX(dx) =

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
.

Convergence of II. Let noff ≥ 2(q+1)m0. Using the change of variable rq = t/noff
q/d,

we have

II = q

∫

Rd

∫ +∞

rκ

noff
q/drq−1

P(|x−X ′| > r)noff drdµX(x)

≤ q

∫

Rd

∫ +∞

rκ

Vnoff
(x, r)drdµX (x),

with

Vnoff
(x, r) := noff

q/d
P(|x−X ′| > rκ)

noff−(q+1)m0rq−1
P(|x−X ′| > r)(q+1)m0 .

As P(|x − X ′| > rκ) < 1 for all x in U , by Assumption 3.5, Vnoff
(x, r) is pointwise

convergent to 0 on the support of µX . We check that Vnoff
(x, r) is bounded from above by

an integrable function which does not depend on noff . Let us denote noff
′ = noff − (q +

1)m0 ≥ noff/2 and rewrite

noff
q/d

P(|x−X ′| > rκ)
noff−(q+1)m0 =

(
noff

noff
′

)q/d

noff
′q/d

P(|x−X ′| > rκ)
noff

′

≤ 2q/dnoff
′q/d

(
1−

P(|x−X ′| ≤ rκ)

noff
′

)noff
′

≤ 2q/dnoff
′q/d exp

(
−noff

′κpX′(x)vdr
d
κ

)
,

where we have used Assumption 3.5 and the elementary above inequality at the third line.

We deduce that

noff
q/d

P(|x−X ′| > rκ)
noff−(q+1)m0 ≤

C1

pX′(x)q/d
, C1 :=

2q/d

(κvdrdκ)
q/d

sup
u≥0

(uq/de−u),

so that

(17) Vnoff
(x, r) ≤ Ṽ (x, r) :=

C1

pX′(x)q/d
rq−1

P(|x−X ′| > r)(q+1)m0 .
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To complete the proof, we verify that Ṽ (x, r) is integrable on U × [rκ,+∞). We first

fix x ∈ R
d and estimate the integral of Ṽ (x, r) in r. Using the fact that if |x − X ′| > r

then |X ′| > r − |x|, we first write

∫ +∞

rκ

rq−1
P(|x−X ′| > r)(q+1)m0dr ≤

∫ +∞

0

rq−1
P(|X ′| > r − |x|)(q+1)m0dr

=

∫ +∞

−|x|

(r + |x|)q−1
P(|X ′| > r)(q+1)m0dr.

On the interval [−|x|, 0], we have

∫ 0

−|x|

(r + |x|)q−1
P(|X ′| > r)(q+1)m0dr =

∫ 0

−|x|

(r + |x|)q−1dr =
|x|q

q
.

On the interval [0,+∞), we first rewrite

∫ +∞

0

(r+|x|)q−1
P(|X ′| > r)(q+1)m0dr =

∫ +∞

0

(r+|x|)q−1
P

(
min

j∈J1,m0K
|X ′

j| > r

)q+1

dr,

and recall from Assumption 3.2 that C2 := E[minj∈J1,m0K |X
′
j |] <∞. As a consequence,

we deduce from Markov’s inequality that the right-hand side in the previous equality is

bounded from above by

∫ |x|∨1

0

(r + |x|)q−1dr + Cq+1
2

∫ +∞

|x|∨1

(r + |x|)q−1

rq+1
dr.

If |x| ≤ 1 then this expression is bounded from above. If |x| > 1, then we have

∫ |x|

0

(r + |x|)q−1dr ≤ 2q−1|x|q

on the one hand, and

∫ +∞

|x|

(r + |x|)q−1

rq+1
dr =

1

|x|

∫ +∞

1

(u+ 1)q−1

uq+1
du,

which is bounded from above, on the other hand. Overall, we conclude that there exists a

constant C3 such that

(18)

∫ +∞

rκ

rq−1
P(|x−X ′| > r)(q+1)m0dr ≤ C3(1 + |x|q).

As a consequence, the combination of (17) and (18) yields

∫

Rd

∫ +∞

rκ

Ṽ (x, r)drdµX (x) ≤ C1C3E

[
1 + |X |q

pX′(X)q/d

]
,

which by Assumption 3.6 allows to apply the dominated convergence theorem to show that

II goes to 0, and thereby completes the proof. �
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Proof of Corollary 3.8. We start from the second line of Equation (15) and estimate its

right-hand side

E

[
W q

q (µ̂Xnon
, µ̂

(knoff
)

X′
noff

)
]
≤

2

knoff

knoff∑

l=1

E

[∣∣∣X −NNX′
⌊noff/2l⌋

(X)
∣∣∣
q]

=
2

knoff

knoff∑

l=1

(
2knoff

noff

l

knoff

noff

2l

)q/d

E

[∣∣∣X −NNX′
⌊noff/2l⌋

(X)
∣∣∣
q]

=

(
knoff

noff

)q/d
2q/d+1

knoff

knoff∑

l=1

(
l

knoff

)q/d

F
(noff

2l

)

with F (u) = uq/dE[|X −NNX′
⌊u⌋

(X)|q]. Let ǫ > 0. By Theorem 3.7, there exists uǫ ≥ 0

such that, for all u ≥ uǫ,
∣∣∣∣∣F (u)−

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]∣∣∣∣∣ ≤ ǫ.

We can remark that for noff ∈ N
∗ and l ∈ J1, knoff

K,

noff

2l
≥

noff

2knoff

−−−−−−→
noff→+∞

+∞.

Thus, if we take nǫ such that for all n ≥ nǫ,
⌊

n
2kn

⌋
≥ uǫ, we have

∣∣∣∣∣F
(noff

2l

)
−

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]∣∣∣∣∣ ≤ ǫ

for any noff ≥ nǫ and l ≤ knoff
. Consequently,

∣∣∣∣∣∣
1

knoff

knoff∑

l=1

(
l

knoff

)q/d
(
F
(noff

2l

)
−

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

])∣∣∣∣∣∣

≤ ǫ

∣∣∣∣∣∣
1

knoff

knoff∑

l=1

(
l

knoff

)q/d
∣∣∣∣∣∣

≤ ǫ,

so that

lim
noff→+∞

2q/d+1

knoff

knoff∑

l=1

(
l

knoff

)q/d

F
(noff

2l

)
= cd,q

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
,

where

cd,q := lim
n→+∞

2q/d+1

kn

kn∑

l=1

(
l

kn

)q/d

=





2q/d+1

k

k∑

l=1

(
l

k

)q/d

if supn≥1 kn = k < +∞,

2q/d+1

∫ 1

0

uq/ddu =
2q/d+1

q/d+ 1
if supn≥1 kn = +∞,

concluding the proof. �



16 Julien Reygner and Adrien Touboul

Proof of Lemma 3.9. Obviously, it suffices to check that pX′ satisfies the point (iii) of As-

sumption 3.5. Let us denote by 〈·, ·〉 and B(x, r) respectively the inner product and the ball

of center x and radius r associated to ‖ · ‖. We set x0 = 0 without loss of generality. As h

is positive and nonincreasing, we may fix r0 > 0 and define

κ :=
h(r0)

h(0)
∈ (0, 1].

If ‖x‖ ≤ r0/2, then for all y ∈ B(x, r0/2), the monotonicity of h ensures that pX′(x+

y) ≥ κpX′(x). By the equivalence of the norms, there exist C ≥ c > 0 such that for any

x ∈ R
d and any r ≥ 0, B(x, cr) ⊂ B(x, r) ⊂ B(x,Cr). Thus

∀r ≤ r0/2c, P (X ′ ∈ B(x, r)) ≥ P (X ′ ∈ B(x, cr)) ≥ (c/C)dvdκpX′(x)rd.

If ‖x‖ > r0/2, let us introduce the half-cone

Cx =

{
x′ ∈ R

d : 〈x′ − x,−x〉 ≥
‖x′ − x‖‖x‖

2

}
,

and notice that for all r ≤ r0/2 and x′ ∈ Cx ∩ B(x, r),

‖x′‖2 = ‖x‖2 + ‖x′ − x‖2 + 2〈x′ − x, x〉

≤ ‖x‖2 + ‖x′ − x‖2 − ‖x′ − x‖‖x‖

≤ ‖x‖2 + ‖x′ − x‖2 − ‖x′ − x‖2

= ‖x‖2.

Thus, for all x′ ∈ Cx∩B(x, r), pX′(x′) ≥ pX′(x). For a given r, the sets Cx∩B(x, r) have

the same volume for all x, which we denote by αvdr
d for some α ∈ (0, 1/Cd). Finally,

we have

∀r ≤ r0/2c, P(X ′ ∈ B(x, r)) ≥ P(X ′ ∈ B(x, cr) ∩ Cx) ≥ αcdvdpX′(x)rd.

If we take κ = (c/C)d min(αCd, κ) and rκ = r0/2c, we obtain the point (iii) of Assump-

tion 3.5. �

4. Discussion

Going back to our initial problem, we are now able to compute Lq rates of convergence

of the weighted estimator

Q̂I
(knoff

)

noff ,non
=

1

noff

noff∑

j=1

w
(knoff

)

j φ(Y
′

j )

to QI = E[φ(Y )]. First, in Section 4.1, we derive the convergence rates of µ̂
(knoff

)

X′
noff

to µX in

terms of Wasserstein distance. Then in Section 4.2, we study the case in which Y = f(X)

and there is no external source of uncertainty, that we call the noiseless case, using the

terminology from statistical Machine Learning regression. The noisy case Y = f(X,Θ)

is treated in Section 4.3.

Finally, in Section 4.4, we reinterpret Theorem 3.7 under the prism of the Nearest

Neighbor literature.
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4.1. Convergence to µX . Let us focus on the speed of convergence of µ̂
(knoff

)

X′
noff

to µX .

Provided thatX has enough moments, namely that there exists s > 2q such that E[|X |s] <

+∞, we have from [9, Theorem 1]

E
[
W q

q

(
µX , µ̂Xnon

)]
=





O
(
non

−1/2
)

if q > d/2,

O
(
non

−1/2 log(1 + non)
)

if q = d/2,

O
(
non

−q/d
)

if q < d/2.

In dimension d = 1, we deduce from (11) that

E

[
W q

q

(
µX , µ̂

(knoff
)

X′
noff

)]1/q
= O

((
1

non

)1/2q

+
knoff

noff

)

for any value of q ≥ 1. The right-hand side is minimized for the choice q = 1, in which

case both error terms have the same order of magnitude if the sizes of the offline and online

samples satisfy

non ∝

(
noff

knoff

)2

.

In dimension d ≥ 2, the minimal upper bound for E[W q
q (µX , µ̂Xnon

)]1/q is achieved for

q ≤ d/2, in which case, up to the logarithmic correction,

E

[
W q

q

(
µX , µ̂

(knoff
)

X′
noff

)]1/q
= O

((
1

non

)1/d

+

(
knoff

noff

)1/d
)
,

and both error terms have the same order of magnitude if the sizes of the offline and online

samples satisfy

non ∝
noff

knoff

.

4.2. Rate of convergence of Q̂I
(knoff

)

noff ,non
in the noiseless case. We assume that Y = f(X)

and study the rate of convergence of Q̂I
(knoff

)

noff ,non
to QI. When φ ◦ f is L-Lipschitz continu-

ous, we can derive the result using the duality formula of the W1 Wasserstein distance [19,

Remark 6.5]

(19) W1

(
µX , µ̂

(knoff
)

X′
noff

)
= sup

|ϕ|Lip≤1

{∫

Rd

ϕ(x)dµX(x) −

∫

Rd

ϕ(x)dµ̂
(knoff

)

X′
noff

(x)

}

and bound
∣∣∣∣QI− Q̂I

(knoff
)

noff ,non

∣∣∣∣
q

=

∣∣∣∣
∫

Rd

φ ◦ f(x)dµX(x) −

∫

Rd

φ ◦ f(x)dµ̂
(knoff

)

X′
noff

(x)

∣∣∣∣
q

≤ LW q
1

(
µX , µ̂

(knoff
)

X′
noff

)

≤ LW q
q

(
µX , µ̂

(knoff
)

X′
noff

)
.

We can conclude from Section 4.1.

Proposition 4.1 (Rates of convergence in the noiseless case). Assume that:

(i) the function f does not depend on Θ,

(ii) the function φ ◦ f is globally Lipschitz continuous,
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and let the assumptions of Corollary 3.8 hold. We have, as soon as q 6= d/2 and there

exists s > 2q such that E[|X |s] < +∞,

(20) E

[∣∣∣∣QI− Q̂I
(knoff

)

noff ,non

∣∣∣∣
q]1/q

= O
(
non

−min(1/2q,1/d)
)
+O

((
knoff

noff

)1/d
)
.

There is no need for knoff
to go to infinity and thus knoff

= 1 seems a reasonable choice.

These computations can be adapted to cases other than φ ◦ f Lipschitz continuous. For

instance, if A ⊂ R
e, φ(y) = 1{y∈A} and f is globally Lipschitz continuous, it is possible

to use the margin assumption of [17] to deduce theoretical rates of convergence in the

estimation of QI = P(Y ∈ A).

4.3. Noisy case. We now study the convergence of Q̂I
(knoff

)

noff ,non
to QI when Y = f(X,Θ).

A first striking result is then that even under the assumptions of Theorem 3.3, the esti-

mator Q̂I
(1)

noff ,non
need not be consistent. Indeed, consider the case where X is actually

deterministic and always equal to some x0 ∈ R
d. Then we have

Q̂I
(1)

noff ,non
=

1

non

non∑

i=1

φ(Y ′

j
(1)
i

),

where j
(1)
i is the index of the closest X ′

j to Xi. But since Xi = x0 for all i, all indices j
(1)
i

are equal to some j(1) and the estimator rewrites

Q̂I
(1)

noff ,non
= φ(Y ′

j(1) ) = φ(f(X ′
j(1) ,Θj(1))).

While Assumption 3.1 ensures that X ′
j(1)

converges to x0 when noff → +∞, in general

the corresponding sequence of Θj(1) does not converge.

As is evidenced on this example, the presence of an atom in the law of X makes the

estimator Q̂I
(1)

noff ,non
depend on a single realization of Θ and therefore prevents this esti-

mator to display an averaging behavior with respect to the law of Θ. In Proposition 4.2,

we clarify this point by exhibiting a necessary and sufficient condition for the estimator

Q̂I
(1)

noff ,non
to be consistent, while in Proposition 4.3, we show that replacing Q̂I

(1)

noff ,non

with Q̂I
(knoff

)

noff ,non
with knoff

→ +∞ allows to recover such an averaging behavior and make

the estimator consistent, even when µX has atoms. In the latter case, we also provide rates

of convergence.

We recall that ψ(x) = E[φ(f(x,Θ))] is defined in Equation (9). In the next statement,

we denote by AX the set of atoms of µX , that is to say the set of x ∈ R
d such that

P(X = x) > 0, and introduce the notation ϑ(x) := Var(φ(f(x,Θ))).

Proposition 4.2 (Consistency of the 1-NN in the noisy case). Assume that:

(i) the function φ is bounded,

(ii) the function ψ is globally Lipschitz continuous,

(iii) the function ϑ is continuous,

and let the assumptions of Theorem 3.3 hold. We have

E

[∣∣∣∣Q̂I
(1)

noff ,non
−QI

∣∣∣∣
]
−−−−−−−−−→
noff ,non→+∞

0
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if and only if,

∀x ∈ AX , Var(φ(f(x,Θ))) = 0.

In particular, under the above assumptions, if the law of X has no atom, i.e. AX = ∅,

then Q̂I
(1)

noff ,non
converges to QI.

Proof. Let us write

Q̂I
(1)

noff ,non
−QI =

(
Q̂I

(1)

noff ,non
− Q̃I

(1)

noff ,non

)
+

(
Q̃I

(1)

noff ,non
−QI

)
,

with

Q̃I
(1)

noff ,non
=

1

noff

noff∑

j=1

w
(1)
j ψ(X ′

j).

Using the Lipschitz continuity of ψ, the duality formula (19) and Theorem 3.3, we get that

Q̃I
(1)

noff ,non
−QI converges to 0 when noff , non → +∞, in L1. Therefore, Q̂I

(1)

noff ,non
−QI

converges to 0 if and only if Q̂I
(1)

noff ,non
− Q̃I

(1)

noff ,non
converges to 0.

Let us rewrite

Q̂I
(1)

noff ,non
− Q̃I

(1)

noff ,non
=

1

noff

noff∑

j=1

w
(1)
j

(
φ
((
X ′

j,Θj

))
− ψ

(
X ′

j

))

=
1

non

non∑

i=1

(
φ
(
f
(
X ′

j
(1)
i

,Θ
j
(1)
i

))
− ψ

(
X ′

j
(1)
i

))
,

introduce the notation

A+
X := {x ∈ AX : ϑ(X) > 0},

and denote

e1 :=
1

non

non∑

i=1

(
φ(f(X ′

j
(1)
i

,Θ
j
(1)
i

))− ψ(X ′

j
(1)
i

)
)
1{Xi 6∈A+

X},

e2 :=
1

non

non∑

i=1

(
φ(f(X ′

j
(1)
i

,Θ
j
(1)
i

))− ψ(X ′

j
(1)
i

)
)
1{Xi∈A+

X}.

In Step 1 below, we prove that

E [|e1|] −−−−−−−−−→
non,noff→+∞

0,

while in Step 2, we show that if A+
X 6= ∅ then E[|e2|] does not converge to 0, which

implies that in this case, Q̂I
(1)

noff ,non
− Q̃I

(1)

noff ,non
does not converge to 0 in L1.

In both steps, we shall use the following preliminary remark: given a measurable subset

A of Rd, taking the conditional expectation with respect to (Xnon ,X
′
noff

) it is easy to see

that for i ∈ J1, nonK,

E

[
(φ(f(X ′

j
(1)
i

,Θ
j
(1)
i

))− ψ(X ′

j
(1)
i

))1{Xi∈A}

]
= 0,

and for (i1, i2) ∈ J1, nonK
2,

E

[
(φ(f(X ′

j
(1)
i1

,Θ
j
(1)
i1

))− ψ(X ′

j
(1)
i 1

))1{Xi1∈A}(φ(f(X
′

j
(1)
i2

,Θ
j
(1)
i2

))− ψ(X ′

j
(1)
i2

))1{Xi2∈A}

]

= E

[
1
{j

(1)
i1

=j
(1)
i2

}
ϑ(X ′

j
(1)
i1

)1{Xi1∈A,Xi2∈A}

]
.
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Therefore,

E[|e1|
2] =

1

non
2




non∑

i=1

E

[
ϑ(X ′

j
(1)
i

)1{Xi 6∈A+
X}

]
+
∑

i1 6=i2

E

[
1
{j

(1)
i1

=j
(1)
i2

}
ϑ(X ′

j
(1)
i1

)1{Xi1 6∈A+
X ,Xi2 6∈A+

X}

]


=
1

non
E

[
ϑ(X ′

j
(1)
1

)1{X1∈A+
X}

]
+
non − 1

non
E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1 6∈A+
X ,X2 6∈A+

X}

]
,

and a similar expression holds for E[|e2|2].

Step 1. Thanks to the boundedness of φ, and thus of ϑ, it is immediate that 1
non

E[ϑ(X ′

j
(1)
1

)1{X1 6∈A+
X}]

converges to 0 when non → +∞, uniformly in noff . Therefore, to show that E[|e1|2] con-

verges to 0, it suffices to prove that

E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1 6∈A+
X ,X2 6∈A+

X}

]
−−−−−−→
noff→+∞

0.

In this purpose, let us first write

E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1 6∈A+
X ,X2 6∈A+

X}

]
≤ E

[
1{NN

X′
noff

(X1)=NN
X′

noff
(X2)}ϑ(NNX′

noff
(X1))1{X1 6∈A+

X}

]
,

and recall that, by Assumption 3.1 and Lemma 2.2 in [3, Chapter 2], NNX′
noff

(X1) con-

verges to X1 and NNX′
noff

(X2) converges to X2, almost surely. As a consequence, if

X1 ∈ AX \ A+
X then ϑ(X1) = 0 and by the continuity of ϑ and the boundedness of φ, the

dominated convergence theorem shows that

E

[
1{X1∈AX\A+

X}1{NN
X′

noff
(X1)=NN

X′
noff

(X2)}ϑ(NNX′
noff

(X1))
]
−−−−−−→
noff→+∞

0.

On the other hand, ifX1 6∈ AX , then almost surelyX1 6= X2, and therefore1{NN
X′

noff
(X1)=NN

X′
noff

(X2)}

converges to 0 almost surely. Using the boundedness of φ and the dominated convergence

theorem again, we deduce that

E

[
1{X1 6∈AX}1{NN

X′
noff

(X1)=NN
X′

noff
(X2)}ϑ(NNX′

noff
(X1))

]
−−−−−−→
noff→+∞

0,

which completes the proof of the fact that E[|e1|2], and thus E[|e1|], converge to 0.

Step 2. Let us now assume that A+
X is nonempty and show that e2 does not converge to

0 in L1. We shall actually prove that e2 does not converge to 0 in L2: since e2 is bounded

then this prevents the convergence from occuring in L1. From the preliminary remark, we

write

E[|e2|
2] =

1

non
E

[
ϑ(X ′

j
(1)
1

)1{X1∈A+
X}

]
+
non − 1

non
E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1∈A+
X ,X2∈A+

X}

]
,

and we prove that

lim inf
noff→+∞

E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1∈A+
X ,X2∈A+

X}

]
> 0.

Let x ∈ A+
X . Obviously,

E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1∈A+
X ,X2∈A+

X}

]
≥ E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1=X2=x}

]

= E

[
ϑ(NNX′

noff
(x))1{X1=X2=x}

]
.

By Assumption 3.1 and Lemma 2.2 in [3, Chapter 2] again, NNX′
noff

(x) converges to

x almost surely, therefore using the continuity and boundedness assumptions on ϑ, the

dominated convergence theorem shows that

E

[
ϑ(NNX′

noff
(x))1{X1=X2=x}

]
−−−−−−→
noff→+∞

ϑ(x)µX({x})2 > 0,
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which completes the proof.

�

We now study the estimator Q̂I
(knoff

)

noff ,non
and show that it is unconditionnally consistent

as soon as kn → +∞. Besides, we provide L2 convergence rates.

Proposition 4.3 (Rates of convergence in the noisy case). Assume that:

(i) the function φ is bounded,

(ii) the function ψ is globally Lipschitz continuous,

(iii) there exists s > 4 such that E [|X |s] < +∞,

and the assumptions of Corollary 3.8 hold.

The estimator Q̂I
(knoff

)

noff ,non
is consistent as soon as knoff

goes to infinity. Besides, the L2

rate of convergence is optimal when knoff
∼ noff

2/(d+2) and is, when d 6= 4,

E

[∣∣∣∣Q̂I
(knoff

)

noff ,non
−QI

∣∣∣∣
2
]1/2

= O
(
non

−min(1/4,1/d)
)
+O

(
noff

−1/(d+2)
)
.

When d = 4, the first term is replaced with non
−1/4 log(1 + non)

1/2.

The loss of convergence order with respect to Proposition 4.1 is similar to the NNR, in

which it deteriorates from the rate 1/d in the noiseless case to the rate of 1/(d+ 2) in the

noisy case [3, Section 14.6 and Section 15.3].

Proof. We decompose the error as

Q̂I
(knoff

)

noff ,non
−QI =

(
Q̂I

(knoff
)

noff ,non
− Q̃I

(knoff
)

noff ,non

)
+

(
Q̃I

(knoff
)

noff ,non
−QI

)
,

with

Q̃I
(knoff

)

noff ,non
=

1

noff

noff∑

j=1

w
(knoff

)

j ψ(X ′
j).

As ψ is globally Lipschitz continuous and does not depend on Θ, we can deduce from

Proposition 4.1 that

E

[(
Q̃I

(knoff
)

noff ,non
−QI

)2
]1/2

= O
(
non

−min(1/4,1/d)
)
+O

((
knoff

noff

)1/d
)
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when d 6= 4 and has an additional logarithmic term when d = 4. We write the quadratic

error for the first term

E

[∣∣∣∣Q̂I
(knoff

)

noff ,non
− Q̃I

(knoff
)

noff ,non

∣∣∣∣
2
]

= E





 1

noff

noff∑

j=1

w
(knoff

)

j (ψ(X ′
j)− φ(f(X ′

j ,Θj)))




2



= E


 1

noff
2

noff∑

j=1

w
(knoff

)2

j

(
ψ(X ′

j)− φ(f(X ′
j ,Θj))

)2



+ E


noff − 1

noff
2

noff∑

j,l=1,j 6=l

w
(knoff

)

j w
(knoff

)

l

(
ψ(X ′

j)− φ(f(X ′
j ,Θj))

)
(ψ(X ′

l)− φ(f(X ′
l ,Θl)))


 .

Using the fact that E[w
(knoff

)

j f(X ′
j,Θj)|Xnon ,Xnoff

] = w
(knoff

)

j ψ(X ′
j) by definition and

the independence of the Θj , the cross terms vanish. The remaining quadratic term is

E


 1

noff
2

noff∑

j=1

w
(knoff

)2

j

(
ψ(X ′

j)− φ(f(X ′
j ,Θj))

)2

 =

1

noff
2

noff∑

j=1

E

[
w

(knoff
)2

j (ψ(X ′
j)− φ(f(X ′

j ,Θ)))2
]

≤
4

noff
2

noff∑

j=1

E

[(
w

(knoff
)

j

)2]
‖φ‖2L∞ .

(21)

We remark that

noff∑

j=1

(
w

(knoff
)

j

)2
=

noff
2

non
2k2noff

non∑

i1,i2=1

knoff∑

l1,l2=1

1
{j

(l1)
i1

=j
(l2)
i2

}

and that for some fixed i1,i2 and l1, there exists exactly one l2 ∈ J1, noffK such that j
(l1)
i1

=

j
(l2)
i2

as (j
(l)
i2
)1≤l≤noff

is a permutation of J1, noffK. Therefore, there exists at most one

l2 ∈ J1, knoff
K verifying this property and, consequently,

noff∑

j=1

(
w

(knoff
)

j

)2
≤

noff
2

non
2k2noff

non∑

i1,i2=1

knoff∑

l1=1

1 =
noff

2

knoff

.

We can then bound the second term

E





 1

noff

noff∑

j=1

w
(knoff

)

j (ψ(X ′
j)− f(X ′

j,Θj))




2



1/2

≤
4

k
1/2
noff

‖φ‖∞

and the triangle inequality gives

E

[∣∣∣∣QI− Q̂I
(knoff

)

noff ,non

∣∣∣∣
2
]1/2

= O

((
1

non

)min(1/4,1/d)

+

(
knoff

noff

)1/d

+
1

k
1/2
noff

)
.

This estimator is consistent as soon as knoff
goes to infinity and knoff

/noff goes to 0, even

when µX has atoms. The optimal rate of growth is reached at knoff
∼ noff

2/(d+2), leading
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to

E

[∣∣∣∣QI− Q̂I
(knoff

)

noff ,non

∣∣∣∣
2
]1/2

≤ O
(
non

−min(1/4,1/d) + noff
−1/(d+2)

)
. �

4.4. Reformulation of our results in terms of Nearest Neighbors. In this section, we do

not refer to an offline and an online phase. Instead, we consider a sample (X ′
j)j∈J1,nK of n

iid observation of law µX′ and a random variableX ∼ µX independent of the sample. We

do not distinguish anymore φ◦f from f in the regression function defined in Equation (9),

that now writes

ψ(X) = E [f(X,Θ)|X ]

and its Nearest Neighbor approximation of Equation (10) is

ψ̂(k)
n (x) =

1

k

k∑

l=1

f(Xj(l)(x),Θj(l)(x)).

In Section 4.4.1, we study the case µX = µX′ and in Section 4.4.2 the case µX 6= µX′ .

4.4.1. Convergence of the Nearest Neighbor distance for non compact support. By rewrit-

ing

E[W q
q (µ̂Xnon

, µ̂
(1)
X′

noff

)] = E[|X −NNX′
noff

(X)|q]

in Theorem 3.7, and choosing µX′ = µX , we get some asymptotic properties on the

Nearest Neighbor distance

(22) E[|X −NNXn(X)|q],

which has some application in the theoretical study of the Nearest Neighbor regressors and

classifiers [3, Chapter 2]. The previous works on the topic focus mainly on the convergence

when q = 2 and assume that X have a bounded support [3, 7, 12, 14].

Some works [5, 11] consider some random variables Xwith unbounded support of in

the context of the k-NN regression, i.e. they study the convergence of

E

[∣∣∣ψ(X)− ψ̂(k)
n (X)

∣∣∣
]
.

However, they make the assumption of a bounded regression function ψ whereas, in Equa-

tion (22), we would like to take ψ(X) = X and thus these results do not apply. A direct

corollary from Theorem 3.7 is

Corollary 4.4. Let X have a density pX for which the strong minimal mass assump-

tion 3.5 (iii) and Assumption 3.6 hold. We have

E[|X −NNXn(X)|q] ∼
n→+∞

Γ(1 + q/d)

v
q/d
d nq/d

∫

Rd

pX(x)1−q/ddx.

This extends the results of the literature by ensuring the asymptotic equivalence for

some random variables with unbounded support.
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4.4.2. L2 convergence rates of the generalization error under covariate shift. The case

µX 6= µX′ is also of interest in the framework of the Nearest Neighbor regression. The

law of the training sample is µX′ and is different from the law of the test sample µX ,

leading to the so-called covariate shift.

Theorem 4.5 (L2 generalization error of the k-NN regression under covariate shift). Let

µX (the law of the test sample) and µX′ (the law of the training sample) verify the assump-

tions of Theorem 3.7, f be Lipschitz continuous in x of constant L > 0 uniform in Θ, and

Var(f(x,Θ)) = E

[
|f(x,Θ)− E [f(X,Θ)]|2

]
≤ σ2 < +∞ for all x in the support of

µX′ . When kn ∼ n2/(d+2), we have

lim sup
n→+∞

n1/(2+d)
E

[∣∣∣ψ(X)− ψ̂(kn)
n (X)

∣∣∣
2
]1/2

≤ σ + CE

[
1

pX′(X)2/d

]1/2

with C a positive constant.

We retrieve essentially the same orders of convergence as in the case without covariate

shift. The quantity E
[
1/pX′(X)2/d

]1/2
seems to be the relevant bound of the loss due to

the use of µX′ instead of µX and we expect that the greater this quantity is, the slower the

convergence will be.

Proof. The proof is an adaptation of [3, Theorem 14.5], using the result of Corollary 3.8.

We can decompose the L2 error

E

[∣∣∣ψ(X)− ψ̂(k)
n (X)

∣∣∣
2
]1/2

≤ E

[∣∣∣ψ(X)− ψ̃(kn)
n (X)

∣∣∣
2
]1/2

+E

[∣∣∣ψ̃(kn)
n (X)− ψ̂(kn)

n (X)
∣∣∣
2
]1/2

with ψ̃
(kn)
n (x) = 1

kn

∑kn

i=1 E[f(NN
(i)
X′

n
(x),Θ)]. The first term can be bounded by

E

[∣∣∣ψ(X)− ψ̃(kn)
n (X)

∣∣∣
2
]1/2

≤ LE

[∣∣∣X −NN
(kn)
X′

n
(X)

∣∣∣
2
]1/2

and then

lim sup
n→+∞

(
n

kn

)1/d

E

[∣∣∣ψ(X)− ψ̃(kn)
n (X)

∣∣∣
2
]1/2

≤ Lcd,2E

[
1

pX′(X)2/d

]1/2

by Corollary 3.8. The second term is bounded by

E

[∣∣∣ψ̃(kn)
n (X)− ψ̂(kn)

n (X)
∣∣∣
2
]1/2

=
1

kn
E

[
kn∑

i=1

(
f(NN

(i)
X′

n
(X),Θli)− E[f(NN

(i)
X′

n
(X),Θ)|X ]

)2
]1/2

≤
1

k
1/2
n

σ

The optimal rate is kn ∼ n2/(2+d), leading to

lim sup
n→+∞

n1/(2+d)
E

[∣∣∣ψ(X)− ψ̂(kn)
n (X)

∣∣∣
2
]1/2

≤ σ + CE

[
1

pX′(X)2/d

]1/2
,

with C = Lcd,2 �
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5. Numerical application

5.1. Influence of µX′ on the convergence of µ̂
(1)
X . We investigate how the relationship

between µX and µX′ impacts the convergence of µ̂
(1)
X′

noff

presented Section 4.1 . In this

numerical experiment, we set the dimension d = 2, choose

X = (U,U), U ∼ U ([0, 1]) ,

and

X ′ ∼ N

((
µ
µ

)
, σ2

(
1 scorr

scorr 1

))
,

with µ = 0.5, σ = 0.3 and various scorr in (−1, 1). Intuitively, the closer scorr is from 1,

the closer µX′ is from µX , as illustrated in Figure 2.
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FIGURE 2. Plot of the support of X and 1500 iid realizations of X ′ for

different values of scorr.

In order to quantify the quality of the reconstruction, we estimate the measure µ̂
(1)
X′

noff

by Gaussian kernel density estimation [18], i.e.

ρ̂(x1, x2) = Kh ∗ µ̂
(1)
X′

noff

(x1, x2) =
1

noff

noff∑

j=1

w
(1)
j Kh((x1, x2)−X ′

j)

with Kh(x1, x2) =
1

2πh2 exp(−(x21 + x22)/2h
2). Then, we estimate the density of the first

marginal of the conditional distribution of ρ̂ on the support of X

ρ̂[0,1](x) =
ρ̂(x, x)∫ 1

0
ρ̂(u, u)du

, x ∈ [0, 1]

and we compute the integrated L2 error of this estimation with respect to the theoretical

measure ρ[0,1](x) = 1, x ∈ [0, 1]

e2 =

(∫ 1

0

(
ρ̂[0,1](x) − ρ[0,1](x)

)2
dx

)1/2

=

(∫ 1

0

(
ρ̂[0,1](x)− 1

)2
dx

)1/2

.

As this quantity depends on Xnon and X
′
noff

, we estimate its expectation E[e2].

We can see in Figure 3 that the greater scorr is, the better the reconstruction looks

like. This observation is confirmed in Figure 4, illustrating that E [e2] decreases when

scorr increases, i.e. when the µX′ gets closer to µX . The important amount error that is

done for negative values of scorr can be explained by Figures 2a and 3. Indeed, when

scorr is low, an observation of X ′ has a low probability to be drawn close to the segments

[(0, 0), (0.25, 0.25)] and [(0.75, 0.75), (1, 1)], and thus, some values are “missed”. This

effect is mitigated for greater values of scorr in which some observations are closer to the

segments.
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FIGURE 3. Kernel density estimation

ρ̂[0,1](x) for different values of scorr.
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FIGURE 4. Estimation of E[e2] with re-

spect to scorr by a Monte Carlo estimatio

of size 500 with noff = non = 600.

5.2. Influence of µX′ on the convergence if Q̂I
(knoff

)

noff ,non
. We now concentrate on the im-

pact on the efficiency Q̂I
(knoff

)

noff ,non
. We keep the framework of Section 5.1, and we try to

estimate the quantity of interest

QI = E[φ(f(X,Θ))], f((x1, x2), θ) = sin(2πx1) sin(2πx2)(1 + θ)

with Θ ∼ U([−1, 1]) and φ(y) = y. The L2 error

E

[∣∣∣∣Q̂I
(knoff

)

noff ,non
−QI

∣∣∣∣
2
]1/2

= E

[∣∣∣∣Q̂I
(knoff

)

noff ,non
− 0.5

∣∣∣∣
2
]1/2

is computed by Monte Carlo estimation. As highlighted in Figure 5, the closeness of µX

to µX′ is an important factor for the efficiency of the estimator.
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FIGURE 5. Estimation of the L2 error with respect to scorr for non =
noff = 900 and knoff

= 4 by a Monte Carlo experiment of size 2000.
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