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Introduction

In their paper [START_REF] Blitvić | Permutations, Moments, Measures[END_REF] about interpreting moments of probability measures on the real line, Blitvić and Steingrímsson introduced the k-arrangements, which are permutations with k-colored fixed points. They posed several conjectures related to the equidistributions of statistics and enumeration of patterns on k-arrangements. The purpose of this note is to address these enumeration conjectures. Let S n be the set of all permutations of [n] := {1, 2, . . . , n}. For each permutation σ = σ(1)σ(2) • • • σ(n) ∈ S n , let fix(σ) := {i ∈ [n] : σ(i) = i} be the set of fixed points of σ. For any nonnegative integer k, a k-arrangement of [n] is a pair a = (π, φ) of a permutation π ∈ S n and an arbitrary function φ : fix(π) → { ī : 1 ≤ i ≤ k}, where ī := -i. Note that for k = 0, there is no function φ : fix(π) → ∅ unless fix(π) = ∅. We will refer to π as the base permutation of a. Let A k n denote the set of k-arrangements of [n]. For instance, the 0-arrangements and 1-arrangements can be identified with derangements and permutations, respectively. The 2-arrangements, also called decorated permutations by Postnikov [START_REF] Postnikov | Total positivity, grassmannians, and networks[END_REF]Def. 13.3], were investigated previously from different aspects [START_REF] Corteel | Crossings and alignments of permutations[END_REF][START_REF] Lin | Around the q-binomial-Eulerian polynomials[END_REF][START_REF] Postnikov | Total positivity, grassmannians, and networks[END_REF]28].

Blitvić and Steingrímsson [START_REF] Blitvić | Permutations, Moments, Measures[END_REF] introduced two different representations of k-arrangements, called permutation form and derangement form. Define the reduction (resp. positive reduction) of a word w over integers, denoted by red(w) (resp. red + (w)), to be the word obtained from w by replacing all instances of the i-th smallest letter (resp. positive letter) of w with i, for all i. For example, we have red(55 12 12 ) = 442321 and red + (55 12 12 ) = 22 [START_REF] Foata | Fix-Mahonian calculus, I: two transformations[END_REF] 12 . For a k-arrangement a = (π, φ) of [n], the derangement form (resp. permutation form) of a, denoted df k (a) (resp. pf k (a)), is the word obtained from π by changing π(i) to φ(i) for each i ∈ fix(π) (resp. i ∈ fix(π) such that φ(i) = k) and then applying the positive reduction. For instance, let a be the 3-arrangement (π, φ) with π = 7534162 and φ(3) = 1, φ(4) = 3 and φ(6) = 3. Then a has derangement form 43 13 1 32 whose derangement part is Der(a) = 4312, and permutation form 64 13152 whose permutation part is 643152. The set of permutation forms (resp. derangement forms) representing elements in A k n is denoted P k n (resp. D k n ). Note that P 1 n = S n . The above two representations of k-arrangements provide two bijections between these three sets:

pf k : A k n → P k n and df k : A k n → D k n .
For a word w = w 1 w 2 • • • w n over Z, an index i ∈ [n -1] is called a descent (position) of w if w i > w i+1 . Let des(w) (resp. des(w)) be the set (resp. the number) of descents of a word w, and Pos(w) be the positive subword of w, i.e., the subword that consists of all the positive letters in w. It is well known (see [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF]) that the Eulerian polynomials A n (t) can be defined by A n (t) = π∈Sn t des (π) . We extend some classical statistics on permutations or words to k-arrangements a = (π, φ) by We split A k n into small subsets according to the multiplicity of the image of the funciton φ in the following way. Given an array of nonnegative integers m = (m 1 , m 2 , • • • , m k ), we let A k n (m) := {a ∈ A k n : fix i (a) = m i for 1 ≤ i ≤ k}. For the sake of simplicity, if ST 1 , ST 2 , . . . is a sequence of statistics on certain set of combinatorial objects O, then we use the compact notation (ST 1 , ST 2 , . . .) o = (ST 1 (o), ST 2 (o), . . .) for each o ∈ O throughout this paper.

In the previous work of Foata and the second author [START_REF] Foata | Fix-Mahonian calculus, I: two transformations[END_REF][START_REF] Foata | Fix-Mahonian calculus, III: a quadruple distribution[END_REF], derangement forms in D 1 n were already studied under the term shuffle class. They also introduced the dez and dez statistics on permutations, and constructed the bijection Φ = Φ 1 to show the following equidistribution, in the case of k = 1. where m = (m τ (1) , m τ (2) , . . . , m τ (k-1) , m k ).

Taking the identity permutation τ , Theorems 1.1 and 1.2 imply that there exists two bijections a → a and a → a from A k n onto itself such that (dez, Der) a = (des, Der) a , (des, dez, Der) a = (dez, des, Der) a .

We will also investigate the enumerative aspect of pattern avoiding k-arrangements. We say a word w = w [START_REF] Claesson | Classification of bijections between 321-and 132-avoiding permutations[END_REF][START_REF] Elizalde | Fixed points and excedances in restricted permutations[END_REF][START_REF] Elizalde | Bijections for refined restricted permutations[END_REF]. Since the k-arrangements in permutation form and derangement form can be considered as generalizations of permutations and derangements, we study k-arrangements of both forms avoiding a single pattern of length 3. In the case of permutation form, we verify all the enumerative conjectures (see Section 4) posed by Blitvić and Steingrímsson [START_REF] Blitvić | Permutations, Moments, Measures[END_REF], while in the derangement form only one Wilf-equivalence is found and reported next.

1 w 2 • • • w n ∈ Z n avoids the pattern σ = σ 1 σ 2 • • • σ k ∈ S k (k ≤ n) if there does not exist i 1 < i 2 < • • • < i k such that red(w i 1 w i 2 • • • w i k ) = σ.
Theorem 1.3. For n ≥ 1, we have |D 1 n (321)| = |D 1 n (132)|.
In other words, the pattern 321 is Wilf-equivalent to 132 on 1-arrangements in derangement form. Moreover, we have the algebraic generating function for |D 1 n (321)|:

(1.3) 1 + n≥1 |D 1 n (321)|x n = 1 -3x + 3x 2 + 2x 3 + (x 2 + x -1) √ 1 -4x 2x 2 (1 -x)(2 + x)
.

The rest of this paper is organized as follows. In Section 2, we provide explicit bijections Φ k and Ψ k for proving Theorems 1.1 and 1.2. In Section 3, using the so-called Decrease Value Theorem, we calculate the generating function for the symmetric pair of Eulerian statistics des and dez over permutations. The enumeration of pattern avoiding karrangements are carried out in Section 4, proving all the connections suspected by Blitvić and Steingrímsson, as well as Theorem 1.3.

Constructions of the bijections Φ k and Ψ k

In this section we describe explicit constructions of bijections Φ k and Ψ k mentioned in Section 1, and then prove Theorems 1.1 and 1.2. Foata and the second author have constructed a des-preserving bijection Φ between D 1 n and P 1 n in a different form (see [START_REF] Foata | Fix-Mahonian calculus, I: two transformations[END_REF]Thm. 1.1]). The reader is referred to [START_REF] Foata | Fix-Mahonian calculus, I: two transformations[END_REF] for the definition and properties of Φ. Our general bijection Φ k is constructed by using Φ composed with other simple transformations, including the following multiplicity changing bijection θ [16, Section 4].

Lemma 2.1. Let m = (m 1 , m 2 , • • • , m k ) be an array of nonnegative integers and n = (n 1 , n 2 , • • • , n k ) a rearrangement of m. There exists a bijection θ : R(m) → R(n) such that for each w ∈ R(m),
des(w) = des(θ(w)), where R(m) (resp. R(n)) denotes the set of all words on k linearly ordered letters a 1 < a 2 < • • • < a k , containing exactly m i (resp. n i ) copies of the letter a i for all i = 1, 2, . . . , k. where m = (m τ (1) , m τ (2) , . . . , m τ (k-1) , m k ).

Proof. Similar to the proof of Lemma 2.2, we construct b and verify that des(df k (a)) = des(df k (b)). Since all letters k are not changed in (Step 2), we also have des(pf k (a)) = des(pf k (b)).

Proof of Theorem 1.1. By Lemma 2.2, it suffices to prove the theorem for a special permutation τ ∈ S k . We then prove the theorem for τ = τ (1)τ (2)

• • • τ (k -1)τ (k) = 23 • • • k1 ∈ S k . The bijection a ∈ A k n (m) → Φ k (a) ∈ A k n (m ) is constructed in the following way. Step 1. Derive the derangement form S 1 = df k (a) ∈ D k n of a;
Step 2. From S 1 , replace each -j by -j + 1; hide all negative letter; Step 3. Apply the bijection Φ described in [START_REF] Foata | Fix-Mahonian calculus, I: two transformations[END_REF]Section 2] and obtain S 3 = Φ(S 2 );

Step 4. From S 3 , show the letters hidden in Step 2; replace 0 by k. We get S 4 ∈ D k n ; Step 5. Finally let Φ k (a) = df -1 k (S 4 ). For convenience, we write S 5 = pf k (Φ k (a)) ∈ P k n .

The following example illustrates our construction by showing the result of each step. We need some definitions to facilitate our construction of Ψ k . Let us denote by Der k (a) the word obtained from df k (a) by removing all letters k, called the weak derangement part of a, which is extremely important in our construction. Note that Der k (a) can be viewed as the derangement form of certain k-arrangement itself, hence (π, φ) = df -1 k (Der k (a)) is well-defined with φ -1 ( k) = ∅. For each permutation σ = σ(1) • • • σ(n) ∈ S n , we define its excedance word e(σ) to be the word made from two letters E and N , standing for excedance and nonexcedance, respectively. More precisely, we let e(σ) = e 1 e 2 • • • e n , where e i :=

E if σ(i) > i, N if σ(i) ≤ i, for 1 ≤ i ≤ n.
The excedance word for Der k (a), is understood to be the excedance word for the base permutation of df -1 k (Der k (a)). A moment of reflection should reveal the following observation, which shows that inserting letters k back into Der k (a) does not change the excedance type of those letters contained in Der k (a). 

df k (a) = S 0 w 1 S 1 w 2 • • • S m-1 w m S m ,
where S i , 0 ≤ i ≤ m is a (possibly empty) block of letters k, referred to as the i-th slot of df k (a). Define the slot length vector of a as s(a) := (s 0 , s 1 , . . . , s m ), where s i = |S i | for 0 ≤ i ≤ m. Note that n -m = m i=0 s i and the pair (s(a), Der k (a)) uniquely determines a and vice versa.

Next, we set w 0 = w m+1 = +∞, e 0 = e m+1 = E, and classify S i into the following mutually exclusive types, according to the values of w i , w i+1 , and the pair (e i , e i+1 ):

• type I: w i > w i+1 and (e i , e i+1 ) = (E, N ); • type II: w i ≤ w i+1 and (e i , e i+1 ) = (N, E); • type III: w i ≤ w i+1 and (e i , e i+1 ) = (N, E);

• type IV: w i > w i+1 and (e i , e i+1 ) = (E, N ). The four types above clearly cover all the possibilities for the slot S i , and by Observation 2.4, the type of S i only depends on Der k (w) and has nothing to do with s i . We use t 1 (a) (resp. t 2 (a), t 3 (a) and t 4 (a)) to denote the number of slots (possibly empty) of type I (resp. type II, type III and type IV) in df k (a), while the numbers of the non-empty ones are denoted as t + 1 (a), t + 2 (a), t + 3 (a) and t + 4 (a) respectively. We can easily verify that t 1 (a) + t 4 (a) = des(Der k (a)) + 1,

t 1 (a) + t 2 (a) + t 3 (a) + t 4 (a) = m + 1, and t + 1 (a) + t + 2 (a) + t + 3 (a) + t + 4 (a) ≤ n -m.
The following lemma is the key to motivate our definition of Ψ k . Lemma 2.5. For every a ∈ A k n with a non-empty Der k (a), we have 1) t 1 (a) = t 2 (a) and slots of type I and type II appear alternatingly in df k (a), starting with a block of type I. 2) the following relationships hold

des(a) = des(Der k (a)) + t + 1 (a) + t + 3 (a), (2.4) dez(a) = des(Der k (a)) + t + 2 (a) + t + 3 (a). (2.5)
Proof. Suppose w = Der k (a) as before. It is evident that

• A type I slot cannot precede another type I slot unless it precedes a type II slot first. • A type II slot cannot precede another type II slot unless it precedes a type I slot first. • A type IV slot S i with e i = e i+1 = E cannot precede a type II slot unless it precedes a type I slot first. Since we made the convention that w 0 = w m+1 = +∞, and that the positive letters of w form a derangement word, we see S m must be of type II, and S 0 is either of type IV with w 0 > w 1 > 0, e 0 = e 1 = E, or of type I when w 1 is negative. Hence by the discussion above, there exists at least one slot of type I among S 0 , S 1 , . . . , S m-1 , and the claim in part 1) follows as well.

Next for part 2), when fix k (a) = 0 and m = n, we have df k (a) = pf k (a) = Der k (a), with all slots being empty, so des(a) = dez(a) = des(Der k (a)). Otherwise, we can recover df k (a) from Der k (a) by inserting n -m copies of k into originally empty slots. Note that inserting j copies of k into certain slot S i has the same effect on des (resp. dez) for each 1 ≤ j ≤ n-m. Suppose S i is an empty slot of type I, i.e., w i > w i+1 and (e i , e i+1 ) = (E, N ). Now if we insert j copies of k into it, transfering

w 1 • • • w i w i+1 • • • w m into w 1 • • • w i kk • • • k j copies w i+1 • • • w m ,
we see des increases by one while dez remains the same. This explains why we have the term t + 1 (a) in (2.4) but not in (2.5). Similar discussions of the other three types prove both (2.4) and (2.5).

Proof of Theorem 1.2. By Lemma 2.3, it suffices to prove the theorem for a special permutation τ ∈ S k-1 . We then prove the theorem for the identity permutation τ = 12

• • • (k -1) ∈ S k-1 . We proceed to construct a bijection a ∈ A k n (m) → Ψ k (a) ∈ A k n (m) such that (des, dez, Der k ) a = (dez, des, Der k ) Ψ k (a), (2.6)
which is more than we need, since Der(a) = Pos(Der k (a)). The only k-arrangement with empty weak derangement part is a = (12 where

• • • n, φ), where φ(i) = k for all 1 ≤ i ≤ n. In this case we let Ψ k (a) =
s l :=      s jr if l = i r , for certain 1 ≤ r ≤ t, s ir if l = j r , for certain 1 ≤ r ≤ t, s l otherwise.
The swapping map Ψ k defined in this way preserves the sum 

s l = s l = m k , hence it is an involution on A k n (m),

Bivariate joint generating function for des and dez

In section 2, we have established that the distribution of the two Eulerian statistics des and dez are symmetric over the permutation group. This section is devoted to the derivation of the bivariate joint generating function for those two statistics. Note that we will abuse the notation to write dez(π) := dez(pf -1 1 (π)), for any permutation π. For instance, dez(41352) = des(41 152) = 3.

A descent (position) i of a permutation π is called a crossing descent, if π i ≥ i + 1 ≥ π i+1 . Denote by xdes(π) the number of crossing descents of π. When restricted to the set of derangements, xdes is exactly the statistic t 1 that we introduce in section 2. Let

F (t, s; u) := 1 + n≥2 π∈Dn t des(π) s xdes(π) u n , (3.1) G(x, y; u) := 1 + n≥1 π∈Sn x des(π) y dez(π) u n , (3.2)
be the generating functions of (des, xdes) over the derangement set and (des, dez) over the permutation set respectively. The initial values of F (t, s; u) and G(x, y; u) are given below:

F (t, s; u) = 1 + stu 2 + 2stu 3 + (st 3 + 2s 2 t 2 + 2st 2 + 4st)u 4 + • • • , G(x, y; u) = 1 + u + (xy + 1)u 2 + (x 2 y + xy 2 + 3xy + 1)u 3 + (x 3 y 3 + 7x 2 y 2 + 4x 2 y + 4xy 2 + 7xy + 1)u 4 + • • • . Theorem 3.1.
For each nonnegative integer m the coefficient of t m in F (t, s; u) defined by (3.1) is a rational fraction in s and u. Theorem 3.1 is a consequence of Theorem 3.5 in view of (3.25). Theorem 3.2. We have

(3.3) G(x, y; u) = 1 1 -u × F xy 1 -u + xyu , ( 1 
-u + xu)(1 -u + yu) 1 -u + xyu ; u(1 + xyu 1 -u ) .
Remark 3.3. Depending on F (t, s; u), Theorem 3.2 is not explicit. However, we can still see that G(x, y; u) is a symmetric function in x and y from (3.3).

Proof. By the definition of G(x, y; u) in (3.2), we have

(3.4) G(x, y; u) = 1 + n≥1 a∈A 1 n x des(a) y dez(a) u n = 1 1 -u + n≥2 a∈ Ã1 n x des(a) y dez(a) u n ,
where Ã1 n := {a ∈ A 1 n : Der(a) = ∅}. Recall from the last section that any 1-arrangement a ∈ Ã1 n with weak derangement part π = Der(a) ∈ D m (for some m ≥ 2) has the decomposition (3.5)

df 1 (a) = B 0 π 1 B 1 π 2 • • • B m-1 π m B m ,
where each B i (possibly empty) is a block with consecutive copies of 1. We also introduce four types of blocks for a, which are essentially four types of slots of the underlying derangement π. Note that the first slot of π must be of type IV and introduce the type generating function

F (x, a, b, y; u) := 1 + n≥2 π∈Dn x t 1 (π) a t 2 (π) b t 3 (π) y t 4 (π)-1 u n .
We aim to connect F with both F and G, so as to establish (3.3). On the one hand, point 1) of Lemma 2.5 and the discussion preceding it give us

t 1 (π) = t 2 (π) and t 1 (π) + t 2 (π) + t 3 (π) + t 4 (π) -1 = m for any π ∈ D m . Since xdes(π) = t 1 (π) and des(π) = t 1 (π) + t 4 (π) -1, we see (3.6) F (x, a, b, y; u) -1 = n≥2 (bu) n π∈Dn xa b 2 t 1 (π) y b t 4 (π)-1 = F y b , xa by ; bu -1.
On the other hand, invoking the interpretation (3.4) of G(x, y; u), the decomposition (3.5) and relationships (2.4) and (2.5) give rise to the appropriate substitutions for variables x, a, b and y in F to arrive at

(3.7) G(x, y; u) = 1 1 -u × F xy(1 + xu 1 -u ), 1 + yu 1 -u , 1 + xyu 1 -u , xy 1 -u ; u ,
where the factor 1/(1 -u) accounts for the contribution from inserting the block B 0 . Now combining (3.6) and (3.7) completes the proof.

It remains to evaluate the generating function F (t, s; u). As it turns out, the following trivariant generalization of F (t, s; u) is more appropriate for calculation:

(3.8) H(t, s, r; u) := n≥0 π∈Sn t des(π) s xdes(π) r fix(π) u n (1 -t) n+1 .
The reduction to F (t, s; u) is seen to be

F (t, s; u) = (1 -t)H(t, s, 0; (1 -t)u).
To investigate H(t, s, r; u), we consider the set PS(u; X, Y, Z) of the formal power series

ξ ∈ Z[s, r][X 0 , X 1 , X 2 , . . . , Y 0 , Y 1 , Y 2 , . . . , Z 0 , Z 1 , Z 2 , . . .][[u]],
where u, s, r, X 0 , X 1 , X 2 , . . . , Y 0 , Y 1 , Y 2 , . . . , Z 0 , Z 1 , Z 2 , . . . are commuting variables, such that the coefficient of u n in ξ is a polynomial in X 0 , X 1 , . . . , Y 0 , Y 1 , . . . , Z 0 , Z 1 , . . . of total degree less than or equal to n, with coefficients in Z[s, r]. We introduce a linear operator ρ on PS(u; X, Y, Z). Definition 3.4 (The operator ρ). For each monomial M in X 0 , X 1 , . . . , Y 0 , Y 1 , . . . , Z 0 , Z 1 , . . ., the index i is said to be effective in M if i) M contains Y i or Z i , and ii) M contains certain X k with k > i such that iii) M contains neither Y j nor Z j , for each i < j < k. For example, both 0 and 1 are effective in

X 1 X 2 Y 0 Y 3 Z 0 Z 1 , while only 1 is effective in X 3 X 4 Y 1 Z 2 0 .
Let eff(M ) denote the number of effective indices in M . Now we can define the operator ρ :

PS(u; X, Y, Z) → Z[s, r][[u]] by setting (3.9) ρ(M ) = s eff(M ) ,
and extending linearly to all formal power series in PS(u; X, Y, Z). For the previous examples, we have ρ(

X 1 X 2 Y 0 Y 3 Z 0 Z 1 ) = s 2 and ρ(X 3 X 4 Y 1 Z 2 0 ) = s.
The following theorem can be viewed as the central result of this section. Theorem 3.5. We have

(3.10) H(t, s, r; u) = m≥0 t m ρ(S m (u)),
where

(3.11) S m (u) = 1≤j≤m (1 -uX j ) 0≤j≤m (1 -ruZ j ) 1 - 1≤l≤m uX l 1≤j≤l-1 (1 -uX j ) 0≤j≤l-1 (1 -uY j )
.

Our strategy to prove Theorem 3.5 is as follows. First off, we utilize an updated version of the Gessel-Reutenauer standardization [START_REF] Foata | Fix-Mahonian calculus, III: a quadruple distribution[END_REF][START_REF] Foata | Decreases and descents in words[END_REF][START_REF] Gessel | Counting permutations with given cycle structure and descent set[END_REF], denoted as Φ GR , to map each word w from [0, m] n onto a pair (σ, c), where σ ∈ S n and c = c

1 c 2 • • • c n is a word whose letters are nonnegative integers satisfying: m -des(σ) ≥ c 1 ≥ c 2 ≥ • • • ≥ c n ≥ 0.
This bijection entitles us to rewrite H(t, s, r; u) as a weighted (each w weighted by ψ(w), see Definition 3.6) generating function over all words w in [0, m] n , after we make a key combinatorial observation (see Lemma 3.9) to connect the statistic xdes on a permutation to the statistic eff on the weight of the corresponding word. Secondly, Theorem 1.3 in [START_REF] Foata | Decreases and descents in words[END_REF] enables us to evaluate this weighted generating function, with the help of the operator ρ, to be the right-hand side of (3.10).

To begin the first step, we make some definitions and recall the Gessel-Reutenauer bijection. For n, m ≥ 0, consider the set W n (m) := [0, m] n of all words of length n and alphabet being [0, m] := {0, 1, . . . , m}. Denote the subset of non-increasing words as

niw n (m) := {c = c 1 c 2 • • • c n ∈ W n (m) : c 1 ≥ c 2 ≥ • • • ≥ c n }.
We use the lexicographic order ">" to compare words in W n (r). This total order extends to words with different length (but same alphabet) naturally. Namely, let u ∈ W n (m) and v ∈ W l (m) be two nonempty primitive words (none of them can be expressed as w b for some word w and integer b ≥ 2), we write u v, if and only if u b ≥ v b when b is large enough. Here the multiplication is understood to be the concatenation of words.

Let w = x 1 x 2 • • • x n be an arbitrary word over Z and set x n+1 = +∞. For each 1 ≤ i ≤ n, we say that i is a decrease (position) of w if

x i = x i+1 = • • • = x j > x j+1 , for some i ≤ j ≤ n.
So descent is the case of i = j. If on the contrary we have

x i = x i+1 = • • • = x j < x j+1 , for some i ≤ j ≤ n,
then we say that i is an increase (position) of w, and an ascent (position) of w if i = j. By our convention x n+1 = +∞, thus n is always an ascent. Furthermore, a position i

(1 ≤ i ≤ n) is said to be a record if x j ≤ x i , for all 1 ≤ j ≤ i -1.
When the index i is a decrease (resp. increase, record) of w, the corresponding letter x i is said to be a decrease (resp. increase, record) value of w. The set of all decreases (resp. increases, ascents, records) is denoted by dec(w) (resp. inc(w), asc(w), rec(w)). In particular, a descent (resp. ascent) is always a decrease (resp. increase), thus des(w) ⊆ dec(w) (resp. asc(w) ⊆ inc(w)). Now we can define the aforementioned weight ψ as was first introduced in [START_REF] Foata | Decreases and descents in words[END_REF]. Definition 3.6. Take six sequences of commuting variables (X i ), (Y i ), (Z i ), (T i ), (Y i ) and (T i ) (i = 0, 1, 2, . . .), and for each word w ∈ W n (m) define the weight ψ(w)

of w = x 1 x 2 • • • x n to be ψ(w) := i∈des X x i i∈asc\rec Y x i i∈dec\des Z x i (3.12) × i∈(inc\asc)\rec T x i i∈asc∩rec Y x i i∈(inc\asc)∩rec T x i ,
where the argument "(w)" has been suppressed for typographic reasons. For example, if w = 1 2 8 0 8 2 10 13 4 8 13 11 11 2 5 5 11 6 3 0 with decrease values underlined, then

(3.13) ψ(w) = Y 1 Y 2 X 8 Y 0 X 8 Y 2 Y 10 X 13 Y 4 Y 8 X 13 Z 11 X 11 Y 2 T 5 Y 5 X 11 X 6 X 3 Y 0 .
For the sake of convenience, we review the Lyndon factorization of words. Finally, we recall the construction of the inverse Φ -1 GR : (σ, c) → w by means of one example. A description of this correspondence with more details can be found in Foata and the second author's previous paper [START_REF] Foata | Fix-Mahonian calculus, III: a quadruple distribution[END_REF]. In above example n = 20. The second row contains the values σ(i) (i = 1, 2, . . . , n) of the starting permutation σ. The fixed points in σ are written in boldface, while the excedances σ(i) > i are underlined. The third row is the vector

Definition 3.7 (Lyndon factorization). A word

l = x 1 x 2 • • • x n ∈ W n (m) is said to be a Lyndon word [12, 21], if either n = 1, or if n ≥ 2 and x 1 x 2 • • • x n > x i x i+1 • • • x n x 1 • • • x i-
z = z 1 z 2 • • • z n defined as (3.14) z i := |{j : i ≤ j ≤ n -1, σ(j) > σ(j + 1)}|, for 1 ≤ i ≤ n, so that z 1 = des(σ). The fourth row is the starting nonincreasing word c = c 1 c 2 • • • c n . The fifth row c = c1 c2 • • • cn is the word defined by ci := z i + c i , for 1 ≤ i ≤ n.
The sixth row is again the permutation σ but now in its cycle notation, with the minima leading each cycle and cycles listed with their first letters decreasing. When removing the parentheses in the sixth row we arrive at the seventh row denoted as σ = σ(1)σ(2)

• • • σ(n).
The bottom row is the word w = x 1 x 2 • • • x n corresponding to the pair (σ, c) defined by (3.15)

x i := cσ(i) , for 1 ≤ i ≤ n.
The underlined letters in w are decrease values of w. Finally, the vertical bars inserted into w indicate its Lyndon factorization. It is known (cf. [START_REF] Foata | Fix-Mahonian calculus, III: a quadruple distribution[END_REF][START_REF] Foata | Decreases and descents in words[END_REF]) that all the above steps are reversible and Φ GR : w → (σ, c) is indeed a bijection, essentially due to Gessel and Reutenauer [START_REF] Gessel | Counting permutations with given cycle structure and descent set[END_REF], from W n (m) onto the set of pairs (σ, c) such that σ ∈ S n , des(σ) ≤ m and c ∈ niw n (m -des(σ)). The following observation was made in [START_REF] Foata | Decreases and descents in words[END_REF].

Observation 3.8. Suppose Φ GR (w) = (σ, c), then we have (i) i ∈ dec(w) if and only if σ(i) < σ(i + 1), i.e., σ(i) is an excedance of σ.

(ii) i ∈ inc(w) ∩ rec(w) if and only if σ(i) ∈ fix(σ).

Guided by Observation 3.8, we let γ be the homomorphism defined by the following substitutions of variables:

(3.16) γ := {X j ← uX j , Z j ← uX j , Y j ← uY j , T j ← uY j , Y j ← ruZ j , T j ← ruZ j }.
The following feature of Φ GR regarding crossing descents is key to our calculation. Lemma 3.9. Suppose Φ GR (w) = (σ, c) and i ∈ des(σ), then i is a crossing descent of σ, if and only if the index ci+1 is effective in γψ(w). Take w as in the running example of Φ -1 GR above. By the calculation in (3.13), we have

γψ(w) = r 3 u 20 X 3 X 6 X 2 8 X 3 11 X 2 13 Y 2 0 Y 2 2 Y 4 Y 2 5 Y 8 Z 1 Z 2 Z 10
, and so the effective indices in γψ(w) are 2, 5 and 10, which correspond respectively to the crossing descents 14, 10 and 5 of the permutation σ.

Proof of Lemma 3.9. First we show the "only if" part. Suppose i is a crossing descent of σ, i.e., σ(i) ≥ i + 1 ≥ σ(i + 1). Note that i is a descent of σ so z i = z i+1 + 1 hence ci > ci+1 . In view of Observation 3.8 (i), we have

• i + 1 ≥ σ(i + 1) means that i + 1 = σ(σ -1 (i + 1))
is not an excedance of σ, which implies that either Y ci+1 or Z ci+1 appears in γψ(w), and • σ(i) > i means that i = σ(σ -1 (i)) is an excedance of σ, which indicates that X ci appears in γψ(w). By definition this means that ci+1 is effective in γψ(w).

It remains to show the "if" part. Conversely, suppose that certain a = ci+1 , with i ∈ des(σ), is effective in γψ(w). Then, we can find indices, j ≥ 1 and

k ≥ 0 such that b = ci > a = ci+1 = ci+2 = • • • = ci+j > ci+j+1 and ci-k-1 > ci-k = ci-k+1 = • • • = ci = b.
We aim to show that i is a crossing descent of σ. Since a is effective in γψ(w), at least one of Y a and Z a appears in γψ(w), which implies that one of i + , 1 ≤ ≤ j, must be a non-excedance of σ. This forces i + 1 to be a non-excedance, as σ(i + 1) < σ(i + 2) < • • • < σ(i + ). On the other hand, we must have X b appear in γψ(w), which implies one of i -, 0 ≤ ≤ k, must be an excedance of σ. This forces i to be an excedance of σ, as σ(i -) < σ(i -+ 1) < • • • < σ(i). In conclusion, i is a crossing descent of σ, as desired.

We will also make use of the following version of the so-called "Decrease Value Theorem". Theorem 3.10 (Theorem 1.3 in [START_REF] Foata | Decreases and descents in words[END_REF]). We have:

(3.17) n≥0 w∈Wn(m) ψ(w) = 1≤j≤m 1 -Z j 1 -Z j + X j 0≤j≤m 1 -T j 1 -T j + Y j 1 - 1≤l≤m 1≤j≤l-1 1 -Z j 1 -Z j + X j 0≤j≤l-1 1 -T j 1 -T j + Y j X l 1 -Z l + X l .
We are in a position to prove Theorem 3.5.

Proof of Theorem 3.5. For each word w = x 1 x 2 • • • x n ∈ W n (m), we have:

(3.18) γψ(w) = u n i∈dec X x i i∈inc\rec Y x i i∈inc∩rec rZ x i .
Applying γ to (3.17) we get:

(3.19) n≥0 w∈Wn(m) u n i∈dec X x i i∈inc\rec Y x i i∈inc∩rec rZ x i = S m (u).
By Ψ GR : w → (σ, c) and Observation 3.8, the left-hand side of (3.19) is equal to

(3.20) n≥0 u n σ∈Sn des(σ)≤m c∈niwn(m-des(σ)) r fix(σ) W (σ,c) ,
where

W (σ,c) = j<σ(j) X c j +z j j>σ(j) Y c j +z j j=σ(j) Z c j +z j . With W (σ; t) := k≥0 t k c∈niwn(k) W (σ,c) ,
the graded form of (3.20) reads

(3.21) n≥0 u n σ∈Sn t des(σ) r fix(σ) W (σ; t) = m≥0 t m S m (u).
Now Lemma 3.9 says that i is a crossing descent of σ, if and only if ci+1 is effective in W (σ,c) , therefore we have

(3.22) ρ(W (σ,c) ) = s eff(W (σ,c) ) = s xdes(σ) .
Consequently,

ρ(W (σ; t)) = s xdes(σ) k≥0 t k × |niw n (k)| = s xdes(σ) (1 -t) n+1 .
Applying ρ to both sides of (3.21) yields (3.10).

Although Theorem 3.5 is somewhat complicated, it allows us to derive some formulae for special cases, with the help of a computer algebra system. A trick to evaluate the fraction at the right-hand side of (3.10) by the operator ρ is that we can replace

x k u k , for x = X j , Y j or Z j , by xu k for k ≥ 1. That is (3.23) ρ 1 a + bxu = ρ 1 a (1 - bxu a + bu ) .
Using this trick, we can derive the formulae for m = 1, 2 as follows.

(I) Special case m = 1. The term ρ(S 1 (u)) is equal to

ρ 1 -uX 1 (1 -ruZ 0 )(1 -ruZ 1 ) (1 - uX 1 1 -uY 0 ) = ρ (1 -uX 1 )(1 -uY 0 ) (1 -ruZ 0 )(1 -ruZ 1 )(1 -uX 1 -uY 0 ) = 1 (1 -ru) 2 1 + ρ( u 2 X 1 Y 0 1 -uX 1 -uY 0 ) = 1 (1 -ru) 2 1 + su 2 1 -2u .
We now give a combinatorial proof of the formula above. When we extract the coefficient of t 1 from

H(t, s, r; u) = n≥0 σ∈Sn t des(σ) s xdes(σ) r fix(σ) u n (1 -t) n+1 ,
there are two cases to be considered:

(1) The factor 1/(1 -t) n+1 contributes (n+1)t 1 while the permutation satisfies des(σ) = 0. Then the permutation must be the identity and contributes r n u n . So we sum up over all n ≥ 0 to get the term 1/(1 -ru) 2 . (2) The factor 1/(1 -t) n+1 contributes t 0 = 1 while the permutation satisfies des(σ) = 1. Now note that any permutation σ ∈ S n that has exactly one descent (the so-called "Grassmannian permutation"), can be uniquely decomposed as

σ = 12 • • • i σ i+1 σ i+2 • • • σ i+j (i + j + 1)(i + j + 2) • • • n,
where 0 ≤ i ≤ n -2, 2 ≤ j ≤ n -i, and σ i+1 • • • σ i+j contains no fixed points and exactly one descent at i

+ j = σ k > σ k+1 = i + 1 for certain k (i + 1 ≤ k < i + j),
hence this descent is a crossing descent. All the other letters i + 2, i + 3, . . . , i + j -1 can appear either to the left of i + j, or to the right of i + 1, making 2 j-2 choices in total. So we see the contributions from all such σ's are

s (1 -ru) 2 • j≥2 2 j-2 u j = su 2 (1 -ru) 2 (1 -2u) ,
which is precisely the remaining term in the formula above.

(II) Special case m = 2. With the help of a computer algebra program, we obtain the term ρ(S 2 (u)), which is equal to

1 (1 -ru) 3 1 + ((3 -r)u 2 -7u + 3)u 2 • s (u 2 -3u + 1)(1 -2u) + (-3ru + 2u 2 + r -4u + 2)u 4 • s 2 (u 2 -3u + 1)(1 -3u)(1 -2u) . Let S (m) n = {π ∈ S n : des(π) = m} and (3.24) P m (u) = n≥0 π∈S (m) n s xdes(π) r fix(π) u n
be the generating function for the xdes and fix statistics over the set of all permutations with exactly m descents. Theorem 3.5 implies that (3.25)

n≥0 π∈Sn t des(π) s xdes(π) r fix(π) u n = (1 -t) m≥0 t m ρ(S m ((1 -t)u)).
Comparing the coefficients of t 0 , t 1 , t 2 in (3.25) with the explicit values of ρ(S 1 (u)) and ρ(S 2 (u)) previously obtained, we derive

P 0 (u) = 1 1 -ru ; P 1 (u) = u 2 s (1 -ru) 2 (1 -2 u) ; P 2 (u) = u 3 (1 -ru) 3 (u 2 -3u + 1)(1 -2u) × (3 ru -r -2 u)(u -1) 1 -2u s + (-3 ru + 2 u 2 + r -4 u + 2)u 1 -3u s 2 .
To end this section, we connect our results with two kinds of Genocchi numbers, and the new statistic xdes with earlier work of Ehrenborg and Steingrímsson [START_REF] Ehrenborg | The excedance set of a permutation[END_REF].

• For m = 1, 2, . . ., the coefficient of

[s m u 2m ] in ρ(S m (u))| r=0 are
1, 2, 8, 56, 608, . . . which are the Genocchi numbers of the second kind (registered as A005439 in [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]), or Genocchi medians. In fact, by Theorem 3.5 this coefficient is the the coefficient of

[t m s m u 2m ] in H(t, s, 0; u), i.e., the coefficient of [t m s m ] in π∈D 2m t des(π) s xdes(π) 1 (1 -t) 2m+1 ,
which is equal to the number of derangements π in D 2m such that des(π) = xdes(π) = m. By [7] we know that the Genocchi number of second kind is the number of derangements σ on {1, 2, • • • , 2m} such that σ(i) > i iff i is odd, which is equivalent to the condition des(σ) = xdes(σ) = m.

• For m = 1, 2, . . ., the coefficient of [s m u 2m ] in ρ(S m (u))| r=1 are 1, 3, 17, 155, 2073, . . . which are the Genocchi numbers of the first kind (registered as A110501 in [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]). In fact, by Theorem 3.5 this coefficient is the the coefficient of

[t m s m u 2m ] in H(t, s, 1; u), i.e., the coefficient of [t m s m ] in π∈S 2m t des(π) s xdes(π) 1 (1 -t) 2m+1 ,
which is equal to the number of permutations π in S 2m such that des(π) = xdes(π) = m. By [6, 7] we know that the Genocchi number of first kind is the number of permutations σ on {1, 2, • • • , 2m} such that for σ(i) > i iff i is odd, which is equivalent to the condition des(σ) = xdes(σ) = m.

• Although the definition of xdes might seem a little peculiar, it has disguisedly showed up in the literature. In [START_REF] Ehrenborg | The excedance set of a permutation[END_REF]Def. 4.1], Ehrenborg and Steingrímsson introduced the notion of "excedance run" on ab-words (certain equivalence classes on permutations determined by their excedance sets), which is essentially the same as our xdes, defined on permutations.

More precisely, for any permutation π, the number of crossing descents of π equals the number of (excedance) runs of the ab-word of π.

Patterns on k-arrangements

In this section, we denote max(w) and min(w) the maximal and the minimal letters of a word w over integers, respectively. Proof. First of all, it was shown by Savage and Wilf [START_REF] Savage | Pattern avoidance in compositions and multiset permutations[END_REF]Thm. 3] that the number of permutations (or rearrangements) of a given multiset that avoid a pattern of length 3 is independent of the pattern. The same holds true for the permutation form of k-arrangements for any k ≥ 1, since P k n is a union of rearrangement classes [START_REF] Blitvić | Permutations, Moments, Measures[END_REF]Prop. 3]. Thus, it is sufficient to prove

(4.1) C (3) (x) := 1 + n≥1 |P 3 n (312)|x n = n≥0 (C(n + 2) -2 n )x n = C(x) -1 -x x 2 - 1 1 -2x ,
where C(x) is the generating function for Catalan numbers

(4.2) C(x) := n≥0 C(n)x n = 1 - √ 1 -4x 2x .
On the other hand, Blitvić and Steingrímsson [2, Prop. 6] showed that

(4.3) C (2) (x) := 1 + n≥1 |P 2 n (312)|x n = C(x) -1 x .
We view P 3 n (312) as the disjoint union of P 2 n (312) and P3 n (312) := P 3 n (312) \ P 2 n (312). Any w = w 1 . . . w n ∈ P3 n (312) with w j being the rightmost letter 2 can be written as w = α 2 β with max(α) ≤ min(β). This decomposition can be fully characterized according to the following two cases:

• if β contains the letter 1, then we have red(β) ∈ P 2 n-j (312) \ P 1 n-j (312) and α ∈ { 1, 2} j-1 ;

• otherwise β has purely positive letters, and red(β) ∈ P 1 n-j (312), α ∈ P 3 n-j (312). This decomposition is reversible and in terms of generating function gives

C (3) (x) -C (2) (x) = x(C (2) (x) -C(x))(1 -2x) -1 + xC (3) (x)C(x).
Combining this with (4.3) and the explicit expression of C(x) in (4.2) yields (4.1) after simplification using Maple. t des(w) .

The above decomposition then gives the system of equations

F = N + GN, G = tx(F -1 -G) + x(1 + G).
Solving this system of equations yields N = (1-x+tx)F 1+txF . Substituting this into (4.4) results in

(4.5) t 2 x 2 F 2 -(t 2 x 2 -2tx 2 + x 2 -2x + 1)F + 1 = 0.
Comparing with the generating function for sequence A108838 in [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF] proves the desired result for pattern 312. The proof for the pattern 213 is identical and will be omitted.

Next we consider the pattern 231. Let P2 n (231) denote the set of w ∈ P 2 n (231) with max(w) = 1.

Any w = w 1 • • • w n ∈ P2
n (231) with the largest letter w j = m > 0 can be written as α m β, where max(α) ≤ min(β). We have two cases:

• if max(α) = 1 (or α is empty), i.e., α is a word with all letters being 1, then red(β) ∈ P 2 n-j (231) (possibly empty); • otherwise max(α) ≥ 1, then α ∈ P2 j-1 (231) and red(β) ∈ P 1 n-j (231) (possibly empty).

By this decomposition, if we define

H = H(t, x) := 1 + n≥1 x n w∈P 2 n (231)
t des(w) , then

H = 1 1 -x + x(1 + t(H -1)) 1 -x + H - 1 1 -x x(1 + t(N -1)).
Thus, we have N = H(tx 2 -x 2 +2x-1)+1

tx(Hx-H+1)

. Substituting this into (4.4) results in

t 2 x 2 H 2 -(t 2 x 2 -2tx 2 + x 2 -2x + 1)H + 1 = 0,
which proves the statement for the pattern 231 after comparing with (4.5). The proof for the pattern 132 is the same as for 231 and thus is omitted. The proof of the theorem is now completed.

Finally, we deal with the patterns 321 and 123, thus completing the classification of all six patterns of length 3, in terms of their des-Wilf equivalences on P 2 n . Our proof of the following connection is algebraic. A bijective proof would be interesting.

Theorem 4.3. The distribution of des on 2-arrangements of [n -1] whose permutation form avoids the pattern 321, is given by the triangle sequence A236406 in [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF], which counts 321-avoiding permutations of [n] with k peaks.

In order to prove Theorem 4.3, we need to compute the joint distribution of the number of descents and the position of the leftmost descent on 321-avoiding permutations. We will apply Krattenthaler's classical bijection [18] (see also [START_REF] Elizalde | Fixed points and excedances in restricted permutations[END_REF]) from Dyck paths to 321-avoiding permutations.

A Dyck path of semilength n is a lattice path in N 2 from (0, 0) to (n, n) using only east steps (1, 0) and north steps (0, 1), which does not pass above the line y = x. The height of an east step in a Dyck path is the number of north steps before this east step. For the sake of convenience, we represent a Dyck path as d 1 d 2 • • • d n , where d i is the height of its i-th east step. See Fig. 1 for the Dyck path 012224566. Denote by D n the set of all Dyck paths of semilength n. In particular, we denote by

ID n = 01 • • • n -1 and id n = 12 • • • n
the zigzag Dyck path of semilength n and the identity permutation of length n, with ID 0 and id 0 being the empty path and the empty permutation, respectively. We will use the description of Krattenthaler's bijection ψ : D n → S n (321) in [START_REF] Lin | Refined restricted inversion sequences[END_REF]. Given a Dyck path 1 for a visualization of this bijection for the Dyck path 012224566.

D = d 1 d 2 • • • d n ∈ D n , define ψ(D) = π = π 1 π 2 • • • π n , where • π i = d i + 1 if d i = d i+1 or i = n; otherwise • if i is the j-th smallest integer in {k ∈ [n -1] : d k = d k+1 }, then π i is the j-th smallest integer in [n] \ {d 1 + 1, d 2 + 1, . . . , d n + 1}. See Fig.
Let us introduce the following three statistics for D ∈ D n :

• hill(D), the number of hills of D, where a hill of a Dyck path is an east step touching the diagonal y = x and followed immediately by a north step. We continue to compute the generating function where S := 1 + 4x(x -tx -1). Setting q = 1 in (4.12) yields

C(t, p) = C(t, p; x) := p + n≥1 x n D∈Dn t seg(D) p lseg(D) = p + p 2 x + (p + t)p 2 x 2 + • • • = p 1 -px + n≥1 x n π∈Sn(321) π =idn t des(π) p ldes(π)+1
1 -2tx 2 + 2x 2 -2x -1 + 4x(x -tx -1) 2x 2 (tx -x + 1) 2 ,
which proves the theorem after comparing with the size generating function for 321-avoiding permutations by the number of peaks derived recently by Bukata et al. in [START_REF] Bukata | Distributions of statistics over pattern-avoiding permutations[END_REF]Thm. 3].

Remark 4.6. The expression (4.10) was first proved by Barnabei et al. [1]. Our expression (4.11) is a generalization of (4.10). See also [START_REF] Lin | Refined restricted inversion sequences[END_REF] for a different generalization of (4.10).

For w = w 1 • • • w n ∈ P 2 n (321), let w r = w n • • • w 1 ∈ P 2 n (123) be the reversal of w. Clearly, we have des(w r ) + 1 = n -des(w) -plat(w). Thus, making the substitution q ← t -1 , x ← tx and t ← t -1 in (4.12) gives the following generating function formula for counting 123-avoiding 2-arrangements in permutation form by des + 1. where T := 1 + 4tx(tx -x -1).

The refinement w∈P 2 n (123) t des(w) of Catalan numbers appears to be new and the first few polynomials are 1, 2, 3 + 2t, 2 + 10t + 2t 2 , 2 + 12t + 26t 2 + 2t 3 , 2 + 12t + 56t 2 + 60t 3 + 2t 4 .

4.3.

Length-3 patterns for 1-arrangements in derangement form. In general, the enumeration of pattern avoiding 1-arrangements in derangement form is harder than that in permutation form. Our computer program indicates that only one Wilf-equivalence exists for length-3 patterns on 1-arrangements in derangement form (see Theorem 1.3). The enumerative sequences for the number of the other four Wilf-equivalence classes turn out to be new in OEIS (see Table 1). The rest of this section is devoted to the proof of Theorem 1.3. We begin with a refinement of an intriguing result due to Robertson,Saracino and Zeilberger [25] which asserts that fix has the same distribution over S n (321) and S n (132). Let π ∈ S n be a permutation. Recall from (4.6) that ldes(π) is the position of the leftmost descent of π. Similarly, let rdes(π) := n -max({i : π i > π i+1 } ∪ {0}) be the complement of the position of the rightmost descent of π. Let exc(π) := |{i : π i > i}| and aexc(π) := |{i : π i < i}| be the number of excedances and anti-excedances of π, respectively. Also, define lmax(π) = |{i : π j < π i for all j < i}| and rmin(π) = |{i : π j > π i for all j > i}|, the number of left-to-right maxima and right-to-left minima of π, respectively. It is clear that (4.14) (exc, lmax)π = (aexc, rmin)π -1 .

Lemma 4.8. There exists a bijection K : S n (321) → S n (132) such that for each π ∈ S n , (fix, exc, ldes)π = (fix, aexc, rdes)K(π).

Proof. The bijection K is a composition of a bijection due to Knuth and the inverse of permutations. For π ∈ S n (321), let π be the 132-avoiding permutation under Knuth's bijection (see the description in [START_REF] Claesson | Classification of bijections between 321-and 132-avoiding permutations[END_REF]Sec. 3.1] or [START_REF] Elizalde | Bijections for refined restricted permutations[END_REF]). Then noting that a permutation σ ∈ S n (132) if and only if σ -1 ∈ S n (132), we define K(π) = (π ) -1 . It has been shown by Elizalde and Pak [START_REF] Elizalde | Bijections for refined restricted permutations[END_REF] that (fix, exc)π = (fix, exc)π and by Claesson and Kitaev [4,Sec. 6.4] that ldes(π) = lmax(π ). Thus, in view of (4.14), it remains to show that rmin(σ) = rdes(σ) for each σ ∈ S n (132). This follows from the observation that the suffix of σ starting from the letter 1 is monotonously increasing.

The next observation is obvious, but useful.

Observation 4.9. Let w ∈ D 1 n be a word with weak derangement part Der(w) = π. Then, w is 321-avoiding (resp. 132-avoiding) if and only if

(1) π is a 321-avoiding (resp. 132-avoiding) derangement, and

(2) all copies of 1 appear not after the leftmost (resp. not before the rightmost) descent slot of π.

We are ready to prove Theorem 1.3. Combining this with (4.15) we get (1.3), completing the proof.

  fix(a) := |fix(π)|, fix i (a) := |{j ∈ fix(π) : φ(j) = ī}|, des(a) := des(pf k (a)), des(a) := des(pf k (a)), dez(a) := des(df k (a)), dez(a) := des(df k (a)), Der(a) := Pos(df k (a)).
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 1112 Let n, k ≥ 1 and m = (m 1 , m 2 , • • • , m k ) be an array of nonnegative integers. For any permutation τ ∈ S k , there exists a bijection Φ k : A k n (m) → A k n (m ) such that for every a ∈ A k n (m), (1.1) (dez, Der) a = (des, Der) Φ k (a), where m = (m τ (1) , m τ (2) , . . . , m τ (k) ). The equidistribution of des over P k n and D k n , was first conjectured in [2, Conj. 1], which is generalized in two directions: a set-valued extension, as stated in Theorem 1.1, and a symmetrical generalization as stated in the next theorem. Notice that Theorem 1.2 is new even for k = 1 over S n , since our triple equidistribution on S n can not be proven using the bijection in [11, Thm. 1.1]. Let n, k ≥ 1 and m = (m 1 , m 2 , • • • , m k ) be an array of nonnegative integers. For any permutation τ ∈ S k-1 , there exists a bijection Ψ k : A k n (m) → A k n (m ) such that for every a ∈ A k n (m), (1.2) (des, dez, Der) a = (dez, des, Der) Ψ k (a).

  For a set W of words, let W(σ) be the set of σ-avoiding words in W. Two patterns σ and π are said to be Wilf-equivalent over W if |W(σ)| = |W(π)|. One of the most famous enumerative results in pattern avoiding permutations, attributed to MacMahon and Knuth (cf. [17,27]), is that |S n (σ)| = C(n) for each pattern σ ∈ S 3 , where C(n) := 1 n + 1 2n n is the n-th Catalan number. The study of pattern avoiding derangements was initiated by Robertson, Saracino and Zeilberger [25] and further generalized by others in
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 2223 Let n, k ≥ 1 and m = (m 1 , m 2 , • • • , m k ) be an array of nonnegative integers. For any permutation τ ∈ S k , there exists a bijection a ∈ A k n (m) → b ∈ A k n (m ) such that (2.1) (dez, Der) a = (dez, Der) b, where m = (m τ (1) , m τ (2) , . . . , m τ (k) ). Proof. (Step 1) In the derangement form df k (a) of a, hide the positive letters; (Step 2) Then, apply the appropriate θ in Lemma 2.1; (Step 3) Show the letters hidden in (Step 1). We get the derangement form df k (b) of b. There are three types of descent values in df k (a) and df k (b) : positive letter to positive letter, negative letter to negative letter, positive letter to negative letter. Checking each type of descent values, we conclude that des(df k (a)) = des(df k (b)). Let n, k ≥ 1 and m = (m 1 , m 2 , • • • , m k ) be an array of nonnegative integers. For any permutation τ ∈ S k-1 , there exists a bijection a ∈ A k n (m) → b ∈ A k n (m ) such that (2.2) (des, dez, Der) a = (des, dez, Der) b.

S 1 = 3 15

 13 With the bijection Φ k constructed above, we verify easilyDer (a) = Der (Φ k (a)),and(2.3) (fix 1 , fix 2 , fix 3 , . . . , fix k ) a = (fix k , fix 1 , fix 2 , . . . , fix k-1 ) Φ k (a).Moreover, by the construction and properties of Φ (see[START_REF] Foata | Fix-Mahonian calculus, I: two transformations[END_REF] Thm. 1.1]), we have dez(a) = des(S 1 ) = des(S 5 ) = des(Φ k (a)). In the above example, one can check that dez(a) = {1, 3, 5, 7, 11, 14} = des(Φ k (a)). This proves Theorem 1.1.

Observation 2 . 4 .

 24 For all n, k ≥ 1 and each a = (π, φ) ∈ A k n , suppose Der k (a) := w = w 1 • • • w m ∈ Z m for some m ≤ n, and w j is reduced from π(i j ) for every 1 ≤ j ≤ m. If e(π) = e 1 e 2 • • • e n and e(w) = e 1 e 2 • • • e m are the excedance words for π and w respectively, then e i j = e j for every 1 ≤ j ≤ m. For the 3-arrangement a = (π, φ) given in the introduction, namely, π = 7534162 and φ(3) = 1, φ(4) = 3 and φ(6) = 3, we see Der 3 (a) = 43 112. Therefore e(π) = EEN N N N N and e(Der 3 (a)) = EEN N N , which agrees with the observation above. Suppose a = (π, φ) ∈ A k n with fix k (a) = n -m, Der k (a) := w = w 1 • • • w m ∈ Z m , and e(w) = e 1 • • • e m for some 1 ≤ m ≤ n. Now df k (a) can be decomposed as

1 .

 1 a and see that (2.6) holds true. Otherwise, for a given k-arrangement a ∈ A k n with s(a) = (s 0 , s 1 , . . . , s m ), and Der k (a) ∈ Z m , m ≥ The aforementioned map Ψ k simply swaps the slots of types I and II in df k (a). Namely, by Lemma 2.5, we let t := t 1 (a) = t 2 (a), and let S i 1 , S j 1 , . . . , S it , S jt = S m be all of the types I and II blocks, appearing alternatingly. Then b := Ψ k (a) is taken to be the unique k-arrangement corresponding to s(b) = (s 0 , s 1 , . . . , s m ), and Der k (b) = Der k (a),

  and (des, dez) a = (dez, des) b follows from equations (2.4) and (2.5) immediately. The proof is now completed.

Example 2 . 6 (

 26 An example of Ψ 1 ). For k = 1, P 1 n = S n . Let π = 1 2 5 3 9 6 4 8 16 11 7 12 13 10 15 14 17 ∈ S 17 and a := pf -1 1 (π), then we see s(a) = (2, 0, 0, 1, 1, 0, 0, 2, 1, 1) and Der(a) = 3 1 5 2 9 7 4 6 8. The type I (resp. type II) slots are S 1 , S 3 , S 6 (resp. S 2 , S 4 , S 9 ). So we have s(Ψ(a)) = (2, 0, 0, 1, 1, 0, 1, 2, 1, 0) and Der(Ψ(a)) = 3 1 5 2 9 7 4 6 8, which gives us df 1 (Ψ(a)) = 1 1 3 1 5 1 2 1 9 7 1 4 1 1 6 1 8. One can verify that indeed (des, dez, Der) a = (7, 8, 315297468) = (dez, des, Der) Ψ(a).

Example 2 . 7 (

 27 An example of Ψ 2 ). For k = 2, let b = (σ, φ) with σ = 1 2 9 3 5 6 4 8 7 and φ(1) = φ(8) = 1, φ(2) = φ(5) = φ(6) = 2, then we see s(b) = (0, 1, 0, 2, 0, 0, 0) and Der 2 (b) = 1 4 1 2 1 3. The type I (resp. type II) slots are S 0 , S 2 (resp. S 1 , S 6 ). So we have s(Ψ(b)) = (1, 0, 0, 2, 0, 0, 0) and Der 2 (Ψ(b)) = 1 4 1 2 1 3, which gives us df 2 (Ψ(b)) = 2 1 4 1 2 2 2 1 3. One checks to see (des, dez, Der 2 ) b = (3, 4, 1 4 1 2 1 3) = (dez, des, Der 2 ) Ψ(b).

1 holds for every i such that 2 ≤

 2 i ≤ n. As shown for instance in [21, Theorem 5.1.5], each nonempty word w composed of nonnegative integers, can be written uniquely as a product w = l 1 l 2 • • • l k , where each l i is a Lyndon word and l 1 l 2 • • • l k . This word factorization is called Lyndon factorization. For instance, we have the Lyndon factorization w = 1 2 1 0 0 2 2 4 5 3 1 0 2 1 2 5 = 1 | 2 1 0 0 | 2 | 2 | 4 | 5 3 1 0 2 1 2 | 5, where factors are separated by vertical bars.

4. 1 .Theorem 4 . 1 .

 141 Pattern avoiding 3-arrangements in permutation form. Recall that C(n) is the n-th Catalan number. The following enumeration result was conjectured in [2, Conj. 2]. The number of 3-arrangements of [n] whose permutation form avoids any single pattern of length 3 is C(n + 2) -2 n .

4. 2 .Theorem 4 . 2 .

 242 The statistic des on pattern avoiding 2-arrangements in permutation form. This subsection is devoted to the classification of the des-Wilf equivalences for patterns of length 3 for permutation form of 2-arrangements. These des-Wilf equivalences were stated as Conjectures 3 and 4 in[START_REF] Blitvić | Permutations, Moments, Measures[END_REF] Sec. 3.6]. The distribution of des on 2-arrangements of [n -1] whose permutation form avoids any single one of the patterns 213, 312, 231 or 132, is given by the triangle sequence A108838 in[START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF], which counts, among other things, parallelogram polyominoes of semiperimeter n + 1 having k corners, and has formula 2 It is known (cf.[START_REF] Petersen | Eulerian numbers. With a foreword by Richard Stanley[END_REF] Sec. 2.3]) that the size generating functionN = N (t, x) := 1 + n≥1 x n π∈Sn(σ) t des(π) ,where σ is one of the patterns 213, 312, 231 or 132, satisfies the functional equation(4.4) txN 2 -(1 -x + tx)N + 1 = 0.First we consider the pattern 312. Any w = w 1 • • • w n ∈ P 2 n (312) \ P 1 n (312) with w j being the rightmost letter 1 can be written as w = α 1 β with max(α) ≤ min(β) > 0 such that α 1 ∈ P2 j (312) and red(β) ∈ P 1 n-j (312) = S n-j (312), where P2 j (312) denotes the set of words w ∈ P 2 j (312) whose last letter is 1. Moreover, we have des(w) = des(α 1) + des(β) and des(α 1) = des(α) + χ(w j-1 = 1), where χ(S) equals 1, if the statement S is true and 0 otherwise. Let us introduce F (t, x) :

Figure 1 .Lemma 4 . 4 .

 144 Figure 1. Krattenthaler's bijection ψ : D n → S n (321).

Theorem 4 . 7 .t

 47 We have the generating function formula des(w)+1 = 1 -x -tx -2tx 2 + 2t 2 x 2 -(tx -x + 1)T 2tx 2 (tx -x -1)(1 -2t tx-x+1 ) ,(4.13)

Proof of Theorem 1 . 3 . 1

 131 The first statement that D 1 n (321) and D 1 n (132) have the same cardinality follows directly from Lemma 4.8 and Observation 4.9. Let D n be the set of Dyck paths D ∈ D n such that D has no hills. In order to compute (1.3), we need to calculate the generating function D(p, x) := p + n≥1 x n π∈Dn(321) p ldes(π)+1 = p + n≥1 x n D∈D n p lseg(D) , where the second equality follows from Lemma 4.4. Using the classical decomposition of Dyck paths as in the proof of Lemma 4.5 we obtain D(p, x) = 2p(1 + 2(1 -p)x + √

Table 1 .

 1 using the classical decomposition of Dyck paths.Proof. Let B n be the set of Dyck paths in D n that begin with an east step followed immediately by a north step. If we introduce Length-3 patterns for 1-arrangements in derangement form

	Lemma 4.5. The generating function C(t, p; x) satisfies the algebraic functional equation
	(4.7)	tp 2 x 2 C 2 (t, 1) + px(C -pxC -p)C(t, 1) -(C -pxC -p) = 0.

B(t, p; x) := n≥1 x n D∈Bn t seg(D) p lseg(D) ,
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then clearly (4.8) B(t, p; x) = pxC(t, p; x).

For n ≥ 2, a Dyck path D = d 1 • • • d n ∈ D n \ B n with min{i ≥ 2 : d i+1 = i or i = n} = j can be decomposed uniquely into a pair (D 1 , D 2 ) of Dyck paths, where

possibly empty). This decomposition is reversible and satisfies the following properties:

Turning this decomposition into generating functions yields (4.9)

Substituting (4.8) into (4.9) gives (4.7) after simplification.

We are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Setting p = 1 in (4.7) and solving for C(t, 1) gives (4.10)

) .

Substituting this into (4.7) and solving for C = C(t, p; x) yields

is the size generating function for 321-avoiding permutations with at least one descent counted by the pair (des, ldes -1). For w ∈ P 2 n (321), let plat(w)

be the number of plateaux of w. Since each permutation form w ∈ P 2 n (321), whose permutation part π is a 321-avoiding permutation, can be obtained from π by inserting some copies of 1 into the spaces not after the leftmost descent slot of π, we have

where we set p = 1 + tx 1-qx , and the case with π = id n , n ≥ 0 is dealt with separately to form the second product. Combining this relationship with (4.11) results in (4.12) f (t, q; x) = (1 -2tx 2 -qx + 2x 2 -x + (qx -x -1)S)(1 + x -qx) 2x 2 (tx -x + 1)(q 2 x -2qx + tx -q + 2) ,