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Abstract
Asymptotics deviation probabilities of the sum Sn = X1 + · · · + Xn of independent

and identically distributed real-valued random variables have been extensively investi-
gated, in particular when X1 is not exponentially integrable. For instance, A.V. Nagaev
formulated exact asymptotics results for P(Sn > xn) when X1 has a semiexponential
distribution (see, [16, 17]). In the same setting, the authors of [4] derived deviation
results at logarithmic scale with shorter proofs relying on classical tools of large devia-
tion theory and expliciting the rate function at the transition. In this paper, we exhibit
the same asymptotic behaviour for triangular arrays of semiexponentially distributed
random variables, no more supposed absolutely continuous.

Key words: large deviations, triangular arrays, semiexponential distribution, Weibull-like
distribution, Gärtner-Ellis theorem, contraction principle, truncated random variable.
AMS subject classification: 60F10, 60G50.

1 Introduction
Moderate and large deviations of the sum of independent and identically distributed (i.i.d.)
real-valued random variables have been investigated since the beginning of the 20th century.
Kinchin [12] in 1929 was the first to give a result on large deviations of the sum of i.i.d. Bernoulli
distributed random variables. In 1933, Smirnov [23] improved this result and in 1938 Cramér
[5] gave a generalization to sums of i.i.d. random variables satisfying the eponymous Cramér’s
condition which requires the Laplace transform of the common distribution of the random
variables to be finite in a neighborhood of zero. Cramér’s result was extended by Feller [7]
to sequences of non identically distributed bounded random variables. A strengthening of
Feller’s result was given by Petrov in [20, 21] for non identically distributed random variables.
When Cramér’s condition does not hold, an early result is due to Linnik [14] in 1961 and
concerns polynomial-tailed random variables. The case where the tail decreases faster than all
power functions (but not enough for Cramér’s condition to be satisfied) has been considered
by Petrov [20] and by S.V. Nagaev [18]. In [16, 17], A.V. Nagaev studied the case where the
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commom distribution of the i.i.d. random variables is absolutely continuous with respect to
the Lebesgue measure with density p(t) ∼ e−|t|

1−ε as |t| tends to infinity, with ε ∈ (0, 1). He
distinguished five exact-asymptotics results corresponding to five types of deviation speeds.
In [2, 3], Borovkov investigated exact asymptotics of the deviations probability for random
variables with semiexponential distribution, also called Weibull-like distribution, i.e. with a
tail writing as e−t1−εL(t), where ε ∈ (0, 1) and L is a suitably slowly varying function at infinity.
In [4], the authors consider the following setting. Let ε ∈ (0, 1) and let X be a real-valued
random variable with a density p with respect to the Lebesgue measure verifying:

p(x) ∼ e−x
1−ε
, as x→ +∞. (1)

and
∃γ ∈ (0, 1] ρ := E[|X|2+γ] <∞. (2)

For all n ∈ N∗, let X1, X2, ..., Xn be i.i.d. copies of X and set Sn = X1 + · · · + Xn and
Pn(x) = P(Sn > x). According to the asymptotics of xn, three logarithmic asymptotic ranges
then appear. In the sequel, the notation xn � yn (resp. xn � yn, xn 4 yn, and xn = Θ(yn))
means that yn/xn → 0 (resp. xn/yn → 0, lim sup |xn/yn| <∞, and yn 4 xn 4 yn) as n→∞.

Maximal jump range [4, Theorem 1] When xn � n1/(1+ε),

logPn(xn) ∼ logP(max(X1, . . . , Xn) > xn).

Gaussian range [4, Theorem 2] When xn � n1/(1+ε),

logPn(xn) ∼ log(1− φ(n−1/2xn)),

φ being the cumulative distribution function of the standard Gaussian law.

Transition [4, Theorem 3] The case xn = Θ(n1/(1+ε)) appears to be an interpolation between
the Gaussian range and the maximal jump one.

In the present paper, we exhibit the same asymptotic behaviour for triangular arrays of random
variables (Yn,i)16i6Nn satisfying the following weaker assumption: there exists q > 0 such that,
if yn →∞,

logP(Yn > yn) ∼ −qy1−ε
n , (3)

together with similar assumptions on the moments.
The first main contribution of this paper is the generalization of [4, 16, 17] to triangular arrays.
Such a setting appears naturally in some combinatorial problems, such as those presented by
[11], including hashing with linear probing. Since the eighty’s, laws of large numbers have been
established for triangular arrays (see, e.g., [8, 9, 10]). Lindeberg’s condition is standard for the
central limit theorem to hold for triangular arrays (see, e.g., [1, Theorem 27.2]). Dealing with
triangular arrays of light-tailed random variables, Gärtner-Ellis theorem provides moderate
and large deviation results. Deviations for sums of heavy-tailed i.i.d. random variables are
studied by several authors (e.g., [2, 3, 4, 14, 16, 17, 19, 20]) and a good survey can be found in
[15]. Here, we focus on the particular case of semiexponential tails (treated in [2, 3, 4, 16, 17]
for sums of i.i.d. random variables) generalizing the results to triangular arrays. See [13] for
an application to hashing with linear probing.
Another contribution is the fact that the random variables are not supposed absolutely con-
tinuous as in [4, 16, 17]. Assumption (3) is analogue to that of [2, 3], but there the transition
at xn = Θ(n1/(1+ε)) is not considered. Hence, up to our knowledge, Theorem 3 is the first
large deviation result at the transition which is explicit.
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The paper is organized as follows. In Section 2, we state the main results, the proofs of which
can be found in Section 3. In Section 4, a discussion on the assumptions is proposed. Section
5 is devoted to the study of the model of a truncated random variable which is a natural model
of triangular array. This kind of model appears in many proofs of large deviations. Indeed,
when one wants to deal with a random variable, the Laplace transform of which is not finite,
a classical approach consists in truncating the random variable and in letting the truncation
going to infinity. In this model, we exhibit various rate functions, especially nonconvex rate
functions.

2 Main results
For all n > 1, let Yn be a centered real-valued random variable, let Nn be a natural number,
and let (Yn,i)16i6Nn be a family of i.i.d. random variables distributed as Yn. Define, for all
k ∈ J1, NnK,

Tn,k :=
k∑
i=1

Yn,i.

To lighten notation, let Tn := Tn,Nn .

Theorem 1 (Maximal jump range). Let ε ∈ (0, 1), q > 0, and α > (1 + ε)−1. Assume that:

(H1) for all Nαε
n 4 yn 4 Nα

n , logP(Yn > yn) ∼ −qy1−ε
n ;

(H2) E[Y 2
n ] = o(Nα(1+ε)−1

n ).

Then, for all y > 0,

lim
n→∞

1
N
α(1−ε)
n

logP(Tn > Nα
n y) = −qy1−ε.

As in [16, 17, 4], the proof of Theorem 1 immediately adapts to show that, if xn � N (1+ε)−1
n ,

if, for all xεn 6 yn 6 xn(1 + δ) for some δ > 0, logP(Yn > yn) ∼ −qy1−ε
n , and if Var(Yn) =

o(x(1+ε)
n /Nn), then

logP(Tn > xn) ∼ −qx1−ε
n .

In this paper (see also Theorems 2 and 3), we have chosen to explicit the deviations in terms
of powers of Nn, as it is now standard in large deviation theory.
In addition, the proof of Theorem 1 immediately adapts to show that, if L is a slowly varying
function such that, for all Nαε

n /L(Nα
n ) 4 yn 4 Nα

n , logP(Yn > yn) ∼ −L(yn)y1−ε
n and if

assumption (H2) holds, then, for all y > 0,

lim
n→∞

1
L(Nα

n )Nα(1−ε)
n

logP(Tn > Nα
n y) = −y1−ε.

The same is true for Theorem 2 below whereas Theorem 3 below requires additional assump-
tions on L to take into account the regularly varying tail assumption.
Moreover, if an analogous assumption as (H1) for the left tail of Yn is also satisfied, then Tn
satisfies a large deviation principle at speed Nα(1−ε)

n with rate function −q |y|1−ε (the same
remark applies to Theorems 2 and 3).

Theorem 2 (Gaussian range). Let ε ∈ (0, 1), q > 0, and 1/2 < α < (1 + ε)−1. Suppose that
(H1) holds together with:
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(H2’) E[Y 2
n ]→ σ2;

(H2+) there exists γ ∈ (0, 1] such that E[|Yn|2+γ] = o(Nγ(1−α)
n ).

Then, for all y > 0,
lim
n→∞

1
N2α−1
n

logP(Tn > Nα
n y) = − y2

2σ2 .

Theorem 3 (Transition). Let ε ∈ (0, 1), q > 0, and α = (1 + ε)−1. Suppose that (H1), (H2’),
and (H2+) hold. Then, for all y > 0,

lim
n→∞

1
N

(1−ε)/(1+ε)
n

logP(Tn > N1/(1+ε)
n y) = − inf

06θ61

{
qθ1−εy1−ε + (1− θ)2y2

2σ2

}
=: −I(y). (4)

Let us explicit a little the rate function I. Let f(θ) = qθ1−εy1−ε + (1− θ)2y2/(2σ2). An easy
computation shows that, if y 6 y0 := ((1 − ε2)(1 + 1/ε)εqσ2)1/(1+ε), f is increasing and its
minimum y2/(2σ2) is attained at θ = 0. If y > y0, f has two local minima, at 0 and at θ(y):
the latter corresponds to the greatest of the two roots in [0, 1] of f ′(t) = 0, equation equivalent
to

(1− θ)θε = (1− ε)qσ2

y1+ε . (5)

If y0 < y 6 y1 := (1 + ε) (qσ2/(2ε)ε)
1

1+ε , then f(θ(y)) > f(0). And if y > y1, f(θ(y)) < f(0).
As a consequence, for all y > 0,

I(y) =


y2

2σ2 if y 6 y1

qθ(y)1−εy1−ε + (1−θ(y))2y2

2σ2 if y > y1.

3 Proofs

3.1 Proof of Theorem 1 (Maximal jump regime)
Let us fix y > 0. The result for y = 0 follows by monotony. First, we define

P(Tn > Nα
n y) = P(Tn > Nα

n y, ∀i ∈ J1, NnK Yn,i < Nα
n y)

+ P(Tn > Nα
n y, ∃i ∈ J1, NnK Yn,i > Nα

n y)
=: Pn,0 +Rn,0. (6)

Lemma 4. Under (H1) and (H2), for α > 1/2 and y > 0,

lim
n→∞

1
N
α(1−ε)
n

logRn,0 = −qy1−ε.

Proof of Lemma 4. Using (H1),

lim sup
n→∞

1
N
α(1−ε)
n

logRn,0 6 lim
n→∞

1
N
α(1−ε)
n

log(NnP(Yn > Nα
n y)) = −qy1−ε. (7)

Let us prove the converse inequality. Let δ > 0. We have,

Rn,0 > P (Tn > Nα
n y, Yn,1 > Nα

n y) > P (Tn,Nn−1 > −Nα
n δ)P(Yn > Nα

n (y + δ)).
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By Chebyshev’s inequality, observe that

P(Tn,Nn−1 > −Nn
αδ) > 1− Var(Yn)

N2α−1
n δ2 → 1,

using (H2). Finally, by (H1), one gets

lim inf
n→∞

1
N
α(1−ε)
n

logRn,0 > lim
n→∞

1
N
α(1−ε)
n

logP(Yn > Nα
n (y + δ)) = −q(y + δ)1−ε.

We conclude by letting δ → 0.

To complete the proof of Theorem 1, it remains to prove that, for α > (1 + ε)−1,

lim sup
n→∞

1
N
α(1−ε)
n

logPn,0 6 −qy1−ε, (8)

and to apply the principle of the largest term (see, e.g., [6, Lemma 1.2.15]). Let q′ ∈ (0, q).
Using the fact that 1x>0 6 ex, we get

Pn,0 6 e−q
′(Nα

n y)1−εE
[
e

q′
(Nαn y)ε Yn1Yn<Nα

n y

]Nn
.

If we prove that
E
[
e

q′
(Nαn y)ε Yn1Yn<Nα

n y

]
6 1 + o(Nα(1−ε)−1

n ),

then
logPn,0 6 −q′(Nα

n y)1−ε + o(Nα(1−ε)
n )

and the conclusion follows by letting q′ → q. Write

E
[
e

q′
(Nαn y)ε Yn1Yn<Nα

n y

]
= E

[
e

q′
(Nαn y)ε Yn1Yn<(Nα

n y)ε

]
+ E

[
e

q′
(Nαn y)ε Yn1(Nα

n y)ε6Yn<Nα
n y

]
.

First, by a Taylor expansion and (H2), we get

E
[
e

q′
(Nαn y)ε Yn1Yn<(Nα

n y)ε

]
6 E

[(
1 + q′

(Nα
n y)εYn + (q′)2eq

′

2(Nα
n y)2εY

2
n

)
1Yn<(Nα

n y)ε

]

6 1 + (q′)2eq
′

2 · E[Y 2
n ]

(Nα
n y)2ε

= 1 + o(Nα(1−ε)−1
n ).

To bound above the second expectation, we need the following simple consequence of (H1).

Lemma 5. Under (H1), for all y > 0,

∀q′ < q ∃n0 ∀n > n0 ∀u ∈ [(Nα
n y)ε, Nα

n y] logP(Yn > u) 6 −q′u1−ε.

Proof of Lemma 5. By contrapposition, if the conclusion of the lemma is false, we can con-
struct a sequence (un)n>1 such that, for all n > 1, un ∈ [(Nα

n y)ε, Nα
n y] and logP(Yn > un) >

−q′u1−ε
n , whence (H1) is not satisfied.
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Now, integrating by parts, we get

E
[
e

q′
(Nαn y)ε Yn1(Nα

n y)ε6Yn<Nα
n y

]
=
∫ Nα

n y

(Nα
n y)ε

e
q′

(Nαn y)ε uP(Yn ∈ du)

= −
[
e

q′
(Nαn y)ε uP(Yn > u)

]Nα
n y

(Nα
n y)ε

+ q′

(Nα
n y)ε

∫ Nα
n y

(Nα
n y)ε

e
q′

(Nαn y)ε uP(Yn > u)du

6 eq
′P(Yn > (Nα

n y)ε) + q′

(Nα
n y)ε

∫ Nα
n y

(Nα
n y)ε

e
q′

(Nαn y)ε u−q
′′u1−ε

du

6 (1 + q′(Nα
n y)1−ε)eq′−q′′(Nα

n y)ε(1−ε)

= o(Nα(1−ε)−1
n )

for n large enough, using (H1) and Lemma 5 with q′′ ∈ (q′, q), and the supremum of u 7→
q′(Nα

n y)−εu− q′′u1−ε over [(Nα
n y)ε, Nα

n y]. The proof of Theorem 1 is now complete.

3.2 Proof of Theorem 2 (Gaussian regime)
Let us fix y > 0. The result for y = 0 follows by monotony. For all m ∈ J0, NnK, we define

Πl,m(x) = P
(
Tn,l > x, ∀i ∈ J1, l −mK Yn,i < (Nα

n y)ε,

∀i ∈ Jl −m+ 1, lK (Nα
n y)ε 6 Yn,i < Nα

n y
)
,

and we denote ΠNn,m(Nα
n y) by Πn,m, so that

Pn = Pn,0 +Rn,0 =
Nn∑
m=0

(
Nn

m

)
Πn,m +Rn,0. (9)

By Lemma 4 and the fact that, for α > (1 + ε)−1, 2α− 1 > α(1− ε), we get

lim
n→∞

1
N2α−1
n

logRn,0 = −∞. (10)

Lemma 6. Under (H1), (H2’), and (H2+), for 1/2 < α 6 (1 + ε)−1 and y > 0,

lim
n→∞

1
N2α−1
n

log Πn,0 = − y2

2σ2 . (11)

Proof of Lemma 6. For all n > 1, we introduce the variable Y <
n distributed as L(Yn | Yn <

(Nα
n y)ε). Let T<n = ∑Nn

i=1 Y
<
n,i where the Y <

n,i are independent random variables distributed as
Y <
n . Then

Πn,0 = P(T<n > Nα
n y)P(Yn < (Nα

n y)ε)Nn .

On the one hand, P(Yn < (Nα
n y)ε)Nn → 1 by (H1). On the other hand, in order to apply the

unilateral version of Gärtner-Ellis theorem (see [22], and [4] for a modern formulation), we
compute, for u > 0,

Λn(u) = N2(1−α)
n logE

[
e

u

N1−α
n

Y <n
]
.

Now, there exists a constant c > 0 such that, for all t 6 uyε, |et − (1 + t+ t2/2)| 6 c |t|2+γ ,
whence ∣∣∣∣∣e u

N1−α
n

Y <n − 1− u

N1−α
n

Y <
n −

u2

2N2(1−α)
n

(Y <
n )2

∣∣∣∣∣ 6 cu2+γ

N
(2+γ)(1−α)
n

|Y <
n |

2+γ
, (12)
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by the definition of Y <
n and α(1 + ε) 6 1. Now,∣∣∣∣∣∣E

[
e

u

N1−α
n

Y <n
]
− e

u2σ2

2N2(1−α)
n

∣∣∣∣∣∣ 6
∣∣∣∣∣E
[
e

u

N1−α
n

Y <n
]
− E

[
1 + u

N1−α
n

Y <
n + u2

2N2(1−α)
n

(Y <
n )2

]∣∣∣∣∣
+

∣∣∣∣∣∣E
[
1 + u

N1−α
n

Y <
n + u2

2N2(1−α)
n

(Y <
n )2

]
− e

u2σ2

2N2(1−α)
n

∣∣∣∣∣∣ . (13)

The first term of (13) is bounded above by

cu2+γ

N
(2+γ)(1−α)
n

E[|Y <
n |

2+γ] = o(N−2(1−α)
n ), (14)

by assumptions (H1) and (H2+), and an integration by parts. Using a Taylor expansion of
order 2 of the exponential function, the second term of (13) is equal to∣∣∣∣∣ u

N1−α
n

E[Y <
n ] + u2

2N2(1−α)
n

(E[(Y <
n )2]− σ2) + o(N−2(1−α

n )
∣∣∣∣∣ . (15)

By (H1) and the fact that E[Yn] = 0, E[Y <
n ] is exponentially decreasing, whence E[Y <

n ] =
o(1/N1−α

n ); similarly, by (H1), (H2’), and (H2+), E[(Y <
n )2]→ σ2; hence, we get

Λn(u) = u2σ2

2 + o(1),

and the proof of Lemma 6 is complete.

Theorem 2 stems from (10), (11) and the fact that, for 1/2 < α < (1 + ε)−1,

lim sup
n→∞

1
N2α−1
n

log
Nn∑
m=1

(
Nn

m

)
Πn,m 6 − y2

2σ2 , (16)

the proof of which is given now. We adapt the proof in [17, Lemma 5] and focus on the
logarithmic scale. Let mn = dNα(1−ε)22y(1−ε)2

n e. In particular, for all m > mn,

m(Nα
n y)ε(1−ε) > m(Nα

n y)ε(1−ε)
2 + (Nα

n y)1−ε. (17)

Lemma 7. Under (H1), for α > 1/2, y > 0, and q′ < q,

lim sup
n→∞

1
N
α(1−ε)
n

log
Nn∑

m=mn+1

(
Nn

m

)
Πn,m 6 −q′y1−ε.

Proof. For n large enough, using Lemma 5 and inequality (17),
Nn∑

m=mn+1

(
Nn

m

)
Πn,m 6

Nn∑
m=mn+1

(
Nn

m

)
P(∀i ∈ J1,mK Yn,i > (Nα

n y)ε)

6
Nn∑

m=mn+1

(
Nn

m

)
e−mq

′(Nα
n y)ε(1−ε)

6 e−q
′(Nα

n y)1−ε
Nn∑

m=mn+1

(
Nn

m

)
e−mq

′(Nα
n y)ε(1−ε)/2

6 e−q
′(Nα

n y)1−ε
(

1 + e−q
′(Nα

n y)ε(1−ε)/2
)Nn

.
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Here, as α(1− ε) > 2α− 1, we conclude that

lim
n→∞

1
N2α−1
n

log
Nn∑

m=mn+1

(
Nn

m

)
Πn,m = −∞. (18)

Now, for m ∈ J1,mnK, let us bound above Πn,m. Let us define

fm(u1, . . . , um) := ΠNn−m,0

(
Nα
n y −

m∑
i=1

ui

)
,

which is nondecreasing in each variable. For q′′ < q′ < q and n large enough,

Πn,m = P(Tn > Nα
n y , (Nα

n y)ε 6 Yn,1, . . . , Yn,m < Nα
n y , Yn,m+1, . . . , Yn,n < (Nα

n y)ε)

=
∫

[(Nα
n y)ε,Nα

n y]m
fm(u1, . . . , um) dPYn(u1) · · · dPYn(um)

=
∑

(k1,...,km)

∫∏
i
(ki−1,ki]

fm(u1, . . . , um) dPYn(u1) · · · dPYn(um)

6
∑

(k1,...,km)
fm(k1, . . . , km)

∏
i

P(Yn ∈ (ki − 1, ki])

6
∑

(k1,...,km)
fm(k1, . . . , km)e−q′

∑m

i=1(ki−1)1−ε

6
∫

[(Nα
n y)ε,Nα

n y+2]m
fm(u1, . . . , um) e−q′′

∑m

i=1 u
1−ε
i du1 · · · dum

= I1,m + I2,m,

where, for j ∈ {1, 2},

Ij,m :=
∫
Aj,m

fm(u1, . . . , um) e−q′′sm(u1,...,um) du1 · · · dum (19)

with

A1,m :=
{

(u1, . . . , um) ∈ [(Nα
n y)ε, Nα

n y + 2]m
∣∣∣∣∣
m∑
i=1

ui > Nα
n y

}
,

A2,m :=
{

(u1, . . . , um) ∈ [(Nα
n y)ε, Nα

n y + 2]m
∣∣∣∣∣
m∑
i=1

ui < Nα
n y

}
,

and
sm(u1, . . . , um) :=

m∑
i=1

u1−ε
i .

Lemma 8. For α > 1/2 and y > 0,

lim sup
n→∞

1
N
α(1−ε)
n

log
mn∑
m=1

(
Nn

m

)
I1,m 6 −q′′y1−ε.

Proof. Since sm is concave, sm reaches its minimum on A1,m at the points with all coordinates
equal to (Nα

n y)ε except one equal to Nα
n y − (Nα

n y)ε(m − 1). Moreover, using the fact that
fm(u1, . . . , um) 6 1 in (19), it follows that, for n large enough, for all m ∈ {1, . . . ,mn},

I1,m 6 (Nα
n y)me−q′′(m−1)(Nα

n y)ε(1−ε)−q′′(Nα
n y−(m−1)(Nα

n y)ε)1−ε

6 (Nα
n y)me−q′′(Nα

n y)1−ε
e−q

′′(m−1)((Nα
n y)ε(1−ε)−1).

8



Finally,
mn∑
m=1

(
Nn

m

)
I1,m 6 e−q

′′(Nα
n y)1−ε

mn∑
m=1

(
Nn

m

)
(Nα

n y)me−q′′(m−1)((Nα
n y)ε(1−ε)−1)

6 e−q
′′(Nα

n y)1−ε
N1+α
n y

mn∑
m=1

(
N1+α
n ye−q

′′((Nα
n y)ε(1−ε)−1)

)m−1
,

and the conclusion follows, since the latter sum is bounded.

As α(1− ε) > 2α− 1, we conclude that

lim
n→∞

1
N2α−1
n

log
mn∑
m=1

(
Nn

m

)
I1,m = −∞. (20)

Lemma 9. Under (H2’) and (H2+), for 1/2 < α 6 (1 + ε)−1, y > 0, n large enough, and
m ∈ {1, . . . ,mn},

I2,m 6 (Nα
n y)me−q′′(m−1)(Nα

n y)ε(1−ε) exp
(

sup
m(Nα

n y)ε6u<Nα
n y

φm(u)
)

where
φm(u) := − (Nα

n y − u)2

2σ2(Nn −m)(1 + cn) − q
′′(u− (m− 1)(Nα

n y)ε)1−ε.

Proof. Here, we use Chebyshev’s exponential inequality to control fm(u1, . . . , um) = ΠNn−m,0(Nα
n y−

u1 − · · · − um) in I2,m. For all l ∈ N∗, for all x ∈ R, and for all λ > 0,

Πl,0(x) 6 exp
{
−λx+ l logE

[
eλYn1Yn6(Nα

n y)ε
]}
.

LetM > y/σ2. There exists c > 0 such that, for all s 6M , we have es 6 1+s+s2/2+c|s|2+γ.
Hence, as soon as λ 6M/N1−α

n 6M/Nαε
n ,

E
[
eλYn1Yn6(Nα

n y)ε
]
6 1 + λ2

2 E[Y 2
n ] + cλ2+γE[|Yn|2+γ] 6 1 + λ2σ2

2 (1 + cn), (21)

where
cn := E[Y 2

n ]− σ2 + 2cMγ

σ2 N−γ(1−α)
n E[|Yn|2+γ] = o(1),

by (H2’) and (H2+). Thus, for λ 6M/N1−α
n ,

ΠNn−m,0(Nα
n y − u) 6 exp

(
−λ(Nα

n y − u) + (Nn −m)λ
2σ2

2 (1 + cn)
)
.

For n large enough and m ∈ {1, . . . ,mn}, the infimum in λ of the last expression is attained
at

λ∗ := Nα
n y − u

(Nn −m)σ2(1 + cn) 6
M

N1−α
n

,

and is equal to −(Nα
n y − u)2/(2σ2(Nn −m)(1 + cn)). So, for n large enough:

ΠNn−m,0(Nα
n y − u) 6 exp

(
− (Nα

n y − u)2

2σ2(Nn −m)(1 + cn)

)
. (22)

Since sm is concave, sm reaches its minimum on

A2,m,u :=
{

(u1, . . . , um) ∈ [(Nα
n y)ε, Nα

n y + 2]m
∣∣∣∣∣
m∑
i=1

ui = u

}

9



at the points with all coordinates equal to (Nα
n y)ε except one equal to u − (m − 1)(Nα

n y)ε,
whence, for n large enough and m ∈ {1, . . . ,mn},

I2,m 6 (Nα
n y)m sup

m(Nα
n y)ε6u<Nα

n y
exp

(
− (Nα

n y − u)2

2σ2(Nn −m)(1 + cn) − q
′′(u− (m− 1)(Nα

n y)ε)1−ε

− q′′(m− 1)(Nα
n y)ε(1−ε)

)

6 (Nα
n y)me−q′′(m−1)(Nα

n y)ε(1−ε) exp
(

sup
m(Nα

n y)ε6u<Nα
n y

φm(u)
)
.

Now, for 1/2 < α < (1 + ε)−1, n large enough, and m ∈ {1, . . . ,mn}, the function φm is
decreasing on [m(Nα

n y)ε, Nα
n y). So,

I2,m 6 (Nα
n y)m exp

(
−q′′m(Nα

n y)ε(1−ε) − (Nα
n y −mn(Nα

n y)ε)2

2Nnσ2(1 + cn)

)
.

It follows that
mn∑
m=1

(
Nn

m

)
I2,m 6 e

− (Nαn y−mn(Nαn y)ε)2

2Nnσ2(1+cn)
mn∑
m=1

(
N1+α
n ye−q

′′(Nα
n y)ε(1−ε))m

.

Since the latter sum is bounded, we get

lim sup
n→∞

1
N2α−1
n

log
mn∑
m=1

(
Nn

m

)
I2,m 6 − y2

2σ2 (23)

as mn(Nα
n y)ε = o(Nα

n ) and cn = o(1). By (18), (20), and (23), we get the required result.

Remark 10. Notice that, using the contraction principle, one can show that, for all fixed m,

lim sup
n→∞

1
N

(1−ε)/(1+ε)
n

log Πn,m = − y2

2σ2 .

3.3 Proof of Theorem 3 (Transition)
Here, we assume (H1), (H2’), and (H2+), and we deal with the case α = (1 + ε)−1, so that
α(1−ε) = 2α−1 = (1−ε)/(1+ε). Let us fix y > 0. The result for y = 0 follows by monotony.
We still consider the decomposition (9). By Lemmas 4 and 6, and the very definition of I in
(4), we have

lim
n→∞

1
N

(1−ε)/(1+ε)
n

logRn,0 = −qy1−ε 6 −I(y)

and
lim
n→∞

1
N

(1−ε)/(1+ε)
n

log Πn,0 = − y2

2σ2 6 −I(y).

To complete the proof of Theorem 3, it remains to prove that

lim inf
n→∞

1
N

(1−ε)/(1+ε)
n

log Πn,1 > −I(y) (24)

lim sup
n→∞

1
N

(1−ε)/(1+ε)
n

log
Nn∑
m=1

Πn,m 6 −I(y) (25)

and to apply the principle of the largest term.
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Proof of (24). For all t ∈ (0, 1),

1
N

(1−ε)/(1+ε)
n

log Πn,1 >
1

N
(1−ε)/(1+ε)
n

logP
(
Tn,Nn−1 > Nα

n ty, ∀i ∈ J1, Nn − 1K Yn,i < (Nα
n y)ε

)
+ 1
N

(1−ε)/(1+ε)
n

logP
(
Nα
n (1− t)y 6 Yn,Nn < Nα

n y
)

−−−→
n→∞

−t
2y2

2σ2 − q(1− t)
1−εy1−ε,

by Lemma 6 and by (H1). Optimizing in t ∈ (0, 1) provides the conclusion.

Proof of (25). We follow the same lines as in the proof of (16). By Lemma 7, letting q′ → q,
we get

lim sup
n→∞

1
N

(1−ε)/(1+ε)
n

log
Nn∑

m=mn+1

(
Nn

m

)
Πn,m 6 −qy1−ε 6 −I(y). (26)

Let η = 1− q′′/q ∈ (0, 1). By Lemma 8,

lim sup
n→∞

1
N

(1−ε)/(1+ε)
n

log
mn∑
m=1

(
Nn

m

)
I1,m 6 −q′′y1−ε 6 −(1− η)I(y). (27)

Now, recall that Lemma 9 provides I2,m 6 (Nα
n y)me−q′′(m−1)(Nα

n y)ε(1−ε)
eMn , for n large enough,

where

Mn = sup
m(Nα

n y)ε6u<Nα
n y

(
− (Nα

n y − u)2

2σ2(Nn −m)(1 + cn) − q
′′(u− (m− 1)(Nα

n y)ε)1−ε
)

6 N (1−ε)/(1+ε)
n sup

m(Nα
n y)−1+ε6θ<1

(
− (1− θ)2y2

2σ2(1 + cn) − q
′′θ1−εy1−ε

(
1− (m− 1)(Nα

n y)−1+ε

θ

)1−ε)
.

For n large enough, for all m ∈ {1, . . . ,mn},

inf
m(Nα

n y)−1+ε6θ<η

 (1− θ)2y2

2σ2(1 + cn) + q′′θ1−ε
(

1− (m− 1)(Nα
n y)−1+ε

θ

)1−ε
 >

(1− η)2y2

2σ2 (1− η)

> (1− η)3I(y)

and

inf
η6θ<1

 (1− θ)2y2

2σ2(1 + cn) + q′′θ1−ε
(

1− (m− 1)(Nα
n y)−1+ε

θ

)1−ε


> inf
η6θ<1

{
(1− θ)2y2

2σ2 + q′′θ1−εy1−ε
}

(1− η)

> (1− η)2I(y).

So Mn 6 −N (1−ε)/(1+ε)
n (1− η)3I(y) and

lim sup
n→∞

1
N

(1−ε)/(1+ε)
n

log
mn∑
m=1

(
n

m

)
I2,m

6− (1− η)3I(y) + lim sup
n→∞

1
N

(1−ε)/(1+ε)
n

log
mn∑
m=1

(
n

m

)(
Nα
n ye

−q′′(Nα
n y)ε(1−ε))m

=− (1− η)3I(y). (28)
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Finally, (26), (27), and (28) imply

lim sup
n→∞

1
N

(1−ε)/(1+ε)
n

log
Nn∑
m=1

Πn,m 6 −(1− η)3I(y),

and (25) follows, letting q′′ → q, i.e. η → 0.

Remark 11. Notice that, using the contraction principle, one can show that, for all fixed m,

lim sup
n→∞

1
N

(1−ε)/(1+ε)
n

log Πn,m = −I(y).

4 About the assumptions
Looking into the proof of Theorem 1, one can see that assumption (H1) can be weakened and
one may only assume the two conditions that follow.

Theorem 12. The conclusion of Theorem 1 holds under (H2) and:

(H1a) for all yn = Θ(Nα
n ), logP(Yn > yn) ∼ −qy1−ε

n ;

(H1b) for all Nαε
n 4 yn 4 Nα

n , lim sup y−(1−ε)
n logP(Yn > yn) 6 −q.

Lemma 13. (H1a) is equivalent to:

(H1a’) for all y > 0, logP(Yn > Nα
n y) ∼ −q(Nα

n y)1−ε.

Proof. If Nα
n c1 6 yn 6 Nα

n c2, then

−qc2 6 N−α(1−ε)
n logP(Yn > yn) 6 −qc1.

First extract a convergent subsequence; then, again extract a subsequence such that N−αn yn
is convergent and use (H1a) to show that N−α(1−ε)

n logP(Yn > yn) is convergent.

Lemma 14. (H1b) is equivalent to the conclusion of Lemma 5:

(H1b’) ∀y > 0 ∀q′ < q ∃n0 ∀n > n0 ∀u ∈ [(Nα
n y)ε, Nα

n y] logP(Yn > u) 6 −q′u1−ε.

Proof. See the proof of Lemma 5.

Theorem 15. The conclusion of Theorem 1 holds under assumptions (H1a), (H1b), and
E[|Yn|2+γ]/E[|Yn|2]1+γ/2 = o(Nγ/2

n ).

Proof. The only modification in the proof is the minoration of Rn,0:

Rn,0 > P(Tn,Nn−1 > 0)P(Yn > Nα
n y).

Now Lyapunov’s theorem [1, Theorem 27.3] applies and provides P(Tn,Nn−1 > 0)→ 1/2.

As for Theorem 2, assumption (H1) can be weakened and one may only assume (H1b), or
even the following weaker assumption.

Theorem 16. The conclusion of Theorem 2 holds under (H2’), (H2+), and:

(H1c) ∀y > 0 ∃q > 0 ∃n0 ∀n > n0 ∀u ∈ [(Nα
n y)ε, Nα

n y] logP(Yn > u) 6 −qu1−ε.

Finally, in Theorem 3, assumption (H1) can be weakened and one may only assume (H1a)
and (H1b).
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5 Application: truncated random variable
Let us consider a centered real-valued random variable Y , admitting a finite moment of order
2 + γ for some γ > 0. Set σ2 := E[Y 2]. Now, let β > 0 and c > 0. For all n > 1, let
us introduce the truncated random variable Yn defined by L(Yn) = L(Y | Y < Nβ

n c). Such
truncated random variables naturally appear in proofs of large deviation results.
If Y has a light-tailed distribution, i.e. ΛY (λ) := logE[eλY ] < ∞ for some λ > 0, then (the
unilateral version of) Gärtner-Ellis theorem applies:

• if α ∈ (1/2, 1), then

lim
n→∞

1
N2α−1
n

logP(Tn > Nα
n y) = − y2

2σ2 ;

• if α = 1, then

lim
n→∞

1
Nn

logP(Tn > Nα
n y) = −Λ∗Y (y) := − sup

λ>0
{λy − ΛY (λ)}.

Note that we recover the same asymptotics as for the non truncated random variable Y . In
other words, the truncation does not impact the deviation behaviour.
Now we consider the case where logP(Y > y) ∼ −qy1−ε for some q > 0 and ε ∈ (0, 1). In this
case, Gärtner-Ellis theorem does not apply since all the rate functions are not convex as usual
(as can be seen in Figures 1 to 3). Observe that, as soon as yn →∞,

lim sup
n→∞

1
y1−ε
n

logP(Yn > yn) = lim sup
n→∞

1
y1−ε
n

(
logP(yn 6 Y < Nβ

n c)− logP(Y < Nβ
n c)

)
6 −q,

so (H1b) is satisfied. If, moreover, yn 6 Nβ
n c
′ with c′ < c, then logP(Yn > yn) ∼ −qy1−ε

n , so
(H1) is satisfied for α < β. In addition, E[Yn]−E[Y ], E[Y 2

n ]−E[Y 2] and E[Y 2+γ
n ]−E[Y 2+γ] are

exponentially decreasing to zero. Therefore, our theorems directly apply for α < max(β, (1 +
ε)−1), and even for α = (1 + ε)−1 < β. For α > max(β, (1 + ε)−1), the proofs easily adapt to
cover all cases. To expose the results, we separate the three cases β > (1 + ε)−1, β < (1 + ε)−1

and β = (1 + ε)−1 and provide a synthetic diagram at the end of the section (page 18) and
the graphs of the exhibited rate functions (pages 17 and 18).

5.1 Case β > (1 + ε)−1

Gaussian range When α < (1 + ε)−1, Theorem 2 applies and, for all y > 0,

lim
n→∞

1
N2α−1
n

logP(Tn > Nα
n y) = − y2

2σ2 .

Transition 1 When α = (1 + ε)−1, Theorem 3 applies and, for all y > 0,

lim
n→∞

1
N

(1−ε)/(1+ε)
n

logP(Tn > Nα
n y) = −I1(y) := −I(y) = − inf

06θ61

{
qθ1−εy1−ε + (1− θ)2y2

2σ2

}
.

Maximal jump range When (1 + ε)−1 < α < β, Theorem 1 applies and, for all y > 0,

lim
n→∞

1
N
α(1−ε)
n

logP(Tn > Nα
n y) = −qy1−ε.

13



Transition 2 When α = β, for all y > 0,

lim
n→∞

1
N
α(1−ε)
n

logP(Tn > Nα
n y) = −I2(y) := −q

(
by/cc c1−ε + (y − by/cc c)1−ε

)
.

Here, as in all cases where α > β, we adapt the definitions (6) and (9) as:

P(Tn > Nα
n y) = P(Tn > Nα

n y, ∀i ∈ J1, NnK Yn,i < Nβ
n c) =: Pn,0 (29)

(Rn,0 = 0) and, for all m ∈ J0, NnK,

Πn,m = P
(
Tn > Nα

n y, ∀i ∈ J1, Nn −mK Yn,i < (Nβ
n c)ε,

∀i ∈ JNn −m+ 1, NnK (Nβ
n c)ε 6 Yn,i < Nβ

n c
)
. (30)

For all t > 0,

Πn,0 = P(Tn > Nα
n y, ∀i ∈ J1, NnK Yn,i < (Nα

n c)ε)

6 e−tyN
α(1−ε)
n E

[
etN

−αε
n Yn1Yn<(Nα

n c)ε
]Nn

= e−tyN
α(1−ε)
n (1+o(1)),

(see the proof of Theorem 1), whence Lemma 6 with L(Y <
n ) = L(Yn | Yn < Nα

n c) updates into

1
N
α(1−ε)
n

log Πn,0 −−−→
n→∞

−∞.

So, by the contraction principle, for all fixed m > 0,

1
N
α(1−ε)
n

log Πn,m −−−→
n→∞

−∞ if m 6 y/c− 1
−q (by/cc c1−ε + (y − by/cc c)1−ε) otherwise,

that provides a minoration of the sum of the Πn,m’s. To obtain a majoration, let us introduce
mn = dNα(1−ε)2

n 2ke where k = by/cc c1−ε + (y − by/cc c)1−ε. Lemma 7 remains unchanged
while Lemmas 8 and 9 requires adjustments. The integration domains defining I1,m and I2,m
become

A1,m =
{

(u1, . . . , um) ∈ [(Nα
n c)ε, Nα

n c+ 2]m
∣∣∣∣∣
m∑
i=1

ui > Nα
n y

}
,

A2,m =
{

(u1, . . . , um) ∈ [(Nα
n c)ε, Nα

n c+ 2]m
∣∣∣∣∣
m∑
i=1

ui < Nα
n y

}
,

Further, the concave function sm attains its minimum at points with all coordinates equal to
(Nα

n c)ε except by/cnc coordinates equal toNα
n cn and one coordinate equal toNα

n (y − by/cnccn)−
(Nα

n c)ε (m− 1− by/cnc) with cn = c + 2N−αn . Then following the same lines as in the proof
of Lemmas 8 and 9, we get, for j ∈ {1, 2},

lim
n→∞

1
N2α−1
n

log
mn∑
m=1

(
Nn

m

)
Ij,m = −q

(
by/cc c1−ε + (y − by/cc c)1−ε

)
.
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Truncated maximal jump range When β < α < β + 1 and y > 0, or α = β + 1 and
y < c, the proof of Theorem 1 adapts and provides

lim
n→∞

1
Nα−βε
n

logP(Tn > Nα
n y) = −qyc−ε.

As in the previous case, we use the decomposition given by (29) and (30). To upper bound
Pn,0, we write

Pn,0 6 e−qyc
−εNα−βε

n E
[
eyc
−εN−βεn Yn

(
1Yn<(Nβ

n c)ε + 1(Nβ
n c)ε6Yn<Nβ

n c

)]Nn
and follow the same lines as in the proof of Theorem 1. To lower bound Pn,0, we write, for
c′ < c,

logPn,0 > logP(∀i ∈ J1, dNα−β
n y/c′eK Yn,i > Nβ

n c
′)

∼ −Nα−β
n y(c′)−1q(Nβ

n c
′)1−ε

= −Nα−βε
n qy(c′)−ε,

and we recover the upper bound, when c′ → c.

Trivial case When α = β+1 and y > c, or α > β+1, we obviously have P(Tn > Nα
n y) = 0.

5.2 Case β < (1 + ε)−1

Here, Theorem 2 applies for α < (1 + ε)−1. The notable fact is that the Gaussian range is
extended: it spreads until α < 1− βε.

Gaussian range When α < 1− βε, the proof of Theorem 2 adapts and, for all y > 0,

lim
n→∞

1
N2α−1
n

logP(Tn > Nα
n y) = − y2

2σ2 .

As we said, the result for α < (1 + ε)−1 is a consequence of Theorem 2. Now, suppose
α > (1 + ε)−1 > β. We use the decomposition given by (29) and (30). Lemma 6 works for
α < 1 − βε, with L(Y <

n ) = L(Yn | Yn < (Nβ
n c)ε). Then, we choose mn = dNα−2βε+βε2

n 2yc−εe.
We obtain the equivalent of Lemma 7:

lim sup
n→∞

1
Nα−βε
n

log
Nn∑

m=mn+1

(
Nn

m

)
Πn,m 6 −q′yc−ε.

with Nα−βε
n � N2α−1

n . Finally, Lemmas 8 and 9 adapt as well, with

A1,m =
{

(u1, . . . , um) ∈
[
(Nβ

n c)ε, Nβ
n c+ 2

]m ∣∣∣∣∣
m∑
i=1

ui > Nα
n y

}
,

A2,m =
{

(u1, . . . , um) ∈
[
(Nβ

n c)ε, Nβ
n c+ 2

]m ∣∣∣∣∣
m∑
i=1

ui < Nα
n y

}
.

Transition 3 When α = 1− βε, the proof of Theorem 3 adapts and, for all y > 0,

lim
n→∞

1
N1−2βε
n

logP(Tn > N1−βε
n y) = −I3(y) := − inf

06t61

{
q(1− t)yc−ε + t2y2

2σ2

}

= −


y2

2σ2 if y 6 y3
qy
cε
− q2σ2

2c2ε if y > y3

with y3 := qσ2c−ε.
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Truncated maximal jump range When 1− βε < α < 1 + β and y > 0, or α = 1 + β and
y < c, as before, the proof of Theorem 1 adapts and

lim
n→∞

1
Nα−βε
n

logP(Tn > Nα
n y) = −qyc−ε.

Trivial case When α = β+1 and y > c, or α > β+1, we obviously have P(Tn > Nα
n y) = 0.

5.3 Case β = (1 + ε)−1

Gaussian range When α < (1 + ε)−1 = β, Theorem 2 applies and, for all y > 0,

lim
n→∞

1
N2α−1
n

logP(Tn > Nα
n y) = − y2

2σ2 .

Transition T0 As in Section 2 after the statement of Theorem 3, we define θ(y) and y1 for
the function f(θ) = qθ1−εy1−ε + (1− θ)2y2/(2σ2). Define θ̃(y) := 1y>y1θ(y) and notice that θ̃
is increasing on [y1,∞) (and θ̃(y)→ 1 as y →∞). Set c0 := θ̃(y1)y1 = (2εqσ2)1/(1+ε).
• When α = (1 + ε)−1 = β and c 6 c0, then

lim
n→∞

1
N

(1−ε)/(1+ε)
n

logP(Tn > Nα
n y) = −qk0,1(y)c1−ε + (y − k0,1(c)c)2

2σ2 =: −I0,1(y)

where
k0,1(y) := max

(⌊
y − y0,1(c)

c

⌋
+ 1, 0

)
and y0,1(c) := c

2 + qσ2c−ε

(y0,1(c) is the unique solution in y of y2
0,1 − (y0,1 − c)2 = 2σ2qc1−ε).

• When α = (1 + ε)−1 = β and c > c0, then

lim
n→∞

1
N

(1−ε)/(1+ε)
n

logP(Tn > Nα
n y) = −qk0,2(y)c1−ε + I(y − k0,2(c)c) =: −I0,2(y)

where

k0,2(y) := max
(⌊

y − y0,2(c)
c

⌋
+ 1, 0

)
and y0,2(c) := c+ (1− ε)qσ2c−ε

(y0,2(c) is the unique solution in y of θ̃(y)y = c).
Remark: For all c < c0, y0,1(c) > y1: so the Gaussian range in the nontruncated case (which
stops at y1) is extended. Moreover, y0,1(c0) = y1 = y0,2(c0), and, for c = c0, I0,1 = I0,2 (since
I1(y) = y2/(2σ2) for y 6 y1).

Truncated maximal jump range When (1+ε)−1 = β < α < β+1 and y > 0, or α = 1+β
and y < c, as before, the proof of Theorem 1 adapts and

lim
n→∞

1
Nα−βε
n

logP(Tn > Nα
n y) = −qyc−ε.

Trivial case When α = β+1 and y > c, or α > β+1, we obviously have P(Tn > Nα
n y) = 0.
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Figure 1: Representation of the rate functions. Here, q = 1, σ2 = 2, ε = 1/2, and c = 1. Left
- Gaussian range. The typical event corresponds to the case where all the random variables are
small but their sum has a Gaussian contribution. Center - Maximal jump range. The typical
event corresponds to the case where one random variable contributes to the total sum (Nα

n y),
no matter the others. We recover the random variable tail. Right - Truncated maximal jump
range. The typical event corresponds to the case where Nα−β

n y/c variables take the saturation
value Nβ

n c, no matter the others.

Figure 2: Representation of the rate functions. Here, q = 1, σ2 = 2, ε = 1/2, and c = 1.
Left - Transition 1. The typical event corresponds to the case where one random variable
is large (Nα

n θ(y)y) and the sum of the others has a Gaussian contribution (two competing
terms). Center - Transition 2. The typical event corresponds to the case where by/cc random
variables take the saturation value Nβ

n c and one completes to get the total sum. Right -
Transition 3. The typical event corresponds to the case where some random variables (a
number of order N1−β(1+ε)

n ) take the saturation value Nβ
n c, and the sum of the others has a

Gaussian contribution (two competing terms).
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Figure 3: Representation of the rate functions. Here, q = 1, σ2 = 2, ε = 1/2, and c = 1.
Left - Transition 1- for c 6 c0. The typical event corresponds to the case where k3(c) variables
take the saturation value Nβc, and the sum of the others has a Gaussian contribution. Right
- Transition 1- for c > c0. The typical event corresponds to the case where k2(c) variables take
the saturation value Nβc, one is also large (Nβ

n θ(y − k2(c)c)(y − k2(c)c)) and the sum of the
others has a Gaussian contribution.
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Figure 4: Rate function transition diagram.
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