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 derived deviation results at logarithmic scale with shorter proofs relying on classical tools of large deviation theory and expliciting the rate function at the transition. In this paper, we exhibit the same asymptotic behaviour for triangular arrays of semiexponentially distributed random variables, no more supposed absolutely continuous.

Introduction

Moderate and large deviations of the sum of independent and identically distributed (i.i.d.) real-valued random variables have been investigated since the beginning of the 20th century. Kinchin [START_REF] Kinchin | Über einer neuen Grenzwertsatz der Wahrscheinlichkeitsrechnung[END_REF] in 1929 was the first to give a result on large deviations of the sum of i.i.d. Bernoulli distributed random variables. In 1933, Smirnov [START_REF] Smirnov | On the probabilities of large deviations[END_REF] improved this result and in 1938 Cramér [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] gave a generalization to sums of i.i.d. random variables satisfying the eponymous Cramér's condition which requires the Laplace transform of the common distribution of the random variables to be finite in a neighborhood of zero. Cramér's result was extended by Feller [START_REF] Feller | Generalization of a probability limit theorem of Cramér[END_REF] to sequences of non identically distributed bounded random variables. A strengthening of Feller's result was given by Petrov in [START_REF] Petrov | Generalization of Cramér's limit theorem[END_REF][START_REF] Petrov | Large deviations for sums of independent non identically distributed random variables[END_REF] for non identically distributed random variables. When Cramér's condition does not hold, an early result is due to Linnik [START_REF] Linnik | On the probability of large deviations for the sums of independent variables[END_REF] in 1961 and concerns polynomial-tailed random variables. The case where the tail decreases faster than all power functions (but not enough for Cramér's condition to be satisfied) has been considered by Petrov [START_REF] Petrov | Generalization of Cramér's limit theorem[END_REF] and by S.V. Nagaev [START_REF] Nagaev | An integral limit theorem for large deviations[END_REF]. In [START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations Into Account When Cramér's Condition Does Not Hold[END_REF], A.V. Nagaev studied the case where the commom distribution of the i.i.d. random variables is absolutely continuous with respect to the Lebesgue measure with density p(t) ∼ e -|t| 1-as |t| tends to infinity, with ∈ (0, 1). He distinguished five exact-asymptotics results corresponding to five types of deviation speeds. In [START_REF] Borovkov | Large deviation probabilities for random walks with semiexponential distributions[END_REF][START_REF] Borovkov | Asymptotic analysis of random walks[END_REF], Borovkov investigated exact asymptotics of the deviations probability for random variables with semiexponential distribution, also called Weibull-like distribution, i.e. with a tail writing as e -t 1-L (t) , where ∈ (0, 1) and L is a suitably slowly varying function at infinity. In [START_REF] Brosset | Probabilistic proofs of large deviation results for sums semiexponential random variables and explicit rate function at the transition[END_REF], the authors consider the following setting. Let ∈ (0, 1) and let X be a real-valued random variable with a density p with respect to the Lebesgue measure verifying: p(x) ∼ e -x 1-, as x → +∞.

(

) 1 
and ∃γ ∈ (0, 1]

ρ := E[|X| 2+γ ] < ∞. (2) 
For all n ∈ N * , let X 1 , X 2 , ..., X n be i.i.d. copies of X and set S n = X 1 + • • • + X n and P n (x) = P(S n x). According to the asymptotics of x n , three logarithmic asymptotic ranges then appear. In the sequel, the notation x n y n (resp. x n y n , x n y n , and

x n = Θ(y n )) means that y n /x n → 0 (resp. x n /y n → 0, lim sup |x n /y n | < ∞, and y n x n y n ) as n → ∞. Maximal jump range [4, Theorem 1] When x n n 1/(1+ ) , log P n (x n ) ∼ log P(max(X 1 , . . . , X n ) x n ). Gaussian range [4, Theorem 2] When x n n 1/(1+ ) , log P n (x n ) ∼ log(1 -φ(n -1/2 x n )),
φ being the cumulative distribution function of the standard Gaussian law.

Transition [START_REF] Brosset | Probabilistic proofs of large deviation results for sums semiexponential random variables and explicit rate function at the transition[END_REF]Theorem 3] The case x n = Θ(n 1/(1+ ) ) appears to be an interpolation between the Gaussian range and the maximal jump one.

In the present paper, we exhibit the same asymptotic behaviour for triangular arrays of random variables (Y n,i ) 1 i Nn satisfying the following weaker assumption: there exists q > 0 such that, if

y n → ∞, log P(Y n y n ) ∼ -qy 1-ε n , (3) 
together with similar assumptions on the moments.

The first main contribution of this paper is the generalization of [START_REF] Brosset | Probabilistic proofs of large deviation results for sums semiexponential random variables and explicit rate function at the transition[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations Into Account When Cramér's Condition Does Not Hold[END_REF] to triangular arrays. Such a setting appears naturally in some combinatorial problems, such as those presented by [START_REF] Janson | Asymptotic distribution for the cost of linear probing hashing[END_REF], including hashing with linear probing. Since the eighty's, laws of large numbers have been established for triangular arrays (see, e.g., [START_REF] Gut | Complete convergence for arrays[END_REF][START_REF] Gut | The weak law of large numbers for arrays[END_REF][START_REF] Hu | Strong laws of large numbers for arrays of rowwise independent random variables[END_REF]). Lindeberg's condition is standard for the central limit theorem to hold for triangular arrays (see, e.g., [START_REF] Billingsley | Convergence of probability measures[END_REF]Theorem 27.2]). Dealing with triangular arrays of light-tailed random variables, Gärtner-Ellis theorem provides moderate and large deviation results. Deviations for sums of heavy-tailed i.i.d. random variables are studied by several authors (e.g., [START_REF] Borovkov | Large deviation probabilities for random walks with semiexponential distributions[END_REF][START_REF] Borovkov | Asymptotic analysis of random walks[END_REF][START_REF] Brosset | Probabilistic proofs of large deviation results for sums semiexponential random variables and explicit rate function at the transition[END_REF][START_REF] Linnik | On the probability of large deviations for the sums of independent variables[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations Into Account When Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF][START_REF] Petrov | Generalization of Cramér's limit theorem[END_REF]) and a good survey can be found in [START_REF] Mikosch | Large deviations of heavy-tailed sums with applications in insurance[END_REF]. Here, we focus on the particular case of semiexponential tails (treated in [START_REF] Borovkov | Large deviation probabilities for random walks with semiexponential distributions[END_REF][START_REF] Borovkov | Asymptotic analysis of random walks[END_REF][START_REF] Brosset | Probabilistic proofs of large deviation results for sums semiexponential random variables and explicit rate function at the transition[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations Into Account When Cramér's Condition Does Not Hold[END_REF] for sums of i.i.d. random variables) generalizing the results to triangular arrays. See [START_REF] Klein | Deviation results for hashing with linear probing[END_REF] for an application to hashing with linear probing. Another contribution is the fact that the random variables are not supposed absolutely continuous as in [START_REF] Brosset | Probabilistic proofs of large deviation results for sums semiexponential random variables and explicit rate function at the transition[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations Into Account When Cramér's Condition Does Not Hold[END_REF]. Assumption (3) is analogue to that of [START_REF] Borovkov | Large deviation probabilities for random walks with semiexponential distributions[END_REF][START_REF] Borovkov | Asymptotic analysis of random walks[END_REF], but there the transition at x n = Θ(n 1/(1+ ) ) is not considered. Hence, up to our knowledge, Theorem 3 is the first large deviation result at the transition which is explicit.

The paper is organized as follows. In Section 2, we state the main results, the proofs of which can be found in Section 3. In Section 4, a discussion on the assumptions is proposed. Section 5 is devoted to the study of the model of a truncated random variable which is a natural model of triangular array. This kind of model appears in many proofs of large deviations. Indeed, when one wants to deal with a random variable, the Laplace transform of which is not finite, a classical approach consists in truncating the random variable and in letting the truncation going to infinity. In this model, we exhibit various rate functions, especially nonconvex rate functions.

Main results

For all n 1, let Y n be a centered real-valued random variable, let N n be a natural number, and let (Y n,i ) 1 i Nn be a family of i.i.d. random variables distributed as Y n . Define, for all k ∈ 1, N n ,

T n,k := k i=1 Y n,i .
To lighten notation, let T n := T n,Nn .

Theorem 1 (Maximal jump range). Let ε ∈ (0, 1), q > 0, and α > (1 + ε) -1 . Assume that:

(H1) for all N αε n y n N α n , log P(Y n y n ) ∼ -qy 1-ε n ; (H2) E[Y 2 n ] = o(N α(1+ε)-1 n ).
Then, for all y 0,

lim n→∞ 1 N α(1-ε) n log P(T n N α n y) = -qy 1-ε .
As in [START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF][START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations Into Account When Cramér's Condition Does Not Hold[END_REF][START_REF] Brosset | Probabilistic proofs of large deviation results for sums semiexponential random variables and explicit rate function at the transition[END_REF], the proof of Theorem 1 immediately adapts to show that, if

x n N (1+ε) -1 n , if, for all x ε n y n x n (1 + δ) for some δ > 0, log P(Y n y n ) ∼ -qy 1-ε n , and if Var(Y n ) = o(x (1+ε) n /N n ), then log P(T n x n ) ∼ -qx 1-ε n .
In this paper (see also Theorems 2 and 3), we have chosen to explicit the deviations in terms of powers of N n , as it is now standard in large deviation theory.

In addition, the proof of Theorem 1 immediately adapts to show that, if L is a slowly varying function such that, for all

N αε n /L(N α n ) y n N α n , log P(Y n y n ) ∼ -L(y n )y 1-ε n
and if assumption (H2) holds, then, for all y 0,

lim n→∞ 1 L(N α n )N α(1-ε) n log P(T n N α n y) = -y 1-ε .
The same is true for Theorem 2 below whereas Theorem 3 below requires additional assumptions on L to take into account the regularly varying tail assumption.

Moreover, if an analogous assumption as (H1) for the left tail of Y n is also satisfied, then T n satisfies a large deviation principle at speed N α (1-ε) n with rate function -q |y| 1-ε (the same remark applies to Theorems 2 and 3).

Theorem 2 (Gaussian range). Let ε ∈ (0, 1), q > 0, and 1/2 < α < (1 + ε) -1 . Suppose that (H1) holds together with:

(H2') E[Y 2 n ] → σ 2 ; (H2+) there exists γ ∈ (0, 1] such that E[|Y n | 2+γ ] = o(N γ(1-α) n ).
Then, for all y 0,

lim n→∞ 1 N 2α-1 n log P(T n N α n y) = - y 2 2σ 2 .
Theorem 3 (Transition). Let ε ∈ (0, 1), q > 0, and α = (1 + ε) -1 . Suppose that (H1), (H2'), and (H2+) hold. Then, for all y 0,

lim n→∞ 1 N (1-ε)/(1+ε) n log P(T n N 1/(1+ε) n y) = -inf 0 θ 1 qθ 1-ε y 1-ε + (1 -θ) 2 y 2 2σ 2 =: -I(y). (4) 
Let us explicit a little the rate function

I. Let f (θ) = qθ 1-ε y 1-ε + (1 -θ) 2 y 2 /(2σ 2
). An easy computation shows that, if y y 1+ε) , f is increasing and its minimum y 2 /(2σ 2 ) is attained at θ = 0. If y > y 0 , f has two local minima, at 0 and at θ(y): the latter corresponds to the greatest of the two roots in [0, 1] of f (t) = 0, equation equivalent to

0 := ((1 -ε 2 )(1 + 1/ε) ε qσ 2 ) 1/(
(1 -θ)θ = (1 -ε)qσ 2 y 1+ε . ( 5 
) If y 0 < y y 1 := (1 + ε) (qσ 2 /(2ε) ε ) 1 1+ε , then f (θ(y)) f (0). And if y > y 1 , f (θ(y)) < f (0). As a consequence, for all y 0, I(y) =    y 2 2σ 2 if y y 1 qθ(y) 1-ε y 1-ε + (1-θ(y)) 2 y 2 2σ 2 if y > y 1 .

Proofs

Proof of Theorem 1 (Maximal jump regime)

Let us fix y > 0. The result for y = 0 follows by monotony. First, we define

P(T n N α n y) = P(T n N α n y, ∀i ∈ 1, N n Y n,i < N α n y) + P(T n N α n y, ∃i ∈ 1, N n Y n,i N α n y) =: P n,0 + R n,0 . ( 6 
)
Lemma 4. Under (H1) and (H2), for α > 1/2 and y > 0,

lim n→∞ 1 N α(1-ε) n log R n,0 = -qy 1-ε . Proof of Lemma 4. Using (H1), lim sup n→∞ 1 N α(1-ε) n log R n,0 lim n→∞ 1 N α(1-ε) n log(N n P(Y n N α n y)) = -qy 1-ε . ( 7 
)
Let us prove the converse inequality. Let δ > 0. We have,

R n,0 P (T n N α n y, Y n,1 N α n y) P (T n,Nn-1 -N α n δ) P(Y n N α n (y + δ)).
By Chebyshev's inequality, observe that

P(T n,Nn-1 -N n α δ) 1 - Var(Y n ) N 2α-1 n δ 2 → 1,
using (H2). Finally, by (H1), one gets

lim inf n→∞ 1 N α(1-ε) n log R n,0 lim n→∞ 1 N α(1-ε) n log P(Y n N α n (y + δ)) = -q(y + δ) 1-ε .
We conclude by letting δ → 0.

To complete the proof of Theorem 1, it remains to prove that, for α >

(1 + ε) -1 , lim sup n→∞ 1 N α(1-ε) n log P n,0 -qy 1-ε , ( 8 
)
and to apply the principle of the largest term (see, e.g., [6, Lemma 1.2.15]). Let q ∈ (0, q).

Using the fact that 1 x 0 e x , we get

P n,0 e -q (N α n y) 1-ε E e q (N α n y) ε Yn 1 Yn<N α n y Nn . If we prove that E e q (N α n y) ε Yn 1 Yn<N α n y 1 + o(N α(1-ε)-1 n ), then log P n,0 -q (N α n y) 1-ε + o(N α(1-ε) n )
and the conclusion follows by letting q → q. Write

E e q (N α n y) ε Yn 1 Yn<N α n y = E e q (N α n y) ε Yn 1 Yn<(N α n y) ε + E e q (N α n y) ε Yn 1 (N α n y) ε Yn<N α n y .
First, by a Taylor expansion and (H2), we get

E e q (N α n y) ε Yn 1 Yn<(N α n y) ε E 1 + q (N α n y) ε Y n + (q ) 2 e q 2(N α n y) 2ε Y 2 n 1 Yn<(N α n y) ε 1 + (q ) 2 e q 2 • E[Y 2 n ] (N α n y) 2ε = 1 + o(N α(1-ε)-1 n ).
To bound above the second expectation, we need the following simple consequence of (H1). Lemma 5. Under (H1), for all y > 0,

∀q < q ∃n 0 ∀n n 0 ∀u ∈ [(N α n y) ε , N α n y] log P(Y n u) -q u 1-ε .
Proof of Lemma 5. By contrapposition, if the conclusion of the lemma is false, we can construct a sequence (u n ) n 1 such that, for all n 1,

u n ∈ [(N α n y) ε , N α n y] and log P(Y n u n ) > -q u 1-ε n , whence (H1) is not satisfied.
Now, integrating by parts, we get

E e q (N α n y) ε Yn 1 (N α n y) ε Yn<N α n y = N α n y (N α n y) ε e q (N α n y) ε u P(Y n ∈ du) = -e q (N α n y) ε u P(Y n u) N α n y (N α n y) ε + q (N α n y) ε N α n y (N α n y) ε e q (N α n y) ε u P(Y n u)du e q P(Y n (N α n y) ε ) + q (N α n y) ε N α n y (N α n y) ε e q (N α n y) ε u-q u 1-ε du (1 + q (N α n y) 1-ε )e q -q (N α n y) ε(1-ε) = o(N α(1-ε)-1 n )
for n large enough, using (H1) and Lemma 5 with q ∈ (q , q), and the supremum of

u → q (N α n y) -ε u -q u 1-ε over [(N α n y) ε , N α n y].
The proof of Theorem 1 is now complete.

Proof of Theorem 2 (Gaussian regime)

Let us fix y > 0. The result for y = 0 follows by monotony. For all m ∈ 0, N n , we define

Π l,m (x) = P T n,l x, ∀i ∈ 1, l -m Y n,i < (N α n y) ε , ∀i ∈ l -m + 1, l (N α n y) ε Y n,i < N α n y ,
and we denote Π Nn,m (N α n y) by Π n,m , so that

P n = P n,0 + R n,0 = Nn m=0 N n m Π n,m + R n,0 . (9) 
By Lemma 4 and the fact that, for α >

(1 + ε) -1 , 2α -1 > α(1 -ε), we get lim n→∞ 1 N 2α-1 n log R n,0 = -∞. ( 10 
)
Lemma 6. Under (H1), (H2'), and (H2+), for 1/2 < α (1 + ε) -1 and y > 0,

lim n→∞ 1 N 2α-1 n log Π n,0 = - y 2 2σ 2 . ( 11 
)
Proof of Lemma 6. For all n 1, we introduce the variable

Y < n distributed as L(Y n | Y n < (N α n y) ε ). Let T < n = Nn i=1 Y < n,i
where the Y < n,i are independent random variables distributed as

Y < n . Then Π n,0 = P(T < n N α n y)P(Y n < (N α n y) ε ) Nn .
On the one hand, P(Y n < (N α n y) ε ) Nn → 1 by (H1). On the other hand, in order to apply the unilateral version of Gärtner-Ellis theorem (see [START_REF] Plachky | A theorem about probabilities of large deviations with an application to queuing theory[END_REF], and [START_REF] Brosset | Probabilistic proofs of large deviation results for sums semiexponential random variables and explicit rate function at the transition[END_REF] for a modern formulation), we compute, for u 0,

Λ n (u) = N 2(1-α) n log E e u N 1-α n Y < n .
Now, there exists a constant c > 0 such that, for all t uy ε , |e t -

(1 + t + t 2 /2)| c |t| 2+γ , whence e u N 1-α n Y < n -1 - u N 1-α n Y < n - u 2 2N 2(1-α) n (Y < n ) 2 cu 2+γ N (2+γ)(1-α) n |Y < n | 2+γ , ( 12 
)
by the definition of Y < n and α(1

+ ε) 1. Now, E e u N 1-α n Y < n -e u 2 σ 2 2N 2(1-α) n E e u N 1-α n Y < n -E 1 + u N 1-α n Y < n + u 2 2N 2(1-α) n (Y < n ) 2 + E 1 + u N 1-α n Y < n + u 2 2N 2(1-α) n (Y < n ) 2 -e u 2 σ 2 2N 2(1-α) n . ( 13 
)
The first term of ( 13) is bounded above by

cu 2+γ N (2+γ)(1-α) n E[|Y < n | 2+γ ] = o(N -2(1-α) n ), (14) 
by assumptions (H1) and (H2+), and an integration by parts. Using a Taylor expansion of order 2 of the exponential function, the second term of ( 13) is equal to

u N 1-α n E[Y < n ] + u 2 2N 2(1-α) n (E[(Y < n ) 2 ] -σ 2 ) + o(N -2(1-α n ) . ( 15 
)
By (H1) and the fact that

E[Y n ] = 0, E[Y < n ] is exponentially decreasing, whence E[Y < n ] = o(1/N 1-α n )
; similarly, by (H1), (H2'), and (H2+), E[(Y < n ) 2 ] → σ 2 ; hence, we get

Λ n (u) = u 2 σ 2 2 + o(1),
and the proof of Lemma 6 is complete.

Theorem 2 stems from ( 10), [START_REF] Janson | Asymptotic distribution for the cost of linear probing hashing[END_REF] and the fact that, for 1/2

< α < (1 + ε) -1 , lim sup n→∞ 1 N 2α-1 n log Nn m=1 N n m Π n,m - y 2 2σ 2 , ( 16 
)
the proof of which is given now. We adapt the proof in [17, Lemma 5] and focus on the logarithmic scale. Let

m n = N α(1-ε) 2 2y (1-ε) 2 n .
In particular, for all m > m n ,

m(N α n y) ε(1-ε) m(N α n y) ε(1-ε) 2 + (N α n y) 1-ε . ( 17 
)
Lemma 7. Under (H1), for α > 1/2, y > 0, and q < q, lim sup

n→∞ 1 N α(1-ε) n log Nn m=mn+1 N n m Π n,m -q y 1-ε .
Proof. For n large enough, using Lemma 5 and inequality [START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations Into Account When Cramér's Condition Does Not Hold[END_REF],

Nn m=mn+1 N n m Π n,m Nn m=mn+1 N n m P(∀i ∈ 1, m Y n,i (N α n y) ε ) Nn m=mn+1 N n m e -mq (N α n y) ε(1-ε) e -q (N α n y) 1-ε Nn m=mn+1 N n m e -mq (N α n y) ε(1-ε) /2 e -q (N α n y) 1-ε 1 + e -q (N α n y) ε(1-ε) /2 Nn .
Here, as α(1 -ε) > 2α -1, we conclude that

lim n→∞ 1 N 2α-1 n log Nn m=mn+1 N n m Π n,m = -∞. (18) 
Now, for m ∈ 1, m n , let us bound above Π n,m . Let us define

f m (u 1 , . . . , u m ) := Π Nn-m,0 N α n y - m i=1 u i ,
which is nondecreasing in each variable. For q < q < q and n large enough,

Π n,m = P(T n N α n y , (N α n y) ε Y n,1 , . . . , Y n,m < N α n y , Y n,m+1 , . . . , Y n,n < (N α n y) ε ) = [(N α n y) ε ,N α n y] m f m (u 1 , . . . , u m ) dP Yn (u 1 ) • • • dP Yn (u m ) = (k 1 ,...,km) i (k i -1,k i ] f m (u 1 , . . . , u m ) dP Yn (u 1 ) • • • dP Yn (u m ) (k 1 ,...,km) f m (k 1 , . . . , k m ) i P(Y n ∈ (k i -1, k i ]) (k 1 ,...,km) f m (k 1 , . . . , k m )e -q m i=1 (k i -1) 1-ε [(N α n y) ε ,N α n y+2] m f m (u 1 , . . . , u m ) e -q m i=1 u 1-ε i du 1 • • • du m = I 1,m + I 2,m ,
where, for j ∈ {1, 2},

I j,m := A j,m f m (u 1 , . . . , u m ) e -q sm(u 1 ,...,um) du 1 • • • du m ( 19 
)
with

A 1,m := (u 1 , . . . , u m ) ∈ [(N α n y) ε , N α n y + 2] m m i=1 u i N α n y , A 2,m := (u 1 , . . . , u m ) ∈ [(N α n y) ε , N α n y + 2] m m i=1 u i < N α n y ,
and

s m (u 1 , . . . , u m ) := m i=1 u 1-ε i . Lemma 8. For α > 1/2 and y > 0, lim sup n→∞ 1 N α(1-ε) n log mn m=1 N n m I 1,m -q y 1-ε .
Proof. Since s m is concave, s m reaches its minimum on A 1,m at the points with all coordinates equal to (N α n y) ε except one equal to N α n y -(N α n y) ε (m -1). Moreover, using the fact that f m (u 1 , . . . , u m ) 1 in [START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF], it follows that, for n large enough, for all m ∈ {1, . . . , m n },

I 1,m (N α n y) m e -q (m-1)(N α n y) ε(1-ε) -q (N α n y-(m-1)(N α n y) ε ) 1-ε (N α n y) m e -q (N α n y) 1-ε e -q (m-1)((N α n y) ε(1-ε) -1) .
Finally,

mn m=1 N n m I 1,m e -q (N α n y) 1-ε mn m=1 N n m (N α n y) m e -q (m-1)((N α n y) ε(1-ε) -1) e -q (N α n y) 1-ε N 1+α n y mn m=1 N 1+α n ye -q ((N α n y) ε(1-ε) -1) m-1
, and the conclusion follows, since the latter sum is bounded.

As

α(1 -ε) > 2α -1, we conclude that lim n→∞ 1 N 2α-1 n log mn m=1 N n m I 1,m = -∞. ( 20 
)
Lemma 9. Under (H2') and (H2+), for 1/2 < α (1 + ε) -1 , y > 0, n large enough, and m ∈ {1, . . . , m n },

I 2,m (N α n y) m e -q (m-1)(N α n y) ε(1-ε) exp sup m(N α n y) ε u<N α n y φ m (u)
where

φ m (u) := - (N α n y -u) 2 2σ 2 (N n -m)(1 + c n ) -q (u -(m -1)(N α n y) ε ) 1-ε .
Proof. Here, we use Chebyshev's exponential inequality to control

f m (u 1 , . . . , u m ) = Π Nn-m,0 (N α n y- u 1 -• • • -u m ) in I 2,m
. For all l ∈ N * , for all x ∈ R, and for all λ 0, Π l,0 (x) exp -λx + l log E e λYn 1 Yn (N α n y) ε . Let M > y/σ 2 . There exists c > 0 such that, for all s M , we have e s 1 + s + s 2 /2 + c|s| 2+γ . Hence, as soon as

λ M/N 1-α n M/N α n , E e λYn 1 Yn (N α n y) ε 1 + λ 2 2 E[Y 2 n ] + cλ 2+γ E[|Y n | 2+γ ] 1 + λ 2 σ 2 2 (1 + c n ), ( 21 
)
where

c n := E[Y 2 n ] -σ 2 + 2cM γ σ 2 N -γ(1-α) n E[|Y n | 2+γ ] = o(1),
by (H2') and (H2+). Thus, for

λ M/N 1-α n , Π Nn-m,0 (N α n y -u) exp -λ(N α n y -u) + (N n -m) λ 2 σ 2 2 (1 + c n ) .
For n large enough and m ∈ {1, . . . , m n }, the infimum in λ of the last expression is attained at

λ * := N α n y -u (N n -m)σ 2 (1 + c n ) M N 1-α n , and is equal to -(N α n y -u) 2 /(2σ 2 (N n -m)(1 + c n ))
. So, for n large enough:

Π Nn-m,0 (N α n y -u) exp - (N α n y -u) 2 2σ 2 (N n -m)(1 + c n ) . ( 22 
)
Since s m is concave, s m reaches its minimum on

A 2,m,u := (u 1 , . . . , u m ) ∈ [(N α n y) ε , N α n y + 2] m m i=1 u i = u
at the points with all coordinates equal to (N α n y) ε except one equal to u -(m -1)(N α n y) ε , whence, for n large enough and m ∈ {1, . . . , m n },

I 2,m (N α n y) m sup m(N α n y) ε u<N α n y exp - (N α n y -u) 2 2σ 2 (N n -m)(1 + c n ) -q (u -(m -1)(N α n y) ε ) 1-ε -q (m -1)(N α n y) ε(1-ε) (N α n y) m e -q (m-1)(N α n y) ε(1-ε) exp sup m(N α n y) ε u<N α n y φ m (u) . Now, for 1/2 < α < (1 + ε) -1 , n large enough, and m ∈ {1, . . . , m n }, the function φ m is decreasing on [m(N α n y) ε , N α n y). So, I 2,m (N α n y) m exp -q m(N α n y) ε(1-ε) - (N α n y -m n (N α n y) ε ) 2 2N n σ 2 (1 + c n ) . It follows that mn m=1 N n m I 2,m e - (N α n y-mn(N α n y) ε ) 2 2Nnσ 2 (1+cn) mn m=1 N 1+α n ye -q (N α n y) ε(1-ε) m .
Since the latter sum is bounded, we get lim sup

n→∞ 1 N 2α-1 n log mn m=1 N n m I 2,m - y 2 2σ 2 (23) 
as m n (N α n y) ε = o(N α n ) and c n = o [START_REF] Billingsley | Convergence of probability measures[END_REF]. By ( 18), [START_REF] Petrov | Generalization of Cramér's limit theorem[END_REF], and (23), we get the required result. Remark 10. Notice that, using the contraction principle, one can show that, for all fixed m, lim sup

n→∞ 1 N (1-ε)/(1+ε) n log Π n,m = - y 2 2σ 2 .

Proof of Theorem 3 (Transition)

Here, we assume (H1), (H2'), and (H2+), and we deal with the case α

= (1 + ε) -1 , so that α(1 -ε) = 2α -1 = (1 -ε)/(1+ ε).
Let us fix y > 0. The result for y = 0 follows by monotony. We still consider the decomposition [START_REF] Gut | The weak law of large numbers for arrays[END_REF]. By Lemmas 4 and 6, and the very definition of I in (4), we have

lim n→∞ 1 N (1-ε)/(1+ε) n log R n,0 = -qy 1-ε -I(y) and lim n→∞ 1 N (1-ε)/(1+ε) n log Π n,0 = - y 2 2σ 2 -I(y).
To complete the proof of Theorem 3, it remains to prove that lim inf

n→∞ 1 N (1-ε)/(1+ε) n log Π n,1 -I(y) (24) 
lim sup

n→∞ 1 N (1-ε)/(1+ε) n log Nn m=1 Π n,m -I(y) (25) 
and to apply the principle of the largest term.

Proof of (24). For all t ∈ (0, 1), 1

N (1-ε)/(1+ε) n log Π n,1 1 N (1-ε)/(1+ε) n log P T n,Nn-1 N α n ty, ∀i ∈ 1, N n -1 Y n,i < (N α n y) ε + 1 N (1-ε)/(1+ε) n log P N α n (1 -t)y Y n,Nn < N α n y ---→ n→∞ - t 2 y 2 2σ 2 -q(1 -t) 1-ε y 1-ε ,
by Lemma 6 and by (H1). Optimizing in t ∈ (0, 1) provides the conclusion.

Proof of (25). We follow the same lines as in the proof of [START_REF] Nagaev | Integral Limit Theorems Taking Large Deviations into Account when Cramér's Condition Does Not Hold[END_REF]. By Lemma 7, letting q → q, we get lim sup

n→∞ 1 N (1-ε)/(1+ε) n log Nn m=mn+1 N n m Π n,m -qy 1-ε -I(y). (26) 
Let η = 1 -q /q ∈ (0, 1). By Lemma 8, lim sup

n→∞ 1 N (1-ε)/(1+ε) n log mn m=1 N n m I 1,m -q y 1-ε -(1 -η)I(y). ( 27 
)
Now, recall that Lemma 9 provides I 2,m (N α n y) m e -q (m-1)(N α n y) ε(1-ε) e Mn , for n large enough, where

M n = sup m(N α n y) ε u<N α n y - (N α n y -u) 2 2σ 2 (N n -m)(1 + c n ) -q (u -(m -1)(N α n y) ε ) 1-ε N (1-ε)/(1+ε) n sup m(N α n y) -1+ε θ<1 - (1 -θ) 2 y 2 2σ 2 (1 + c n ) -q θ 1-ε y 1-ε 1 - (m -1)(N α n y) -1+ε θ 1-ε .
For n large enough, for all m ∈ {1, . . . , m n },

inf m(N α n y) -1+ε θ<η    (1 -θ) 2 y 2 2σ 2 (1 + c n ) + q θ 1-1 - (m -1)(N α n y) -1+ε θ 1-    (1 -η) 2 y 2 2σ 2 (1 -η) (1 -η) 3 I(y) and inf η θ<1    (1 -θ) 2 y 2 2σ 2 (1 + c n ) + q θ 1-1 - (m -1)(N α n y) -1+ε θ 1-    inf η θ<1 (1 -θ) 2 y 2 2σ 2 + q θ 1-y 1-ε (1 -η) (1 -η) 2 I(y). So M n -N (1-ε)/(1+ε) n (1 -η) 3 I(y) and lim sup n→∞ 1 N (1-ε)/(1+ε) n log mn m=1 n m I 2,m -(1 -η) 3 I(y) + lim sup n→∞ 1 N (1-ε)/(1+ε) n log mn m=1 n m N α n ye -q (N α n y) ε(1-ε) m = -(1 -η) 3 I(y). ( 28 
)
Transition 2 When α = β, for all y 0,

lim n→∞ 1 N α(1-ε) n log P(T n N α n y) = -I 2 (y) := -q y/c c 1-ε + (y -y/c c) 1-ε .
Here, as in all cases where α β, we adapt the definitions ( 6) and ( 9) as:

P(T n N α n y) = P(T n N α n y, ∀i ∈ 1, N n Y n,i < N β n c) =: P n,0 (29) 
(R n,0 = 0) and, for all m ∈ 0, N n ,

Π n,m = P T n N α n y, ∀i ∈ 1, N n -m Y n,i < (N β n c) ε , ∀i ∈ N n -m + 1, N n (N β n c) ε Y n,i < N β n c . ( 30 
)
For all t > 0,

Π n,0 = P(T n N α n y, ∀i ∈ 1, N n Y n,i < (N α n c) ε ) e -tyN α(1-ε) n E e tN -αε n Yn 1 Yn<(N α n c) ε Nn = e -tyN α(1-ε) n (1+o(1)) ,
(see the proof of Theorem 1), whence Lemma 6 with L(Y

< n ) = L(Y n | Y n < N α n c) updates into 1 N α(1-ε) n log Π n,0 ---→ n→∞ -∞.
So, by the contraction principle, for all fixed m 0,

1 N α(1-ε) n log Π n,m ---→ n→∞    -∞
if m y/c -1 -q ( y/c c 1-ε + (y -y/c c) 1-ε ) otherwise, that provides a minoration of the sum of the Π n,m 's. To obtain a majoration, let us introduce

m n = N α(1-ε) 2 n 2k
where k = y/c c 1-ε + (y -y/c c) 1-ε . Lemma 7 remains unchanged while Lemmas 8 and 9 requires adjustments. The integration domains defining I 1,m and I 2,m become

A 1,m = (u 1 , . . . , u m ) ∈ [(N α n c) ε , N α n c + 2] m m i=1 u i N α n y , A 2,m = (u 1 , . . . , u m ) ∈ [(N α n c) ε , N α n c + 2] m m i=1 u i < N α n y ,
Further, the concave function s m attains its minimum at points with all coordinates equal to (N α n c) ε except y/c n coordinates equal to N α n c n and one coordinate equal to

N α n (y -y/c n c n )- (N α n c) ε (m -1 -y/c n ) with c n = c + 2N -α n .
Then following the same lines as in the proof of Lemmas 8 and 9, we get, for j ∈ {1, 2},

lim n→∞ 1 N 2α-1 n log mn m=1 N n m I j,m = -q y/c c 1-ε + (y -y/c c) 1-ε .
Truncated maximal jump range When β < α < β + 1 and y 0, or α = β + 1 and y < c, the proof of Theorem 1 adapts and provides

lim n→∞ 1 N α-βε n log P(T n N α n y) = -qyc -ε .
As in the previous case, we use the decomposition given by ( 29) and (30). To upper bound P n,0 , we write

P n,0 e -qyc -ε N α-βε n E e yc -ε N -βε n Yn 1 Yn<(N β n c) ε + 1 (N β n c) ε Yn<N β n c
Nn and follow the same lines as in the proof of Theorem 1. To lower bound P n,0 , we write, for c < c,

log P n,0 log P(∀i ∈ 1, N α-β n y/c Y n,i N β n c ) ∼ -N α-β n y(c ) -1 q(N β n c ) 1-ε = -N α-βε n qy(c ) -ε ,
and we recover the upper bound, when c → c.

Trivial case When α = β + 1 and y c, or α > β + 1, we obviously have P(T n N α n y) = 0.

Case

β < (1 + ε) -1
Here, Theorem 2 applies for α < (1 + ε) -1 . The notable fact is that the Gaussian range is extended: it spreads until α < 1 -βε.

Gaussian range When α < 1 -βε, the proof of Theorem 2 adapts and, for all y 0, lim

n→∞ 1 N 2α-1 n log P(T n N α n y) = - y 2 2σ 2 .
As we said, the result for α < (1 + ε) -1 is a consequence of Theorem 2. Now, suppose α (1 + ε) -1 > β. We use the decomposition given by ( 29) and (30). Lemma 6 works for α

< 1 -βε, with L(Y < n ) = L(Y n | Y n < (N β n c) ε ). Then, we choose m n = N α-2βε+βε 2 n 2yc -ε . We obtain the equivalent of Lemma 7: lim sup n→∞ 1 N α-βε n log Nn m=mn+1 N n m Π n,m -q yc -ε . with N α-βε n N 2α-1 n
. Finally, Lemmas 8 and 9 adapt as well, with

A 1,m = (u 1 , . . . , u m ) ∈ (N β n c) ε , N β n c + 2 m m i=1 u i N α n y , A 2,m = (u 1 , . . . , u m ) ∈ (N β n c) ε , N β n c + 2 m m i=1 u i < N α n y .
Transition 3 When α = 1 -βε, the proof of Theorem 3 adapts and, for all y 0,

lim n→∞ 1 N 1-2βε n log P(T n N 1-βε n y) = -I 3 (y) := -inf 0 t 1 q(1 -t)yc -ε + t 2 y 2 2σ 2 = -    y 2 2σ 2 if y y 3 qy c ε -q 2 σ 2 2c 2ε
if y > y 3

with y 3 := qσ 2 c -ε . 

Figure 1 :

 1 Figure1: Representation of the rate functions. Here, q = 1, σ 2 = 2, = 1/2, and c = 1. Left -Gaussian range. The typical event corresponds to the case where all the random variables are small but their sum has a Gaussian contribution. Center -Maximal jump range. The typical event corresponds to the case where one random variable contributes to the total sum (N α n y), no matter the others. We recover the random variable tail. Right -Truncated maximal jump range. The typical event corresponds to the case where N α-β n y/c variables take the saturation value N β n c, no matter the others.

Figure 2 :

 2 Figure 2: Representation of the rate functions. Here, q = 1, σ 2 = 2, = 1/2, and c = 1. Left -Transition 1. The typical event corresponds to the case where one random variable is large (N α n θ(y)y) and the sum of the others has a Gaussian contribution (two competing terms). Center -Transition 2. The typical event corresponds to the case where y/c random variables take the saturation value N β n c and one completes to get the total sum. Right -Transition 3. The typical event corresponds to the case where some random variables (a number of order N 1-β(1+ε) n ) take the saturation value N β n c, and the sum of the others has a Gaussian contribution (two competing terms).
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 30121 Figure 3: Representation of the rate functions. Here, q = 1, σ 2 = 2, = 1/2, and c = 1. Left -Transition 1-for c c 0 . The typical event corresponds to the case where k 3 (c) variables take the saturation value N β c, and the sum of the others has a Gaussian contribution. Right -Transition 1-for c c 0 . The typical event corresponds to the case where k 2 (c) variables take the saturation value N β c, one is also large (N β n θ(y -k 2 (c)c)(y -k 2 (c)c)) and the sum of the others has a Gaussian contribution.

T r a n s i t i o n 2 I 2 T r a n s i t i o n 3 I 3 Figure 4 :

 22334 Figure 4: Rate function transition diagram.

Π n,m -(1 -η) 3 I(y), and (25) follows, letting q → q, i.e. η → 0.

Remark 11. Notice that, using the contraction principle, one can show that, for all fixed m, lim sup 

About the assumptions

Looking into the proof of Theorem 1, one can see that assumption (H1) can be weakened and one may only assume the two conditions that follow.

Theorem 12. The conclusion of Theorem 1 holds under (H2) and:

Lemma 13. (H1a) is equivalent to:

First extract a convergent subsequence; then, again extract a subsequence such that N -α n y n is convergent and use (H1a) to show that N -α(1-ε)

Lemma 14. (H1b) is equivalent to the conclusion of Lemma 5:

(H1b') ∀y > 0 ∀q < q ∃n 0 ∀n n 0 ∀u ∈ [(N α n y) ε , N α n y] log P(Y n u) -q u 1-ε . Proof. See the proof of Lemma 5.

Theorem 15. The conclusion of Theorem 1 holds under assumptions (H1a), (H1b), and

Proof. The only modification in the proof is the minoration of R n,0 : R n,0 P(T n,Nn-1 0)P(Y n N α n y). Now Lyapunov's theorem [START_REF] Billingsley | Convergence of probability measures[END_REF]Theorem 27.3] applies and provides P(T n,Nn-1 0) → 1/2.

As for Theorem 2, assumption (H1) can be weakened and one may only assume (H1b), or even the following weaker assumption.

Theorem 16. The conclusion of Theorem 2 holds under (H2'), (H2+), and: Theorem 3, assumption (H1) can be weakened and one may only assume (H1a) and (H1b).

Application: truncated random variable

Let us consider a centered real-valued random variable Y , admitting a finite moment of order 2 + γ for some γ > 0. Set

). Such truncated random variables naturally appear in proofs of large deviation results.

If Y has a light-tailed distribution, i.e. Λ Y (λ) := log E[e λY ] < ∞ for some λ > 0, then (the unilateral version of) Gärtner-Ellis theorem applies:

Note that we recover the same asymptotics as for the non truncated random variable Y . In other words, the truncation does not impact the deviation behaviour.

Now we consider the case where log P(Y y) ∼ -qy 1-ε for some q > 0 and ε ∈ (0, 1). In this case, Gärtner-Ellis theorem does not apply since all the rate functions are not convex as usual (as can be seen in Figures 1 to 3). Observe that, as soon as y n → ∞,

] are exponentially decreasing to zero. Therefore, our theorems directly apply for α < max(β, (1 + ε) -1 ), and even for α = (1 + ε) -1 < β. For α max(β, (1 + ε) -1 ), the proofs easily adapt to cover all cases. To expose the results, we separate the three cases β > (1 + ε) -1 , β < (1 + ε) -1 and β = (1 + ε) -1 and provide a synthetic diagram at the end of the section (page 18) and the graphs of the exhibited rate functions (pages 17 and 18).

Case β > (1 + ε) -1

Gaussian range When α < (1 + ) -1 , Theorem 2 applies and, for all y 0,

Transition 1 When α = (1 + ) -1 , Theorem 3 applies and, for all y 0,

Maximal jump range When (1 + ) -1 < α < β, Theorem 1 applies and, for all y 0,

Truncated maximal jump range When 1 -βε < α < 1 + β and y 0, or α = 1 + β and y < c, as before, the proof of Theorem 1 adapts and

Trivial case When α = β + 1 and y c, or α > β + 1, we obviously have P(T n N α n y) = 0.

Case β

Gaussian range When α < (1 + ε) -1 = β, Theorem 2 applies and, for all y 0, lim

Transition T 0 As in Section 2 after the statement of Theorem 3, we define θ(y) and y 1 for the function f (θ) = qθ 1-ε y 1-ε + (1 -θ) 2 y 2 /(2σ 2 ). Define θ(y) := 1 y y 1 θ(y) and notice that θ is increasing on [y 1 , ∞) (and θ(y) → 1 as y → ∞). Set c 0 := θ(y 1 )y 1 = (2εqσ 2 ) 1/(1+ε) .

• When α = (1 + ε) -1 = β and c c 0 , then

where

where Remark: For all c < c 0 , y 0,1 (c) > y 1 : so the Gaussian range in the nontruncated case (which stops at y 1 ) is extended. Moreover, y 0,1 (c 0 ) = y 1 = y 0,2 (c 0 ), and, for c = c 0 , I 0,1 = I 0,2 (since I 1 (y) = y 2 /(2σ 2 ) for y y 1 ). 

Truncated maximal jump range