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Abstract: This paper focuses on the impact of post processing machining and mounting 

/ unmounting phases on topological optimization methods. In addition to the classical 

load cases taken into account in optimization methods, various static and vibratory forces 

occurring during machining phases and manipulations, are also considered. Results of the 

topology optimization show that the most significant load case for the aeronautical part 

considered is indeed one of the post processing machining operations and it has a strong 

impact on the optimized shape. This result shows that such post processing phases have 

to be taken into account, whatever they represent supports removal or finishing surfaces. 

Supports are most of the time mandatory but their removal by machining operation may 

be require a non-negligible time, skill and cost. In this paper the machining operations are 

first studied through their effects on topological optimization. Then the cutting 

phenomenon is numerically modeled to explore various options of build supports and 

prevent the part from damages due to tearing. Finally, this paper demonstrates that cutting 

forces analysis should encourage designers (i.e. topology optimizers) and machinists to 

interact, in order to minimize the total cost of the additive manufactured workpiece 

Keywords: DFAM, Topology optimization, Support, Cutting force model, Vibrations, 

Stiffness 



1  Introduction 

For more than 20 years additive manufacturing has been used for prototyping in research 

and development fields. Nowadays the aeronautic industry is able to 3D print functional 

parts at production scale especially using SLM (Selective Laser Melting) technologies 

(for melting part), but mostly exclusively for high cost parts (Barlier, 2015). Additive 

manufacturing allows engineers to create very innovative designs but machining post 

processing operations are quite always necessary, and these parts are often very difficult 

to machine with conventional turning and milling processes, increasing final cost. Using 

Design for Additive Manufacturing (DFAM) methods (Louvigny, 2015) (Hällgren, 2016), 

such as topological optimization, engineers should be able to design the best possible part 

in order to comply technical specifications and to minimize production and post-

production complexity especially with low rigidity parts. The cost of additive 

manufactured parts is very strongly related to the size and the material used, but it is quite 

independent of the shape complexity. Machining may represent up to 50 % of part final 

cost, and sometimes simply reveals to be impossible without part redesign. Aeronautical 

parts redesigned by topology optimization still similar in size and weight compared to the 

subtractive manufacturing parts. This induces that the optimize part quotation target is 

similar to the subtractive manufacturing part, especially if there is a lack of information 

about the available space around the part, or the additional features that could be included 

in the part redesign. Furthermore, topology optimization in an aeronautical context has a 

strong goal of mass reduction which often leads to optimized parts with a lower stiffness 

and a more complex shape (Benoist, 2017). This low stiffness and organic shape have to 

be precisely monitored to prevent part damage and to avoid costs due to eventually 

additional supports. The supports, even those just needed for linking the part to the build 

plate, also bring another non-negligible constraint of post processing. The entry point of 

this study is the cutting forces, taken into account during the topology optimization. 

Beside the cutting forces, that may lead to an unacceptable flexure and poor accuracy, 

vibration must also be avoided during machining, because it would lead to poor surface 

quality and possible tool or workpiece break. To ensure that all the numerical models are 

consistent with reality, numerical results are compared to experimental tests. It is 

important, here to highlight that machining time, must be precisely taken into account for 

optimizing the total cost of the part. The machining time has been reduced here from 40 

minutes, for the subtractive initial manufactured part) to only 6 minutes for the additive 

manufactured part). To obtain the best total cost for the additive manufactured part it is 

important to realize that machining time has to be maintained to the lowest possible level 

from this 6 minutes level. For example, increasing slightly machining allowance to 

increase stiffness during machining may imply to add a machining pass and thus to double 

the machining time. 



Figure 1: Subtractive manufacturing (a) and additive manufacturing part (b) 

2 Modeling and experimentation  

2.1 Cutting forces modeling 

The first step, is the definition of realistic cutting forces. In order to validate a first cutting 

force model, finite elements calculations from the Abaqus software have been done and 

results compared to literature. This first 2D model is a cuboid sample representing the 

part, and a rigid shape representing the cutting tool (figure 3).  

The literature provides the elastic material parameter for powder bed fusion manufactured 

Ti6Al4V. The additive manufactured titanium has the particularity to be created at the 

same time as the part take shape and then to be thermally tempered. So, the material 

parameters are slightly different from cast titanium due to the so called hyper-quenching. 

The literature (Barrett, 2017) provides parameters for modelling the plastic strain during 

machining of 3D printed Ti6Al4V. Johnson-Cook (Johnson, 1983) parameters are given 

as it is the most used material model in FE machining simulations, and defines the 

relationship between strain, strain rate and temperature as described in (Equ.1).  The 

material studied from (Barrett, 2017) may be slightly different from the material we used 

during the printing job, because of thermal treatment. 

= (! + "#$) %1 + & '* % #̇
#$̇-- .1 − 0 2 − 2344525678 − 2344595: 

(1) 

As said before, Johnson-Cook material model relates strain, strain rate and temperature 

to flow stress in a multiplicative form through the parameter A, B, n, C and m. These 

material parameters have been found in the literature (Barrett, 2017) and are summarized 

in (Table 1). 

Table 1: Johnson-Cook material model parameters 

A B n C m 

970 MPa 756 MPa 0.21 0.047 1.05 

a b 



To complete material parameters, a damage law is taken into account. The Johnson-Cook 

failure model defines the strain at fracture as depicted in (Equ.2) (Johnson, 1985):  

#; = (<> + <?. exp (<BC) %1 + <D '* % #̇
#$̇-- %1 + <E 0 2 − 2344525678 − 234459- 

(2) 

Where #;  is the equivalent fracture strain, C  the stress triaxiality parameter and the

parameters <>, … , <E are determined based on a series of experimental fractures tests that

depends on variation of stress triaxiality, strain rate and temperatures. Damage parameters 

used come from (Zhang, 2015) but these parameters concern forged titanium. 

Nevertheless, we used these parameters because of the lack of information in the literature 

about 3D printed titanium damage law. 

Table 2: Johnson-Cook failure material model parameters <> <? <B <D <E
-0.09 0.25 -0.5 0.014 3.87 

The model is then created in Abaqus, with a dynamic, explicit step on a time period of 

0.04 second. This time is enough for the tool to cross the sample at 0.25 m/s speed.  

As shown in Figure 2 the mesh has been refined in the machined zone of the sample in 

order to have accurate results. In cutting modelization, chip formation induces large mesh 

distortions and also brings the necessity to use a separation criterion to prevent numerical 

problems. An Arbitrary Lagrangian Eulerian (ALE) formulation has been chosen for this 

simulation. It allows to integrate the advantages of Eulerian and Lagrangian 

representations in a single description and so reduce mesh distortions (Hashemi, 1994). 

Finally, we used a Coulomb friction law, G = 0.2, to model the contact zone between the

tool and the chip, as used in literature (Pantalé, 2004) (Zhang, 2015). 

2.2 Support modeling 

The second step of this paper is to investigate the machining of the supports and especially 

the plastic residual strain after support removal on the part. To answer this question a 

numerical model, based on the previous one, is created. The model is still a two-part 

assembly of a sample with supports and the tool. The only change between support 

removing model and machining models is the sample geometry (2D to 3D).  

Three geometries have been created to test different supports orientation strategies 0°, 

90° and 45° (figure 3). Each support has a width of 1 mm to represent classical support 

size. The supports are spaced apart of also 1 mm. 



Figure 2: Geometry strategies 0 ° (a) up to 90 ° (b) with a 45 ° increment (c) 

2.3 Built plate machining 

The last investigation in this paper, is to look for the optimization of the built plate 

machining phase. In additive manufacturing, the built plate is considered as a consumable 

like the powder. After every printing job the supports have to be cleaned from the plate 

in order to be used again. The built plate has geometric constraints to respect in order to 

ensure a well quality printing for the next job. The three main constraints to respect are 

parallelism (0.05 mm), the flatness of the built face (0.05 mm) and the roughness (R ≈ 

1.6 μm).  

To process the machining phase, we used an J3 = 45° milling tool with strong inserts to

surface the plate.  

Aside from the geometric restrictions, our observations during built plate machining show 

that the built plate behavior during cutting may be very different from the printed material. 

For example, for 316L 3D printing, the plate material is structural steel (S355) while the 

printed material is stainless steel (316L). This difference is strongly affecting the cutting 

process because the two steels have contradictory optimal cutting parameters. The 

optimal cutting conditions must be able to deal with both materials to obtain high quality 

surface and high removal rate. The cutting conditions for this machining phases are: 

spindle speed of 1500 rpm and a feed rate of 0.033 mm/teeth. 

a b 

c 



3 Results 

3.1 Cutting forces modelling results 

The first 2D numerical model concerned orthogonal cutting process. The model is 

constituted of 16948 linear quadrilateral elements of type CPE4R and a total number of 

nodes of 17202. The results, (Figure 3) with Von Mises stress field, shows a classical chip 

formation during tool penetration with primary shears bands and is in accord with the 

Oxley theory (Oxley, 1989). 

Figure 3: Creation of shear stress zones 

The results show that the cutting force value is always around 2000N, with a +10% 

maximum at 0.002 s, i.e. when the tool is just becoming to generate the chip, as illustrated 

(Figure 3). 

3.2 Supports removal modelling results 

In this section, an extension of the 2D model presented above has been realized to perform 

an 3D model in order to take into account the supports geometry. The number of elements 

and nodes in each model, are summarized in (Table 3).  

Table 3: Elements and nodes number in each model for the sample 

Model 0° Model 90° Model 45° 

Number of elements 12 400 41 200 29 698 

Number of nodes 25844 67 328 46 378 

For the tool, the elements and nodes description are the same for the three models. The 

tool is composed of 944 eight nodes thermally coupled brick explicit elements and 1269 

nodes. The cutting forces results agree with 2D results for each modelling. 

In figure 5, the difference between the supports are highlighted by showing the residual 

displacement of the parts surfaces elements and the equivalent plastic strain values (code 

coloured). The plastic strain and the residual displacement allows us to evaluate if the 

support is ripped off the sample or if it properly cut by the tool. 

10 mm



Figure 4: Plastic strain values for each model 



Analysis of the simulations shows that only the cutting of the supports oriented at 90 ° 

has a weak impact on the sample. 

It is important to note that the plastic strain and the residual displacement may not be the 

wisest criterion but further machining are still ongoing to determine the best criterion.  

This first analysis allows to conclude that the support orientation is non-negligible 

criterion in such configurations. The designer may to take it into account in order to 

prevent against possible failure or poor surface quality of the part after support removal 

machining phase. This first result shows that the supports should be parallel to the cutting 

direction if possible. 

More precise analysis and models are still to be done, in particular with parameters from 

machining tests on titanium part, like feed rate, type of cutting tool, cutting configurations 

etc.  

3.3 Built plate machining results 

A first machining test has been done on steel (S355 and 316L), to investigate the problems 

related to the machining of the build plate. Due to a strong material difference between 

the built plate and the printed part, the cutting conditions have to be optimized to ensure 

a good surface quality of the built plate. For our case, the plate, with a low stiffness, need 

to be machined at spindle speed of 1500 rpm and a feed rate of 0.033 mm/teeth. This 

condition allows us to have the Ra of 0.016 mm but with low removal rate. 

During this machining test, we saw some changes in the metallurgical structure of the 

building plate due to the thermal constraints caused by the laser. These changes are 

located exactly where the supports and the plate are welded. The thermal effect is visible 

on a thickness of ≈ 0.2 mm inside the plate, and affects the surface finish during 

machining.  

Further tests of built plate machining will allow us to study this phenomenon, i.e. the 

thermal effect on the plate. So, the cutting conditions will be optimized in order to make 

this processing as industrially as possible. 

4 Conclusion and perspectives 

The previous paper (Benoist, 2017) allowed us to understand that the most significant 

load case, when a part is designed for additive manufacturing, may be due to machining 

and what we called manipulation load cases of the part (i.e. during 

mounting/unmounting). These results showed the need to take into account such load 

cases during the design process, in order to avoid unexpected breakage of the workpiece 

and/or complex supports during machining.  

The paper presented here focus on the support removal, which is considered as a major 

issue in additive manufacturing. These supports are mandatories to ensure a good quality 

of printing but their removal for metal is not an easy post processing phase. This paper 

allows us to better understand how design method may include the work of the machinist 

and ensure better quality of the part. In this first study we have considered that during 



machining Ti6Al4V generated by additive manufacturing is similar to forged titanium 

during machining. Numerical modeling of the supports removal shows that the orientation 

of these supports regarding to the cutting direction may have a great impact on the surface 

quality and plastic strain of the surface of the part. It appears that supports built parallel 

to the cutting direction minimize plastic strain and surface deformation due to material 

pull-out. 

Another part of this study is about of the build plate machining. We have observed on 

316L 3D printing that a difference of material metallurgy between the plate and the part 

implies to adapt the cutting conditions. So, different cutting conditions have to be 

optimized to ensure acceptable surface quality for the part and for the build plate.  

As it generates near shape parts, additive manufacturing often strongly reduces machining 

time. Indeed, the machinist would just need to machine functional surfaces of the part. 

Unfortunately, near net shape is often associated with lower rigidity parts during 

machining, so a classical solution is to add supports or to add thickness on the part, in 

order to facilitate the machining. These solutions are usually not optimized for industrial 

costs, because it increases the machining time. The initial subtractive manufacturing part 

has a machining time of 40 min and the additive manufacturing part have a machining 

time of 6 min. Adding for example an extra machining pass would lead to ≈ 12 min of 

machining, i.e. would double the machining time. So, this analysis shows the need for 

strong collaboration between designer and machinist. 

In this paper we obtained several firsts results about machining additive manufactured 

context. These results will be investigated further with other new experimental tests and 

simulations. 

Future work will concern: 

- a more complete comparison of different types of supports, their orientations and

problems generated by their machinability

- a further analysis of the problems that the machinist would encounter with additive

manufacturing part, like low stiffness, vibrations, supports machinability, build plate

machinability and effects of these machining phases on the tool wear.

- a more precise analysis of the possible interactions between the designer and the

machinist to ensure quality parts.
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