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cINSA Centre Val de Loire, Univ. Tours, Univ. Orléans, LaMé, 3 rue de la chocolaterie,
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Abstract

In this paper, a fractional viscoelastic model is proposed to describe
the physical behaviour of polymeric material. The material parameters
in the model are characterized by the experimental data obtained in the
dynamical mechanical analysis. The proposed model is integrated into the
fractional governing equation of polymethyl methacrylate (PMMA) above its
glass transition temperature. The numerical algorithm based on the shifted
Legendre polynomials is retained to solve the fractional governing equations
in the time-domain. The accuracy and effectiveness of the algorithm
are verified according to the mathematical examples. The advantage of
this method is that Laplace transform and the inverse Laplace transform
commonly used in fractional calculus are avoided. The dynamical response
of the viscoelastic PMMA beam is determined with several loading conditions
(uniformly distributed load and harmonic load). The effects of the loading
condition and the temperature on the dynamic response of the beam are
investigated in the results. The proposed approach shows great potentials
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for the high-precision calculation in solving the fractional equations in the
science and engineering.

Keywords: Fractional calculus, Fractional partial differential equation,
Dynamic analysis, Polymethyl methacrylate, Viscoelastic model, Shifted
Legendre polynomial

1. Introduction

Fractional calculus has been widely used in the fields of science and
engineering in recent years. The fractional-order models of the materials
are integrated into the integrals and differential equations to improve their
behaviour modelling efficiency and accuracy. Fractional calculus was used5

to investigate the viscoelastic behaviour of the fluid in the pipes [1] and the
dynamic behaviour of the active elastomers in magnetic field [2]. Fractional-
order Constitutive Equation (FCE) was proposed to describe the physical
behaviour of non-Newtonian fluid [3]. The results showed that the proposed
equations could successfully capture the observed increasing of shear stress10

for different velocity gradients. Meng et al. [4] proposed a new variable-
order fractional derivative viscoelastic model to describe the strain hardening
behaviour of amorphous glassy polymers, in which the order function was
assumed to be linearly varied with time. The comparison between the
model prediction and experimental data confirmed the close relationships of15

order change and strain hardening. A variable-order Fractional Differential
Equation (FDE) was developed to modelling the shape memory behaviour of
the polymers [5], which proves more suitable than the conventional constant
order FDE. A fractional model composed parallel fractional Maxwell elements
was used to describe the mechanical behaviour of the polymers [6]. It20

was able to describe the evolution of the master curves of storage modulus
and loss modulus during the stress relaxation experiments. A viscoelastic
model employing fractional-order derivatives was applied to describe the
dielectric properties of materials [7]. Henriques et al. [8] used the fractional
derivative model to describe the viscoelastic behaviour of two polymeric25

foams. Excellent correlation between the experimental data and model
predictions was observed for the shear storage modulus. Fractional calculus
has shown great advantages in modelling the physical constitutive behaviours
of materials, especially the viscoelastic properties of polymeric materials.

The viscoelastic beam is an important structural element to resist load in30
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engineering. Many fractional material models have been proposed to analyze
the dynamic response of the beam under various loading conditions. A
fractional Kelvin-Voigt model was used to describe the viscoelastic properties
of the beam. The numerical results revealed that the increase of the
derivative order could cause a decrease in the vibration amplitudes of35

the beam [9]. The dynamic analysis of a simple supported viscoelastic
beam with a fractional Zener model was performed by using a modified
variational iteration method [10]. The numerical examples were effectuated
to study the influences of fractional derivative on the dynamic response
of the structure. The comparison with the classical Zener model proved40

the efficiency of the proposed algorithm for solving the fractional governing
equations. It is considered as an important issue to propose the efficient
fractional constitutive viscoelastic models to describe accurately the physical
constitutive behaviour of the beams in mechanical engineering.

Polymethyl methacrylate (PMMA) is an amorphous thermoplastic polymer,45

which is widely used in the manufacturing of medical devices due to its
excellent mechanical and optical properties. The mechanical property of
PMMA material above its glass transition temperature is greatly affected
for further applications. Its mechanical properties above the glass transition
temperature are greatly affected for further applications in the life prediction50

and design of engineering structures. Jo et al. [11] described the nonlinear
tensile behaviours of PMMA foam by different integer viscoelastic models.
The proposed constitutive equations were developed in terms of strain, strain
rate, elastic modulus, relative density of foam and relaxation time constant.
The nonlinear tensile stress-strain behaviours were well described. Varghese55

and Batra [12] utilized the modified viscoplastic constitutive equations to
simulate the mechanical behaviour of PMMA at high strain rates. The
proposed models were found to be well coherent with the experimental results
available in the literature. Cheng et al. [13] used a generalized Maxwell
model to describe the viscoelastic behaviour of PMMA lightly about its60

glass transition temperature. The generalized Maxwell model parameters
were determined via dynamic mechanical analysis. The proposed model
was applied to describe the relaxation modulus to achieving the numerical
simulation of the hot embossing process [14]. However, there is little research
work concerning the fractional constitutive viscoelastic model for PMMA65

above its glass transition temperature.
A suitable numerical algorithm has to be proposed to solve the fractional

governing equation of the beam established based on the viscoelastic material
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models. The ordinary numerical algorithms are developed by using the
multi-scale method [15], Galerkin method [16], finite element method [17]70

and so on. One of the difficulties with these methods is that the time-
domain solutions could not be obtained directly. The Laplace transform
has to be used to transform time-domain fractional equations into frequency
domain fractional equations. The time-domain solution is then obtained by
applying the inverse Laplace transform to the frequency domain solutions.75

The complexity of Laplace and inverse transform makes it difficult to solve
effectively the fractional equations. Akinyemi and Lyiola [18] used the
Shehu transform method to decompose the nonlinear term to solve the
time fractional differential equations in physics and engineering. Şenol et
al. [19] proposed an analytical approximate method based on residual80

power series and q-homotopy analysis method [20] to solve the nonlinear
time fractional equations. Akinyemi et al. [21] developed a new iterative
method with q-homotopy analysis to solve the fourth and sixth order time
fractional Cahn-Hilliard equations. The simplicity and accuracy of the
methods were confirmed by the provided examples. Al-Raeei and El-Daher85

[22] developed numerical-integral methods to find numerical solutions of the
fractional Schrödinger equation without using Laplace transform. This is
the reason why the algorithms based on the polynomials are proposed to
solve fractional differential equations. The polynomial algorithms can solve
directly the fractional differential equations in the time-domain. They exhibit90

many other advantages such as high accuracy and low complexity [23]. The
commonly used polynomial algorithms include the Legendre polynomial [24],
the Bernstein polynomial [25,26] and the Chebyshev polynomial [27,28].
Therefore, the polynomial algorithm is proposed for solving the fractional
governing equation for PMMA viscoelastic beams.95

In this paper, the dynamic analysis of viscoelastic beam under various
loading conditions is studied. An improved fractional viscoelastic model
is proposed to describe the constitutive behaviour of PMMA above its
glass transition temperature. The proposed model is characterized in
different temperatures via dynamic mechanical analysis. The fractional100

governing equations of the beam are established by integrating the fractional
viscoelastic model. A numerical algorithm based on the polynomial and
wavelet method is proposed to solve directly in the time-domain. The
shifted Legendre polynomials retained can resolve effectively and accurately
the complex fractional differential equations over a larger interval. The105

displacement of the viscoelastic beam versus time and position are obtained.
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The fractional derivative, the fractional viscoelastic constitutive model
and the governing equation of the viscoelastic beam are introduced in Section
2. The shifted Legendre polynomials are presented in Section 3. The
numerical example is proposed to verify the accuracy of the algorithm in110

Section 4. The dynamic analysis of the PMMA beam is performed under
various loading conditions and temperatures in Section 5. The research work
is concluded in Section 6. A list of the symbols used in the paper is given in
Appendix A.

2. Preliminary knowledge and definitions115

2.1. Caputo fractional derivative operator

Definition 2.1 The Caputo fractional derivative operator Dα
x of order α is

defined as [29,30]

Dα
xu(x) =


1

Γ(m− α)

∫ x
0

(x− τ)−α+m−1u(m)(τ) dτ, α > 0,m− 1 < α < m

d(m)u(x)

dxm
, α = m

(1)

where x ≥ 0, and m ∈ N (N denotes positive integer).
The gamma function, denoted by Γ (·) is defined as Γ (z) =

∫∞
0
e−ttz−1dt

for complex arguments with positive real part.
Several significant properties of the Caputo fractional derivative are

shown as follows:
Dα
xC = 0 (2)

where C is constant.120

The Caputo fractional derivative is a linear operator.

Dα
x (λ(u(x))) = λDα

xu(x) (3)

where λ is constant.
The Caputo fractional derivative of the power function satisfies

Dα
xx

m =

0, m = 0
Γ(m+ 1)

Γ(m+ 1− α)
xm−α, m = 1, 2, 3, · · ·

(4)
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2.2. Fractional constitutive viscoelastic model

The general form of conventional viscoelastic stress strain relationship is
expanded in Taylor series as follows [31]:

n∑
r=0

pr
drσ(t)

dtr
=

n∑
r=0

qr
drε(t)

dtr
(5)

where σ(t) is stress, ε(t) is strain, r ∈ N (N denotes positive integer).
The traditional differential equations established by integer order operators

are limited to describe the viscoelastic behaviour of the material in mechanical125

engineering. The fractional-order differential operators are widely used in
fractional viscoelastic constitutive models thanks to their memory-dependent
properties. Several fractional models such as Maxwell model [32], Kelvin-
Voigt [33] and Zenner [34] models are applied to describe the viscoelastic
properties. The current integer order viscoelastic model (Eq. (5)) could be130

transformed to fractional-order viscoelastic model by replacing the integer

order derivatives
dr

dtr
by the fractional derivative

dαr

dtαr
.

n∑
r=0

pαr

dαrσ(t)

dtαr
=

n∑
r=0

qβr
dβrε(t)

dtβr
(6)

where αr, βr ∈ R (R denotes real number).
For complex materials, choosing one or two items does not describe the

properties of the material well. Therefore, one item is selected on the left
side of Eq. (6), and three items are selected on the right side to represent the
constitutive relationship of the viscoelastic material, which includes integer
order and fractional-order derivatives. The more terms are taken, the closer
the constitutive equation is to the actual situation. The following formula is
selected as the constitutive equation in this paper.

σ(t) = qαD
α
t ε(t) + q0ε(t) + q1D

2
t ε(t) (7)

where qα, q0, q1 ∈ R, α ∈ (0, 1).
135

Taking Fourier transform of both sides of Eq. (7) yields

σ̄(w) = qα(iw)αε̄(w) + q0ε̄(w) + q1(iw)2ε̄(w) (8)

where w is frequency.
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The complex elastic modulus E∗ is expressed as:

E∗ =
σ̄(w)

ε̄(w)
= qα(iw)α + q0 + q1(iw)2

= qαw
α cos(

π

2
α) + iqαw

α sin(
π

2
α) + q0 − q1w2

(9)

E∗ = E ′ + iE ′′ (10)

where E ′ is storage modulus, corresponding the real part of E∗, E ′′ is loss
modulus, corresponding the imaginary part of E∗.

So, E ′ and E ′′ are expressed as:

E ′ = qαw
α cos(

π

2
α) + q0 − q1w2 (11)

E ′′ = qαw
α sin(

π

2
α) (12)

2.3. Fractional governing equations of viscoelastic beam

The deformation diagram of the viscoelastic beam is shown in Figure 1.
The differential equation of motion of the viscoelastic beam is established
according to Hamilton’s principle [35]. The kinetic energy [36] of the beam
is expressed as

Ek =
1

2

∫ H

0

ρAx
∂2y (x, t)

∂t2
dx (13)

where ρ is the material density, Ax is the cross-sectional area, H is the length140

of the beam and y(x, t) is the displacement.

Figure 1: The geometric figure of the viscoelastic beam.

The potential energy [36] is expressed as

V =
1

2

∫ H

0

(
q0I

∂2y (x, t)

∂x2
+ qαI

∂2+αy (x, t)

∂x2∂tα
+ q1I

∂4y (x, t)

∂x2∂t2

)
dx (14)
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where I is the moment of inertia, qα, q0, q1, α are the identified parameters
of the constitutive viscoelastic model.

The work done by the external forces is expressed as

W =
1

2

∫ H

0

f (x, t)y (x, t) dx (15)

where f(x, t) is the external transverse axial load applied on the beam.
According to the Hamilton’s principle

δ

∫ t2

t1

(Ek − V )dt+

∫ t2

t1

δWdt = 0 (16)

The fractional governing equation of motion of the viscoelastic beam is
obtained:

I(qα
∂4+αy(x, t)

∂x4∂tα
+ q0

∂4y(x, t)

∂x4
+ q1

∂6y(x, t)

∂x4t2
) + ρAx

∂2y(x, t)

∂t2
= f(x, t) (17)

The beam is fixed at both ends and the boundary conditions are:

y(x, 0) = 0 y(0, t) = 0 y(H, t) = 0 yx(0, t) = 0 yx(H, t) = 0 (18)

3. Numerical algorithm of fractional governing equations145

3.1. Shifted Legendre polynomials

Legendre polynomials are orthogonal, which used as basic approximate
functions. They exhibit simple and convenient form for calculation, compared
with other orthogonal polynomials (Chebyshev polynomials...). The interval
of Legendre polynomials is -1 to 1. The shifted Legendre polynomials are150

defined to approximate the unknown function in a larger interval [0, H].
The shifted Legendre polynomial of degree n in [0, 1] is defined as [37]

ln,i(x) =
n−i∑
k=0

(−1)k
(
n− i
k

)(
n+ i+ k + 1

n− i

)
xi+k (19)

where i = 0, 1, · · · , n, x ∈ [0, 1]. Then ϕn(x) is formulated as

ϕn(x) = [ln,0(x), ln,1(x), · · · , ln,n(x)]T

ϕn(x) = ATn(x)
(20)
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where Tn(x) = [1, x, · · · , xn]T ,

A = [aij]
n
i,j=0, aij =


0, 0 ≤ k ≤ i

(−1)k

(
n− i
k

)(
n+ i+ k + 1

n− i

)
, k ≤ i ≤ n

The shifted Legendre polynomial of degree n in [0, H] is formulated as

Ln,i(x) =
n−i∑
k=0

(−1)k
(
n− i
k

)(
n+ i+ k + 1

n− i

)( x

H

)i+k
=

n−i∑
k=0

(−1)k
(
n− i
k

)(
n+ i+ k + 1

n− i

)(
1

H

)i+k
xi+k,

(21)

where i = 0, 1, · · · , n, x ∈ [0, H].

Then Φn(x) is formulated as

Φn(x) = ALTn(x) (22)

where

L = [lij]
n
i,j=0, lij =

{
0, i 6= j

H−i, i = j

The shifted Legendre polynomial of degree n in [0, S] is formulated as

L̄n,i(t) =
n−i∑
k=0

(−1)k
(
n− i
k

)(
n+ i+ k + 1

n− i

)( t

S

)i+k
=

n−i∑
k=0

(−1)k
(
n− i
k

)(
n+ i+ k + 1

n− i

)(
1

S

)i+k
ti+k,

(23)

where i = 0, 1, · · · , n, t ∈ [0, S].
155

Then φn(t) is defined as

φn(t) = AMTn(t) (24)

where

M = [mij]
n
i,j=0, mij =

{
0, i 6= j

S−i, i = j

9



3.2. Function approximation

A continuous function y(x) in the domain [0, H] can be expanded in terms
of shifted Legendre polynomials as y(x) = lim

n→∞

∑n
i=0 ciLn,i(x), y(x) can be

approximated as

y(x) ≈ yn(x) =
n∑
i=0

ciLn,i(x) = CTΦn(x) (25)

where n is the number of terms of the shifted Legendre polynomial, CT =
[c0, c1, · · · , cn].

Then
CT 〈Φn(x),ΦT

n (x)〉 = 〈y(x),ΦT
n (x)〉

CT = 〈y(x),ΦT
n (x)〉Q−1

Q = 〈Φn(x),ΦT
n (x)〉 = [δij]

n
i,j=0

(26)

where δij =
∫ H
0
Ln,i(x)Ln,j(x)dx =

0, i 6= j
H

i+ j + 1
, i = j

(i, j = 0, 1, · · · , n).

160

Similarly, a continuous function y(t) in the domain [0, S] can be expanded
in terms of shifted Legendre polynomials as y(t) = lim

n→∞

∑n
i=0 kiL̄n,i(t), y(t)

can be approximated as

y(t) ≈ yn(t) =
n∑
i=0

kiL̄n,i(t) = KTφn(t) (27)

where KT = [k0, k1, · · · , kn].

Then
KT 〈Φn(t),ΦT

n (t)〉 = 〈y(t),ΦT
n (t)〉

KT = 〈y(t),ΦT
n (t)〉P−1

P = 〈Φn(t),ΦT
n (t)〉 = [∆ij]

n
i,j=0

(28)

where ∆ij =
∫ S
0
L̄n,i(t)L̄n,j(t)dt =

0, i 6= j
S

i+ j + 1
, i = j

(i, j = 0, 1, · · · , n).
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Two-variable continuous function y(x, t) ∈ L2[0, H] × [0, S] can be
formulated as

y(x, t) = lim
n→∞

n∑
j=0

(
n∑
i=0

ciLn,i(x))kjL̄n,j(t)

= lim
n→∞

n∑
j=0

n∑
i=0

cikjLn,i(x)L̄n,j(t)

= lim
n→∞

n∑
j=0

n∑
i=0

ωijLn,i(x)L̄n,j(t)

= lim
n→∞

(Φn(x)Uφn(t))

(29)

After intercepting the finite term, it can get

y(x, t) ≈ Φn(x)Uφn(t) (30)

where U = [yij]
n
i,j=0 is a matrix of displacement functions.165

3.3. Integer order operator matrix

The derivative of Φn(x) with respect to x is formulated as

dΦn(x)

dx
= DxΦn(x) (31)

Then

DxΦn(x) = DxALTn(x) = AL
dTn(x)

dx
= ALETn(x) = ALE(AL)−1Φn(x)

(32)

where E = [eij]
n
i,j=0, eij =

{
0, i 6= j + 1
i, i = j + 1

From Eq. (32), Dx is obtained as

Dx = ALE(AL)−1 (33)

The m exponent th derivative of Φn(x) with respect to x is formulated as

dmΦn(x)

dxm
= DmxΦn(x), m ∈ N (34)
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Then

DmxΦn(x) = DmxALTn(x) = AL
dmTn(x)

dxm
= ALEmTn(x) = ALEm(AL)−1Φn(x)

(35)
Based on Eq. (35), Dmx can be obtained as

Dmx = ALEm(AL)−1 (36)

Similarly, φn(t) is a series of polynomial matrices with respect to t, the
derivative of φn(t) with respect to t is formulated as

dφn(t)

dt
= Dtφn(t) (37)

Then

Dtφn(t) = DtAMTn(t) = AM
dTn(t)

dt
= AMETn(t) = AME(AM)−1φn(t)

(38)
Therefore, from Eq. (38), Dt is obtained as

Dt = AME(AM)−1 (39)

The v exponent th derivative of φn(t) with respect to t is formulated as

dvφn(t)

dtv
= Dvtφn(t), v ∈ N (40)

Then

Dvtφn(t) = DvtAMTn(t) = AM
dvTn(t)

dtv
= AMEvTn(t) = AMEv(AM)−1φn(t)

(41)
From Eq. (41), Dvt is obtained as

Dvt = AMEv(AM)−1 (42)

Thus,
∂m+vy(x, t)

∂xm∂tv
≈ ((DmxΦn(x))TU(Dvtφn(t))) (43)

where only U is unknown.
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3.4. Fractional-order operator matrix170

The αth derivative of φn(t) can be expressed as:

dαφn(t)

dtα
= Dαtφn(t), α ∈ (0, 1) (44)

Dαtφn(t) = DαtAMTn(t) = AM
dαTn(t)

dtα
= AMFTn(t) = AMF (AM)−1φn(t)

(45)

where F = [fij]
n
i,j=0, fij =


Γ(i+ 1)

Γ(i+ 1− α)
t−α, i = j, i ≥ 1

0, otherwise

In view of Eq. (45), it gives that

Dαt = AMF (AM)−1 (46)

Thus,
∂m+αy(x, t)

∂xm∂tα
≈ ((DmxΦn(x))TU(Dαtφn(t))) (47)

where only U is unknown.
Basic of the above work, the unknown function is replaced with the

approximate function containing differential operator matrix of shifted
Legendre polynomials. Afterwards, the considered fractional governing Eq.
(17) will be converted into the following algebraic equation with unknown U .

I(qα((D4xΦn(x))TU(Dαtφn(t))) + q0((D4xΦn(x))TU(φn(t)))

+q1((D4xΦn(x))TU(D2tφn(t))) + ρAx((Φn(x))TU(Dαtφn(t))) = f(x, t)
(48)

The boundary conditions Eq. (18) can be transformed into the following
form:

Φn(x)Uφn(0) = 0,Φn(0)Uφn(t) = 0,Φn(H)Uφn(t) = 0
DxΦn(0)Uφn(t) = 0, DxΦn(H)Uφn(t) = 0

(49)

The variable (x, t) is discretized by the reasonable match points xi =
2i−1

2(n+1)
H, i = 1, 2, · · · , n, tj = 2j−1

2(n+1)
S, j = 1, 2, · · · , n, based on the collection175

method. Eq. (48) is transformed into a set of algebraic equations.
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The coefficient yij (i = 0, 1, 2, · · ·n; j = 0, 1, 2, · · ·n) can be obtained by
using the numerical algorithm in MATLAB platform. The fractional-order
equation is transformed to algebraic equations. The least square method
is used to calculate the solution of the algebraic equations. The numerical180

solution of the fractional derivative equation can be obtained.
The proposed algorithm can be summarized as follows:

Algorithm: Numerical solution for the fractional governing equation
Input: α, qα, q0, q1, ρ, Ax, I, f(x, t)
Output:
1. Function approximation y(x, t) ≈ Φn(x)Uφn(t)
2. Derive calculation of integer and fractional operator matrices
3. Substitute the operator matrix into the initial equation
4. The initial equation is transformed into an algebraic equation

5. Let xi = 2i−1
2(n+1)H, i = 1, 2, · · · , n, tj = 2j−1

2(n+1)S, j = 1, 2, · · · , n
6. Solve algebraic equations with MATLAB mathematical software
7. Obtain the solution of the initial equation y (x, t)

4. Numerical example

In this section, numerical example is given to demonstrate the effectiveness
and accuracy of the algorithm in solving fractional-order equations.185

The following equation is considered as a numerical example, in which
the left term is similar to the governing equation of the viscoelastic beam
(defined in Eq. (17)) and f(x, t) is derived from algebraic solution.

2x3(
∂4.1y(x, t)

∂x4∂t0.1
+
∂4y(x, t)

∂x4
+
∂6y(x, t)

∂x4∂t2
) + x2

∂2y(x, t)

∂t2
= f(x, t)

f(x, t) = 48
Γ(3)

Γ(2.9)
x3t1.9 + 48x3t2 + 96x3 + 2x4(2− x)2

(50)

where the defined boundary conditions as follows:

y(x, 0) = 0 y(0, t) = 0 y(2, t) = 0 yx(0, t) = 0 yx(2, t) = 0

The algebraic solution of Eq. (50) is giving by the following equation:

y(x, t) = x2(2− x)2t2, x ∈ [0, 2], t ∈ [0, 10] (51)
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The numerical solutions of Eq. (50) are obtained by the proposed method.
The solutions are calculated with different n to validate the efficiency of the
method. The values of absolute error between the algebraic and approximate
solutions are determined at different x and t, which is summarized in Table
1. The absolute errors are approximately 10−8. The absolute error decrease190

with n. In this research, n is selected as 6 to reduce the absolute error in the
calculation.

Eq. (50) is in the same fractional form of the fractional governing equation
of viscoelastic beam. The right term of Eq. (50) is more general and complex
than uniformly distributed load.195

Table 1: Evolution of absolute error in function of n.

(x, t) Algebraic solution
Absolute error value

n = 4 n = 5 n = 6
(0, 0) 0 0.0140× 10−8 0.0913× 10−9 0.0236× 10−9

(0, 2) 0 0.0221× 10−8 0.1765× 10−9 0.0941× 10−9

(0, 4) 0 0.0561× 10−8 0.0938× 10−9 0.0508× 10−9

(0, 6) 0 0.0488× 10−8 0.2287× 10−9 0.0765× 10−9

(0, 8) 0 0.0956× 10−8 0.5249× 10−9 0.0980× 10−9

(1.6, 0) 0 0.0109× 10−8 0.0268× 10−9 0.0208× 10−9

(1.6, 2) 1.6384 0.0066× 10−8 0.0615× 10−9 0.0100× 10−9

(1.6, 4) 6.5536 0.0474× 10−8 0.0232× 10−9 0.0158× 10−9

(1.6, 6) 14.7456 0.0221× 10−8 0.1650× 10−9 0.0528× 10−9

(1.6, 8) 26.2144 0.0780× 10−8 0.2350× 10−9 0.0096× 10−9

5. Results and discussions

5.1. Determination of material parameters

The values of E ′ and E ′′ at different temperatures and frequency
were determined by using the dynamic mechanical analysis by Cheng et
al. [14]. The cylindrical compression samples were tested by using the200

harmonic solicitations with different frequency at various temperatures. The
parameters in the viscoelastic constitutive equation are identified based on
E ′ and E ′′ at T =110 ◦C, 115 ◦C, 120 ◦C and 125 ◦C.

The identified parameters qα, q0, q1, α were obtained by inverse method
with a least square regression according to Eq. (11) and (12). The identified205

parameters are summarized in Table 2.
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Table 2: Identified parameters of the isotropic viscoelastic constitutive
behaviour law at different temperatures: T = 110, 115, 120, 125 ◦C

T/◦C qα/MPa q0/MPa q1/MPa α

110 275.8275 582.8400 −0.0002 0.1674
115 760.7903 −139.9032 0.0001 0.0966
120 2181.6523 −1939.0033 0.0000 0.0509
125 1187.7101 −1123.1952 −0.0001 0.0836
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Figure 2: Comparison of identified viscoelastic behaviour of PMMA and the
experimental date at different temperatures: (a) T = 110 ◦C, (b) T = 115 ◦C,
(c) T = 120 ◦C, (d) T = 125 ◦C

Based on Figure 2, a good coherence between the experimental data
and simulation data is observed in different temperatures. It indicates that
the proposed fractional viscoelastic can describe accurately the mechanical
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behaviour of PMMA lightly above its glass transition temperature. The210

identified parameters of the model are obtained to effectuate the dynamic
analysis of the PMMA beam.

5.2. Dynamic analysis of viscoelastic beam under various loading conditions

The dynamic displacement of the PMMA beam of rectangular cross-
section is calculated in this section. The input geometric and material215

parameters of the beam are summarized in Table 3. The viscoelastic
parameters are defined in Table 2.

Table 3: Input geometric and material parameters of the beam.

H(m) ρ(kg/m3) Ax(m
2) I(m4) T (◦C) t(s)

1.6 1.15× 103 0.02 4.16× 10−6 110 60

Based on the geometric and material parameters of the beam, Eq. (17)
is developed as follows:

25

6
(qα

∂4+αy(x, t)

∂x4∂tα
+ q0

∂4y(x, t)

∂x4
+ q1

∂6y(x, t)

∂x4∂t2
)

+23
∂2y(x, t)

∂t2
= f(x, t)

(52)

The boundary and initial conditions are as follows:

y(x, 0) = 0 y(0, t) = 0 y(1.6, t) = 0 yx(0, t) = 0

yx(1.6, t) = 0 , x ∈ [0, 1.6], t ∈ [0, 60]
(53)

5.2.1. Uniformly distributed load

The uniform transverse distributed load 100N/m is imposed on the beam.
The numerical solution of the displacement of the beam is obtained by using220

the proposed algorithm.
The displacement of the beam at different t and x are shown in Figure 3.

The displacement curves at t = 6, 12 and 60 s, exhibit the maximum value
in the middle of the beam and zero value at both ends of the beam.

Further analysis shows that the loading time of uniformly distributed225

load has an effect on the dynamic displacement of the PMMA beam. As time
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increases, the dynamic displacement of the PMMA beam gradually increases.
In engineering, this work provides a theoretical basis for the protection of
load-bearing structures.
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0.4

0.6

0.8

1

y(
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t)
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×10-6

t = 6 s
t = 12 s
t = 60 s

Figure 3: The dynamic displacement at different displacements and times.

5.2.2. Harmonic load230

The harmonic load f(x, t) = B sin(100πt) is applied on the viscoelastic
beam. The transverse displacement of the viscoelastic beam is obtained with
B = 100, 200, 500, and 1000 N/m, as shown in Figure 4(a), Figure 4(b) and
Figure 4(c), Figure 4(d) respectively.

The displacement of the two ends of a PMMA beam is always zero and235

is not affected by time, which is coherent with the boundary conditions.
The maximum values of the displacement increase with the amplitude of the
harmonic load. The curves of displacement of the beam under harmonic load
with different amplitude are shown in Figure 4.

The displacements of the beam are calculated at the same position with240

different t as shown in Figure 5. The maximal displacement of the beam
increases with the amplitude of harmonic load. The larger amplitude of the
harmonic load results in larger dissipation of the displacement.
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Figure 4: The displacement of PMMA beam under different harmonic loads.
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Figure 5: The displacement of PMMA beam under different harmonic loads
when x = 0.8 m.
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5.3. Temperature effects on the dynamic response of viscoelastic beam

The constitutive viscoelastic behaviour law were identified by the experimental245

data at different temperatures, as shown in Table 2.
Under f(x, t) = 100 sin(100πt), the numerical solutions y(x, t) at different

points for T = 110 ◦C, 115 ◦C, 120 ◦C and 125 ◦C are shown in Figure 6(a),
Figure 6(b), Figure 6(c), and Figure 6(d) respectively.
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Figure 6: The dynamic displacement y(x, t) at different points under
100 sin(100πt) for (a) T = 110 ◦C, (b) T = 115 ◦C, (c) T = 120 ◦C, and
(d) T = 125 ◦C.

Based on Figure 6, the displacement of the beam increases with temperature.250

It indicates the ability of the PMMA beam to resist load decreases with
increasing temperature and time.
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These results show that the temperature rising leads to the internal
structure changes of the material, also the PMMA beam is weakened against
the external deformation and the dynamic response becomes more obvious255

with time varying as the temperature rising.

6. Conclusions

In this paper, the shifted Legendre polynomials is used to solve the
governing equation of PMMA viscoelastic beam directly in the time-domain.
An improved fractional model is proposed to simulate the constitutive260

relationship of PMMA above the glass transition temperature. The fractional
derivative model is used to describe the viscoelastic behaviour of the beam
to predict the behaviour of the beam under uniform and simple harmonic
loads. The numerical solution of PMMA viscoelastic beam displacement is
obtained. At the same time, the displacements of PMMA beams at different265

temperatures are analyzed.
1. It is verified that the presented algorithm is accurate and effective

through numerical example, and is also found that errors are decreasing with
increasing n. Further, the shifted Legendre polynomials algorithm is excepted
to solve fractional differential equations with three and more variables. More270

importantly, the proposed algorithm has shown great potentials for high-
precision engineering computing problems.

2. The improved fractional-order model is used to derive the fractional-
order governing differential equations of viscoelastic beams, and the dynamic
characteristics of viscoelastic materials are studied. It fills the blank in the275

field of high precision constitutive model simulation of PMMA materials at
glass transition temperature.

3. Analysis shows that the time of uniform load affects the dynamic
displacement of PMMA beams. With the time increasing, the dynamic
displacement is increasing cumulatively in a fluctuating manner. In engineering,280

this work provides a theoretical basis for the protection of load-bearing
structures above glass transition temperature.

4. The temperature rising leads to the internal structure changes of
the material, also the PMMA beam is weakened against with the external
deformation and the dynamic response becomes more obvious with time285

varying as the temperature rising. The results show that as the temperature
increases and the time prolongs, the load resistance of PMMA beam gradually
decreases.
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The numerical algorithm proposed in this paper could be used to solve
other engineering problems. The identification method of the viscoelastic290

properties is suitable for not only solid materials, but also fluid materials.
Dynamic mechanical analysis is always used to characterize the viscoelastic
properties of material. The parameters in the fractional viscoelastic
behaviour law can be identified according to the experimental investigations.
The governing equation of the problem, associated with the proper parameters295

of material behaviour, could be efficiently and accurately solved with the
proposed numerical algorithm.
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Appendix A. Symbol description

symbol explanation
Dα
x Caputo fractional derivative operator

C, λ constant
x position
t time
pr, qr traditional constitutive model parameter
pαr , qαr traditional fractional constitutive model parameter
qα, q0, q1, α improved fractional constitutive model parameter
σ(t) stress
ε(t) strain
ρ material density
W work done by external forces
y(x, t) displacement
E∗ complex elastic modulus
E ′ storage modulus
E ′′ loss modulus
Ax cross-sectional area
Ek kinetic energy
V potential energy
T temperature
I moment of inertia
f(x, t) external load
H length
n number of terms of the shifted Legendre polynomial
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ln,i(x), Ln,i(x), L̄n,i(t) shifted Legendre ploynomial
A,C,K,U,E, F, L,M,∆, δ coefficient matrix
ϕn,Φn, φn family of shifted Legendre ploynomials
Tn family of basical ploynomials
〈, 〉 Inner product
un n exponent th functional approximation
Dx first order differential operator matrix for x
Dmx m exponent th differential operator matrix for x
Dt first order differential operator matrix for t
Dvt v exponent th differential operator matrix for t
Dαt α exponent th differential operator matrix for t
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