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Abstract

Recent developments in shape analysis and retrieval play an important role in a wide variety of applications
that potentially require matching of objects with different geometries. In shape classification, there is no
natural way to represent an object but the similarity measure, distance between representations or descriptors,
depends heavily on the strategy of computing optimal correspondences. In this paper we introduce a new
numerical method for registering surfaces. Thus, finding an optimal one-to-one correspondence between
their shapes. Unfortunately, solving this type of optimization problem is generally hard because the solutions
space is nonlinear with no natural manifold structure on it. To overcome such limitations we make use of
recent methods to represent objects then we find optimal correspondences using a discretized approximation
of the search space. The proposed method has the advantage of extending the Riemannian analysis of 3D
curves in a natural way for surfaces. We demonstrate the proposed algorithms using different public datasets
for 2D and 3D objects matching and classification.

Keywords: Optimization on manifolds ; Coordinate descent ; Parameterized
surfaces registration ; Shape classification ; Manifold Learning

1. Introduction1

Due to the importance of finding optimal correspondences among 2D and 3D shapes, there is a great2

deal of research, analysis and methods that have been introduced for the same purpose [1, 2, 3]. Despite3

all significant advances that have been achieved (particularly for 2D shapes), the problem of a complete4

matching between 3D objects is far from being solved. Basically, the main challenges are related to data and5

the application at hand. At the same time, planar closed curves or boundary surfaces are increasingly being6

used to represent the outline or shape of objects, enabling them to emerge as a natural choice in shape analysis7

and their applications. The need for shape analysis arises in many scientific fields, including computer vision,8

medical imaging, computer graphics, among others [4, 5, 6]. Analyzing shapes and their differences relies on9

the notion of distance between shapes which is the key element for registration, deformation, and comparison10

of shapes. For example, in medical imaging, surface registration is always needed for constructing generative11

models, shape classification and prediction, and supervised segmentation, morphometry, fusion, denoising12

observed data [7, 8, 9]. In many cases, a surface must match another, while comparing them. Finding an13

optimal registration that best matches the required constraints is difficult in practice, especially on surfaces14

undergoing nonlinear deformations [10]. It is therefore necessary to explore efficient numerical methods15
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to compute optimal re-parametrization of parametrized surfaces. There are several successful approaches1

for aligning two point clouds, matching non-rigid shapes [11], registering curves to surfaces as a partial2

matching [12], etc. In this paper, we consider a different problem: Find an optimal one-to-one correspondence3

between parameterized tubular surfaces as a Riemannian optimization on the space of all re-parametrizations.4

Solving this type of optimization problem is generally hard, since the space of all re-parametrizations is5

a complicated infinite dimensional and nonlinear functional space [13]. Considering the actions of the group6

of diffeomorphisms on the simplest closed manifold, namely the unit circle, of the apparent simplicity, it has7

been shown that it is highly nontrivial and very extensive [14, Chapter 3]. Thus, developing an efficient opti-8

mization method to register two parametrized surfaces modulo all re-parametrizations is a serious challenge,9

and a loss of quality is often observed during this step. To overcome such limitations, at least numerically,10

one can: i) choose a good representation for surfaces, ii) build a metric space of those representations, iii)11

formulate the registration problem as a minimization of a cost function, and finally iv) discretize the space of12

re-parameterization and optimize over a finite dimensional space [15, 16].13

Optimization procedures as a part of shape analysis play a crucial role in many applications making it an14

active research area. That is why continuous and discrete optimization procedure for shape analysis has been15

extensively studied during last decades [17, 18]. Previous methods usually compute the solution by minimiz-16

ing certain energy functionals (e.g. variational formulations). However, the literature on parameterization of17

tubular objects is by far not as extensive as for open and spherical surfaces. We briefly describe some related18

methods, a non-exhaustive list, that have been used for similar contexts. For example paper [19] developed19

a framework to compute large deformations diffeomorphisms between surfaces but their framework based20

on manually selected points is not applicable for parametrized surfaces. An extension has been presented21

in [6]. A more complete analysis of shapes of parametrized surfaces has been presented in [20, 21] and the22

theoretical solutions are considered over the set of all diffeomorphisms and represented by smooth vector23

fields. However optimization procedures in general are either restrictive to a parametric family of wrapping24

functions or slow with unsatisfying minimizers in practice.25

In this work we present a new solution for parametrized tubular surfaces and we show later that this26

framework can be applied on other surfaces. Finding a one-to-one correspondence is a fundamental problem27

in mathematics and computation [22, 23, 24] with applications in multiple fields, ranging from medical28

imaging [25] to computer vision [26], and passing by Computer Aided Design (CAD) [27]. This framework29

is motivated by shape classification as a supersized learning from a training set of data containing 2D curves30

(or tubular surfaces) whose classes membership is known. In particular and using new algorithms we show31

that the accuracies of some standard classifiers are better when the one-to-one correspondence is optimal.32

A tubular object is defined to be a surface that is homomorphic to a cylinder, or equivalently, is defined to
be a differentiable function S : Ω ∈ R3 : (ξ1, ξ2) 7→ S(ξ1, ξ2), where Ω denotes [0, 1] × S1 and S1 denotes
the unit circle. The correspondence can be characterized mathematically by a diffeomorphism. The set of
diffeomorphisms, or equivalently called the re-parameterizations group, is defined by

Γ(D) = {γ : D→ D |γ is an orientation-preserving
diffeomorphism on the domain D.}

In particular, for the tubular object, the domain D is Ω and the boundary is preserved with γ(∂Ω) = ∂Ω. In
this setting, looking for a reparameterization leads to an optimization problem:

min
γ∈Γ([0,1]×S1)

E(S1, S2 ◦ γ), (1)

where E is a real-valued cost function and is usually a distance function in the space of surfaces, and S1 and33

S2 are two tubulars.34

Solving the optimization problem (1) efficiently is not easy. For shape of curves, the problem is relatively35

simple, and Riemannian optimization method [28], dynamic programming [16] and coordinate descent have36
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been proposed. These methods have the ability to escape from unsatisfied local minimizers, see their papers1

for details. However, the existing methods for the problem (1) is still limited. To the best of our knowledge,2

only the steepest descent method with multiple initial iterates have been used. However, gradient-based3

algorithms are usually slow and unsatisfied since i) the steepest descent is known to be slow with a local4

behavior in nonlinear optimization problems and ii) the number of initial iterates need to be large due to the5

large dimension of the domain (infinite in theory and large in practice).6

Contributions. We propose a new method to solve this problem for tubular surfaces with an extension7

to other surfaces. For purposes of simplicity, we often use the term surface. The main contributions of this8

work are:9

1. We use a recent work for elastic shape analysis of surfaces [21] and build a connection with the frame-10

work of elastic shape analysis of curves in [16], see Proposition 3.1.11

2. We propose a new optimization method (algorithm 2 and algorithm 3) to register surfaces.12

3. We use various examples with complicated geometries for illustrations and different benchmarks to13

show the effectiveness of the new methodology. The 3D shape classification is carried out by combining14

the proposed method for correspondence and a Gaussian process autoencoder for classification.15

This paper is organized as follows. Section 2 reviews a framework of elastic shape analysis of curves and a16

recent framework of elastic shape analysis of surfaces. Section 3 shows a relationship between the two frame-17

works. This motivates the algorithm design and yields Section 4, which presents the proposed optimization18

algorithms. Section 5 shows that the idea of using curves for surfaces can be applied for other surfaces.19

The numerical illustrations and experiments are given in Section 6 to show the accuracy of the proposed20

algorithms. Finally, the conclusion is carried out in Section 7.21

2. Elastic Shape Analysis of Curves and Surfaces22

Intuitively, a shape is invariant to translation, scaling, rotation and re-parameterization. In elastic shape23

analysis, a mathematical representation of shape is defined such that it is invariant to the four operations24

above, and multiple frameworks of elastic shape analysis have been proposed, see e.g., [29, 16, 21]. This25

paper focuses on the removing reparameterization, which is the most difficult one to be removed. We refer26

to [16] and [21] if readers are interested in removing the other three operations.27

2.1. Analyzing Curves28

In this paper, the SRVF framework defined in [16] is considered. Specifically, a curve in Rn is denoted
by a parameterized function β : D → Rn, where D is [0, 1] for open curves and D is the unit circle S1 for
closed curves. The square root velocity function of β is

q(t) =

{
β̇(t)√
||β̇(t)||2

, if ||β̇(t)||2 6= 0;

0, if ||β̇(t)||2 = 0.
(2)

where ‖ · ‖2 denote the 2-norm. The curve β can be recovered by β(t) =
∫ t

0
q(s)||q(s)||2ds + β0, where29

β0 ∈ Rn is the starting point of β.30

The group action on curve (β, γ) = β ◦ γ is equivalent to the action (q, γ) =
√
γ̇q ◦ γ on q. Let N̄

denote the space of all q functions. For open curves, N̄ is the L2 space. For closed curves, N̄ = {q ∈
L2 |

∫
S1 q(t)‖q(t)‖2dt = 0} is a subspace of the L2 space. Note that the condition

∫
S1 q(t)‖q(t)‖2dt = 0,

equivalent to
∫
S1 β̇(t)dt = 0, implies that the starting point and end point of the curve β is the same and

therefore is a closed curve. A quotient space of N̄ can be defined as N = {[q] | q ∈ N̄}, where [q] =
{(q, γ) | γ ∈ Γ(D)} is an orbit. It has been shown in [16] that the group action on q is isometric with respect
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to the L2 metric. Therefore, N with the L2 metric is a well defined metric space. The cost function for
finding the best reparameterization between two curves therefore is (see [16])

C : Γ(D)→ R : γ → ‖q1 − (q2, γ)‖2L2

=

∫
D
‖q1(t)−

√
γ̇q2 ◦ γ(t)‖22dt (3)

2.2. Analyzing Surfaces1

We first give a definition for axial and circular curves.2

Definition 2.1. Let S be a surface parametrized with (ξ1, ξ2) such that: S : (ξ1, ξ2) ∈ [0, 1] × S1 7→
S(ξ1, ξ2) ∈ R3. We adapt the following definitions:

1. ξ1-curves are axial curves on S with ξ2 constant.
2. ξ2-curves are circular curves on S with ξ1 constant.

3

Suppose S : [0, 1] × S1 → R3 is a differentiable surface. Let ∂S
∂ξ1

and ∂S
∂ξ2

be the two partial derivatives4

of S along the ξ1-curves and ξ2-curves. A normal field on S with respect to a positive orientation is defined5

as follows:6

N : Ω→ R3 : (ξ1, ξ2) 7→ N(ξ1, ξ2) = ∂S
∂ξ1
× ∂S

∂ξ2
,

where × denotes the cross product. The Q-field of S is defined as Square Root Normal Field(SRNF) [21]:7

Definition 2.2. Let S be a surface with a parametrization (ξ1, ξ2) we call Q-field of S the vector field
on S along ξ1 and ξ2 defined by:

Q :Ω→ R3

(ξ1, ξ2) 7→ Q(ξ1, ξ2) =
N(ξ1, ξ2)√
‖N(ξ1, ξ2)‖2

(4)

8

9

One can see that the framework of SRNF is similar to the framework of SRVF in the sense that SRNF10

considers taking the square root of the normal field instead of the velocity. This is a natural generalization11

from 1D curves to 2D surfaces. It is probably the reason that analyzing a curve segment on a 2D surface by12

SRNF is essentially using the SRVF, see details in Section 3.13

Proposition 2.1 gives the group action on Q-fields and proves the isometry of the group action under L2
14

metric. These results have been given for spherical surfaces in [21]. We give them for tubular surfaces and15

for completeness.16

17

Proposition 2.1. Let S be a surface and Q its corresponding Q-field, we have the following properties:

1. The group action on surface (S, γ) = S ◦ γ is equivalent to (Q, γ) =
√
|Jγ |Q ◦ γ, where Jγ is

the Jacobi of γ ∈ Γ(Ω) and | · | denotes the determinant.
2. The group action of γ on Q-fields is an isometry under the L2 metric.

18

19
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Specifically, we have

‖(Q1, γ)− (Q2, γ)‖2L2 =

∥∥∥∥√|Jγ |Q1 ◦ γ −
√
|Jγ |Q2 ◦ γ

∥∥∥∥2

L2

=

∫
Ω

∥∥∥∥√|Jγ |Q1 ◦ γ(ξ1, ξ2)−
√
|Jγ |Q2 ◦ γ(ξ1, ξ2)

∥∥∥∥2

2

dξ1dξ2

=

∫
Ω

|Jγ | ‖(Q1 −Q2) ◦ γ(ξ1, ξ2)‖22 dξ1dξ2

=

∫
Ω

|Jγ ||Jγ−1 | ‖(Q1 −Q2)(ξ1, ξ2)‖22 dξ1dξ2

= ‖Q1 −Q2‖2L2

The space of Q-fields, denoted by M̄, is{
Q ∈ L2 |

∫
S1
Q(ξ1, t)‖Q(ξ1, t)‖2dt = 0 for all ξ1 ∈ [0, 1]

}
, (5)

andM denote the quotient space {[Q] | Q ∈ M̄}, where [Q] denotes the orbit of Q under the group action1

Γ(Ω), i.e., [Q] = {(Q, γ) | γ ∈ Γ(Ω)}. Since the group action is isometric under the L2 metric,M with L2
2

is a well-defined metric space.3

Given two surfaces S1 and S2, let Q1 and Q2 denote their Q-fields, respectively. We define the distance
betweenQ1 andQ2 to be ‖Q1−Q2‖L2 , since the space ofQ is a subspace of L2. The best reparameterization
γ̂ is therefore the minimizer of the functional:

E :Γ(Ω)→ R : γ 7→ ‖Q1 − (Q2, γ)‖2L2

=

∫
Ω

∥∥∥Q1(ξ1, ξ2)− (Q2, γ)(ξ1, ξ2)
∥∥∥2

2
dξ1dξ2,

(6)

where (Q2, γ)(ξ1, ξ2) =
√
|Jγ |Q2 ◦ γ(ξ1, ξ2).4

3. Optimal Parametrization Between Surfaces5

Optimizing over a 2-dimensional domain is usually difficult and expensive due to: i) it is relatively sim-6

ple to parametrize a curve by arc-length using numerical integration, whereas there is no natural way (or7

directions) to parametrize a surface, and ii) the space all re-parametrizations is infinite dimensional function8

space (or a group) with no natural manifold structure. In this section, we exploit the fact that a surface can be9

parametrized by a collection of axial and circular curves to show that the cost function (6) can be reduced to10

a set of the cost function of curves using the SRVF representation.11

Proposition 3.1 gives an important fact that motivates Algorithm 2 for finding optimal correspondences12

between two surfaces.13

14
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Proposition 3.1. Let γ ∈ Γ(Ω), denoted by γ : [0, 1] × S1 → [0, 1] × S1 : (ξ1, ξ2) 7→
(γ1(ξ1, ξ2), γ2(ξ1, ξ2)), where γ1 : [0, 1] × S1 → [0, 1] and γ2 : [0, 1] × S1 → S1. Given two
surfaces S1 and S2 and their corresponding Q-fields Q1 and Q2:

• Let αλ(ξ2) denote γ2(λ, ξ2) and therefore αλ : S1 → S1. Suppose γ1(ξ1, ξ2) = ξ1 for all ξ2 ∈ S1.
Then for any given λ ∈ [0, 1], the function

hλ :Γ(S1)→ R : αλ 7→ hλ(αλ) =∫
S1

∥∥∥Q1(λ, ξ2)− (Q2, γ)(λ, ξ2)
∥∥∥2

2
dξ2

can be reformulated into the form of (3).

• Likewise, let βλ(ξ1) denote γ1(ξ1, λ), and therefore βλ : [0, 1] → [0, 1]. If γ2(ξ1, ξ2) = ξ2 holds
for all ξ1 ∈ [0, 1], the function

kλ :Γ([0, 1])→ R : βλ 7→ kλ(βλ) =∫ 1

0

∥∥∥Q1(ξ1, λ)− (Q2, γ)(ξ1, λ)
∥∥∥2

2
dξ1

also can be reformulated into the form of (3).

1

2

Proof. First of all, using the assumption of γ, the determinant of the Jacobi of γ is

det

([
d
dξ1
γ1

d
dξ2
γ1

d
dξ1
γ2

d
dξ2
γ2

])
= det

([
1 0
d
dξ1
γ2

d
dξ2
γ2

])
=

d

dξ2
γ2.

Let qλ(ξ2) and pλ(ξ2) denote Q1(λ, ξ2) and Q2(λ, ξ2), respectively. We have

hλ(αλ) =

∫
S1

∥∥∥Q1(λ, ξ2)− (Q2, γ)(λ, ξ2)
∥∥∥2

2
dξ2

=

∫
S1

∥∥∥Q1(λ, ξ2)−
√
|Jγ |(Q2 ◦ γ)(λ, ξ2)

∥∥∥2

2
dξ2

=

∫
S1

∥∥∥qλ(ξ2)−
√
α̇λpλ ◦ αλ(ξ2)

∥∥∥2

2
dξ2,

which completes a proof for h. Likewise we obtain a proof for k.3

4. Optimization Algorithms4

In Section 4.1, we present an optimization algorithm for a general reparameterization problem on Γ(Ω).5

An implementation by discretization is described in Section 4.2 and a technique for handling large deforma-6

tions is discussed in Section 4.3.7
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4.1. Optimization over Γ(Ω)1

The optimization problem (6) can be written as

min
γ∈Γ(Ω)

F (γ)

Define N1 = {γ ∈ Γ(Ω) | γ1(ξ1, ξ2) = ξ1 for all ξ2 ∈ S1} and N2 = {γ ∈ Γ(Ω) | γ2(ξ1, ξ2) =2

ξ2 for all ξ1 ∈ [0, 1]}. We use an optimization algorithm that minimizes F alternatively over N1 and N2.3

The algorithm is stated in Algorithm 1.4

Algorithm 1 Alternative Optimization

1: Let F 0 ← F , γ0 = id, and k ← 0;
2: for k = 0, 1, 2, . . . do
3: γ̂k = arg minγ∈N1

F k(γ);
4: γ̃k = arg minγ∈N2

F k ◦ γ̂k(γ);
5: F k+1 = F k ◦ γ̂k ◦ γ̃k;
6: γk+1 = γk ◦ γ̂k ◦ γ̃k
7: end for

Theorem 4.1 shows that either Algorithm 1 makes progress in the sense of reducing function value or the5

partial derivative of F k is 0.6

Theorem 4.1. Suppose the solutions γ̂k and γ̃k in Algorithm 1 exist. Then one of the following statements7

hold:8

1. the function value strictly decreases, i.e., F (γk+1) < F (γk);9

2. γ̂k = id, γ̃k = id, i.e., γk+1 = γk, ∂
∂γ1

F k|γ=id = 0, and ∂
∂γ2

F k|γ=id = 0.10

Proof. It can be seen that

F (γk) = F k(id) ≥ F k(γ̂k) ≥ F k ◦ γ̂k(γ̃k) = F k+1(id) = F (γk+1),

where F (γk) = F (γk+1) if and only if γ̂k = id and γ̃k = id.11

Suppose γ̂k = id and γ̃k = id. It follows that γk+1 = γk ◦ γ̂k ◦ γ̃k = γk. Furthermore, note that12

id = arg minγ∈N1
F k(γ) is equivalent to φ = arg minγ2:Ω→R F

k(ϕ, γ2), where ϕ(ξ1, ξ2) = ξ1 for all13

ξ2 ∈ S1, and φ(ξ1, ξ2) = ξ2 for all ξ1 ∈ [0, 1]. It follows that ∂Fk

∂γ2
(ϕ, φ) = 0 which is equivalent to14

∂
∂γ2

F k|γ=id = 0. Likewise, it holds that ∂
∂γ1

F k|γ=id = 0.15

4.2. Discretization16

A discretization version of Algorithm 1 is stated in Algorithm 2 for minimizing (6). Steps 8 and 14,17

corresponding to the computations of F k ◦ γ̂k and F k ◦ γ̂k ◦ γ̃k, are crucial since using them makes the as-18

sumptions of γ in Proposition 3.1 hold. Steps 5 and 11 in Algorithm 2, the minimization steps, correspond to19

Steps 3 and 4 of Algorithm 1, respectively. Multiple methods have been proposed to solve the inner problems20

in Steps 5 and 11, such as dynamic programming [16] and Riemannian methods [28]. The steepest descent21

method with multiple initial iterates has been proposed to optimize the cost functionE. However, this method22

usually does not give a satisfactory result due to the difficulties given in the introduction. Existing methods23

of curves works on a grid in [0, 1]2 rather than the continuous space Γ([0, 1]). By exhaustively searching over24

7



Algorithm 2 Alternative Optimization for E

Input: Two Q-functions Q1 and Q2.

Output: The minimizer γ∗ =

[
γ∗1
γ∗2

]
.

1: Discretize [0, 1] by n points λ ∈ {0, . . . , 1}, note hλ the circular curve at level λ and αλ its parametriza-
tion. Then, each surface has n circular curves.

2: Discretize S1 bym points λ ∈ {0, . . . , 2π}, note kλ the axial curve and at level λ, and βλ its parametriza-
tion. This leads to a discretization of Q1 and Q2 by n×m points in R3

3: Set k = 0, γ∗1 (ξ1, λ) = ξ1 and γ∗2(λ, ξ2) = ξ2 for all λ ∈ [0, 1];
4: for All λ ∈ {0, . . . , 1} do
5: Optimize hλ for Q1 and Q2 to find the minimizer α∗λ ∈ Γ(S1);
6: end for
7: Define γ2(ξ1, ξ2) = α∗ξ1(ξ2);

8: Set Q2(ξ1, ξ2) to be
√

dγ2
dξ2

(ξ1, ξ2)Q2(ξ1, γ2(ξ1, ξ2));
9: Set γ∗1(ξ1, ξ2) to be γ∗1(ξ1, γ2(ξ1, ξ2)) and γ∗2 (ξ1, ξ2) to be γ∗2(ξ1, γ2(ξ1, ξ2))

10: for All λ ∈ {0, . . . , 2π} do
11: Optimize kλ for Q1 and Q2 to find the minimizer β∗λ ∈ Γ([0, 1]);
12: end for
13: Define γ1(ξ1, ξ2) = β∗ξ2(ξ1);

14: Set Q2(ξ1, ξ2)←
√

dγ1
dξ1

(ξ1, ξ2)Q2(γ1(ξ1, ξ2), ξ2);

15: Set γ∗,k1 (ξ1, ξ2) to be γ∗1 (γ1(ξ1, ξ2), ξ2) and γ∗,k2 (ξ1, ξ2) to be γ∗2 (γ1(ξ1, ξ2), ξ2);

16: If the algorithm converges, then return
[
γ∗,k1

γ∗,k2

]
and stop. Otherwise, k = k + 1 and go to Step 4.

8



the piece-wise linear functions on the grid with slope constraints, one can find an approximation of a solu-1

tion. If the grid is fine, then the approximation can be used as a solution, such as dynamic programming [16].2

Otherwise, the approximation can be used as an initial iterate for a gradient method, such as Riemannian3

methods [28].4

In practice, every surface is represented by n points along each circular curve (partition of [0, 2π]) and m5

points along an axial curve (partition of [0, 1]). Moreover, every surface is a grid of n×m points. Each point6

represents the intersection between a circular and an axial curve. Because of the discretization, all gridpoints7

are disjoints and should not cross each other during the update. Note that when using a dynamic programming8

approach to register curves, the complexity is quadratic to the number of points on a curve. Therefore, we9

have a time complexity O(m × n2) for reparametrizing circular curves and O(n × m2) for axial curves.10

For the Riemannian optimization method, it is shown empirically in [28, Section 6.6] that the complexity11

is approximately linear to the number of points on curves. Therefore, the complexity in Steps 5 and 11 is12

approximately O(mn). The complexity in interpolations in Steps 8, 9, 14 and 15 is also O(mn). Therefore,13

the total complexity of Algorithm 2 with Riemannian optimization method is approximately O(kmn), where14

k is the number of iterations. In our experiments, the maximum number of iterations is fixed to be 100.15

4.3. Successive Infinitesimal Variations16

The continuous description of Ω involves a space Γ of infinite dimension. Many algorithms based on17

discretization have difficulties if the deformations between two shapes are large, and therefore, in practice,18

it is common to model a time-sequence of smaller, more elementary, deformations, rather than a large de-19

formation, see, e.g., [30, 31]. In this paper, we follow the same idea and propose Algorithm 3 based on20

Algorithm 2. Concretely, the new methodology can be seen as a spatio-temporal discretization scheme when21

(t, γt) ∈ [0, 1]× Γ leads to a space discretization.22

In the case of a uniform parametrization (ξ1, ξ2) as an equidistant mesh of squares or rectangles, one can23

compute the initial re-parametrization by solving a one-dimensional problem in ξ1 direction and subsequently24

a family of problems in the ξ2 direction [32]. Consequently, a better strategy would be to re-parametrize the25

two Q-fields uniformly (by arc-length in each component), fix the parametrization of Q1 and then search for26

reparameterization γ̂ on Q2 iteratively. Indeed, at each iteration k we consider a small stepsize ρ ∈ [0, 1],27

compute Qρ in the direction of Q1, find γk between Q2 and Qρ using Algorithm 2, and then update Q2 with28

(Q2, γ
k). Therefore, the final solution is given by γ̂ = γ0 ◦ γ1 ◦ . . . γN .29

Note that the boundary conditions is checked using a projection P (see Line 6 in Algorithm 3) from30

L2 to M̄ to make sure that circular curves are closed and that the optimal infinitesimal re-parametrization31

is well defined for every iteration. Consequently, using infinitesimal successive variations guarantees the32

convergence to a diffeomorphic solution [30, Chapter 11]. According to this iterative algorithm, convergence33

is achieved when no update of γ̂ is possible which corresponds to the case where the line between Q1 and34

(Q, γ̂) is orthogonal to [Q2]. We illustrate the idea of successive iterations in Figure 1(g): Original Q1 and35

Q2 define two equivalent classes [Q1] and [Q2]. We fix the parametrization of Q1 to be the identity and we36

search for the optimal re-parametrization of Q2. The algorithm is initialized with (Q2, IdΓ), iterates over a37

set of satisfying update (Q2, γ
k) at iteration k until convergence to (Q2, γ

∗).38

To show the quality of registering two surfaces using Algorithm 3, we display an example of registering39

a cylinder S2 (b) to an arbitrary surface S1 (a) in Figure 1. The optimally registered surface S2 as (S2, γ̂) is40

given in (c). We also provide three intermediate steps in (d) and the cost function ‖Q1 − (Q2, γ̂
iter)‖ in (e)41

during iterations. For a better evaluation, we consider a linear interpolation α with α0 = S1 (for t = 0) and42

α1 = (S2, γ̂) (for t = 1) in (f). In-between we show 4 uniform intermediate surfaces αt for 5 ∗ t = 1 . . . 4.43

Note that the linear interpolation α is an extrinsic geodesic between [Q1] and [Q2] but may not coincide with44

a geodesic between them inM. Yet, we observe that improved registration corresponds to smooth variations45

and better preservation of geometric features along α.46

47
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Algorithm 3 Successive Infinitesimal Variations

Input: Two Q-fields Q1 and Q2 with ||Q1 −Q2|| > 0.
Output: The minimizer γ̂.

1: Re-parametrize Q1 and Q2 uniformly.
2: Set γ̂ = IdΓ and Q = Q2.
3: Set k = 1 and N ≥ 3.
4: repeat
5: Choose the step size ρ = k

N where N represents maximum iterations.
6: Compute Qk = P (Q+ ρ(Q1 −Q));
7: Compute γk from Q to Qk using algorithm 2 ;
8: Update Q = (Q, γk) ;
9: Update γ̂ = γ̂ ◦ γk ;

10: Update k = k + 1 ;
11: until ρ = 1 or d(γk, IdΓ) very small

5. Relationship to Open Surfaces1

Given two tubular surfaces S1 and S2, if a ξ1-curve of S1 fixedly matches to a ξ1-curve of S2, then the2

reparameterization problem between these two tubular surfaces can be viewed as a reparameterization prob-3

lem between two open surfaces. An open surface is a differentiable function S : [0, 1]2 → R3 : [ξ1, ξ2] 7→4

S(ξ1, ξ2). Its normal field is defined as follows: N : [0, 1]2 → R3 : (ξ1, ξ2) 7→ N(ξ1, ξ2) = ∂S
∂ξ1
× ∂S

∂ξ2
and5

the corresponding Q-field is defined to be Q(ξ1, ξ2) = N(ξ1,ξ2)√
‖N(ξ1,ξ2)‖2

. It can be shown that the space of all Q-6

fields of open surfaces is the L2 space and the reparameterization group action on Q-fields is isometric [21].7

We point out here without proofs that a connection between SRNF of open surfaces and SRVF of curves8

can be built similarly (see Lemma 5.1) and Algorithm 2 can be modified slightly for open surfaces (modify9

S1 to be [0, 1] in Lines 5 and 10 of Algorithm 2). Since the space of all Q-fields of open surfaces forms the10

L2 space, the geodesic between any two Q-fields is just the straight line between them, see details in Propo-11

sition 5.1. Note that the geodesics between any Q-fields of tubular surfaces are not the linear combinations12

since the space M̄ is a nonlinear subspace of L2.13

Lemma 5.1. Given two open surfaces S1 and S2 and their corresponding Q-fields Q1 and Q2. Let
γ = (γ1, γ2) ∈ Γ([0, 1]2). αλ(ξ2) denote γ2(λ, ξ2).

1. Suppose γ1(ξ1, ξ2) = ξ1 for all ξ2 ∈ [0, 1]. Then for any given λ ∈ [0, 1], the function hλ(αλ) =∫
S1

∥∥∥Q1(λ, ξ2)− (Q2, γ)(λ, ξ2)
∥∥∥2

2
dξ2 can be reformulated into the form of (3).

2. Likewise, let βλ(ξ1) denote γ1(ξ1, λ). If γ2(ξ1, ξ2) = ξ2 holds for all ξ1 ∈ [0, 1], the function

kλ(βλ) =
∫ 1

0

∥∥∥Q1(ξ1, λ)− (Q2, γ)(ξ1, λ)
∥∥∥2

2
dξ1 also can be reformulated into the form of (3).

14

Proposition 5.1. Given two open surfaces S0 and S1, and an optimal parametrization γ̂ between them,
a geodesic between [Q0] and [Q1] is given by: Qt(ξ1, ξ2) = (1− t)Q0(ξ1, ξ2) + t(Q1, γ̂)(ξ1, ξ2).

15

Proof for Proposition 5.1: According to (6), γ̂ is a minimizer of

d2([Q0], [Q1]) =

∫
Ω

‖Q0(ξ1, ξ2)− (Q1, γ̂)(ξ1, ξ2)‖22dξ1dξ2.

10



Remind that the space of Q-fields is a linear space, then the geodesic between Q0 and (Q1, γ̂) is given by a
straight line:

αt(ξ1, ξ2) = (1− t)Q0(ξ1, ξ2) + t(Q1, γ̂)(ξ1, ξ2)

minimizing the cost function

‖Q0 − (Q1, γ̂)‖L2 =

∫ 1

0

√〈
d

dt
αt,

d

dt
αt

〉
L2

dt

with α0 = Q0 and α1 = (Q1, γ̂).1

Note that for this special case the projection operator P used in Algorithm 3 in Line 6 is the identity. Ex-2

cept that, the same algorithm can be applied directly without modification to find an optimal parametrization3

γ̂ between any two open surfaces S1 and S2.4

6. Experimental Results5

In this section, we present various examples using both synthetic surfaces and several benchmarks to6

show the accuracy of the proposed method. Since our framework extends registration of curves to surfaces,7

we present a comparison when using dynamic programming and a Riemannian optimization method to solve8

correspondence between curves. Usually parametrizations depend on the application at hand but one can still9

compute a parametrization of a given surface S as levelset of a differentiable scalar function [33]. Practical10

examples of functions computations over curved surfaces can be found in [34]. Similarly, all surfaces used11

in our experiments are represented by a finite set of ξ1-curves and ξ2-curves. Figure 2(a) gives an example of12

a parametrization (ξ1, ξ2) in (d) where ξ1 is the parameter along axial axis (b) and ξ2 is the parameter along13

circular axis (c). Since those curves are represented by 100 points each and therefore, the Q-field is also14

represented by points that are on some smooth function.15

In all of the cost functions considered, Q2 is composed with some function and, therefore, representing16

Q2 (all curves) as a set of points is not sufficient and a suitable function must be used. Since the representation17

requires a C1 function to compute partial derivatives, an interpolatory cubic spline on ξ1 and ξ2 is used.18

It should be noted however that there is nothing in the formulation that requires an interpolatory approxi-19

mation. Finally, all derivatives are calculated with the central difference scheme and all integrals required by20

the algorithms are approximated by the Composite Trapezoidal Rule.21

6.1. Shape Registration22

We show various examples in Figure 4 left. In each row, we present an example of registering a target S2 in23

the left column (a) to a reference S1 in the second column (b) using the proposed method. The reparametrized24

surface (S2, γ̂) is given in the right column (c). For a better evaluation of the qualitative improvement, results25

are provided as a linear combination between S1 and (S2, γ̂). We note that the resulting registration provides26

a smooth deformation between surfaces that are ”close” (first row) or where S2 has a simplified geometry27

(second row). The other example, consider surfaces with more complicated geometries and the outcome28

reconfirms that the proposed method successfully provides smooth evolutions and better preservations of29

geometric features along the paths.30

In order to evaluate the overall quality of our framework when using different methods to register curves,31

we performed a comparison between dynamic programming (DP) and a Riemannian optimization method32

(RO) [28]. We began by computing distances using both methods between 1000 random pairwise selec-33

tions from 30 surfaces, see Figure 4(d) for some samples. Using those distances, we computed the realized34

gain (‖Q1 −Q2‖L2 − ‖Q1 − (Q2, γ̂)‖L2). We consider the gain as a distribution and report the results as35

11



histograms in Figure 4(e): (dark blue) for RO and transparent for DP. We note that the proposed method1

provides good results for both methods with an advantage for RO. For example, a gain less than 10 has been2

recorded by 37% cases for RO and 50% for DP. In addition, a gain between 30 and 40 has been recorded3

approximatively by 18% for RO and by only 8% for DP. Furthermore, in very few cases DP reached a gain4

superior to 100 whereas the maximum gain realized by RO is 100.5

6.2. 2D Shapes Clustering6

Two public datasets are used in the experiments: the Flavia leaf dataset [35] and the MPEG-7 dataset [36].7

The Flavia leaf dataset contains images of 1907 leaves from 32 species. Figure 5(a) shows an example leaf8

from each species. MPEG-7 contains 1400 images in 70 clusters each of which contains 20 shapes. Figure9

5(b) shows an example shape from each cluster. The boundary curves of the shapes are extracted and 10010

uniformly-spaced points were used to represent the shape.11

The two public datasets were used to compare the performances of Riemannian optimization based12

method [28] and dynamic programming [16]. Indeed, we used k-medoids algorithm to perform cluster-13

ing [37]. It reminds us that k-medoids is a standard and a widely used clustering algorithm. We applied14

the algorithm on the pre-computed distance matrix. Since k-mediod method may find a local minimizer,15

we repeated the clustering process 100 times and then take an average of their correctness. The correctness16

of k-medoids method is reported in Table 1. For completeness, we also provide the average computational17

time for pairwise distance from [28] . Note that the computational time is dominated by computing the pair-18

wise distances between all shapes. The Riemannian optimization based methods are able to achieve higher19

correctness using less computational time when compared to the dynamic programming method.20

6.3. 3D Shapes Classification21

A public 3D objects benchmark [38] is used for the experimental evaluation of the proposed method. The22

original 763 models were classified into 19 classes. Figure 6 shows several examples from different classes.23

First, the boundary surfaces of 3D objects were aligned (rotation and translation) to a reference model and24

uniformly scaled. Then, 50 levelset curves is extracted to represent a surface where each curve is represented25

by 100 equidistant points. Only the first and the last levelsets were removed to make sure that the resulting26

representation is well defined. Finally, for all surfaces, the starting points have been chosen as an intersection27

between each curve and a fixed reference half-plane.28

Shape classification has been studied extensively in the literature[39, 40, 41], to cite but a few examples.29

Nonetheless, whereas the main aim is to show the importance of one-to-one correspondance when comparing30

shapes, we propose to classify 3D shapes based on 3D geometric representations. For all classification31

experiments, we extract different features (HOG [42], mean curvature HS , Gaussian curvature KS [43] and32

3D wavelet coefficients [44]) and use them separately to represent a surface. We remind that the goal is to use33

standard descriptors from literature to show the classification accuracy before and after re-parametrization.34

Thus, the choice of the most performing descriptors is out of the scope of this work. Descriptors’ vector35

are given as input to train a Gaussian Processes Autoencoder (GPAE) [45] with 50 and 60 hidden layers,36

respectively. We select 75% of the dataset for training and use the rest for test. In order to remove the test37

bias, we run the methods 10 times. At each run, we randomly select the training set and use the remaining38

for test. We then average the performance over the 10 runs. To show the effectiveness of our approach, we39

show the classification accuracy without re-parametrization in Table 2 and after re-parametrization (using our40

method) in Table 3.41

Furthermore, in order to objectively evaluate the proposed classification method we compare the GPAE42

with Support Vector Machine (SVM) classifier [46, 47]. Table 2 and Table 3 show that GPAE outperforms43

SVM in terms of classification accuracies except for HOG descriptor. Also, we can remark that using a good44

correspondence improves the accuracy for both GPAE and SVM classifiers. From all experiments, we can45

12



note that the classification accuracy is better after re-parametrization regardless of any input (surface repre-1

sentation) or the classifier (GPAE or SVM). In particular, we observe that the best accuracies are achieved2

when using the mean curvature HS as a feature. This result is well illustrated by confusion matrices in Fig-3

ure 7 where the mean curvature is used to represent shapes and GPAE to classify them. Nevertheless, we4

should keep in mind that in both cases, we applied a Gaussian filtering, removed rigid transformation and5

normalized surfaces which certainly improves the accuracy even before re-parametrization.6

7. Conclusion7

We have presented a new Riemannian-based method for shape registration and classification. The advan-8

tage of using the proposed method is that it simplifies the optimization over the space of all re-parametrization9

by exploiting available frameworks for shape analysis of 3D curves. Beyond the use for finding optimal10

correspondences, we wanted to show how this framework could be directly applied for 2D and 3D shape11

registration, clustering or classification. We have tested our method on several benchmarks that demonstrate12

the effectiveness of the proposed methodology. We used standard descriptors to represent a surface and two13

different models for classification. From the experiments, we have showed that the classification accuracy is14

better after re-parametrization regardless of any descriptor or classifier.15
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Figure 1: Reparameterization of the target surface S2 (b) to match the reference surface S1 (a) using the proposed method. (c) The
optimally registered target as (S2, γ̂). (d) Examples of intermediate steps and (e) the linear combination path between S1 and (S2, γ̂).
(f) The cost function ‖Q1 − (Q2, γ̂iter)‖L2 during iterations and (g) an illustration of the optimization process initialized at Q0

2 =
(Q2, IdΓ) and ending at the optimal solution Q∗

2 = (Q2, γ̂).

(a) (b) (c) (d)

Figure 2: Example of a tubular surface S (a) and the corresponding, ξ1-curves (axial), ξ2-curves (circular), and parametrization (ξ1, ξ2).
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a(S2) b(S1) c(S2, γ̂)

(a) (b) (c)

Figure 3: Reparameterization of a surface S2 (b) as one-to-one correspondence with S1 (a) using the proposed method. (c) The optimally
registered target as (S2, γ̂). For each row, the linear combination path between S1 and (S2, γ̂) is given from second column (b) to the
right column (c).

(a) (b)

Figure 4: (a) Samples of surfaces used for experiments and (b) histograms of the realized gain between the starting distance before
re-parametrization ‖Q1−Q2‖L2 and the distance after re-parametrization‖Q1−(Q2, γ̂)‖L2 using the Riemannian method (dark blue)
and DP (red dashed).
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Figure 5: (a): Samples of leaves from the Flavia leaf dataset. (b) Samples of curves from the MPEG-7 dataset. One sample per cluster
is illustrated.

(a) (b) (c) (d) (e)

Figure 6: Top: Samples of 3D models from the 3D dataset. Bottom: Examples after rigid alignment and re-parametrization colored with
curvature extraction (for each column a-e Gaussian left and mean right).
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(a)

(b)

Figure 7: Confusion matrices using the mean curvature with GPAE: (a) before and (b) after re-parametrization.
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Table 1: 2D shapes classification rate. Two versions of limited-memory Riemannian BFGS (RO) based methods are used.

RO-complex RO-simple DP
FLAVIA (rate) 68,94% 68.37% 66.53%
FLAVIA (time) 0.088 0.047 0.897
MPEG-7 (rate) 68,94% 68.37% 66.53%
MPEG-7 (time) 0.181 0.134 0.908

Table 2: 3D shapes classification accuracy before re-parametrization.

Method Results HOG Wavelet HS KS

GPAE rate 73.1% 78% 76.8% 73.9%
σ 1.1 0.8 1.7 2.0

SVM rate 74.2% 74.5% 75.6% 70.2%
σ 1.0 1.2 0.9 1.5

Table 3: 3D shapes classification accuracy after re-parametrization.

Method Results HOG Wavelet HS KS

GPAE rate 77.8% 79.% 87.5% 80.1%
σ 1.5 1.4 1.8 1.9

SVM rate 79.4% 75.0% 77.3% 78.2%
σ 1.1 1.0 1.6 2.0
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