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Abstract

In this paper, we introduce the notion of Gaussian processes indexed by probability density functions

for extending the Matérn family of covariance functions. We use some tools from information

geometry to improve the efficiency and the computational aspects of the Bayesian learning model.

We particularly show how a Bayesian inference with a Gaussian process prior (covariance parameters

estimation and prediction) can be put into action on the space of probability density functions. Our

framework has the capacity of classifiying and infering on data observations that lie on nonlinear

subspaces. Extensive experiments on multiple synthetic, semi-synthetic and real data demonstrate

the effectiveness and the efficiency of the proposed methods in comparison with current state-of-

the-art methods.

Keywords: Information geometry, Learning on nonlinear manifolds, Bayesian

regression and classification, Gaussian process prior, HMC sampling

1. Introduction1

In recent years, Gaussian processes on manifolds have become very popular in various fields in-2

cluding machine learning, data mining, medical imaging, computer vision, etc. The main purpose3

consists in inferring the unknown target value at an observed location on the manifold as a pre-4

diction by conditioning on known inputs and targets. The random field, usually Gaussian, and5

the forecast can be seen as the posterior mean, leading to an optimal unbiased predictor [1, 2].6
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Bayesian regression and classification models focus on the use of priors for the parameters to define1

and estimate a conditional predictive expectation. In this work, we consider a very common prob-2

lem in several contexts of applications in science and technology: learning a Bayesian regression3

and classification models with Probability Density Functions as inputs.4

Probability Density Functions (PDFs) are inherently infinite-dimensional objects. Hence, it is not5

straightforward to extend traditional machine learning methods from finite vectors to functions.6

For example, in functional data analysis [3] with applications in medical [4, 5], it is very common7

to compare/classify functions. The mathematical formulation leads to a wide range of applications8

where it is crucial to characterize a population or to build predictive models. In particular, multiple9

frameworks exist for comparing PDFs in different representations including Frobenius, Fisher-Rao,10

log-Euclidean, Jensen-Shannon and Wasserstein distances [6, 7, 4, 8, 1]. In this work, we extend11

this formulation to PDFs space P with the Matérn covariance functions.12

There is a rich literature on statistical inference on manifolds among which the Fisher information13

matrix [9] has played a central role. Recently, there has been increasing interest in applying informa-14

tion geometry for machine learning and data mining tasks [10, 11, 12, 13]. The Fisher information15

matrix determines a Riemannian structure on a parametrized space of probability measures. Study16

of geometry of P with the Riemannian structure, which we call information geometry, contributes17

greatly to statistical inference, refer to [11, 12] for more details. Such methods are based on para-18

metric models that are of great interest in many applications. However, aspects of PDFs other19

than parametric families may be important in various contexts [8, 14, 6, 15, 4, 16]. In particular,20

the consistency of regression and classification with PDFs inputs was established in [17, 18, 19]21

with the help of kernel density estimation [20]. More recently, [1] studied the dissimilarity between22

PDFs with the Wasserstein distance and [21] used a nonparametric framework to compare spherical23

populations.24

The main aim of this paper is to learn a Bayesian inference on Gaussian processes. For instance,25

one can think of a Gaussian process as defining PDFs and inference taking place directly in the26

function-space. Moreover, the index space is that of PDFs when choosing the underlying metric in27

order to evaluate the dissimilarity between them [22]. The only drawback is that performing Kriging28

on PDFs space P is not straightforward due to its geometry. For this end, we exploit an isometric29

embedding by combinng the square root transform [23] and the distance induced by the Fisher-Rao30
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metric which make the covariance function non-degenerate and simplify the optimization process.1

Gaussian processes (GPs) have been widely used to provide a probabilistic framework for a large2

variety of machine learning methods [24]. Optimization techniques are usually required to fit a GP3

model Z, that is to select a GP covariance function. For pi and pj in P, the main issue would be4

to build a proper covariance between Z(pi) and Z(pj). In particular, this covariance can define a5

notion of stationarity for the process. Another important task is the classification process where6

we wish to assign an input PDF pi to one of the given classes [25].7

To search for the covariance function hyperparameter, we use several methods for maximizing the8

marginal likelihood. Our aim is then to select those optimizing performance criteria for regression9

and classification: The first method is based on the gradient descent for finding a local maximum of10

the marginal likelihood. The second method is a special case of MCMC methods, called Hamiltonian11

Monte-Carlo (HMC) [26]. The objective is to perform sampling from a probability distribution for12

which the marginal likelihood and its gradient are known. The latter has the advantage to simulate13

from a physical system governed by Hamiltonian dynamics.14

The remainder of the paper is organized as follows. In Section 2, we introduce the problem formu-15

lation and we give a background of some Riemannian representations. Section 3 extends the usual16

notion of GPs indexed by finite vectors to those indexed by PDFs with theoretical results for the17

Matérn covariance function. We also give details of the proposed model for predicting and classi-18

fying PDFs as well as estimating the covariance function parameters. In Section 4, we present and19

discuss experimental results with some comparison studies. We conclude the paper in Section 5.20

2. Problem formulation and geometry background21

Let p1, . . . , pn denote a finite set of observed PDFs and y1, . . . , yn denote their corre-22

sponding outputs with real values (quantitative or qualitative). In this work, we focus23

on nonparametric PDFs restricted to be defined on Ω = [0, 1]. Our main goals through-24

out this paper are: i) Fitting the proposed model’s parameters in order to better25

explain the link between pi and yi, i = 1, . . . , n, ii) evaluating the corresponding predic-26

tive expectation at an unobserved PDF p∗ ∈ P and iii) studying the properties of the27

GP with the Matérn covariance function. In the particular case where yi ∈ {−1,+1},28

we will assign each unobserved PDF p∗ to its predicted class after learning the model29
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parameters. To reach such goal, we follow the same idea of nonparametric information1

geometry that has been discovered by [9] and developed later in other works, see for2

example [27, 6, 7, 11, 28]. Thus, the notion of similarity/dissimilarity between any3

pi and pj is measured using the induced Rao distance [29, 22] between them on the4

underlying space. In this paper, we look at the space of PDFs as a Riemannian man-5

ifold, as detailed in the next section, which plays an important role in the proposed6

methods.7

2.1. Riemannian structure of PDFs space8

For more details about the geometric structure concerning the Fisher information met-9

ric, refer to [27, 15, 30]. For example, [27] showed that P with a Riemannian structure10

has a positive constant curvature. Furthermore, the action of orientation preserving11

diffeomorphism acts by isometry on P with respect to the Fisher information metric.12

We will exploit these nice properties to define an isometric embedding from P to E13

detailed in (11). Then, we use this embedding to construct a Gaussian process on14

PDFs with a proper covariance function (14) and a predictive model (31).15

We first note that the space of PDFs defined over Ω with values in R+ can be viewed16

in different manners. The case where Ω is finite and the statistical model is parametric17

has been largely studied in the literature [12, 11]. In contrast, if Ω is infinite which is18

the case here, different modeling options have been explored [27, 31, 3, 30]. We start19

with the ideas developed in [27, 15, 6, 11] where P is an infinite dimensional smooth20

manifold. That is, P is the space of probability measures that satisfy the normalization21

constraint. Since we are interested in statistical PDFs analysis on P, we need some22

geometrical tools [32, 33],e.g. geodesic. For the rest of the paper, we view P as a23

smooth manifold (1) and we impose a Riemannian structure on it with the Fisher-Rao24

metric (3). Let25

P = {p : Ω→ R |p ≥ 0 and

∫
Ω

p(t)dt = 1}. (1)

be the space of all PDFs (positive almost everywhere) including nonparametric models.26

We identify any tangent space of P, locally at each p, by27

Tp(P) = {f : Ω→ R |
∫

Ω

f = 0} (2)
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As detailed in [34, 27, 30], the tangent space contains functions that are infinitesimally1

differentiable. But following [32], we have a constructive method of great importance2

that allows one to form a local version of any arbitrary f that is continuously differen-3

tiable in a small neighborhood and null outside. Now that we have a smooth manifold4

and its tangent space, we can introduce a Riemannian metric. This choice is very5

important since it will determine the structure of P and consequently the covariance6

function of the Gaussian process. More details about the importance of the metric7

and the induced Riemannian structure are discussed in [7, 35, 36]. We also define and8

denote by P+ the interior of P. For the following, we consider without justification9

that any probability density can be locally perturbed to be smooth enough [32]. This10

is true in finite dimensional cases but the generalization to infinite dimensional cases11

is not straightforward. Among several metrics, we are particularly interested in the12

Fisher-Rao metric defined, for any tangent vectors f1, f2 ∈ Tp(P), by13

< f1, f2 >p=

∫
Ω

f1(t)f2(t)

p(t)
dt. (3)

Although this metric has nice properties with an increasing interest [15, 10, 34], P14

equipped with < ., . >p is still numerically intractable. Therefore, instead of working15

on P directly, we consider a mapping from P to the Hilbert upper-hemisphere (positive16

part) around the unity 1P such that 1P(t) = 1 for all t in Ω [23]. Thus, we exploit the17

Riemannian isometry between P and the upper-hemisphere to extend the notion of18

GPs to the space of PDFs. Indeed, we first define the map19

Ψ : P → H (4)

p 7→ φ = 2
√
p, (p = Ψ−1(φ) =

1

4
φ2)

where20

H = {φ : Ω→ R |φ ≥ 0 and

∫
Ω

φ(t)2dt = 4}. (5)

Note that φ is well defined since p is nonnegative and Ψ is a Riemannian isometry21

from P+ to H without the boundary [33]. On the other hand, any element φ ∈ H can22

be uniquely projected as 1
2φ to have a unit norm. For simplicity and without loss of23

generality, we interpret H as the elements of unit Hilbert upper-hemisphere S∞+ up to24
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a multiplicative factor (2 here). From that point of view, we identify H with S∞+ and1

we define Ψ(1P) = 1H to be the ”unity pole” on H. Note that 1H as the image of the2

uniform pdf 1P is a fixed point, i.e. 1H =
√

1P = 1P . In this setup, we have3

‖φ‖22 =

∫
Ω

φ(t)2dt = 1, (6)

for any φ in H which allow us to consider H, when equipped with the integral inner4

product < ., . >2, as the unit upper-hemisphere (positive part). Furthermore, for5

arbitrary directions f1, f2 in Tp(P) the Fisher-Rao metric as defined in (eq:Fisher-Rao)6

becomes < ., . >2 as follows:7

< f1, f2 >p=< Df1Ψ, Df1Ψ >2 . (7)

with DfiΨ(p)(t) = fi(t)√
p(t)

for all t ∈ Ω and i = 1, 2. One of the main advantages of this8

formulation is to exploit the nice properties of the unit Hilbert sphere such as geodesic,9

exponential map, log map, and the parallel transport. For the rest of the paper, the10

geodesic distance dP(p1, p2) between two PDFs p1 and p2 in P, under the Fisher-Rao11

metric, is given by the geodesic distance dH(φ1, φ2) (up to a factor 2) between their12

corresponding φ1 and φ2 on H. We remind that the arc-length (geodesic distance)13

between distinct and non antipodal φ1 and φ2 on H is the angle β = arccos (< φ1, φ2 >2).14

We also remind some geometric tools that will be needed for next sections as a lemma:15

Lemma 2.1. With H defined from (5) with unit norm and Tφ(H) its tangent space at φ, we have16

the following:17

• The exponential map is a bijective isometry from the tangent space Tφ(H) to H. For any18

w ∈ Tφ(H), we write19

Expφ(w) = cos(‖w‖2)φ+ sin(‖w‖2)
w

‖w‖2
. (8)

• Its inverse, the log map is defined from H to Tφ1(H) as20

Logφ1
(φ2) =

β

sin(β)
(φ2 − cos(β)φ1). (9)

• For any two elements φ1 and φ2 on H the map Γ : Tφ1(H) → Tφ2(H) parallel transports a21

vector w from φ1 to φ2 and is given by:22

Γφ1�φ2
(w) = w − 2

(φ1 + φ2)

||φ1 + φ2||22
< w,φ2 >2 (10)
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For more details, we refer to [33]. As a special case, we consider the unity pole φ = 1H1

and we denote E = T1(H) the tangent space of H at 1H. For simplicity, we note Log1(.)2

the log map from H to E and Exp1(.) its inverse. This choice is motivated by two reasons:3

The numerical implementation and the fact that 1H is the center of the geodesic disc4

[0, π2 [. Indeed and since all elements are on the positive part, the exponential map and5

its inverse are diffeomorphisms. So, one can consider any point on H instead of 1H to6

define the tangent space, e.g. the Fréchet mean. However, this is without loss for the7

numerical precision. Furthermore we can use the properties of the log map to show8

that:9

||Log1(φi)− Log1(φj)||2 = dH(φi, φj) =
1

2
dP(pi, pj) (11)

for any two pi, pj on P. Note that the multiplicative factor 1
2 is important to guarantee10

the isometry but will not have any impact on the covariance function defined in (14)11

as it is implicit in the hyperparameter.12

3. Gaussian Processes on PDFs13

In this section, we focus on constructing GPs on P. A GP Z on P is a random field indexed by P

so that (Z(p1), . . . , Z(pn)) is a multivariate Gaussian vector for any n ∈ N\{0} and p1, . . . , pn ∈ P.

A GP is completely specified by its mean function and its covariance function. We define a mean

function m : P → R and the covariance function C : P × P → R of a real process Z as

m(pi) =E
[
Z(pi)

]
. (12)

C(pi, pj) =E
[
(Z(pi)−m(pi))(Z(pj)−m(pj))

]
. (13)

Thus, if a GP is assumed to have zero mean function (m ≡ 0), defining the covariance function14

completely defines the process behavior. In this paper, we assume that the GPs are centered and15

we only focus on the issue of constructing a proper covariance function C on P.16

3.1. Constructing covariance functions on P17

A covariance function C on P must satisfy the following conditions. For any n ∈ N\{0} and18

p1, . . . , pn ∈ P, the matrix C = [C(pi, pj)]
n
i,j=1 is symmetric nonnegative definite. Furthermore, C19

is called non-degenerate when the above matrix is invertible whenever p1, . . . , pn are two-by-two20

7



distinct [1]. The strategy that we adopt to construct covariance functions is to exploit the full1

isometry map Log1(.) to E given in (11). That is, we construct covariance functions of the form2

C(pi, pj) = K(‖Log1(φi)− Log1(φj)‖2), (14)

where K : R+ → R.3

Proposition 1. Let K : R+ → R be such that K(ui, uj) = K(‖ui − uj‖2) is a covariance function4

on E and C as defined as in (14). Then5

1. C is a covariance function.6

2. If [K(‖ui − uj‖2)]ni,j=1 is invertible, then C is non-degenerate.7

A closely related proof when dealing with Cumulative Density Functions (CDFs) is given in [1]. In8

practice, we can select the function K from the Matérn family, letting for t ≥ 09

Kθ(t) =
δ2

Γ(ν)2ν−1

(2
√
νt

α

)ν
Kν

(2
√
νt

α

)
, (15)

where Kν is a modified Bessel function of the second kind and Γ is the gamma function. We10

note θ = (δ2, α, ν) ∈ Θ where δ2 > 0 is the variance parameter, α > 0 is the correlation length11

parameter and ν = 1
2 + k(k ∈ N) is the smoothness parameter. The Matérn form [37] has the12

desirable property that GPs have realizations (sample paths) that are k times differentiable [38],13

which prove its smoothness as function of ν. As ν →∞, the Matérn covariance function approaches14

the squared exponential form, whose realizations are infinitely differentiable. For ν = 1
2 , the15

Matérn takes the exponential form. From Proposition 1, the Matérn covariance function defined16

by C(pi, pj) = Kθ(‖Log1(φi)− Log1(φj)‖2) is indeed non-degenerate.17

3.2. Regression on P18

Having set out the conditions on the covariance function, we can define the regression model on P19

by20

yi = Z(pi) + εi, i = 1, . . . , n, (16)

where Z is a zero mean GP indexed by P with a covariance function in the set {Cθ; θ ∈ Θ}21

and εi
iid∼ N (0, γ2). Here γ2 is the observation noise variance, that we suppose to be known for22

simplicity. Moreover, we note y = (y1, . . . , yn)T , p = (p1, . . . , pn)T and v = (v1, . . . , vn)T =23
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(Log1(Ψ(p1)), . . . ,Log1(Ψ(pn)))T . The likelihood term is P(y|Z(p)) = N (Z(p), γ2In) where In is1

the identity matrix. Moreover, the prior on Z(p) is P(Z(p)) = N (0,Cθ) with Cθ = [Kθ(‖vi −2

vj‖2)]ni,j=1. We use the product of likelihood and prior terms to perform the integration yielding3

the log-marginal likelihood4

lr(θ) = −yT (Cθ + γ2In)−1y − log |Cθ + γ2In| −
n

2
log 2π. (17)

Let θ = {θj}3j=1 = (δ2, α, ν) denote the parameters of the Matérn covariance function Kθ. The5

partial derivatives of lr(θ) with respect to θj are6

∂lr(θ)

∂θj
=

1

2
yTC−1

θ

∂Cθ

∂θj
C−1
θ y − tr

[
C−1
θ

∂Cθ

∂θj
]
. (18)

For an unobserved PDF p∗ and by deriving the conditional distribution, we arrive at the key7

predictive equation8

P(Z(p∗)|p,y, p∗) = N (µ(p∗), σ2(p∗)), (19)

with9  µ(p∗) = C∗θ
T (Cθ + γ2In)−1y,

σ2(p∗) = C∗∗θ −C∗θ
T (Cθ + γ2In)−1C∗θ,

(20)

where C∗θ = Kθ(v, v
∗) and C∗∗θ = Kθ(v

∗, v∗) for v∗ = Log1(Ψ(p∗)). As we have introduced GP10

regression indexed by PDFs, we will present GP classifier in the next section.11

3.3. Classification on P12

For the classification part, we focus on the case of binary outputs, i.e., yi ∈ {−1,+1}. We first13

adapt the Laplace approximation to GPc indexed by PDFs in Section 3.3.1. We also give the14

approximate marginal likelihood and the Gaussian predictive distribution in Section 3.3.2.15

3.3.1. Approximation of the posterior16

The likelihood is the product of individual likelihoods P(y|Z(p)) =
∏n
i=1 P(yi|Z(pi)) where P(yi|Z(pi)) =17

σ(yiZ(pi)) and σ(.) refers to the sigmoid function satisfying σ(t) = 1
1+exp(−t) . As for regression,18

the prior law of GPc is P(Z(p)) = N (0,Cθ). From the Bayes’ rule, the posterior distribution of19

Z(p) satisfies20

P(Z(p)|y) =
P(y|Z(p))× P(Z(p))

P(y|p, θ)
,∝ P(y|Z(p))× P(Z(p)), (21)

9



where P(y|p, θ) is the exact marginal likelihood. The log-posterior is simply proportional to1

logP(y|Z(p)) − 1
2Z(p)TC−1

θ Z(p). For the Laplace approximation, we approximate the posterior2

given in (21) by a Gaussian distribution. We can find the maximum a posterior (MAP) estimator3

denoted by Ẑ(p), iteratively, according to4

Zk+1(p) = (Cθ + W)−1(WZk(p) +∇P(y|Zk(p))), (22)

where W is a n×n diagonal matrix with entries Wii = exp(−Ẑ(pi))

(1+exp(−Ẑ(pi)))2
. Using the MAP estimator,5

we can specify the Laplace approximation of the posterior by6

P̂(Z(p)|p,y) = N (Ẑ(p), (C−1
θ + W)−1). (23)

3.3.2. Predictive distribution7

We evaluate the approximate marginal likelihood denoted by P̂(y|p, θ) instead of the exact marginal8

likelihood P(y|p, θ) given in the denominator of (21). Integrating out Z(p), the log-marginal9

likelihood is approximated by10

lc(θ) = −1

2
Ẑ(p)TC−1

θ Ẑ(p) + log p(y|Ẑ(p))− 1

2
log
∣∣In + W

1
2 CθW

1
2

∣∣. (24)

The partial derivatives of lc(θ) with respect to θj satisfy11

∂lc(θ)

∂θj
=
∂lc(θ)

∂θj
|Ẑ(p) +

n∑
i=1

∂lc(θ)

∂Ẑ(pi)

∂Ẑ(pi)

∂θj
. (25)

The first term, obtained when we assume that Ẑ(p) (as well as W) does not depend on θ, satisfies12

∂lc(θ)

∂θj
|Ẑ(p) =

1

2
Ẑ(p)

T
C−1
θ

∂Cθ

∂θj
C−1
θ Ẑ(p)− 1

2
tr
[
(Cθ + W−1)−1 ∂Cθ

∂θj
]
. (26)

The second term, obtained when we suppose that only Ẑ(p) (as well as W) depends on θ, is13

determined by14

∂lc(θ)

∂Ẑ(pi)
= −1

2

[
(C−1

θ + W)−1
]
ii

∂3 log p(y|Ẑ(p))

∂3Ẑ(pi)
, (27)

and15

∂Ẑ(p)

∂θj
=
(
In + CθW

)−1 ∂Cθ

∂θj
∇ log p(y|Ẑ(p)). (28)

Given an unobserved PDF p∗, the predictive distribution at Z(p∗) is given by16

P̂(Z(p∗)|p,y, p∗) = N (µ(p∗), σ2(p∗)), (29)

10



with1  µ(p∗) = C∗θ
TC−1

θ Ẑ(p),

σ2(p∗) = C∗∗θ −C∗θ
T (Cθ + W−1)−1C∗θ.

(30)

Finally, using the moments of prediction, the predictor for y∗ = +1 is2

π(p∗) =

∫
R
σ(Z∗)P̂(Z∗|p,y, p∗)dZ∗, (31)

where we note Z∗ = Z(p∗) for simplicity.3

3.4. Covariance parameters estimation4

The marginal likelihoods for both regression and classification depend on the covariance parameters5

controlling the stationarity of the GP. To show potential applications of this framework, we explore6

several optimization methods in Section 3.4.1 and Section 3.4.2.7

3.4.1. log-marginal likelihood gradient8

In the marginal likelihood estimation, the parameters are obtained by maximizing the log-marginal9

likelihood with respect to θ, i.e., finding10

θ̂ = argmax
θ

ll(θ), (32)

where ll(θ) is given in (17) by lr(θ) for regression or lc(θ) in( 24) for classification. We summarize11

the main steps in Algorithm 1.12

Algorithm 1: Gradient descent.

Require: log-marginal likelihood ll and its gradient ∇ll
Ensure: θ̂

1: repeat

2: ∇ll(θ(k)) = {∂ll(θ(k))
∂θj }3j=1 from (18) or (25)

3: Find the step-size λ (e.g., by backtracking line search)

4: Evaluate θ(k + 1) = θ(k)− λ∇ll(θ(k))

5: Set k = k + 1

6: until ||∇ll||2 is small enough or a maximum iterations is reached

13

14

11



3.4.2. HMC sampling1

Generally, the marginal likelihoods are non-convex functions. Indeed, conventional optimization2

routines may not find the most probable candidate leading to a lost of robustness and uncertainty3

quantification. To deal with such limitations, we use weak prior distributions for δ2 and α whereas4

ν is simply estimated by cross-validation [39]:5

P(δ2, α) = P(δ2)× P(α), (33)

with δ2 and α being independent. Following [40], δ2 will be assigned a half-Cauchy (positive-only)6

prior, i.e. P(δ2) = C(0, bδ2) and α an inverse gamma, i.e. P(α) = IG(aα, bα). Consequently, the7

log-marginal posterior is proportional to8

lp(δ
2, α) = ll(θ) + logP(δ2) + logP(α). (34)

When sampling from continuous variables, HMC can prove to be a more powerful tool than usual9

MCMC sampling. We define the Hamiltonian as the sum of a potential energy and a kinetic energy:10

E((θ1, θ2), (s1, s2)) = E1(θ1, θ2) + E2(s1, s2)− lp(θ1, θ2) +
1

2

2∑
j=1

sj
2
, (35)

which means that (s1, s2) ∼ N (0, I2). Instead of sampling from exp
(
lp(θ

1, θ2)
)

directly, HMC11

operates by sampling from the distribution exp
(
−E((θ1, θ2), (s1, s2))

)
. The differential equations12

are given by13

dθj

dt
=
∂E

∂sj
= sj and

dsj

dt
= − ∂E

∂θj
= −∂E

1

∂θj
, (36)

for j = 1, 2. In practice, we can not simulate Hamiltonian dynamics exactly because of time14

discretization. To maintain invariance of the Markov chain, however, care must be taken to preserve15

the properties of volume conservation and time reversibility. The leap-frog algorithm, summarized16

in Algorithm 2, maintains these properties [41].17

Algorithm 2: Leap-frog.

1: for k = 1, 2, . . . do

2: sj(k + λ
2 ) = sj(k)− λ

2
∂
∂θjE

1(θ1(k), θ2(k)) where λ is a finite step-size

3: θj(k + λ) = θj(k) + λsj(k + λ
2 )

4: sj(k + λ) = sj(k + λ
2 )− λ

2
∂
∂θjE

1(θ1(k + λ), θ2(k + λ))

5: end for

18

19

12



We thus perform a half-step update of the velocity at time k + λ
2 , which is then used to compute1

θj(k + λ) and sj(k + λ). A new state ((θ1(N), θ2(N)), (s1(N), s2(N))) is then accepted with the2

probability3

min
(

1,
exp

(
− E((θ1(N), θ2(N), (s1(N), s2(N))

)
exp

(
− E((θ1(1), θ2(1), (s1(1), s2(1))

) )
. (37)

We summarize the HMC sampling in Algorithm 3.4

Algorithm 3: HMC sampling.

Require: log-marginal posteriors lp and its gradient ∇lp
Ensure: θ̂

1: Sample a new velocity from a Gaussian distribution (s1(1), s2(1)) ∼ N (0, I2)

2: Perform N leapfrog steps to obtain the new state (θ1(N), θ2(N)) and velocity (s1(N), s2(N))

from Algorithm 2

3: Perform accept/reject of (θ1(N), θ2(N)) with acceptance probability defined in (37).

5

6

4. Experimental Results7

In this section, we test and illustrate the proposed methods using synthetic, semi-synthetic and real8

data. For all experiments, we study the empirical results of a Gaussian process indexed by PDFs9

for both regression and classification.10

Baselines. We compare results of GP indexed by PDFs (GPP) where the parameters are estimated11

by gradient descend (G-GPP) and HMC (HMC-GPP) to: Functional Linear Model (FLM) [5] for12

regression, Nonparametric Kernel Wasserstein (NKW) [42] for regression, A GPP based on the13

Wasserstein distance (W-GPP) [43, 1] for classification, and a GPP based on the Jensen-Shannon14

divergence (JS-GPP) [8] for classification.15

Performance metrics. For regression, we illustrate the performance of the proposed framework16

in terms of root mean square error (RMSE) and negative log-marginal likelihood (NLML). For17

classification, we consider accuracy, area under curve (AUC) and NLML.18

4.1. Regression19

Dataset. We first consider a synthetic dataset where we observe a finite set of functions simulated20

according to (16) as Z(pi) = h(<
√
pi,
√
p̃ >2) = 0.5 <

√
pi,
√
p̃ >2 +0.5. In this example, we21

13



Figure 1: Examples of PDFs input for regression. The output with continuous value in [−3, 4] is illustrated by a

colorbar.

consider a truncated Fourier basis (TFB) with random Gaussian coefficients to form the original1

functions satisfying gi(t) = δi,1
√

2 sin(2πt) + δi,2
√

2 cos(2πt) with δi,1, δi,2 ∼ N (0, 1). We also take2

g̃(t) = −0.5
√

2 sin(2πt) + 0.5
√

2 cos(2πt). We suppose that p̃ and pis refer to the corresponding3

PDFs of g̃ and gis estimated from samples using the nonparametric kernel method (bandwidths4

were selected using the method given in [20]). Examples of n = 100 estimates are displayed in5

Fig. 1 with colors depending on their output levels.6

Regression results. Focusing on RMSE, we summarize all results in Table 1. Accordingly, the7

proposed G-GPP gives better precision than FLM. On the other hand, HMC-GPP substantially8

outperforms NKW with a significant margin. As illustrated in Table 2, we note that the proposed9

methods are more efficient than the baseline FLM when maximizing the log-marginal likelihood.10

Again, this is a very simple explanation on how the quality of GPP strongly depends on parameters11

estimation method. In addition, G-GPP stated in Algorithm 1 is very effective from a computational12

point of view.

Table 1: Regression: RMSE as a performance metric.

G-GPP HMC-GPP FLM NKW

mean std mean std mean std mean std

0.07 0.03 0.13 0.31 0.10 0.04 0.28 0.01

13

14



Table 2: Regression: negative log-marginal likelihood as a performance metric.

G-GPP HMC-GPP FLM

mean std mean std mean std

73.28 1.14 21.89 5.32 329.66 6.52

4.2. Classification1

In this section, we perform some extensive experiments to evaluate the proposed methods using a2

second category of datasets.3

4.2.1. Datasets for classification4

Synthetic datasets. We consider a dataset of two synthetic PDFs of beta and inverse gamma5

distributions. This choice is very crucial for many reasons since beta is defined on [0, 1], parametrized6

by two positive parameters, and has been widely used to represent a large family of PDFs with finite7

support in various fields. Increasingly, the inverse gamma plays an important role to characterize8

random fluctuations affecting wireless channels [44]. In both examples, the covariance matrix with9

L2 distance and Total Variation TV-distance have a very low rank. We performed this experiment10

by simulating n = 200 pairs of PDFs slightly different for the two classes. Each observation11

represents a density when we add a random white noise. We refer to these datasets as Beta and12

InvGamma, see random examples in Fig. 2 (a&b). We also illustrate the Fréchet mean for each13

class. The search of the mean is performed using a gradient approach detailed in [6].14

Semi-synthetic dataset. Data represent clinical growth charts for children from 2 to 12 years [5].15

We refer to this dataset as Growth. We simulate the charts from centers for disease control and16

prevention [45] through the available quantile values. The main goal is to classify observations by17

gender. Each simulation represents the size growth (the increase) of a child according to his age18

(120 months). We represent observations as nonparametric PDF and we display some examples in19

Fig. 2 (c). For each class: girls (red) and boys (blue) we show the Fréchet mean in black.20

Real dataset. The first public dataset consists of 1500 images representing maize leaves [46] with21

specific textures whereas the goal is to distinguish healthy and non-healthy plants. We refer to this22

dataset as Plants. Motivated by this application, we first represent each image with its wavelet-23

deconvolved version and form a high-dimensional vector of 262144 components. Fig. 3 illustrates24

an example of two original images (left): a healthy plant (top) and a plant with disease (bottom),25

15



(a) (b)

(c) (d) (e)

Figure 2: Synthetic PDFs for (a) InvGamma and (b) Beta with class 1 (red) and class 2 (blue). Semi-synthetic

PDFs for (c) Growth with girls (red) and boys (blue). Real PDFs for (d) Temp with uninfected (red) and infected

(blue). Real PDFs for (e) Plants with disease (red) and healthy (blue). The Fréchet mean for each class in black.

Figure 3: Two examples from maize plants dataset where (top) is a healthy leaf and (bottom) is a leaf with disease.

For each class: an original image (left), the extracted features (middle), and the normalized histogram (right).

their wavelet-deconvolved versions (middle), and the corresponding histograms (right). We also1

16



display PDFs from histograms for each example in Fig. 3 (right column in black).1

A second real dataset with 1717 observations gives the body temperature of dogs. For this dataset,2

temporal measures of infected and uninfected dogs are stored during 24 hours. The infection by a3

parasite is suspected to cause persistent fever despite veterinary medicine [47]. The main goal is to4

learn the relationship between the infection and a dominant pattern from temporal temperatures.5

We display some examples of infected (blue) and uninfected (red) in Fig. 2 (c) and we refer to6

this dataset as Temp. The PDF estimates were obtained using an automatic bandwidth selection7

method described in [20]. We illustrate some examples of PDFs from real datasets in Fig. 2 (d&e).8

We remind that high-dimensional inputs make traditional machine learning techniques fail to solve9

the problem at hand. However, the spectral histograms as marginal distributions of the wavelet-10

deconvolved image can be used to represent/classify original images [48]. In fact, instead of com-11

paring the histograms, a better way to compare two images (here a set of repetitive features) would12

be to compare their corresponding densities.13

4.2.2. Classification results14

We learn the model parameters from 75% of the dataset whereas the rest is kept for test. This15

subdivision has been performed randomly 100 times. The performance is given as a mean and the16

corresponding standard deviation (std) in order to reduce the bias (class imbalance and sample17

representativeness) introduced by the random train/test split.18

Results on synthetic datasets. We summarize all evaluation results on synthetic datasets19

in Fig. 4 (a&b). Accordingly, one can observe that both HMC-GPP, W-GPP and JS-GPP reach20

the best accuracy values for InvGamma with a little margin for the proposed HMC-GPP. On the21

other hand, G-GPP and HMC-GPP heavily outperform W-GPP and JS-GPP for Beta. Again, this22

simply shows how each optimization method impacts the quality of the predictive distributions.23

Results on semi-synthetic data. We summarize all results in Fig. 4 (c) where we show accuracy24

and AUC values on the Growth dataset as boxplots from 100 tests. One can observe that G-GPP25

gives the best accuracy with a significant margin. Note that we have used 103 HMC iterations26

in Algorithm 3. Furthermore, we set the “Burn-in” and “Thinning” in order to ensure a fast27

convergence of the Markov chain and to reduce sample autocorrelations.28

Results on real data. We further investigate whether our proposed methods can be used with29

real data. Fig. 5 (a&b) shows the boxplots of accuracy and AUC values for Temp and Plants,30

17



(a)

(b)

(c)

Figure 4: Boxplots of the classification accuracy (left) and AUC (right) on synthetic and semi-synthetic datasets:

(a) InvGamma, (b) Beta, and (c) Growth. In each subfigure, the performance is given for different methods: G-GPP

(red), HMC-GPP (light blue), W-GPP (violet), and JS-GPP (dark blue).

respectively. In short, we highlight that the proposed methods successfully modeled these datasets1

with improved results in comparison with W-GPP.2

Fortunately, the experiments have shown that the problem of big iterations, usually needed to3

simulate the Markov chains for complex inputs is partially solved by considering the proposed HMC4

sampling (Algorithm 3). In closing, we can state that the leap-frog algorithm (Algorithm 2), based5

on Hamiltonian dynamics, allows us to early search the best directions giving the best minimum of6

18



(a)

(b)

Figure 5: Boxplots of the classification accuracy (left) and AUC (right) on real datasets: (a) Temp and (b) Plants.

In each subfigure, the performance is given for different methods: G-GPP (red), HMC-GPP (light blue), W-GPP

(violet), and JS-GPP (dark blue).

the Hamiltonian defined in (35).1

4.2.3. Summary of all classification results2

Table 3: Classification: negative log-marginal likelihood as a performance metric.

Datasets Synthetic Semi-synthetic Real data

InvGamma Beta Growth Temp Plants

Method mean std mean std mean std mean std mean std

G-GPP 30.50 2.43 4.41 0.06 68.03 3.43 98.66 0.73 98.65 0.72

HMC-GPP 105.35 0.22 105.28 0.21 61.65 2.24 105.36 0.22 9.33 0.21

JS-GPP 32.2 2.38 42.87 2.73 62.0 3.02 116.65 4.13 10.26 0.12

We also confirm all previous results from Table 3, which summarizes the mean and the std of NLML3

values for all datasets. These clearly show that at least one of the proposed methods (G-GPP or4

HMC-GPP) better minimizes the NLML than JS-GPP. This brings more quite accurate estimates,5

19



which prove the predictive power of our approaches.1

5. Conclusion2

In this paper, we have introduced a novel framework to extend Bayesian learning models and Gaus-3

sian processes when the index support is identified with the space of probability density functions4

(PDFs). We have detailed and applied different numerical methods to learn regression and classifi-5

cation models on PDFs. Furthermore, we showed new theoretical results for the Matérn covariance6

function defined on the space of PDFs. Extensive experiments on multiple and varied datasets have7

demonstrated the effectiveness and efficiency of the proposed methods in comparison with current8

state-of-the-art methods.9
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