
HAL Id: hal-02967740
https://hal.science/hal-02967740v2

Submitted on 19 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Geometric Speed Planning Approach for
Autonomous Driving through Occluded Intersections

Renaud Poncelet, Anne Verroust-Blondet, Fawzi Nashashibi

To cite this version:
Renaud Poncelet, Anne Verroust-Blondet, Fawzi Nashashibi. Safe Geometric Speed Planning Ap-
proach for Autonomous Driving through Occluded Intersections. ICARCV 2020 - 16th Interna-
tional Conference on Control, Automation, Robotics and Vision, Dec 2020, Shenzhen, China. �hal-
02967740v2�

https://hal.science/hal-02967740v2
https://hal.archives-ouvertes.fr


Safe Geometric Speed Planning Approach for Autonomous Driving

through Occluded Intersections

Renaud Poncelet1, Anne Verroust-Blondet1 and Fawzi Nashashibi1 ∗

Abstract

Autonomous driving in urban environment needs to antic-
ipate a number of dangerous events, such as the presence
of moving vehicles in occluded areas. This paper presents
an approach computing a safe motion along a fixed path in
an urban environment with dynamic vehicles that may be
occluded. The method works on the time-path space and
uses a visibility graph to compute the speed profile, consid-
ering both safety and comfort. Evaluations performed on
CARLA simulator on several typical scenarios show that
the approach is able to drive safely in presence of hidden
obstacles.

1 Introduction

Autonomous driving in urban areas requires behaving
safely in the presence of other vehicles that can be visible
or occluded by physical obstacles. If we observe human
drivers, we notice that they slow down when approaching
an occluded area and drive cautiously until they realize
that the path is clear. In fact, they assume that at any
moment a vehicle may emerge from the occluded area.

Driving in a well-defined urban road infrastructure links
the vehicle trajectory strictly enough to follow the bounds
which are indicated by lane markings, once the maneuver
has been determined. Thus, in what follows, we assume
that the vehicle’s trajectory is given and we use the path-
velocity decomposition introduced by Kant and Zucker [1]
to focus on a speed profile adaptation method that ensures
the safety of the motion planning.

In what follows, we present a geometric method com-
puting a safe speed profile for an autonomous vehicle nav-
igating in the presence of dynamic obstacles that may be
occluded. Our approach uses a visibility graph path plan-
ning method to compute a save speed profile in the Time-
Path domain in which the potential risks from occlusion
and limited sensing are considered. Moreover, we take into
account passenger comfort by constraining the speed and
the acceleration of the vehicle.

2 Related Research

The problem of occluded areas has been addressed in nu-
merous recent approaches [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
They can be classified in different families, according to
the way they represent these regions:
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2.0.1 Particle filters

In order to take into consideration risks from occluded ar-
eas and the limited range of sensors, some approaches use
particle filters. In [9], particles are generated randomly in
occluded areas with random speed. A decision to cross is
made considering particle kinematics. In [12], the parti-
cles are also spread to represent their possible deviation
from the center of the lane. Here the particles are used to
compute a risk cost which combined with a speed cost al-
lows a speed along a given path to be computed. Particle
filters approaches give a probabilist representation of the
environment but do not have worst case assumption.

2.0.2 Virtual vehicles

Other approaches model the worst case scenario by us-
ing virtual vehicles to represent all potential vehicles in
occluded areas [3, 5, 6, 7, 11, 8]. For a risk evaluation
purpose, Damerow et al. [3] position one virtual car for
each relevant lane at the occluded position closest to the
upcoming intersection. Similarly, in Orzechowski et al.
[5], virtual vehicles are placed at visibility limits. A fail-
save maneuver is then computed, following the reachable
set approach introduced in [13]. In [6], virtual vehicles
are used to find rules for a safe motion or a safe stop
for free drive, follow drive, right-of-way maneuvers and
give-way maneuvers. They consider uncertainties and the
worst case scenario to solve an optimization-based plan-
ner. In [7], virtual vehicles are placed at visibility limits on
roads that are likely to cross the ego-vehicle’s path. They
are modeled with an infinite length and are considered as
driving at maximum speed. In [11], probability of occur-
rence is computed using traffic density to position virtual
vehicles in occluded areas. Virtual vehicles are supposed
to arrive at the same time as the ego-vehicle at the junc-
tion as long as they keep a realistic speed.

2.0.3 Other models

Hoermann et al. [2] introduce an unobservable regions
layer in their grid-based representation of the environment
to estimate whether a region is safe to drive in at maxi-
mum speed. To be safe but not to overcautious Naumann
et al. [10] focus on conflict zones inside junctions and com-
pute the speed by minimizing a cost. They consider the
trajectories of potentially occluded objects along with the
probability of their occurrence to estimate the cost caused
by them.

Numerous approaches solve the problem as a Partially
Observable Markov Decision Process (POMDP). In [4],
possible actions are relative to acceleration: for each user,
optimal belief action utility is computed, a common belief
is computed for all invisible users and then the minimum
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belief action utility over users is computed with the sum
of all actors belief action utilities. In [7], an observation
model is defined depending on the field of view and virtual
vehicles have a specific transition model. Lin et al. [8] use
a belief tree search built from possible ego-vehicle actions:
speed-up, keep speed or brake. Virtual vehicles are set at
visibility limits of the ego-vehicle and they are considered
as real vehicles. Positions, speeds, and accelerations of
other vehicles are supposed to be known and all possible
future paths are considered.
In our work, we introduce virtual vehicles to represent
occluded parts of the road. We also take into account
comfort and safety [14] as acceleration is bounded and a
safe state is planned before intersections.

3 Approach

In what follows we assume that a map of the environment
is given with all the information on the road topology. A
path s is computed off-line given the initial position and a
global destination of the ego vehicle. It is assumed to be
collision-free regarding static obstacles. We assume that
the positions and the velocities of the other vehicles are
known for a short period of time once they are visible from
the ego vehicle. However, when they are close to an inter-
section, we assume that they can either turn right, turn
left or go straight when possible. Our goal here is to adapt
the speed of the ego vehicle to obtain a safe and comfort-
able trajectory when it follows its path in the presence of
dynamic obstacles and considering occluded areas. This
is done every time step in the Time-Path domain.
Before presenting the whole model, we first explain our
approach in the case where there are no occluded areas.
Two processes are executed in parallel, with different time
steps and different frame rates:
1) for each time step ti, our algorithm computes the lon-
gitudinal motion s(t) for the ego vehicle, considering the
interacting vehicles, i.e. the list N of surrounding vehi-
cles that intersect the part of the path of the ego vehicle
limited to [s(ti), sh] during the period ∆T = [ti, ti + th],
where th is a time horizon and sh the visibility horizon.
2) for each time step τj , the longitudinal motion is simu-
lated through a car model (Section 3.3). The time interval
between two consecutive time steps τj and τj+1 is signifi-
cantly smaller than that of two consecutive time steps ti
and ti+1, as illustrated in Figure 2.
In the rest of the paper, s will denote the path, v the veloc-
ity and a the longitudinal acceleration of the ego vehicle.

3.1 Computing a speed profile in the
Time-Path domain

We follow [1] and compute a longitudinal motion s(t) for
the ego vehicle during the period ∆T = [ti, ti + th] along
the path s and work in the Time-Path domain TP = (t, s).
The longitudinal motion s(t) has to be a monotonically in-
creasing function of t with constraints on the slope and on
the curvature of s(t) deduced from the constraints on the
velocity v(t) and the acceleration a(t) of the ego vehicle.
Moreover, in order to be a safe motion, s(t) can be deduced
from the visibility graph built in TP as in [1], considering

the set N of vehicles that may intersect s during ∆T .
The computation of s(t), v(t) and a(t), t ∈ ∆T is carried
out in three steps:

1. A polygonal zone, called TP obstacle, is inserted in
TP for each vehicle belonging to N (Section 3.1.1)

2. A polygonal line s̃(t), candidate for s(t), is built in
TP (this is detailed in Section 3.1.2).

3. s̃(t) is smoothed in order to respect the constraint
on the longitudinal acceleration (described in Section
3.1.3).

Steps 2 and 3 are illustrated in Figure 3.

3.1.1 TP obstacles

We assume that the vehicles belonging to N have a con-
stant velocity during the time period ∆T . Then, for each
of them, a TP obstacle is built: it corresponds to the
polygonal zone occupied in TP by the vehicle during the
period ∆T . To ensure safety, comfort and to take into ac-
count possible changes in velocity during the time period
∆T , the occupied zone in TP by the vehicle is expanded in
time of a time gap tgap and in path of a margin. In order
to take into account maneuver uncertainties, we consider
that the ego vehicle cannot know which maneuver another
vehicle will choose when it enters a road junction before
being fully engaged in one lane. Thus, for the scenario in
Figure 1 in which the ego-vehicle will cross an intersection
where another vehicle is coming from the right, paths a, b
and c are considered and the region that may be occupied
by the vehicle during ∆T is represented by the union of
the TP obstacles corresponding to maneuvers a, b and c.

3.1.2 Visibility graph method

Once the TP obstacles have been built, a candidate path
s̃(t) for s(t) is computed on TP . As mentioned above,
it is a path composed of line segments having a positive
slope bounded by the maximum speed value vMax, joining
point (0, 0) and a point belonging to the vertical line corre-
sponding to time ti + th or belonging to the horizontal line
corresponding to sh. This path connects a subset of the
vertices of the TP obstacles and it is built by a visibility
graph-based method ([1]).

3.1.3 Achieving acceleration constraints

The candidate path s̃(t) for s(t) built previously respects
the speed limits but needs to be smoothed as it may not
satisfy the acceleration bounds. This is done by smoothing
the velocity ṽ(t) with a saturation on the acceleration ã(t)
of the candidate path s̃(t), with ṽ(ti) = vi :

ã(ti) = (
s̃(ti + dt)− s̃(ti)

dt
− vi)/dt (1)

and,
when ti < t < ti + th :

ṽ(t) =
s̃(t+ dt)− s̃(t)

dt
, (2)

ã(t) =
ṽ(t+ dt)− ṽ(t)

dt
(3)
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Figure 1: The three possible maneuvers for the blue vehicle coming from the right and their corresponding TP obstacles
in TP .

Figure 2: The different time steps used in our approach.
A longitudinal motion is planned every time step ti con-
sidering the period ∆T and the control of the ego vehicle
is computed every τj

Then, the smoothed path s(t) is defined by :
s(ti) = s0, v(ti) = vi and,
when ti ≤ t < ti + th :

a(t) = min(max(ã(t), aMin), aMax), (4)

v(t) = min(max(ṽ(t) + a(t)× dt, 0), vMax), (5)

s(t+ dt) = s(t) + dt× v(t) (6)

Once s(t) is computed, we have to check whether it
intersects a TP obstacle, as in the example of Figure 3. In
this case, a new candidate s̃(t) is built and new smoothed
path s(t) is computed: s̃(t) corresponds to a polygonal
line of the visibility graph that passes on the right of the
intersected polygon.

3.2 Safe state before intersections

Before validating s̃(t) as a safe plan, we ensure that the
plan does not end in an intersection to remove uncertain-
ties about safety when crossing the intersection. We decide
to let the ego vehicle drive as fast as possible to the junc-
tion while preserving a safe distance to let it brake before
the intersection.
In order to model this behavior in the TP domain, we
reduce the visibility limit for the ego vehicle considering
that the visibility horizon sh is moved just before the in-
tersection. Moreover, to enforce the vehicle to stop when
reaching the visibility limit, we add a stopgap at in the
graph at :

sbrake = sh − dbrake (7)

where dbrake is the distance required to brake when the
vehicle’s speed is equal to vMax: if s̃(t) > sbrake then
s̃(t) = sbrake as in the Fig. 3.

3.3 Car simulation

In parallel, at each time step τj a longitudinal controller
adapts the jerk of the vehicle. It uses as input ŝ(τj), v̂(τj),

the measured values in the simulation of s(t) and v(t) at
t = τj and s(τj), v(τj), Then it computes â(τj+1), v̂(τj+1)
and ŝ(τj+1) for the car simulator. The initial speed con-
sidered at time ti+1 to compute the longitudinal motion
for the next period in Section 3.1.3 is vi+1 = v̂(ti+1).

3.4 Tackling occlusions and limited sensor
range

Let us now extend our approach to take into account the
existence of occluded areas on the road. To follow what
a human driver may do in this situation we introduce vir-
tual vehicles and a virtual horizon line (Section 3.4.1) and
adapt the longitudinal motion s(t) to be able to react
safely without being blocked (Section 3.4.2).

3.4.1 Virtual vehicles and virtual horizon

To represent all the potential risks from occluded areas
belonging to the lanes crossing the path of the ego vehi-
cle, we choose to introduce virtual vehicles on the visibil-
ity borders, as in [3, 2, 5, 10, 6]. In order to plan for the
worst case, we suppose that the virtual vehicle is of infinite
length and that it drives at the maximum speed possible,
except when there exists a vehicle moving in the same lane
in front of the visibility boundary. In this case, we assume
that the virtual vehicle has the same speed as this vehi-
cle. Moreover, when the visibility boundary is close to a
road intersection, we assume that it may follow any path,
either turning left, turning right or going straight when it
is possible. Thus we create the following TP obstacles:
At time step ti, if a border of an occluded area belongs to a
lane crossing the path of the ego vehicle during ∆T , and if
this border is very close to the road junction, a TP obsta-
cle is inserted in TP to represent the region occupied by
a virtual vehicle positioned at the visibility boundary and
driving at the maximum speed during ∆T or at the same
speed as the previous vehicle when such a vehicle exists.
As a virtual vehicle is supposed be of infinite length, the
corresponding polygon is bounded by the right boundary
of TS, i.e. the vertical line t = ti + ∆T (Figure 4).
Areas outside the sensor range may also contain hidden

obstacles. Thus, if we want to ensure a safe behavior, the
ego vehicle must stop when reaching the visibility horizon
value sh in its path and the horizontal line s = sh will be
considered as an obstacle when computing the candidate
path s̃(t).
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Figure 3: Computation of a trajectory curve. On the extreme left, an overview of the scene. On the middle left, the
candidate path s̃ (red line) from the visibility graph method as in [1] and the smoothed version (black dashed line) of s̃
intersects one TP obstacle (in red). At t = 0 the ego-vehicle is stationnary and its speed is equal to 0. On the middle
right, a new candidate path s̃ is built, which passes after the polygon in collision. On the extreme right: the visual
horizon (sh) is virtually reduced before the intersection area (in grey). A new candidate path s̃ is built considering a
safe state before the intersection thanks to the constrain s̃ < sbrake. The last smoothed version s is safe. We notice
that a solution can always be found under two conditions : The initial situation have to be safe i.e the ego-vehicle
can brake without entering an intersection, and obstacles can’t collide the ego-vehicle when it is stopped.

Figure 4: A scenario with an occluded area. Left: the ego
vehicle follows a path (red dashed line) and an obstacle
occludes a part of the road (the visible area corresponds
to the transparent blue area) where a virtual vehicle has
been created (drawn in purple). Right: the corresponding
TP obstacle (note that its shape is the addition of the
three possible cases seen in Figure 1), the candidate path
s̃(t) and the safe path s(t) for the ego vehicle in TP .

3.4.2 Speed planning computation

Once the TP obstacles corresponding to the virtual and
the visible vehicles and the visibility horizon line have been
inserted in TP , we have to compute a candidate path s̃(t)
for the ego vehicle. We have two cases to consider:

• If the limits of the occluded areas are sufficiently
far away from the intersection with the path of the
ego vehicle, the corresponding TP obstacles will be
small. In this case the ego vehicle will have enough
visibility to be able to cross the road junction safely
and a polygonal line s̃(t) built as previously will pass
through the left part of the zone corresponding to the
road junction in TP (as in case b of Figure 5).

• When the visibility is not sufficient, our solution
should be safe but not overcautious. The visibility
horizon sh is moved to the smallest value of s of the
first TP obstacle associated to a virtual vehicle to let
it brake if another vehicle comes from the occluded
area.

Then a corresponding smoothed version s(t) of s̃(t) is com-
puted as in Section 3.1.3.

4 Experiments

Experimental evaluations have been performed using
CARLA simulator [15] on an environment consisting of
several road junctions, spaced 40 m apart, with a build-
ing hiding some parts of the road. (Video example at
: https://team.inria.fr/rits/membres/renaud-poncelet/)
All the other vehicles have been controlled by a CARLA
agent. They follow a random path guided by the lanes and
they drive at maximum speed vMax except when another
vehicle is in a control area of ten meters, in which case
they brake.

Several scenarios have been evaluated where the ego ve-
hicle has to cross a road junction with three different be-
haviors :

• Omniscient: the ego vehicle knows the position and
the speed of all the vehicles present in the scene, in-
cluding the occluded ones.

• Naive: the ego vehicle reacts with respect to the vis-
ible vehicles and does not take into account the oc-
cluded parts of the scene.

• SGSPA for Safe Geometric Speed Planning Approach:
This is the complete approach presented in this paper.

For each behavior the motion of the ego-vehicle is simu-
lated using a longitudinal control described in Section 3.3.
The following parameters have been used during the tests:
vMax = 8.3 m/s, aMax = 2.5 m/s2, aMin = −4 m/s2,
∆T = 5 s, ti+1 − ti = 1/5 s, dt = 1/20 s, tgap = 2 s,
margin = 1 m. The value of sh is given by the equation:
sh = 2vMax × th.

4.1 Crossing an X junction

The first situation is an X junction where the road leading
from the right is partially occluded by a building. The ego
vehicle has to cross the intersection and go straight. Two
scenarios are presented:

1. Empty occluded area. Let us first consider the motion
computed by SGSPA illustrated in Figure 5:

(a) When the ego vehicle is far from the intersection
(t = 0.0 s), the border of the occluded area is
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near the intersection and the TP obstacle asso-
ciated to the virtual vehicle is very long, thus the
algorithm plans to go at maximum speed and to
brake when the braking distance is reached.

(b) Later (t = 3.6 s), the ego vehicle reaches the
intersection and has enough visibility to cross it
safely as the border of the occluded area is far
away.

(c) Finally (t = 5.8 s), the ego vehicle is crossing
and its visibility is complete.

a)

b)

c)

Figure 5: Empty occluded area. Different time steps of
SGSPA. Virtual vehicles: possible paths and TP obstacles
are drawn in pink. Ego vehicle: s̃(t) is drawn in red and
s(t) in black.

As expected, in Figure 6, we can notice that the Om-
niscient and the Naive approaches both plan their
speed in the same way as there is no hidden vehicle.

2. One car is on the occluded part of the road. In this
scenario, the other vehicle drives at vMax, reaches the
junction approximately at the same time step as the
ego-vehicle and goes straight onto the junction. The
ego vehicle has to give way to the the other car.

Let us go through each approach portion by portion
in Figure 7:

Figure 6: Empty occluded area : measured speed over
curvilinear abscissa for the three approaches.

Figure 7: Measured speed over curvilinear abscissa for the
three methods when a vehicle is occluded

• In portion a, where the ego vehicle is far away
from the junction and cannot see the hidden
vehicle, SGSPA and Naive approaches drive at
maximum speed and the Omniscient approach
slows down. In fact, SGSPA reacts like Naive to
increase its visibility and Omniscient takes into
account the hidden vehicle.

• In portion b, SGSPA begins to brake to be able
to stop before the junction while Naive goes still
very fast.

• In portion c, Naive brakes hard to avoid a colli-
sion with the other vehicle, which is now visible,
and Omniscient begins to speed up because its
speed is low enough to let the other vehicle pass.

All passed safely the intersection, but Omniscient
and SGSPA approaches computed comfortable mo-
tions whereas it was not the case for Naive.

4.2 T junction

Let us now compare the three methods on a scenario in-
spired by [6]: the ego vehicle has to turn left at a T junc-
tion where the visibility is limited. As illustrated in Fig-
ure 8, both sides are occluded: on the left hand by a build-
ing and on the right hand by a line of stopped cars on the
road. The visibility is more limited on the right hand side
where the arrival of a hidden vehicle enforces the ego vehi-
cle to give way to it. In this example, the Naive approach
can’t brake hard enough to avoid the collision while the
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Figure 8: T junction with limited visibility with no consid-
eration of the occluded parts of the scene. Naive approach
does not anticipate the arrival of the hidden vehicle on the
right and the collision cannot be avoided.

other approaches reduce their speeds to let the other ve-
hicle pass, as shown in Figure 9.

Figure 9: T junction: measured speed over curvilinear
abscissa for the three methods.

4.3 X junction with ten cars

Finally, to evaluate the safety of the approach in more
complex cases, we created 50 scenarios for the X junction
environment of Section 4.1 with ten vehicles randomly po-
sitioned on the roads and following a random path. Ten
cars may not all interact with the ego-vehicle at the same
time : for example, in Fig. 10, only two cars are involved.
Note that not all the vehicles are hidden by the building.
In all the scenarios, the ego vehicle had to cross the X
junction but with two different behaviors :

- SGSPA, where the ego vehicle is enforced to stop be-
fore the junction if it cannot pass through it.

- GSPA for Geometric Speed Planning Approach
without ensuring a safe sate before intersections.

Figure 10: X Junction with two other cars arriving at the
intersection at the same time . The ego vehicle is station-
ary before the intersection. The blue TP corresponds to
the car arriving on the left side of the ego vehicle. The
TP corresponding to the real car coming from the right is
masked by the virtual TP that represents the possibility
of the presence of a car hidden by it on the front track.

Let us compare the success rate and the time spend in
the junction in both case and discuss the cases where a
crash had occurred:

- For SGSPA, we obtained 100 % success and the mean
time spend by the ego vehicle in the junction was 3.8 s.

- For GSPA without safe state before intersections, nine
collision occurred (success rate: 82 %), among which for
eight of them the ego vehicle was at rest in the middle of
the junction. In fact, it is not really a passive safety [14],
as the vehicle was inside the junction. In the last case the
ego-vehicle was moving but the other vehicle in collision
was behind the ego-vehicle. The mean time spent inside
the junction in case of success was 4.3 s.

5 Conclusion

In this paper we proposed a geometric approach comput-
ing a safe and comfortable speed planning for autonomous
driving in urban area with occlusions. Evaluations show
that SGSPA achieves both safety and comfort in all sce-
narios. The approach is cautious but not over defensive,
thanks to the speed profile we choose when approaching
an occluded region: we decide to move quickly to the inter-
section in order to increase the ego vehicle visibility while
keeping enough space to brake.

This approach can be generalized to other dynamic ob-
stacles, such as pedestrian, considering the possible exis-
tence and intent of hidden agents as Nager et al. [16].

However, in some really limited visibility cases, we can-
not ensure that the ego-vehicle will not be blocked in a
“freezing state” as discussed in [8]. In this case, a human
driver will drive very slowly in order to increase its visibil-
ity. Work in progress extends our approach to mimic such
a behavior, knowing that it is not completely satisfying
regarding safety and comfort.
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