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Safe Geometric Speed Planning Approach for Autonomous Driving through
Occluded Intersections

Renaud Poncelet1, Anne Verroust-Blondet1 and Fawzi Nashashibi1

Abstract— Autonomous driving in urban environment needs
to anticipate a number of dangerous events, such as the presence
of moving vehicles in occluded areas. This paper presents an
approach computing a safe motion along a fixed path in an
urban environment with dynamic vehicles that may be occluded.
The method works on the time-path space and uses a visibility
graph to compute the speed profile, considering both safety
and comfort. Evaluations performed on CARLA simulator on
several typical scenarios show that the approach is able to drive
safely in presence of hidden obstacles.

I. INTRODUCTION

Autonomous driving in urban areas requires behaving
safely in the presence of other vehicles that can be visible
or occluded by physical obstacles. If we observe human
drivers, we notice that they slow down when approaching
an occluded area and drive cautiously until they realize that
the path is clear. In fact, they assume that at any moment a
vehicle may emerge from the occluded area.

Driving in a well-defined urban road infrastructure links
the vehicle trajectory strictly enough to follow the bounds
which are indicated by lane markings, once the maneuver
has been determined. Thus, in what follows, we assume that
the vehicle’s trajectory is given and we use the path-velocity
decomposition introduced by Kant and Zucker [1] to focus
on a speed profile adaptation method that ensures the safety
of the motion planning.

In what follows, we present a geometric method comput-
ing a safe speed profile for an autonomous vehicle navigating
in the presence of dynamic obstacles that may be occluded.
Our approach uses a visibility graph path planning method
to compute a save speed profile in the Time-Path domain in
which the potential risks from occlusion and limited sensing
are considered. Moreover, we take into account passenger
comfort by constraining the speed and the acceleration of
the vehicle.

II. RELATED RESEARCH

The problem of occluded areas has been addressed in
numerous recent approaches [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]. They can be classified in different families,
according to the way they represent these regions:

1) Particle filters: In order to take into consideration risks
from occluded areas and the limited range of sensors, some
approaches use particle filters. In [9], particles are generated
randomly in occluded areas with random speed. A decision
to cross is made considering particle kinematics. In [12], the
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particles are also spread to represent their possible deviation
from the center of the lane. Here the particles are used
to compute a risk cost which combined with a speed cost
allows a speed along a given path to be computed. Particle
filters approaches give a probabilist representation of the
environment but do not have worst case assumption.

2) Virtual vehicles: Other approaches model the worst
case scenario by using virtual vehicles to represent all
potential vehicles in occluded areas [3], [5], [6], [7], [11],
[8]. For a risk evaluation purpose, Damerow et al. [3]
position one virtual car for each relevant lane at the occluded
position closest to the upcoming intersection. Similarly, in
Orzechowski et al. [5], virtual vehicles are placed at visibility
limits. A fail-save maneuver is then computed, following
the reachable set approach introduced in [13]. In [6], virtual
vehicles are used to find rules for a safe motion or a safe stop
for free drive, follow drive, right-of-way maneuvers and give-
way maneuvers. They consider uncertainties and the worst
case scenario to solve an optimization-based planner. In [7],
virtual vehicles are placed at visibility limits on roads that are
likely to cross the ego-vehicle’s path. They are modeled with
an infinite length and are considered as driving at maximum
speed. In [11], probability of occurrence is computed using
traffic density to position virtual vehicles in occluded areas.
Virtual vehicles are supposed to arrive at the same time as
the ego-vehicle at the junction as long as they keep a realistic
speed.

3) Other models: Hoermann et al. [2] introduce an unob-
servable regions layer in their grid-based representation of
the environment to estimate whether a region is safe to drive
in at maximum speed. To be safe but not to overcautious
Naumann et al. [10] focus on conflict zones inside junctions
and compute the speed by minimizing a cost. They consider
the trajectories of potentially occluded objects along with the
probability of their occurrence to estimate the cost caused by
them.

Numerous approaches solve the problem as a Partially
Observable Markov Decision Process (POMDP). In [4],
possible actions are relative to acceleration: for each user,
optimal belief action utility is computed, a common belief
is computed for all invisible users and then the minimum
belief action utility over users is computed with the sum
of all actors belief action utilities. In [7], an observation
model is defined depending on the field of view and virtual
vehicles have a specific transition model. Lin et al. [8] use
a belief tree search built from possible ego-vehicle actions:
speed-up, keep speed or brake. Virtual vehicles are set at
visibility limits of the ego-vehicle and they are considered



as real vehicles. Positions, speeds, and accelerations of other
vehicles are supposed to be known and all possible future
paths are considered.
In our work, we introduce virtual vehicles to represent
occluded parts of the road. We also take into account comfort
and safety [14] as acceleration is bounded and a safe state
is planned before intersections.

III. APPROACH

In what follows we assume that a map of the environment
is given with all the information on the road topology. A
path s is computed off-line given the initial position and a
global destination of the ego vehicle. It is assumed to be
collision-free regarding static obstacles. We assume that the
positions and the velocities of the other vehicles are known
for a short period of time once they are visible from the ego
vehicle. However, when they are close to an intersection, we
assume that they can either turn right, turn left or go straight
when possible. Our goal here is to adapt the speed of the
ego vehicle to obtain a safe and comfortable trajectory when
it follows its path in the presence of dynamic obstacles and
considering occluded areas. This is done every time step in
the Time-Path domain.
Before presenting the whole model, we first explain our
approach in the case where there are no occluded areas. Two
processes are executed in parallel, with different time steps
and different frame rates:
1) for each time step ti, our algorithm computes the lon-
gitudinal motion s(t) for the ego vehicle, considering the
interacting vehicles, i.e. the list N of surrounding vehicles
that intersect the part of the path of the ego vehicle limited
to [s(ti), sh] during the period ∆T = [ti, ti + th], where th
is a time horizon and sh the visibility horizon.
2) for each time step τj , the longitudinal motion is simulated
through a car model (Section III-C). The time interval be-
tween two consecutive time steps τj and τj+1 is significantly
smaller than that of two consecutive time steps ti and ti+1,
as illustrated in Figure 2.
In the rest of the paper, s will denote the path, v the velocity
and a the longitudinal acceleration of the ego vehicle.

A. Computing a speed profile in the Time-Path domain

We follow [1] and compute a longitudinal motion s(t)
for the ego vehicle during the period ∆T = [ti, ti + th]
along the path s and work in the Time-Path domain TP =
(t, s). The longitudinal motion s(t) has to be a monotonically
increasing function of t with constraints on the slope and on
the curvature of s(t) deduced from the constraints on the
velocity v(t) and the acceleration a(t) of the ego vehicle.
Moreover, in order to be a safe motion, s(t) can be deduced
from the visibility graph built in TP as in [1], considering
the set N of vehicles that may intersect s during ∆T .
The computation of s(t), v(t) and a(t), t ∈ ∆T is carried
out in three steps:

1) A polygonal zone, called TP obstacle, is inserted in
TP for each vehicle belonging to N (Section III-A.1)

2) A polygonal line s̃(t), candidate for s(t), is built in
TP (this is detailed in Section III-A.2).

3) s̃(t) is smoothed in order to respect the constraint on
the longitudinal acceleration (described in Section III-
A.3).

Steps 2 and 3 are illustrated in Figure 3.
1) TP obstacles: We assume that the vehicles belonging

to N have a constant velocity during the time period ∆T .
Then, for each of them, a TP obstacle is built: it corresponds
to the polygonal zone occupied in TP by the vehicle during
the period ∆T . To ensure safety, comfort and to take into
account possible changes in velocity during the time period
∆T , the occupied zone in TP by the vehicle is expanded in
time of a time gap tgap and in path of a margin. In order
to take into account maneuver uncertainties, we consider
that the ego vehicle cannot know which maneuver another
vehicle will choose when it enters a road junction before
being fully engaged in one lane. Thus, for the scenario in
Figure 1 in which the ego-vehicle will cross an intersection
where another vehicle is coming from the right, paths a, b
and c are considered and the region that may be occupied
by the vehicle during ∆T is represented by the union of the
TP obstacles corresponding to maneuvers a, b and c.

2) Visibility graph method: Once the TP obstacles have
been built, a candidate path s̃(t) for s(t) is computed on
TP . As mentioned above, it is a path composed of line
segments having a positive slope bounded by the maximum
speed value vMax, joining point (0, 0) and a point belonging
to the vertical line corresponding to time ti+th or belonging
to the horizontal line corresponding to sh. This path connects
a subset of the vertices of the TP obstacles and it is built
by a visibility graph-based method ([1]).

3) Achieving acceleration constraints: The candidate path
s̃(t) for s(t) built previously respects the speed limits but
needs to be smoothed as it may not satisfy the acceleration
bounds. This is done by smoothing the velocity ṽ(t) with
a saturation on the acceleration ã(t) of the candidate path
s̃(t), with ṽ(ti) = vi :

ã(ti) = (
s̃(ti + dt)− s̃(ti)

dt
− vi)/dt (1)

and,
when ti < t < ti + th :

ṽ(t) =
s̃(t+ dt)− s̃(t)

dt
, (2)

ã(t) =
ṽ(t+ dt)− ṽ(t)

dt
(3)

Then, the smoothed path s(t) is defined by :
s(ti) = s0, v(ti) = vi and,
when ti ≤ t < ti + th :

a(t) = min(max(ã(t), aMin), aMax), (4)
v(t) = min(max(ṽ(t) + a(t)× dt, 0), vMax), (5)
s(t+ dt) = s(t) + dt× v(t) (6)

Once s(t) is computed, we have to check whether it
intersects a TP obstacle, as in the example of Figure 3.



Fig. 1. The three possible maneuvers for the blue vehicle coming from the right and their corresponding TP obstacles in TP .

Fig. 2. The different time steps used in our approach. A longitudinal
motion is planned every time step ti considering the period ∆T and the
control of the ego vehicle is computed every τj

In this case, a new candidate s̃(t) is built and new smoothed
path s(t) is computed: s̃(t) corresponds to a polygonal line of
the visibility graph that passes on the right of the intersected
polygon.

B. Safe state before intersections

Before validating s̃(t) as a safe plan, we ensure that the
plan does not end in an intersection to remove uncertainties
about safety when crossing the intersection. We decide to
let the ego vehicle drive as fast as possible to the junction
while preserving a safe distance to let it brake before the
intersection.
In order to model this behavior in the TP domain, we reduce
the visibility limit for the ego vehicle considering that the
visibility horizon sh is moved just before the intersection.
Moreover, to enforce the vehicle to stop when reaching the
visibility limit, we add a stopgap at in the graph at :

sbrake = sh − dbrake (7)

where dbrake is the distance required to brake when the
vehicle’s speed is equal to vMax: if s̃(t) > sbrake then
s̃(t) = sbrake as in the Fig. 3.

C. Car simulation

In parallel, at each time step τj a longitudinal controller
adapts the jerk of the vehicle. It uses as input ŝ(τj), v̂(τj), the
measured values in the simulation of s(t) and v(t) at t = τj
and s(τj), v(τj), Then it computes â(τj+1), v̂(τj+1) and
ŝ(τj+1) for the car simulator. The initial speed considered
at time ti+1 to compute the longitudinal motion for the next
period in Section III-A.3 is vi+1 = v̂(ti+1).

D. Tackling occlusions and limited sensor range

Let us now extend our approach to take into account the
existence of occluded areas on the road. To follow what a

human driver may do in this situation we introduce virtual
vehicles and a virtual horizon line (Section III-D.1) and adapt
the longitudinal motion s(t) to be able to react safely without
being blocked (Section III-D.2).

1) Virtual vehicles and virtual horizon: To represent all
the potential risks from occluded areas belonging to the lanes
crossing the path of the ego vehicle, we choose to introduce
virtual vehicles on the visibility borders, as in [3], [2], [5],
[10], [6]. In order to plan for the worst case, we suppose
that the virtual vehicle is of infinite length and that it drives
at the maximum speed possible, except when there exists a
vehicle moving in the same lane in front of the visibility
boundary. In this case, we assume that the virtual vehicle
has the same speed as this vehicle. Moreover, when the
visibility boundary is close to a road intersection, we assume
that it may follow any path, either turning left, turning right
or going straight when it is possible. Thus we create the
following TP obstacles:
At time step ti, if a border of an occluded area belongs
to a lane crossing the path of the ego vehicle during ∆T ,
and if this border is very close to the road junction, a TP
obstacle is inserted in TP to represent the region occupied
by a virtual vehicle positioned at the visibility boundary and
driving at the maximum speed during ∆T or at the same
speed as the previous vehicle when such a vehicle exists.
As a virtual vehicle is supposed be of infinite length, the
corresponding polygon is bounded by the right boundary of
TS, i.e. the vertical line t = ti + ∆T (Figure 4).
Areas outside the sensor range may also contain hidden

obstacles. Thus, if we want to ensure a safe behavior, the
ego vehicle must stop when reaching the visibility horizon
value sh in its path and the horizontal line s = sh will be
considered as an obstacle when computing the candidate path
s̃(t).

2) Speed planning computation: Once the TP obstacles
corresponding to the virtual and the visible vehicles and the
visibility horizon line have been inserted in TP , we have to
compute a candidate path s̃(t) for the ego vehicle. We have
two cases to consider:

• If the limits of the occluded areas are sufficiently far
away from the intersection with the path of the ego
vehicle, the corresponding TP obstacles will be small.
In this case the ego vehicle will have enough visibility to
be able to cross the road junction safely and a polygonal



Fig. 3. Computation of a trajectory curve. On the extreme left, an overview of the scene. On the middle left, the candidate path s̃ (red line) from the
visibility graph method as in [1] and the smoothed version (black dashed line) of s̃ intersects one TP obstacle (in red). At t = 0 the ego-vehicle is
stationnary and its speed is equal to 0. On the middle right, a new candidate path s̃ is built, which passes after the polygon in collision. On the extreme
right: the visual horizon (sh) is virtually reduced before the intersection area (in grey). A new candidate path s̃ is built considering a safe state before the
intersection thanks to the constrain s̃ < sbrake. The last smoothed version s is safe. We notice that a solution can always be found under two conditions
: The initial situation have to be safe i.e the ego-vehicle can brake without entering an intersection, and obstacles can’t collide the ego-vehicle when it is
stopped.

Fig. 4. A scenario with an occluded area. Left: the ego vehicle follows a
path (red dashed line) and an obstacle occludes a part of the road (the visible
area corresponds to the transparent blue area) where a virtual vehicle has
been created (drawn in purple). Right: the corresponding TP obstacle (note
that its shape is the addition of the three possible cases seen in Figure 1),
the candidate path s̃(t) and the safe path s(t) for the ego vehicle in TP .

line s̃(t) built as previously will pass through the left
part of the zone corresponding to the road junction in
TP (as in case b of Figure 5).

• When the visibility is not sufficient, our solution should
be safe but not overcautious. The visibility horizon sh is
moved to the smallest value of s of the first TP obstacle
associated to a virtual vehicle to let it brake if another
vehicle comes from the occluded area.

Then a corresponding smoothed version s(t) of s̃(t) is
computed as in Section III-A.3.

IV. EXPERIMENTS

Experimental evaluations have been performed using
CARLA simulator [15] on an environment consisting of
several road junctions, spaced 40 m apart, with a build-
ing hiding some parts of the road. (Video example at
: https://team.inria.fr/rits/membres/renaud-poncelet/) All the
other vehicles have been controlled by a CARLA agent. They
follow a random path guided by the lanes and they drive at
maximum speed vMax except when another vehicle is in a
control area of ten meters, in which case they brake.

Several scenarios have been evaluated where the ego
vehicle has to cross a road junction with three different
behaviors :

• Omniscient: the ego vehicle knows the position and the
speed of all the vehicles present in the scene, including
the occluded ones.

• Naive: the ego vehicle reacts with respect to the visible
vehicles and does not take into account the occluded
parts of the scene.

• SGSPA for Safe Geometric Speed Planning Approach:
This is the complete approach presented in this paper.

For each behavior the motion of the ego-vehicle is simu-
lated using a longitudinal control described in Section III-C.
The following parameters have been used during the tests:
vMax = 8.3 m/s, aMax = 2.5 m/s2, aMin = −4 m/s2,
∆T = 5 s, ti+1 − ti = 1/5 s, dt = 1/20 s, tgap = 2 s,
margin = 1 m. The value of sh is given by the equation:
sh = 2vMax × th.

A. Crossing an X junction

The first situation is an X junction where the road leading
from the right is partially occluded by a building. The ego
vehicle has to cross the intersection and go straight. Two
scenarios are presented:

1) Empty occluded area. Let us first consider the motion
computed by SGSPA illustrated in Figure 5:

a) When the ego vehicle is far from the intersection
(t = 0.0 s), the border of the occluded area
is near the intersection and the TP obstacle
associated to the virtual vehicle is very long, thus
the algorithm plans to go at maximum speed and
to brake when the braking distance is reached.

b) Later (t = 3.6 s), the ego vehicle reaches the
intersection and has enough visibility to cross it
safely as the border of the occluded area is far
away.

c) Finally (t = 5.8 s), the ego vehicle is crossing
and its visibility is complete.

As expected, in Figure 6, we can notice that the
Omniscient and the Naive approaches both plan their
speed in the same way as there is no hidden vehicle.

2) One car is on the occluded part of the road. In this
scenario, the other vehicle drives at vMax, reaches the



a)

b)

c)

Fig. 5. Empty occluded area. Different time steps of SGSPA. Virtual
vehicles: possible paths and TP obstacles are drawn in pink. Ego vehicle:
s̃(t) is drawn in red and s(t) in black.

junction approximately at the same time step as the
ego-vehicle and goes straight onto the junction. The
ego vehicle has to give way to the the other car.
Let us go through each approach portion by portion in
Figure 7:

• In portion a, where the ego vehicle is far away
from the junction and cannot see the hidden ve-
hicle, SGSPA and Naive approaches drive at max-
imum speed and the Omniscient approach slows
down. In fact, SGSPA reacts like Naive to increase
its visibility and Omniscient takes into account the
hidden vehicle.

• In portion b, SGSPA begins to brake to be able
to stop before the junction while Naive goes still
very fast.

• In portion c, Naive brakes hard to avoid a collision
with the other vehicle, which is now visible, and
Omniscient begins to speed up because its speed
is low enough to let the other vehicle pass.

Fig. 6. Empty occluded area : measured speed over curvilinear abscissa
for the three approaches.

Fig. 7. Measured speed over curvilinear abscissa for the three methods
when a vehicle is occluded

All passed safely the intersection, but Omniscient
and SGSPA approaches computed comfortable motions
whereas it was not the case for Naive.

B. T junction

Let us now compare the three methods on a scenario
inspired by [6]: the ego vehicle has to turn left at a T junction
where the visibility is limited. As illustrated in Figure 8, both
sides are occluded: on the left hand by a building and on the
right hand by a line of stopped cars on the road. The visibility
is more limited on the right hand side where the arrival of a
hidden vehicle enforces the ego vehicle to give way to it. In
this example, the Naive approach can’t brake hard enough to
avoid the collision while the other approaches reduce their
speeds to let the other vehicle pass, as shown in Figure 9.

C. X junction with ten cars

Finally, to evaluate the safety of the approach in more
complex cases, we created 50 scenarios for the X junction
environment of Section IV-A with ten vehicles randomly
positioned on the roads and following a random path. Ten
cars may not all interact with the ego-vehicle at the same
time : for example, in Fig. 10, only two cars are involved.
Note that not all the vehicles are hidden by the building. In
all the scenarios, the ego vehicle had to cross the X junction
but with two different behaviors :



Fig. 8. T junction with limited visibility with no consideration of the
occluded parts of the scene. Naive approach does not anticipate the arrival
of the hidden vehicle on the right and the collision cannot be avoided.

Fig. 9. T junction: measured speed over curvilinear abscissa for the three
methods.

- SGSPA, where the ego vehicle is enforced to stop before
the junction if it cannot pass through it.

- GSPA for Geometric Speed Planning Approach without
ensuring a safe sate before intersections.

Let us compare the success rate and the time spend in the
junction in both case and discuss the cases where a crash
had occurred:

- For SGSPA, we obtained 100 % success and the mean
time spend by the ego vehicle in the junction was 3.8 s.

- For GSPA without safe state before intersections, nine
collision occurred (success rate: 82 %), among which for
eight of them the ego vehicle was at rest in the middle of
the junction. In fact, it is not really a passive safety [14],
as the vehicle was inside the junction. In the last case the
ego-vehicle was moving but the other vehicle in collision
was behind the ego-vehicle. The mean time spent inside the

Fig. 10. X Junction with two other cars arriving at the intersection at the
same time . The ego vehicle is stationary before the intersection. The blue
TP corresponds to the car arriving on the left side of the ego vehicle. The
TP corresponding to the real car coming from the right is masked by the
virtual TP that represents the possibility of the presence of a car hidden by
it on the front track.

junction in case of success was 4.3 s.

V. CONCLUSION

In this paper we proposed a geometric approach computing
a safe and comfortable speed planning for autonomous
driving in urban area with occlusions. Evaluations show that
SGSPA achieves both safety and comfort in all scenarios.
The approach is cautious but not over defensive, thanks to
the speed profile we choose when approaching an occluded
region: we decide to move quickly to the intersection in order
to increase the ego vehicle visibility while keeping enough
space to brake.

This approach can be generalized to other dynamic obsta-
cles, such as pedestrian, considering the possible existence
and intent of hidden agents as Nager et al. [16].

However, in some really limited visibility cases, we cannot
ensure that the ego-vehicle will not be blocked in a “freezing
state” as discussed in [8]. In this case, a human driver will
drive very slowly in order to increase its visibility. Work
in progress extends our approach to mimic such a behavior,
knowing that it is not completely satisfying regarding safety
and comfort.
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