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Abstract

For n ≥ 3 and 1 < p < ∞ we prove an Lp-version of the generalized trace-free Korn-type inequality
for incompatible, p-integrable tensor fields P : Ω → Rn×n having p-integrable generalized Curln and
generalized vanishing tangential trace P τl = 0 on ∂Ω, denoting by {τl}l=1,...,n−1 a moving tangent frame
on ∂Ω. More precisely, there exists a constant c = c(n, p,Ω) such that

‖P‖Lp(Ω,Rn×n) ≤ c
(
‖devn symP‖Lp(Ω,Rn×n) + ‖Curln P‖

Lp(Ω,Rn×n(n−1)
2 )

)
,

where the generalized Curln is given by (Curln P )ijk := ∂iPkj − ∂jPki and devnX := X − 1
n

tr(X) · 1n

denotes the deviatoric (trace-free) part of the square matrix X. The improvement towards the three-
dimensional case comes from a novel matrix representation of the generalized cross product.

AMS 2010 subject classification: Primary: 35A23; Secondary: 35B45, 35Q74, 46E35.
Keywords: W 1, p(Curl)-Korn’s inequality, Lions lemma, Nečas estimate, generalized Curl, incompatibility.

1 Introduction

The estimate

∃ c > 0 ∀u ∈W 1, p
0 (Ω,Rn) : ‖Du‖Lp(Ω,Rn×n) ≤ c ‖devn sym Du‖Lp(Ω,Rn×n), (1.1)

for n ≥ 2 and p ∈ (1,∞) where devnX := X − 1
n tr(X) · 1 denotes the deviatoric (trace-free) part of the

square matrix X and its (compatible) generalizations of (1.1) are well known, cf. [3, 4, 14, 16, 17]. In [9]
another generalization to the (incompatible) case

∃ c > 0 ∀P ∈W 1, p
0 (Curl; Ω,R3×3) :

‖P‖Lp(Ω,R3×3) ≤ c
(
‖dev3 symP‖Lp(Ω,R3×3) + ‖CurlP‖Lp(Ω,R3×3)

) (1.2)

has been given. The main objective of the present paper is to extend (1.2) to the trace-free case for n ≥ 3
dimensions. Such a result was expected, cf. [9, Rem. 3.11] and was already proven to hold true for p = 2,
cf. [1]. However, the latter used a Helmholtz decomposition and a Maxwell estimate and is not amenable to
the Lp-case. On the contrary, the argumentation scheme using the Lions lemma resp. Nečas estimate, known
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from classical Korn inequalities, turned out to be also fruitful in the case of Korn inequalities for incompatible
tensor fields, cf. [8, 9, 11, 10] and also [5]. The secret of success is then to determine a linear combination of
certain partial derivatives. One such expression in [9] was D2(A + ζ · 13) = L(DCurl(A + ζ · 13)) denoting
by L a constant coefficients linear operator, for a skew-symmetric matrix field A and scalar field ζ. Here
we catch up with a corresponding linear expression in all dimensions n ≥ 3. For that purpose a careful
investigation of the generalized cross product, especially a corresponding matrix representation will be given.
Indeed, it is this matrix representation which allows us to obtain suitable relations which are not easily visible
in index notations. Korn’s inequalities in higher dimensions for matrix-valued fields whose incompatibility is
a bounded measure and corresponding rigidity estimates were obtained in the recent papers [2, 7], however,
without boundary conditions. More precisely, Conti and Garroni [2] obtained as a consequence of a Hodge
decomposition with critical integrability due to Bourgain and Brezis for P ∈ L1(Ω,Rn×n) with Curln P ∈
 L1(Ω,Rn×n(n−1)

2 ) the sharp geometric rigidity estimate

inf
R∈SO(n)

‖P −R‖L1∗ (Ω) ≤ c
(
‖dist(P,SO(n))‖L1∗ (Ω) + ‖Curln P‖L1(Ω)

)
(1.3)

with a constant c = c(n,Ω), the Sobolev-conjugate exponent 1∗ := n
n−1 and where the generalized Curln is

seen without a matrix representation as (Curln P )ijk := ∂iPkj − ∂jPki. Replacing the geometric rigidity by
Korn’s inequality they deduced from (1.3) furthermore

inf
A∈so(n)

‖P −A‖L1∗ (Ω) ≤ c
(
‖symP‖L1∗ (Ω) + ‖Curln P‖L1(Ω)

)
. (1.4)

This estimates remain true for Curln P being a Radon measure. In that case the L1-norm of Curln P has
to be substituted by the total variation of the measure Curln P , cf. [2]. Lauteri and Luckhaus [7] obtained
the rigidity estimate (1.3) in the Lorentz space L1∗,∞. In [11] we have already established the corresponding
results in the Lp-setting. Here we focus on the trace-free case showing that the symmetric part can even be
replaced by the symmetric deviatoric part.

2 Preliminaries and auxilliary results

By . ⊗ . we denote the dyadic product and by
〈
., .
〉

the scalar product, so(n) := {A ∈ Rn×n | AT = −A} is
the Lie-Algebra of skew-symmetric matrices and Sym(n) := {X ∈ Rn×n | XT = X}. Recall that usually the

higher dimensional generalization of the curl is an operation curln : D ′(Ω,Rn)→ D ′(Ω,R
n(n−1)

2 ) given by

curlna :=



∂1a2 − ∂2a1

∂1a3 − ∂3a1

∂2a3 − ∂3a2

∂1a4 − ∂4a1

∂2a4 − ∂4a2

∂3a4 − ∂4a3

. . .


. (2.1)

Thus, in order to express this operation using the Hamiltonian formalism as a generalized cross product with

∇, we focus on the following bijection an : so(n)→ R
n(n−1)

2 given by

an(A) := (A12, A13, A23, . . . , A1n, . . . , A(n−1)n)T for A ∈ so(n) (2.2a)

as well as its inverse An : R
n(n−1)

2 → so(n), so that

An(an(A)) = A for all A ∈ so(n) and an(An(a)) = a for all a ∈ R
n(n−1)

2 (2.2b)
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and in coordinates it looks like

An(a) =



0 a1 a2 a4

...

−a1 0 a3 a5

...

−a2 −a3 0 a6

...

−a4 −a5 −a6 0
...

· · · · · · · · · · · · 0


. (2.3)

Moreover, we will make use of the following notations

b = (b, bn)T ∈ Rn with b ∈ Rn−1 (2.4a)

and

A =


0


−
(
Aen

)T
AenA

∈ so(n) with A ∈ so(n− 1). (2.4b)

2.1 A generalized cross product

Regarding our goal to express curln by the Hamiltonian formalism, we apply the following generalization of

the cross product for n ≥ 2 acting as ×n : Rn × Rn → R
n(n−1)

2 by

a×n b := an(a⊗ b− b⊗ a) for a, b ∈ Rn. (2.5a)

Since for a fixed a ∈ Rn the operation a×n . is linear in the second component there exists a unique matrix

denoted by JaK×n
∈ R

n(n−1)
2 ×n such that

a×n b =: JaK×n
b for all b ∈ Rn. (2.5b)

The matrices J.K×n
can be characterized inductively, and for a = (a, an)T the matrix JaK×n

has the form

JaK×n
=




a−an · 1n−1

0JaK×n−1

where

s(
a1

a2

){

×2

=
(
−a2, a1

)
, (2.6)

so,

u

v

a1

a2

a3

}

~

×3

=


−a2 a1 0

−a3 0 a1

0 −a3 a2

 and

u

ww
v


a1

a2

a3

a4


}

��
~

×4

=



−a2 a1 0 0
−a3 0 a1 0

0 −a3 a2 0

−a4 0 0 a1

0 −a4 0 a2

0 0 −a4 a3


etc. (2.7)

Remark 2.1. There are many possible identifications of skew-symmetric matrices with vectors. However,
it is this matrix representation J.K×n

of the generalized cross product ×n which allows us to establish the
main identities needed for Lemma 2.9. Indeed, they were not easily visible to us before in index notations.
Moreover, with this matrix representation in hand, the discussion of the boundary condition (see Observation
2.7) as well as the partial integration formula (2.56) are more transparent.
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Remark 2.2. The entries of the generalized cross product a×3 b, with a, b ∈ R3, are permutations (with a
sign) of the entries of the classical cross product a× b. Recall, that also the operation a× . can be identified
with a multiplication with the skew-symmetric matrix

Anti(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.8)

which differs from the expression JaK×3
and from A3(a) which reads

A3(a) =

 0 a1 a2

−a1 0 a3

−a2 −a3 0

 . (2.9)

Moreover, we have

a×n b = −b×n a = J−bK×n
a =

(
aT
(
J−bK×n

)T)T
(2.10)

this allows us to define a generalized cross product of a vector b ∈ Rn and a matrix P ∈ Rn×m from the left
and with a matrix B ∈ Rm×n from the right via

b×n P := JbK×n
P ∈ R

n(n−1)
2 ×m to be seen as column-wise cross product, (2.11a)

and

B ×n b := B
(
J−bK×n

)T ∈ Rm×n(n−1)
2 to be seen as row-wise cross product. (2.11b)

In such a way we obtain for all b ∈ Rn:

1n ×n b =
(
J−bK×n

)T
and b×n 1n = JbK×n

. (2.12)

Furthermore, for a, b ∈ Rn it holds

JaK×n
×n b = JaK×n

(
J−bK×n

)T
=




a−an · 1n−1

0J a K×n−1




−bT0

bn · 1n−1

(q
−b

y
×n−1

)T

=


J a K×n−1

(q
−b

y
×n−1

)T
bn J a K×n−1

an

(q
b
y
×n−1

)T
−a⊗ b− anbn · 1n−1

 ∈ R
n(n−1)

2 ×n(n−1)
2 (2.13)

end especially for a = b:

JbK×n
×n b =


q
b
y
×n−1

(q
−b

y
×n−1

)T
bn

q
b
y
×n−1

bn

(q
b
y
×n−1

)T
−b⊗ b− bnbn · 1n−1

 ∈ Sym

(
n(n− 1)

2

)
(2.14)

Hence, for all a, b ∈ Rn:

tr(JaK×n
×n b) =

〈
JaK×n

, J−bK×n

〉
= −(n− 1) ·

〈
a, b
〉

(2.15)

by induction over n, and, especially for a = b:

tr(JbK×n
×n b) = −(n− 1) · ‖b‖2. (2.16)
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The entries of JbK×n
×n b are, by definition, linear combinations of bi bj , the entries of b⊗ b. Interestingly,

for n ≥ 3 also the converse holds true, i.e., the entries of b ⊗ b are linear combinations of the entries of
JbK×n

×n b which will be assertion of the subsequent lemma. Moreover, we will use this as a key observation

to achieve the existence of linear combinations in D2(A+ ζ ·1n) = L(DCurln(A+ ζ ·1n)) for n ≥ 3, so that
we can follow the argumentation scheme presented in n = 3 dimensions, cf. [9], also in the higher dimensional
case.

Lemma 2.3. For all b ∈ Rn with n ≥ 3 we have:

b⊗ b = L(JbK×n
×n b), (2.17)

denoting by L a corresponding constant coefficients linear operator.

Remark 2.4. There are no linear combinations (2.17) in n = 2 dimensions. Indeed, we only have
s(

b1
b2

){

×2

×2

(
b1
b2

)
=
(
−b2 b1

)( b2
−b1

)
= −b12 − b22, (2.18)

so that there are no linear expressions of b1
2, b2

2 nor of b1b2 in terms of the sole entry of

s(
b1
b2

){

×2

×2

(
b1
b2

)
.

Proof of Lemma 2.3 by induction over n ≥ 3. For the base case n = 3 we have

u

v

b1b2
b3

}

~

×3

×3

b1b2
b3

 (2.14)
=


−b12 − b22 b3 ·

(
−b2 b1

)
b3 ·

(
−b2
b1

)
−
(
b1
b2

)
⊗
(
b1
b2

)
− b32 · 12

 (2.19)

and

tr

u

v

b1b2
b3

}

~

×3

×3

b1b2
b3

 = −2 · (b12 + b2
2 + b3

2). (2.20)

Thus, for all b ∈ R3

b3
2 =

〈
e1, (JbK×3

×3 b) e1

〉
− 1

2
tr(JbK×3

×3 b) = L(JbK×3
×3 b) (2.21)

and consequently from the expression (2.19) we conclude

b⊗ b = L(JbK×3
×3 b) ∀ b ∈ R3. (2.22)

Now, assume for the inductive step that for all b ∈ Rn−1 with n ≥ 4 we have

b⊗ b = L(
q
b
y
×n−1

×n−1 b). (2.23)

For b ∈ Rn we have

b⊗ b =

 b⊗ b bn · b

bn · b
T

bn
2

 . (2.24)

Surely, bn · b = L(bn ·
q
b
y
×n−1

) = L(JbK×n
×n b) by the expression (2.14). The induction hypothesis gives

b⊗ b = L(
q
b
y
×n−1

×n−1 b)
(2.14)

= L(JbK×n
×n b), (2.25)

hence, also ‖b‖2 = L(JbK×n
×n b), so that finally

b2n
(2.16)

= − 1

n− 1
tr(JbK×n

×n b)− ‖b‖2 = L(JbK×n
×n b). �
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By definition (2.11b), the entries of B×n b are linear combinations of the entries Bijbk, i.e., of the entries
of the matrix B multiplied with the entries of the vector b. For skew-symmetric matrices also the converse
holds true. This is the assertion of the next lemma.

Lemma 2.5. For all A ∈ so(n) and b ∈ Rn with n ≥ 2 we have

(i) A×n b = L(an(A)⊗ b) (ii) an(A)⊗ b = L(A×n b)

denoting by L a corresponding constant coefficients linear operator which can differ in both cases.

Proof. For A ∈ so(n) and b ∈ Rn we have

an(A)⊗ b =

(
an−1(A)

Aen

)
⊗
(
b
bn

)
=

an−1(A)⊗ b bn · an−1(A)

Aen ⊗ b bn ·Aen

 (2.26)

and on the other hand

A×n b =


0


−
(
Aen

)T
AenA




−bT0

bn · 1n−1

(q
−b

y
×n−1

)T
(2.27)

=


A
(q
−b

y
×n−1

)T
bn ·A−Aen ⊗ b

(
Aen

)T (q
b
y
×n−1

)T
−bn ·

(
Aen

)T
 =

 A×n−1 b bn ·A−Aen ⊗ b

−
(
Aen ×n−1 b

)T −bn ·
(
Aen

)T
 .

Thus, the conclusions of the lemma follow by induction over the dimension n. Indeed, for the base case n = 2
we have (

0 α
−α 0

)
×2

(
b1
b2

)
=

(
0 α
−α 0

)(
−b2
b1

)
=

(
−α b1
−α b2

)
= − (α⊗ b)T (2.28)

which establishes (i) and (ii) of the Lemma for n = 2.
For the inductive step let us assume that the statement of the Lemma holds for all A ∈ so(n− 1) and all

b ∈ Rn−1, i.e., it holds:

(i) A×n−1 b = L(an−1(A)⊗ b) and (ii) an−1(A)⊗ b = L(A×n−1 b).

Thus, returning to A ∈ so(n) and b ∈ Rn we have by the expressions (2.26) and (2.27), respectively,

(i) A×n−1 b = L(an(A)⊗ b) and (ii) an−1(A)⊗ b = L(A×n b)

and the conclusion of part (i) of the Lemma follows then from the definition of the generalized cross
product, indeed,

−
(
Aen ×n−1 b

)T
=
(
an−1(b⊗Aen −Aen ⊗ b)

)T (2.26)
= L(an(A)⊗ b). (2.29)

On the other hand we have

bn ·A−Aen ⊗ b−
(
bn ·A−Aen ⊗ b

)T
+ An−1

(
Aen ×n−1 b

)
= 2 bn ·A, (2.30)

so that, bn·A = L(A×nb) and also bn·an−1(A) = L(A×nb) which by (2.27) implies thatAen⊗b = L(A×nb).
This finishes the proof of (ii) since we have shown that all the entries of an(A) ⊗ b can be written as linear
combinations of the entries of A×n b. �
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Remark 2.6. The identity (2.30) is not a new result, and usually it is expressed using coordinates:

(A×n b)kij − (A×n b)kji + (A×n b)jik = 2Aij bk ∀ i, j, k = 1, . . . , n. (2.31)

However, we included the statement as well as the proof not only for the sake of completeness, but also since
the use of the matrix representation of the generalized cross product allows us to give a coordinate-free proof
and provides a deeper insight in the algebra needed in the present paper.

For a square matrix P ∈ Rn×n we can take the generalized cross product with a vector b ∈ Rn both left
and right, and simultaneously we obtain for the identity matrix

b×n 1n ×n b = JbK×n
1n(J−bK×n

)T = JbK×n
(J−bK×n

)T = JbK×n
×n b

(2.14)
∈ Sym

(
n(n− 1)

2

)
(2.32)

and for a general matrix P ∈ Rn×n

(b×n P ×n b)
T

=
(
JbK×n

P (J−bK×n
)T
)T

= − JbK×n
PT (JbK×n

)T = b×n P
T ×n b. (2.33)

Thus, especially for a symmetric matrix S ∈ Sym(n) and a skew-symmetric matrix A ∈ so(n) we obtain

b×n S ×n b ∈ Sym

(
n(n− 1)

2

)
and b×n A×n b ∈ so

(
n(n− 1)

2

)
. (2.34)

Observation 2.7. Let A ∈ so(n) and α ∈ R. Then (A+ α · 1n)×n b = 0 for b ∈ Rn\{0} implies A = 0
and α = 0.

Proof. Taking the generalized cross product from the left on both sides of 0 = A×n b+ α · 1n ×n b gives

0 = b×n A×n b︸ ︷︷ ︸
skew-symmetric

+ α · b×n 1n ×n b︸ ︷︷ ︸
symmetric

, (2.35)

so that taking the trace of the symmetric part on both sides we obtain

0 = α · tr(b×n 1n ×n b)
(2.32)

= α · tr(JbK×n
×n b)

(2.16)
= −α · (n− 1) · ‖b‖2 (2.36)

which implies α = 0. Consequently we moreover have A ×n b = 0 which by Lemma 2.5 (ii) yields
an(A)⊗ b = 0, and thus an(A) = 0 and A = 0. �

2.2 Considerations from vector calculus

Subsequently we make use of the algebraic behavior of the vector differential operator ∇ as a vector for formal
calculations. So, the derivative and the divergence of a vector field a ∈ D ′(Ω,Rn) can be seen as

Da = a⊗∇ and div a =
〈
a,∇

〉
=
〈

Da,1n

〉
= tr(Da). (2.37)

In a similar way the generalized curl is related to the generalized cross product

curlna := a×n (−∇) = ∇×n a = J∇K×n
a =

(
aT (J∇K×n

)T
)T
. (2.38)

The latter expression gives a generalized row-wise matrix Curln operator for B ∈ D ′(Ω,Rm×n) via

CurlnB := B ×n (−∇) = B
(
J∇K×n

)T
. (2.39)

This differential operator kills the Jacobian matrix of a vector field (a compatible field), indeed

Curln Da = Da
(
J∇K×n

)T
= (a⊗∇)

(
J∇K×n

)T
= a

(
J∇K×n

∇
)T

= a (∇×n ∇)
T ≡ 0, (2.40)

7



since b×n b = 0 for all b ∈ Rn. Furthermore, for a scalar field ζ ∈ D ′(Ω,R) we obtain

Curln(ζ · 1n) = 1n

(
J∇ζK×n

)T
=
(
J∇ζK×n

)T
. (2.41)

For P ∈ D ′(Ω,Rn×m) we consider also the column-wise differential operator of first order coming from a
cross product form the left, namely

∇×n P = J∇K×n
P, (2.42)

which kills the transposed Jacobian (Da)T .
It is clear, that CurlnB = L(DB), i.e., that the entries of CurlnB are linear combinations of the entries

of DB for all B ∈ D ′(Ω,Rm×n). However, for skew-symmetric matrix fields also the converse holds true:

Corollary 2.8. For all A ∈ D ′(Ω, so(n)) with n ≥ 2 it holds: DA = L(CurlnA).

It is a well known result and follows from the linear expression (ii) in Lemma 2.5 replacing b by −∇ as
well as from its analogous statement written out in coordinates (2.31).

We now catch up with the crucial linear relation needed in our argumentation scheme.

Lemma 2.9. Let n ≥ 3, A ∈ D ′(Ω, so(n)) and ζ ∈ D ′(Ω,R). Then the entries of D2(A + ζ · 1n) are linear
combinations of the entries of DCurln(A+ ζ · 1n).

Remark 2.10. The statement is false in n = 2 dimensions. Indeed, with α, ζ ∈ D ′(Ω,R) we have

Curl2

(
ζ α
−α ζ

)
=

(
ζ α
−α ζ

)(
−∂2

∂1

)
=

(
∂1α− ∂2ζ
∂2α+ ∂1ζ

)
(2.43)

so that

DCurl2

(
ζ α
−α ζ

)
=

(
∂1∂1α− ∂1∂2ζ ∂1∂2α− ∂2∂2ζ
∂1∂2α+ ∂1∂1ζ ∂2∂2α+ ∂1∂2ζ

)
(2.44)

and we cannot extract ∂1∂1 α from the components of (2.44).

Proof of Lemma 2.9. The proof is divided into the two observations

1. D2ζ = L(DCurln(A+ ζ · 1n)), 2. D2A = L(DCurln(A+ ζ · 1n))

denoting by L a corresponding constant coefficients linear operator which can differ in both cases. To show
that the entries of the Hessian D2ζ can be written as linear combinations of the entries of DCurln(A+ ζ ·1n)
we introduce the following second order derivative operator for square matrix fields P ∈ D ′(Ω,Rn×n):

incnP := ∇×n P ×n ∇ = −∇×n (Curln P ) (2.45)

in the style of the incompatibility operator known from the three-dimensional case. In regard of (2.32) we
see

incn(ζ · 1n) = ∇×n (ζ · 1n)×n ∇ =
(
J∇K×n

×n ∇
)
ζ ∈ Sym

(
n(n− 1)

2

)
, (2.46)

so that substituting b by −∇ in Lemma 2.3 we obtain

D2ζ = (∇⊗∇) ζ = L
((

J∇K×n
×n ∇

)
ζ
)

= L(incn(ζ · 1n)). (2.47)

Moreover, with regard to (2.34)2 we have for a skew-symmetric matrix field A ∈ D ′(Ω, so(n)):

incnA = ∇×n A×n ∇ ∈ so

(
n(n− 1)

2

)
, (2.48)

8



concluding for the 1. part that

D2ζ = L(incn(ζ · 1n)) = L(sym(incn(A+ ζ · 1n))) = L(incn(A+ ζ · 1n)) = L(DCurln(A+ ζ · 1n)) (2.49)

where in the last step we have used that the entries of incnP = −∇ ×n (Curln P ) are, of course, linear
combinations of the entries from DCurln P .

To establishes part 2 recall that the entries of DA for a skew-symmetric matrix field are linear combinations
of the entries of CurlnA, giving

DA = L(CurlnA) = L(Curln(A+ ζ · 1n))− L(Curln(ζ · 1n))

(2.41)
= L(Curln(A+ ζ · 1n))− L

((
J∇ζK×n

)T)
.

(2.50)

The conclusion follows by taking the ∂j-derivative of (2.50) together with the observation from the 1. part:

∂j DA = L(∂j Curln(A+ ζ · 1n))− L
((

J∂j∇ζK×n

)T) (2.49)
= L(DCurln(A+ ζ · 1n)). �

In the last result of this section we focus on the kernel of devn sym and Curln:

Lemma 2.11. Let n ≥ 3, A ∈ Lp(Ω, so(n)) and ζ ∈ Lp(Ω,R). Then Curln(A + ζ · 1n) ≡ 0 in the

distributional sense if and only if there exist constant b ∈ Rn, d ∈ R
n(n−1)

2 , β ∈ R such that A + ζ · 1n =
An

(
− JbK×n

x+ d
)

+ (
〈
b, x
〉

+ β) · 1n almost everywhere in Ω.

Remark 2.12. The “only if”-part is false in n = 2 dimensions. To see this, take in (2.43) α and ζ to be the
real an imaginary part of a holomorphic function.

Proof of Lemma 2.11. For the “if”-part we have

Curln(An

(
− JbK×n

x
)

+
〈
b, x
〉
· 1n) = Curln(An

(
− JbK×n

x
)
) +

(q
∇
〈
b, x
〉y
×n

)T
=
(
− JbK×n

)T
+
(
JbK×n

)T
= 0.

Conversely, Curln(A+ ζ · 1n) ≡ 0 in the distributional sense implies by (2.49):

D2ζ ≡ 0 and D2A ≡ 0 in the distributional sense, (2.51)

thus,
ζ(x) =

〈
b, x
〉

+ β and A = An(B x+ d) a.e. (2.52)

for some b ∈ Rn, β ∈ R, B ∈ R
n(n−1)

2 ×n and d ∈ R
n(n−1)

2 , and we have

Curln(ζ · 1n) =
(
J∇ζK×n

)T
=
(
JbK×n

)T
as well as

CurlnA = Curln(An (B x)) = BT + CT ,

where C ∈ R
n(n−1)

2 ×n has only possibly non-zero entries at those positions at which the matrix JbK×n
has

zeros. Hence, the condition, Curln(A+ ζ · 1n) ≡ 0 gives:(
JbK×n

)T
= Curln(ζ · 1n) = −CurlnA = −BT − CT (2.53)

implying that C ≡ 0 and B = JbK×n
almost everywhere in Ω. �

Remark 2.13. The expression of the kernel follows also from the consideration for the classical trace-free
Korn inequalities. Indeed, on simply connected domains, Curln P ≡ 0 implies that P = Du for a vector
field u ∈W 1, p(Ω,Rn). Thus, the condition devn symP ≡ 0 reads devn sym Du ≡ 0, whose solutions are well
known as infinitesimal conformal mappings, cf. [1, 3, 6, 12, 14, 15, 16].
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2.3 Function spaces

Having above relations at hand we can now catch up the arguments from [9]. Let Ω ⊆ Rn, we start by
defining the space

W 1, p(Curln; Ω,Rn×n) := {P ∈ Lp(Ω,Rn×n) | Curln P ∈ Lp(Ω,Rn×n(n−1)
2 )} (2.54a)

equipped with the norm

‖P‖W 1, p(Curln;Ω,Rn×n) :=

(
‖P‖pLp(Ω,Rn×n) + ‖Curln P‖p

Lp(Ω,Rn×n(n−1)
2 )

) 1
p

(2.54b)

and its subspace W 1, p
0 (Curln; Ω,Rn×n) as the completion of C∞0 (Ω,Rn×n) in the W 1, p(Curln; Ω,Rn×n)-

norm.
In our proofs we shall use an important equivalence of norms due to Nečas [13, Théorème 1] valid on

bounded Lipschitz domains, cf. also discussion in [9, 10] and the references cited therein.
Thus, in what follows Ω ⊂ Rn will be a bounded domain with Lipschitz boundary and we are allowed to

define boundary conditions in the distributional sense, so that

W 1, p
0 (Curln; Ω,Rn×n) = {P ∈W 1, p(Curln; Ω,Rn×n) | P ×n ν = 0 on ∂Ω}

= {P ∈W 1, p(Curln; Ω,Rn×n) | P τl = 0 on ∂Ω for all l = 1, . . . , n− 1},
(2.55)

where ν stands for the outward unit normal vector field and {τl}l=1,...,n−1 denotes a moving tangent frame on

∂Ω, cf. [11]. Here, the generalized tangential trace P×nν is understood in the sense of W−
1
p , p(∂Ω,Rn×n(n−1)

2 )
which is justified by partial integration, so that its trace is defined by

∀ Q ∈W 1− 1
p′ , p

′
(∂Ω,Rn×n(n−1)

2 ) : (2.56)〈
P ×n (−ν), Q

〉
∂Ω

=

∫
Ω

〈
Curln P, Q̃

〉
Rn×n(n−1)

2
+
〈
P, Q̃ J∇K×n

〉
Rn×n dx

having denoted by Q̃ ∈ W 1, p′(Ω,Rn×n(n−1)
2 ) any extension of Q in Ω, where,

〈
., .
〉
∂Ω

indicates the duality

pairing between W−
1
p , p(∂Ω,Rn×n(n−1)

2 ) and W
1− 1

p′ , p
′
(∂Ω,Rn×n(n−1)

2 ). Indeed, for smooth P and Q on Ω we
have ∫

∂Ω

〈
P ×n (−ν), Q

〉
Rn×n(n−1)

2
dS

(2.11b)
=

∫
∂Ω

〈
P (JνK×n

)T , Q
〉
Rn×n(n−1)

2
dS

=

∫
∂Ω

〈
(JνK×n

)T , PT Q
〉
Rn×n(n−1)

2
dS

(∗)
=

∫
Ω

〈
(J∇K×n

)T , PT Q
〉
Rn×n(n−1)

2
dx (2.57)

=

∫
Ω

〈
P (J∇K×n

)T , Q
〉
Rn×n(n−1)

2
+
〈
P,Q J∇K×n

〉
Rn×n dx

=

∫
Ω

〈
Curln P,Q

〉
Rn×n(n−1)

2
+
〈
P,Q J∇K×n

〉
Rn×n dx,

where in (∗) we have used the fact that we only deal with linear combinations of partial derivatives and from
the classical divergence theorem it holds ∫

∂Ω

νi ζ dS =

∫
Ω

∂i ζ dx (2.58)

for a smooth scalar function ζ on Ω.
Further, following [10] we introduce also the space W 1, p

Γ,0 (Curln; Ω,Rn×n) of functions with vanishing
tangential trace only on a relatively open (non-empty) subset Γ ⊆ ∂Ω of the boundary by completion of
C∞Γ,0(Ω,Rn×n) with respect to the W 1, p(Curln; Ω,Rn×n)-norm.
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3 Trace-free Korn inequalities for incompatible tensors in higher
dimensions

With the auxilliary results in hand we can now catch up with the higher dimensional versions of the results
presented in [9].

Lemma 3.1. Let n ≥ 3, Ω ⊂ Rn be a bounded Lipschitz domain and 1 < p < ∞. Then P ∈ D ′(Ω,Rn×n),

devn symP ∈ Lp(Ω,Rn×n) and Curln P ∈W−1, p(Ω,Rn×n(n−1)
2 ) imply P ∈ Lp(Ω,Rn×n). Moreover, we have

the estimate

‖P‖Lp(Ω,Rn×n) ≤ c
(
‖skewP + 1

n trP · 1n‖W−1, p(Ω,Rn×n)

+ ‖devn symP‖Lp(Ω,Rn×n) + ‖Curln P‖
W−1, p(Ω,Rn×n(n−1)

2 )

)
, (3.1)

with a constant c = c(n, p,Ω) > 0.

Proof. We have to show that skewP + 1
n trP · 1n ∈ Lp(Ω,Rn×n) follows from the assumptions of the lemma.

By the linearity of differential operator DCurln and the orthogonal decomposition P = skewP + 1
n trP ·1n +

devn symP holding in D ′(Ω,Rn×n) we obtain

DCurln(skewP + 1
n trP · 1n) = DCurln P −DCurln devn symP in D ′(Ω,Rn×n). (3.2)

Thus, by the assumed regularity of the right hand side, it follows that the left hand side belongs to

W−2, p(Ω,Rn×n(n−1)
2 ×n). Furthermore, we have

‖DCurln(skewP + 1
n trP · 1n)‖W−2, p ≤ ‖DCurln P‖W−2, p + ‖DCurln devn symP‖W−2, p

≤ c (‖Curln P‖W−1, p + ‖devn symP‖Lp). (3.3)

By Lemma 2.9 we obtain D2(skewP + 1
n trP · 1n) ∈ W−2, p and an application of the Lions lemma resp.

Nečas estimate [9, Thm. 2.7 and Cor. 2.8] to skewP + 1
n trP · 1n yield the conclusions. �

Eliminating the first term on the right hand side of (3.1) gives:

Theorem 3.2. Let n ≥ 3, Ω ⊂ Rn be a bounded Lipschitz domain and 1 < p < ∞. There exists a constant
c = c(n, p,Ω) > 0, such that for all P ∈ Lp(Ω,Rn×n) we have

inf
T∈KdS,Cn

‖P − T‖Lp(Ω,Rn×n) ≤ c
(
‖devn symP‖Lp(Ω,Rn×n) + ‖Curln P‖

W−1, p(Ω,Rn×n(n−1)
2 )

)
, (3.4)

where the kernel is given by

KdS,Cn
= {T : Ω→ Rn×n | T (x) = An

(
− JbK×n

x+ d
)

+(
〈
b, x
〉

+β) ·1n, b ∈ Rn, d ∈ R
n(n−1)

2 , β ∈ R} . (3.5)

Remark 3.3. This result does not directly extend to n = 2, since in that case the condition dev2 sym Du ≡ 0
becomes the system of Cauchy-Riemann equations {u1,x = u2,y ∧ u1,y = −u2,x} so that the corresponding
nullspace is infinite-dimensional.

Proof of Theorem 3.2. The characterization of the kernel of the right-hand side gives

KdS,Cn
:= {P ∈ Lp(Ω,Rn×n) | devn symP = 0 a.e. and Curln P = 0 in the dist. sense},

so that P ∈ KdS,Cn
if and only if P = skewP + 1

n trP · 1n and Curln(skewP + 1
n trP · 1n) = 0. Hence, (3.5)

follows by virtue of Lemma 2.11 and the conclusion follows in a similar way to [9, Thm. 3.8]. �
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Remark 3.4. For compatible displacement gradients P = Du we get back from (3.4) the quantitative version
of the classical trace-free Korn’s inequality, cf. [3, 15, 16].

Finally, we examine the effect of tangential boundary conditions P ×n ν ≡ 0.

Theorem 3.5. Let n ≥ 3, Ω ⊂ Rn be a bounded Lipschitz domain and 1 < p < ∞. There exists a constant
c = c(n, p,Ω) > 0, such that for all P ∈W 1, p

0 (Curln; Ω,Rn×n) we have

‖P‖Lp(Ω,Rn×n) ≤ c
(
‖devn symP‖Lp(Ω,Rn×n) + ‖Curln P‖

Lp(Ω,Rn×n(n−1)
2 )

)
. (3.6)

Proof. We follow the same argumentation scheme as in the proof of [10, Theorem 3.5] and consider a sequence
{Pk}k∈N ⊂ W 1, p

0 (Curln; Ω,Rn×n) converging weakly in Lp(Ω,Rn×n) to some P ∗ so that devn symP ∗ = 0
almost everywhere and Curln P

∗ = 0 in the distributional sense, i.e. P ∗ ∈ KdS,Cn . By (2.56) we obtain that〈
P ∗×n (−ν), Q

〉
∂Ω

= 0 for all Q ∈W 1, p′(Ω,Rn×n(n−1)
2 ). However, the boundary condition P ∗×nν = 0 is also

valid in the classical sense, since P ∗ ∈ KdS,Cn has an explicit representation. Using the explicit representation
of P ∗ = An

(
− JbK×n

x+ d
)

+ (
〈
b, x
〉

+ β) · 1n, we conclude using Observation 2.7 that, in fact, P ∗ ≡ 0:

[An

(
− JbK×n

x+ d
)

+ (
〈
b, x
〉

+ β) · 1n]×n ν = 0

Obs. 2.7⇒ − JbK×n
x+ d = 0 and

〈
b, x
〉

+ β = 0 for all x ∈ ∂Ω

⇒ β = 0, b = 0, d = 0 . �

Remark 3.6. Estimate (3.6) should persist also in n = 2 dimensions. So, the case p = 2 is already contained
in [1]. However, for the general case p ∈ (1,∞) we need a different approach and it will be the subject of a
forthcoming note.

Remark 3.7. For compatible P = Du we recover from (3.6) a tangential trace-free Korn inequality.

Remark 3.8. For n ≥ 3, the previous results also hold true for tensor fields with vanishing tangential trace
only on a relatively open (non-empty) subset Γ ⊆ ∂Ω of the boundary, cf. discussion in [10]. But, this is not
the case in n = 2 dimensions. Indeed, already the trace-free version of Korn’s first inequality (1.1) with only
partial boundary condition is false in the n = 2 case, cf. e.g. the counterexample contained in [1, section 6.6].
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[10] P. Lewintan and P. Neff. “Nečas-Lions lemma revisited: An Lp-version of the generalized Korn inequality for incompatible
tensor fields”. to appear in MMAS (2021). arXiv: 1912.08447 [math.AP].

[12] P. Neff, J. Jeong, and H. Ramezani. “Subgrid interaction and micro-randomness - novel invariance requirements in
infinitesimal gradient elasticity.” Int. J. Solids Struct. 46.25-26 (2009). Pp. 4261–4276.

[13] J. Nečas. “Sur les normes équivalentes dans W
(k)
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