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For n ≥ 3 and 1 < p < ∞ we prove an L p -version of the generalized trace-free Korn-type inequality for incompatible, p-integrable tensor fields P : Ω → R n×n having p-integrable generalized Curln and generalized vanishing tangential trace P τ l = 0 on ∂Ω, denoting by {τ l } l=1,...,n-1 a moving tangent frame on ∂Ω. More precisely, there exists a constant c = c(n, p, Ω) such that

where the generalized Curln is given by (Curln P ) ijk := ∂iP kj -∂jP ki and devn X := X -1 n tr(X) • 1n denotes the deviatoric (trace-free) part of the square matrix X. The improvement towards the threedimensional case comes from a novel matrix representation of the generalized cross product.

Introduction

The estimate

∃ c > 0 ∀ u ∈ W 1, p 0 (Ω, R n ) : Du L p (Ω,R n×n ) ≤ c dev n sym Du L p (Ω,R n×n ) , (1.1) 
for n ≥ 2 and p ∈ (1, ∞) where dev n X := X -1 n tr(X) • 1 denotes the deviatoric (trace-free) part of the square matrix X and its (compatible) generalizations of (1.1) are well known, cf. [START_REF] Dain | Generalized Korn's inequality and conformal Killing vectors[END_REF][START_REF] Fuchs | An application of a new coercive inequality to variational problems studied in general relativity and in Cosserat elasticity giving the smoothness of minimizers[END_REF][START_REF] Reshetnyak | Estimates for certain differential operators with finite-dimensional kernel[END_REF][START_REF] Schirra | New Korn-type inequalities and regularity of solutions to linear elliptic systems and anisotropic variational problems involving the trace-free part of the symmetric gradient[END_REF][START_REF] Smith | Formulas to represent functions by their derivatives[END_REF]. In [START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF] another generalization to the (incompatible) case ∃ c > 0 ∀ P ∈ W 1, p 0 (Curl; Ω, R 3×3 ) :

P L p (Ω,R 3×3 ) ≤ c dev 3 sym P L p (Ω,R 3×3 ) + Curl P L p (Ω,R 3×3 ) (1.2)
has been given. The main objective of the present paper is to extend (1.2) to the trace-free case for n ≥ 3 dimensions. Such a result was expected, cf. [START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF]Rem. 3.11] and was already proven to hold true for p = 2, cf. [START_REF] Bauer | Dev-Div-and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions[END_REF]. However, the latter used a Helmholtz decomposition and a Maxwell estimate and is not amenable to the L p -case. On the contrary, the argumentation scheme using the Lions lemma resp. Nečas estimate, known from classical Korn inequalities, turned out to be also fruitful in the case of Korn inequalities for incompatible tensor fields, cf. [START_REF] Lewintan | Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy[END_REF][START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF][START_REF] Lewintan | L p -versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative[END_REF][START_REF] Lewintan | Nečas-Lions lemma revisited: An L p -version of the generalized Korn inequality for incompatible tensor fields[END_REF] and also [START_REF] Gmeineder | On Korn-Maxwell-Sobolev Inequalities[END_REF]. The secret of success is then to determine a linear combination of certain partial derivatives. One such expression in [START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF] was D 2 (A + ζ • 1 3 ) = L(DCurl(A + ζ • 1 3 )) denoting by L a constant coefficients linear operator, for a skew-symmetric matrix field A and scalar field ζ. Here we catch up with a corresponding linear expression in all dimensions n ≥ 3. For that purpose a careful investigation of the generalized cross product, especially a corresponding matrix representation will be given. Indeed, it is this matrix representation which allows us to obtain suitable relations which are not easily visible in index notations. Korn's inequalities in higher dimensions for matrix-valued fields whose incompatibility is a bounded measure and corresponding rigidity estimates were obtained in the recent papers [START_REF] Conti | Sharp rigidity estimates for incompatible fields as consequence of the Bourgain Brezis div-curl result[END_REF][START_REF] Lauteri | Geometric rigidity estimates for incompatible fields in dimension ≥ 3[END_REF], however, without boundary conditions. More precisely, Conti and Garroni [START_REF] Conti | Sharp rigidity estimates for incompatible fields as consequence of the Bourgain Brezis div-curl result[END_REF] obtained as a consequence of a Hodge decomposition with critical integrability due to Bourgain and Brezis for

P ∈ L 1 (Ω, R n×n ) with Curl n P ∈ L 1 (Ω, R n× n(n-1)
2

) the sharp geometric rigidity estimate inf

R∈SO(n) P -R L 1 * (Ω) ≤ c dist(P, SO(n)) L 1 * (Ω) + Curl n P L 1 (Ω) (1.3)
with a constant c = c(n, Ω), the Sobolev-conjugate exponent 1 * := n n-1 and where the generalized Curl n is seen without a matrix representation as (Curl n P ) ijk := ∂ i P kj -∂ j P ki . Replacing the geometric rigidity by Korn's inequality they deduced from (1.3) furthermore inf A∈so(n)

P -A L 1 * (Ω) ≤ c sym P L 1 * (Ω) + Curl n P L 1 (Ω) .
(1.4)

This estimates remain true for Curl n P being a Radon measure. In that case the L 1 -norm of Curl n P has to be substituted by the total variation of the measure Curl n P , cf. [START_REF] Conti | Sharp rigidity estimates for incompatible fields as consequence of the Bourgain Brezis div-curl result[END_REF]. Lauteri and Luckhaus [START_REF] Lauteri | Geometric rigidity estimates for incompatible fields in dimension ≥ 3[END_REF] obtained the rigidity estimate (1.3) in the Lorentz space L 1 * ,∞ . In [START_REF] Lewintan | L p -versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative[END_REF] we have already established the corresponding results in the L p -setting. Here we focus on the trace-free case showing that the symmetric part can even be replaced by the symmetric deviatoric part.

Preliminaries and auxilliary results

By . ⊗ . we denote the dyadic product and by ., . the scalar product, so(n) := {A ∈ R n×n | A T = -A} is the Lie-Algebra of skew-symmetric matrices and Sym(n) := {X ∈ R n×n | X T = X}. Recall that usually the higher dimensional generalization of the curl is an operation curl n :

D (Ω, R n ) → D (Ω, R n(n-1) 2 
) given by

curl n a :=           ∂ 1 a 2 -∂ 2 a 1 ∂ 1 a 3 -∂ 3 a 1 ∂ 2 a 3 -∂ 3 a 2 ∂ 1 a 4 -∂ 4 a 1 ∂ 2 a 4 -∂ 4 a 2 ∂ 3 a 4 -∂ 4 a 3 . . .           . (2.1)
Thus, in order to express this operation using the Hamiltonian formalism as a generalized cross product with ∇, we focus on the following bijection a n : so

(n) → R n(n-1) 2 
given by

a n (A) := (A 12 , A 13 , A 23 , . . . , A 1n , . . . , A (n-1)n ) T for A ∈ so(n) (2.2a)
as well as its inverse A n : R

n(n-1) 2 
→ so(n), so that

A n (a n (A)) = A for all A ∈ so(n) and a n (A n (a)) = a for all a ∈ R n(n-1) 2 
(2.2b) and in coordinates it looks like

A n (a) =           0 a 1 a 2 a 4 . . .
-a 1 0 a 3 a 5 . . .

-a 2 -a 3 0 a 6 . . .

-a 4 -a 5 -a 6 0 . . .

• • • • • • • • • • • • 0           . (2.3)
Moreover, we will make use of the following notations

b = (b, b n ) T ∈ R n with b ∈ R n-1 (2.4a)
and

A =     0     -A e n T A e n A ∈ so(n) with A ∈ so(n -1).
(2.4b)

A generalized cross product

Regarding our goal to express curl n by the Hamiltonian formalism, we apply the following generalization of the cross product for n ≥ 2 acting as

× n : R n × R n → R n(n-1) 2 by a × n b := a n (a ⊗ b -b ⊗ a) for a, b ∈ R n . (2.5a) 
Since for a fixed a ∈ R n the operation a × n . is linear in the second component there exists a unique matrix denoted by a ×n ∈ R n(n-1) 2

×n such that

a × n b =: a ×n b for all b ∈ R n .
(2.5b)

The matrices . ×n can be characterized inductively, and for a = (a, a n ) T the matrix a ×n has the form

a ×n =             a -a n • 1 n-1 0 a × n-1 where a 1 a 2 ×2 = -a 2 , a 1 , (2.6) so, 
  a 1 a 2 a 3   ×3 =     -a 2 a 1 0 -a 3 0 a 1 0 -a 3 a 2     and     a 1 a 2 a 3 a 4     ×4 =           -a 2 a 1 0 0 -a 3 0 a 1 0 0 -a 3 a 2 0 -a 4 0 0 a 1 0 -a 4 0 a 2 0 0 -a 4 a 3           etc.
(2.7)

Remark 2.1. There are many possible identifications of skew-symmetric matrices with vectors. However, it is this matrix representation . ×n of the generalized cross product × n which allows us to establish the main identities needed for Lemma 2.9. Indeed, they were not easily visible to us before in index notations. Moreover, with this matrix representation in hand, the discussion of the boundary condition (see Observation 2.7) as well as the partial integration formula (2.56) are more transparent.

Remark 2.2. The entries of the generalized cross product a × 3 b, with a, b ∈ R 3 , are permutations (with a sign) of the entries of the classical cross product a × b. Recall, that also the operation a × . can be identified with a multiplication with the skew-symmetric matrix

Anti(a) =   0 -a 3 a 2 a 3 0 -a 1 -a 2 a 1 0   (2.8)
which differs from the expression a ×3 and from A 3 (a) which reads

A 3 (a) =   0 a 1 a 2 -a 1 0 a 3 -a 2 -a 3 0   .
(2.9)

Moreover, we have

a × n b = -b × n a = -b ×n a = a T -b ×n T T (2.10)
this allows us to define a generalized cross product of a vector b ∈ R n and a matrix P ∈ R n×m from the left and with a matrix B ∈ R m×n from the right via

b × n P := b ×n P ∈ R n(n-1) 2 ×m
to be seen as column-wise cross product, (

and

B × n b := B -b ×n T ∈ R m× n(n-1)
2 to be seen as row-wise cross product.

(

In such a way we obtain for all b ∈ R n :

1 n × n b = -b ×n T and b × n 1 n = b ×n . (2.12) Furthermore, for a, b ∈ R n it holds a ×n × n b = a ×n -b ×n T =             a -a n • 1 n-1 0 a × n-1         -b T 0 b n • 1 n-1 -b × n-1 T =     a ×n-1 -b ×n-1 T b n a ×n-1 a n b ×n-1 T -a ⊗ b -a n b n • 1 n-1     ∈ R n(n-1) 2 × n(n-1) 2 (2.13) end especially for a = b: b ×n × n b =     b ×n-1 -b ×n-1 T b n b ×n-1 b n b ×n-1 T -b ⊗ b -b n b n • 1 n-1     ∈ Sym n(n -1) 2 (2.14) Hence, for all a, b ∈ R n : tr( a ×n × n b) = a ×n , -b ×n = -(n -1) • a, b (2.15) 
by induction over n, and, especially for a = b:

tr( b ×n × n b) = -(n -1) • b 2 . (2.16)
The entries of b ×n × n b are, by definition, linear combinations of b i b j , the entries of b ⊗ b. Interestingly, for n ≥ 3 also the converse holds true, i.e., the entries of b ⊗ b are linear combinations of the entries of b ×n × n b which will be assertion of the subsequent lemma. Moreover, we will use this as a key observation to achieve the existence of linear combinations in D

2 (A + ζ • 1 n ) = L(DCurl n (A + ζ • 1 n ))
for n ≥ 3, so that we can follow the argumentation scheme presented in n = 3 dimensions, cf. [START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF], also in the higher dimensional case.

Lemma 2.3. For all b ∈ R n with n ≥ 3 we have:

b ⊗ b = L( b ×n × n b), (2.17) 
denoting by L a corresponding constant coefficients linear operator.

Remark 2.4. There are no linear combinations (2.17) in n = 2 dimensions. Indeed, we only have

b 1 b 2 ×2 × 2 b 1 b 2 = -b 2 b 1 b 2 -b 1 = -b 1 2 -b 2 2 , (2.18) so that there are no linear expressions of b 1 2 , b 2 2 nor of b 1 b 2 in terms of the sole entry of b 1 b 2 ×2 × 2 b 1 b 2 .
Proof of Lemma 2.3 by induction over n ≥ 3. For the base case n = 3 we have

  b 1 b 2 b 3   ×3 × 3   b 1 b 2 b 3   (2.14) =     -b 1 2 -b 2 2 b 3 • -b 2 b 1 b 3 • -b 2 b 1 - b 1 b 2 ⊗ b 1 b 2 -b 3 2 • 1 2     (2.19) and tr     b 1 b 2 b 3   ×3 × 3   b 1 b 2 b 3     = -2 • (b 1 2 + b 2 2 + b 3 2 ). (2.20) Thus, for all b ∈ R 3 b 3 2 = e 1 , ( b ×3 × 3 b) e 1 - 1 2 tr( b ×3 × 3 b) = L( b ×3 × 3 b) (2.21)
and consequently from the expression (2.19) we conclude

b ⊗ b = L( b ×3 × 3 b) ∀ b ∈ R 3 . (2.22)
Now, assume for the inductive step that for all b ∈ R n-1 with n ≥ 4 we have

b ⊗ b = L( b ×n-1 × n-1 b). (2.23) For b ∈ R n we have b ⊗ b =   b ⊗ b b n • b b n • b T b n 2   . (2.24) Surely, b n • b = L(b n • b ×n-1 ) = L( b ×n × n b) by the expression (2.

14). The induction hypothesis gives

b ⊗ b = L( b ×n-1 × n-1 b) (2.14) = L( b ×n × n b), (2.25) hence, also b 2 = L( b ×n × n b), so that finally b 2 n (2.16) = - 1 n -1 tr( b ×n × n b) -b 2 = L( b ×n × n b).
By definition (2.11b), the entries of B × n b are linear combinations of the entries B ij b k , i.e., of the entries of the matrix B multiplied with the entries of the vector b. For skew-symmetric matrices also the converse holds true. This is the assertion of the next lemma.

Lemma 2.5. For all A ∈ so(n) and b ∈ R n with n ≥ 2 we have

(i) A × n b = L(a n (A) ⊗ b) (ii) a n (A) ⊗ b = L(A × n b)
denoting by L a corresponding constant coefficients linear operator which can differ in both cases.

Proof. For A ∈ so(n) and b ∈ R n we have

a n (A) ⊗ b = a n-1 (A) A e n ⊗ b b n =   a n-1 (A) ⊗ b b n • a n-1 (A) A e n ⊗ b b n • A e n   (2.26)
and on the other hand

A × n b =     0     -A e n T A e n A         -b T 0 b n • 1 n-1 -b × n-1 T (2.27) =     A -b ×n-1 T b n • A -A e n ⊗ b A e n T b ×n-1 T -b n • A e n T     =   A × n-1 b b n • A -A e n ⊗ b -A e n × n-1 b T -b n • A e n T   .
Thus, the conclusions of the lemma follow by induction over the dimension n. Indeed, for the base case n = 2 we have 0 α

-α 0 × 2 b 1 b 2 = 0 α -α 0 -b 2 b 1 = -α b 1 -α b 2 = -(α ⊗ b) T (2.28)
which establishes (i) and (ii) of the Lemma for n = 2.

For the inductive step let us assume that the statement of the Lemma holds for all A ∈ so(n -1) and all b ∈ R n-1 , i.e., it holds:

(i) A × n-1 b = L(a n-1 (A) ⊗ b) and (ii) a n-1 (A) ⊗ b = L(A × n-1 b).
Thus, returning to A ∈ so(n) and b ∈ R n we have by the expressions (2.26) and (2.27), respectively,

(i) A × n-1 b = L(a n (A) ⊗ b) and (ii) a n-1 (A) ⊗ b = L(A × n b)
and the conclusion of part (i) of the Lemma follows then from the definition of the generalized cross product, indeed,

-A e n × n-1 b T = a n-1 (b ⊗ A e n -A e n ⊗ b) T (2.26) = L(a n (A) ⊗ b). (2.29)
On the other hand we have This finishes the proof of (ii) since we have shown that all the entries of a n (A) ⊗ b can be written as linear combinations of the entries of A × n b.

b n • A -A e n ⊗ b -b n • A -A e n ⊗ b T + A n-1 A e n × n-1 b = 2 b n • A, ( 2 
Remark 2.6. The identity (2.30) is not a new result, and usually it is expressed using coordinates:

(A × n b) kij -(A × n b) kji + (A × n b) jik = 2 A ij b k ∀ i, j, k = 1, . . . , n.
(2.31) However, we included the statement as well as the proof not only for the sake of completeness, but also since the use of the matrix representation of the generalized cross product allows us to give a coordinate-free proof and provides a deeper insight in the algebra needed in the present paper.

For a square matrix P ∈ R n×n we can take the generalized cross product with a vector b ∈ R n both left and right, and simultaneously we obtain for the identity matrix

b × n 1 n × n b = b ×n 1 n ( -b ×n ) T = b ×n ( -b ×n ) T = b ×n × n b (2.14) ∈ Sym n(n -1) 2 (2.32)
and for a general matrix P ∈ R n×n

(b × n P × n b) T = b ×n P ( -b ×n ) T T = -b ×n P T ( b ×n ) T = b × n P T × n b. (2.33)
Thus, especially for a symmetric matrix S ∈ Sym(n) and a skew-symmetric matrix A ∈ so(n) we obtain

b × n S × n b ∈ Sym n(n -1) 2 and b × n A × n b ∈ so n(n -1) 2 .
(2.34)

Observation 2.7. Let A ∈ so(n) and α ∈ R. Then (A + α • 1 n ) × n b = 0 for b ∈ R n \{0} implies A = 0 and α = 0.
Proof. Taking the generalized cross product from the left on both sides of 0

= A × n b + α • 1 n × n b gives 0 = b × n A × n b skew-symmetric + α • b × n 1 n × n b symmetric , (2.35) 
so that taking the trace of the symmetric part on both sides we obtain

0 = α • tr(b × n 1 n × n b) (2.32) = α • tr( b ×n × n b) (2.16) = -α • (n -1) • b 2 (2.36)
which implies α = 0. Consequently we moreover have A × n b = 0 which by Lemma 2.5 (ii) yields a n (A) ⊗ b = 0, and thus a n (A) = 0 and A = 0.

Considerations from vector calculus

Subsequently we make use of the algebraic behavior of the vector differential operator ∇ as a vector for formal calculations. So, the derivative and the divergence of a vector field a ∈ D (Ω, R n ) can be seen as Da = a ⊗ ∇ and div a = a, ∇ = Da, 1 n = tr(Da).

(2.37)

In a similar way the generalized curl is related to the generalized cross product

curl n a := a × n (-∇) = ∇ × n a = ∇ ×n a = a T ( ∇ ×n ) T T . ( 2 

.38)

The latter expression gives a generalized row-wise matrix Curl n operator for B ∈ D (Ω, R m×n ) via

Curl n B := B × n (-∇) = B ∇ ×n T . (2.39)
This differential operator kills the Jacobian matrix of a vector field (a compatible field), indeed

Curl n Da = Da ∇ ×n T = (a ⊗ ∇) ∇ ×n T = a ∇ ×n ∇ T = a (∇ × n ∇) T ≡ 0, (2.40) since b × n b = 0 for all b ∈ R n . Furthermore, for a scalar field ζ ∈ D (Ω, R) we obtain Curl n (ζ • 1 n ) = 1 n ∇ζ ×n T = ∇ζ ×n T .
(2.41)

For P ∈ D (Ω, R n×m ) we consider also the column-wise differential operator of first order coming from a cross product form the left, namely ∇ × n P = ∇ ×n P, (2.42) which kills the transposed Jacobian (Da) T . It is clear, that Curl n B = L(DB), i.e., that the entries of Curl n B are linear combinations of the entries of DB for all B ∈ D (Ω, R m×n ). However, for skew-symmetric matrix fields also the converse holds true:

Corollary 2.8. For all A ∈ D (Ω, so(n)) with n ≥ 2 it holds: DA = L(Curl n A).
It is a well known result and follows from the linear expression (ii) in Lemma 2.5 replacing b by -∇ as well as from its analogous statement written out in coordinates (2.31).

We now catch up with the crucial linear relation needed in our argumentation scheme.

Lemma 2.9.

Let n ≥ 3, A ∈ D (Ω, so(n)) and ζ ∈ D (Ω, R). Then the entries of D 2 (A + ζ • 1 n ) are linear combinations of the entries of DCurl n (A + ζ • 1 n ).
Remark 2.10. The statement is false in n = 2 dimensions. Indeed, with α, ζ ∈ D (Ω, R) we have

Curl 2 ζ α -α ζ = ζ α -α ζ -∂ 2 ∂ 1 = ∂ 1 α -∂ 2 ζ ∂ 2 α + ∂ 1 ζ (2.43) so that DCurl 2 ζ α -α ζ = ∂ 1 ∂ 1 α -∂ 1 ∂ 2 ζ ∂ 1 ∂ 2 α -∂ 2 ∂ 2 ζ ∂ 1 ∂ 2 α + ∂ 1 ∂ 1 ζ ∂ 2 ∂ 2 α + ∂ 1 ∂ 2 ζ (2.44)
and we cannot extract ∂ 1 ∂ 1 α from the components of (2.44).

Proof of Lemma 2.9. The proof is divided into the two observations

1. D 2 ζ = L(DCurl n (A + ζ • 1 n )), 2. D 2 A = L(DCurl n (A + ζ • 1 n ))
denoting by L a corresponding constant coefficients linear operator which can differ in both cases. To show that the entries of the Hessian D 2 ζ can be written as linear combinations of the entries of DCurl n (A + ζ • 1 n ) we introduce the following second order derivative operator for square matrix fields P ∈ D (Ω, R n×n ):

inc n P := ∇ × n P × n ∇ = -∇ × n (Curl n P ) (2.45)
in the style of the incompatibility operator known from the three-dimensional case. In regard of (2.32) we see

inc n (ζ • 1 n ) = ∇ × n (ζ • 1 n ) × n ∇ = ∇ ×n × n ∇ ζ ∈ Sym n(n -1) 2 , (2.46) 
so that substituting b by -∇ in Lemma 2.3 we obtain

D 2 ζ = (∇ ⊗ ∇) ζ = L ∇ ×n × n ∇ ζ = L(inc n (ζ • 1 n )). (2.47)
Moreover, with regard to (2.34) 2 we have for a skew-symmetric matrix field A ∈ D (Ω, so(n)):

inc n A = ∇ × n A × n ∇ ∈ so n(n -1) 2 , (2.48) 
concluding for the 1. part that

D 2 ζ = L(inc n (ζ • 1 n )) = L(sym(inc n (A + ζ • 1 n ))) = L(inc n (A + ζ • 1 n )) = L(DCurl n (A + ζ • 1 n )) (2.49)
where in the last step we have used that the entries of inc n P = -∇ × n (Curl n P ) are, of course, linear combinations of the entries from DCurl n P .

To establishes part 2 recall that the entries of DA for a skew-symmetric matrix field are linear combinations of the entries of Curl n A, giving

DA = L(Curl n A) = L(Curl n (A + ζ • 1 n )) -L(Curl n (ζ • 1 n )) (2.41) = L(Curl n (A + ζ • 1 n )) -L ∇ζ ×n T . (2.50) 
The conclusion follows by taking the ∂ j -derivative of (2.50) together with the observation from the 1. part:

∂ j DA = L(∂ j Curl n (A + ζ • 1 n )) -L ∂ j ∇ζ ×n T (2.49) = L(DCurl n (A + ζ • 1 n )).
In the last result of this section we focus on the kernel of dev n sym and Curl n :

Lemma 2.11. Let n ≥ 3, A ∈ L p (Ω, so(n)) and ζ ∈ L p (Ω, R). Then Curl n (A + ζ • 1 n ) ≡ 0 in the distributional sense if and only if there exist constant b ∈ R n , d ∈ R n(n-1) 2 , β ∈ R such that A + ζ • 1 n = A n -b ×n x + d + ( b, x + β) • 1 n almost everywhere in Ω.
Remark 2.12. The "only if"-part is false in n = 2 dimensions. To see this, take in (2.43) α and ζ to be the real an imaginary part of a holomorphic function.

Proof of Lemma 2.11. For the "if"-part we have 

Curl n (A n -b ×n x + b, x • 1 n ) = Curl n (A n -b ×n x ) + ∇ b, x ×n
b ×n T = Curl n (ζ • 1 n ) = -Curl n A = -B T -C T (2.53)
implying that C ≡ 0 and B = b ×n almost everywhere in Ω.

Remark 2.13. The expression of the kernel follows also from the consideration for the classical trace-free Korn inequalities. Indeed, on simply connected domains, Curl n P ≡ 0 implies that P = Du for a vector field u ∈ W 1, p (Ω, R n ). Thus, the condition dev n sym P ≡ 0 reads dev n sym Du ≡ 0, whose solutions are well known as infinitesimal conformal mappings, cf. [START_REF] Bauer | Dev-Div-and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions[END_REF][START_REF] Dain | Generalized Korn's inequality and conformal Killing vectors[END_REF][START_REF] Jeong | Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions[END_REF][START_REF] Neff | Subgrid interaction and micro-randomness -novel invariance requirements in infinitesimal gradient elasticity[END_REF][START_REF] Reshetnyak | Estimates for certain differential operators with finite-dimensional kernel[END_REF][START_REF] Reshetnyak | Stability Theorems in Geometry and Analysis[END_REF][START_REF] Schirra | New Korn-type inequalities and regularity of solutions to linear elliptic systems and anisotropic variational problems involving the trace-free part of the symmetric gradient[END_REF].

Function spaces

Having above relations at hand we can now catch up the arguments from [START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF]. Let Ω ⊆ R n , we start by defining the space

W 1, p (Curl n ; Ω, R n×n ) := {P ∈ L p (Ω, R n×n ) | Curl n P ∈ L p (Ω, R n× n(n-1)

2

)} (2.54a) equipped with the norm

P W 1, p (Curln;Ω,R n×n ) := P p L p (Ω,R n×n ) + Curl n P p L p (Ω,R n× n(n-1)
2

)
1 p

(2.54b) and its subspace W 1, p 0 (Curl n ; Ω, R n×n ) as the completion of C ∞ 0 (Ω, R n×n ) in the W 1, p (Curl n ; Ω, R n×n )norm.

In our proofs we shall use an important equivalence of norms due to Nečas [13, Théorème 1] valid on bounded Lipschitz domains, cf. also discussion in [START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF][START_REF] Lewintan | Nečas-Lions lemma revisited: An L p -version of the generalized Korn inequality for incompatible tensor fields[END_REF] and the references cited therein.

Thus, in what follows Ω ⊂ R n will be a bounded domain with Lipschitz boundary and we are allowed to define boundary conditions in the distributional sense, so that

W 1, p 0 (Curl n ; Ω, R n×n ) = {P ∈ W 1, p (Curl n ; Ω, R n×n ) | P × n ν = 0 on ∂Ω} = {P ∈ W 1, p (Curl n ; Ω, R n×n ) | P τ l = 0 on ∂Ω for all l = 1, . . . , n -1}, (2.55) 
where ν stands for the outward unit normal vector field and {τ l } l=1,...,n-1 denotes a moving tangent frame on ∂Ω, cf. [START_REF] Lewintan | L p -versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative[END_REF]. Here, the generalized tangential trace P × n ν is understood in the sense of W -1 p , p (∂Ω, R n× n(n-1)

2

) which is justified by partial integration, so that its trace is defined by

∀ Q ∈ W 1-1 p , p (∂Ω, R n× n(n-1)

2

) :

(2.56)

P × n (-ν), Q ∂Ω = Ω Curl n P, Q R n× n(n-1) 2 + P, Q ∇ ×n R n×n dx having denoted by Q ∈ W 1, p (Ω, R n× n(n-1) 2 
) any extension of Q in Ω, where, ., . ∂Ω indicates the duality pairing between W -1 p , p (∂Ω, R n× n(n-1)

2

) and W

1-1 p , p (∂Ω, R n× n(n-1) 2 
). Indeed, for smooth P and Q on Ω we have

∂Ω P × n (-ν), Q R n× n(n-1) 2 dS (2.11b) = ∂Ω P ( ν ×n ) T , Q R n× n(n-1) 2 dS = ∂Ω ( ν ×n ) T , P T Q R n× n(n-1) 2 dS ( * ) = Ω ( ∇ ×n ) T , P T Q R n× n(n-1) 2 dx (2.57) = Ω P ( ∇ ×n ) T , Q R n× n(n-1) 2 + P, Q ∇ ×n R n×n dx = Ω Curl n P, Q R n× n(n-1) 2 + P, Q ∇ ×n R n×n dx,
where in ( * ) we have used the fact that we only deal with linear combinations of partial derivatives and from the classical divergence theorem it holds

∂Ω ν i ζ dS = Ω ∂ i ζ dx (2.58)
for a smooth scalar function ζ on Ω. Further, following [START_REF] Lewintan | Nečas-Lions lemma revisited: An L p -version of the generalized Korn inequality for incompatible tensor fields[END_REF] we introduce also the space W 1, p Γ,0 (Curl n ; Ω, R n×n ) of functions with vanishing tangential trace only on a relatively open (non-empty) subset Γ ⊆ ∂Ω of the boundary by completion of C ∞ Γ,0 (Ω, R n×n ) with respect to the W 1, p (Curl n ; Ω, R n×n )-norm.

Remark 3.4. For compatible displacement gradients P = Du we get back from (3.4) the quantitative version of the classical trace-free Korn's inequality, cf. [START_REF] Dain | Generalized Korn's inequality and conformal Killing vectors[END_REF][START_REF] Reshetnyak | Stability Theorems in Geometry and Analysis[END_REF][START_REF] Schirra | New Korn-type inequalities and regularity of solutions to linear elliptic systems and anisotropic variational problems involving the trace-free part of the symmetric gradient[END_REF].

Finally, we examine the effect of tangential boundary conditions P × n ν ≡ 0.

Theorem 3.5. Let n ≥ 3, Ω ⊂ R n be a bounded Lipschitz domain and 1 < p < ∞. There exists a constant c = c(n, p, Ω) > 0, such that for all P ∈ W 1, p 0 (Curl n ; Ω, R n×n ) we have P L p (Ω,R n×n ) ≤ c dev n sym P L p (Ω,R n×n ) + Curl n P L p (Ω,R n× n(n-1)

2

)

.

(3.6)

Proof. We follow the same argumentation scheme as in the proof of [START_REF] Lewintan | Nečas-Lions lemma revisited: An L p -version of the generalized Korn inequality for incompatible tensor fields[END_REF]Theorem 3.5] and consider a sequence {P k } k∈N ⊂ W 1, p 0 (Curl n ; Ω, R n×n ) converging weakly in L p (Ω, R n×n ) to some P * so that dev n sym P * = 0 almost everywhere and Curl n P * = 0 in the distributional sense, i.e. P * ∈ K dS,Cn . By (2.56) we obtain that P * × n (-ν), Q ∂Ω = 0 for all Q ∈ W 1, p (Ω, R n× n(n-1)

2

). However, the boundary condition P * × n ν = 0 is also valid in the classical sense, since P * ∈ K dS,Cn has an explicit representation. Using the explicit representation of P * = A n -b ×n x + d + ( b, x + β) • 1 n , we conclude using Observation 2.7 that, in fact, P * ≡ 0: Remark 3.6. Estimate (3.6) should persist also in n = 2 dimensions. So, the case p = 2 is already contained in [START_REF] Bauer | Dev-Div-and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions[END_REF]. However, for the general case p ∈ (1, ∞) we need a different approach and it will be the subject of a forthcoming note. 

  .30) so that, b n •A = L(A× n b) and also b n •a n-1 (A) = L(A× n b) which by (2.27) implies that A e n ⊗b = L(A× n b).

T= 2 ,

 2 -b ×n T + b ×n T = 0. Conversely, Curl n (A + ζ • 1 n ) ≡ 0 in the distributional sense implies by (2.49): D 2 ζ ≡ 0 and D 2 A ≡ 0 in the distributional sense, (2.51) thus, ζ(x) = b, x + β and A = A n (B x + d) a.e. (2.52) for some b ∈ R n , β ∈ R, B ∈ R n(n-1) 2 ×n and d ∈ R n(n-1) and we have Curl n (ζ • 1 n ) = ∇ζ ×n T = b ×n T as well asCurl n A = Curl n (A n (B x)) = B T + C T , where C ∈ R n(n-1)2×n has only possibly non-zero entries at those positions at which the matrix b ×n has zeros. Hence, the condition, Curl n (A + ζ • 1 n ) ≡ 0 gives:

[

  A n -b ×n x + d + ( b, x + β) • 1 n ] × n ν = 0 Obs. 2.7 ⇒ -b ×n x + d = 0 and b, x + β = 0 for all x ∈ ∂Ω ⇒ β = 0, b = 0, d = 0 .

Remark 3 . 7 .Remark 3 . 8 .

 3738 For compatible P = Du we recover from (3.6) a tangential trace-free Korn inequality. For n ≥ 3, the previous results also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset Γ ⊆ ∂Ω of the boundary, cf. discussion in[START_REF] Lewintan | Nečas-Lions lemma revisited: An L p -version of the generalized Korn inequality for incompatible tensor fields[END_REF]. But, this is not the case in n = 2 dimensions. Indeed, already the trace-free version of Korn's first inequality (1.1) with only partial boundary condition is false in the n = 2 case, cf. e.g. the counterexample contained in [1, section 6.6].
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Trace-free Korn inequalities for incompatible tensors in higher dimensions

With the auxilliary results in hand we can now catch up with the higher dimensional versions of the results presented in [START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF].

Lemma 3.1. Let n ≥ 3, Ω ⊂ R n be a bounded Lipschitz domain and 1 < p < ∞. Then P ∈ D (Ω, R n×n ), dev n sym P ∈ L p (Ω, R n×n ) and Curl n P ∈ W -1, p (Ω, R n× n(n-1)

2

) imply P ∈ L p (Ω, R n×n ). Moreover, we have the estimate

with a constant c = c(n, p, Ω) > 0.

Proof. We have to show that skew P + 1 n tr P • 1 n ∈ L p (Ω, R n×n ) follows from the assumptions of the lemma. By the linearity of differential operator DCurl n and the orthogonal decomposition

Thus, by the assumed regularity of the right hand side, it follows that the left hand side belongs to

×n ). Furthermore, we have

By Lemma 2.9 we obtain D 2 (skew P + 1 n tr P • 1 n ) ∈ W -2, p and an application of the Lions lemma resp. Nečas estimate [9, Thm. 2.7 and Cor. 2.8] to skew P + 1 n tr P • 1 n yield the conclusions. Eliminating the first term on the right hand side of (3.1) gives: Theorem 3.2. Let n ≥ 3, Ω ⊂ R n be a bounded Lipschitz domain and 1 < p < ∞. There exists a constant c = c(n, p, Ω) > 0, such that for all P ∈ L p (Ω, R n×n ) we have inf

where the kernel is given by

, β ∈ R} .