
HAL Id: hal-02967290
https://hal.science/hal-02967290

Submitted on 14 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DiagSys: network and third-party web-service
monitoring from the browser’s perspective (industry

track)
Loïck Bonniot, Christoph Neumann, François Taïani

To cite this version:
Loïck Bonniot, Christoph Neumann, François Taïani. DiagSys: network and third-party web-service
monitoring from the browser’s perspective (industry track). 2020 - ACM/IFIP Middleware, Dec 2020,
Delft, Netherlands. pp.1-7, �10.1145/3429357.3430520�. �hal-02967290�

https://hal.science/hal-02967290
https://hal.archives-ouvertes.fr

DiagSys: network and third-party web-service
monitoring from the browser’s perspective

(industry track)

Loïck Bonniot
1,2
, Christoph Neumann

1
, François Taïani

2

1
InterDigital,

2
Univ Rennes, Inria, CNRS, IRISA

{firstname.surname}@interdigital.com,{firstname.surname}@irisa.fr

Abstract
For Internet operators, on-line service providers and end-

users, representative operational measurements are crucial

to monitor and diagnose the performance of networks and

on-line services. While numerous approaches have been

proposed to measure performance, only a few works fully

adopt an end-user perspective by taking measurements from

within web browsers.

In this paper we propose and describe DiagSys, a novel

crowd-sourced data collection system designed to moni-

tor the performance of network- and web-services from

a range of diverse viewpoints. DiagSys leverages the web

browsers running on end-user devices to probe dedicated

remote measurement points and third-party web services. It

uses a JavaScript snippet embedded within webpages and/or

a dedicated browser extension to this end, while staying

compatible with recent browser capabilities and security re-

strictions. We also present interesting case studies based on

the data already collected in our DiagSys deployment.

1 Introduction
Internet Service Providers, on-line service providers and

their end-users need accurate and automated tools to mea-

sure and diagnose networks and third-party on-line services

on a large scale. To provide insightful reports, such tools

should ideally reflect the Quality of Experience (QoE) per-

ceived by end-users when they use on-line services such

as websites and web APIs. Because QoE problems are of-

ten explained by causes near end users [16, 18, 19], many

past measurement approaches have been implemented at the

network’s edge, by taking the viewpoint of either the home

gateway [15, 17, 20], the browser [5, 6, 9, 11], or by using

dedicated tools running on end-user devices [8]. (See Table 1

for an overview of some of these approaches.) In this paper,

we propose to take stock of these seminal approaches, yet to

get one step closer to a holistic monitoring of QoE conditions:

we combine end-user perspective with infrastructure-side

insights in a more systematic monitoring strategy, which is

often lacking in the above solutions.

More concretely, we argue that although the location of

measuring probes in the network is critical, the device used

(PC, smartphone . . .) and the execution environment are

Table 1. Comparison of some client-side monitoring tools.

Headless End-user 3
rd
-party service Traceroute

browser device monitoring support

Fathom [5] ✗ ≈2 ✗ ✓
NDT [11] ✗ ✓ ✗ ✓

Mirage [17] ≈1 ✗ ✓ ✗
DiagSys ✓ ✓ ✓ ✓

1
No JavaScript emulation

2
No support for recent browsers

also essential to capture a user’s QoE. We therefore advo-

cate that measurements should whenever possible be taken

from end-user devices. This implies that any user-side mea-

surement software should be easy to deploy and use, re-

main non-intrusive and incur a minimal network overhead.

Browser-based measurements [5, 11]—the approach we ex-

plore in this paper—adhere to the above principles. Most

web services used by end-users run within a browser, where

measurement scripts can be easily deployed using JavaScript

with little to no user interaction. Moreover, web browsers

make it easy to target a wide range of devices, from PCs to

smartphones through gaming consoles.

Although end-user measurements appear key to reliably

assess users’ QoE, measurements taken from end-user de-

vices do come with caveats: first, browser-based measure-

ments are more challenging to implement nowadays than in

the past [5], due to the many security restrictions added in re-

cent years. Then, end-user devices are not always on, they of-

ten change network location (i.e. in the case of smartphones,

laptops, and tablets), might not go back to a particular site

or service for extended periods of time. We overcome these

limits by supplementing user-based measurements with mea-

surements taken from headless browsers running within the

infrastructure. We also focus our monitoring effort on a pre-

configured set of neutral third-party web services which can

be changed at runtime. This allows us to build a consistent

and fine-grained set of datapoints obtained from diverse

vantage points.

Measurements taken from within a browser do bring a

lot of information, but might remain difficult to dissect and

diagnose without additional insights into the inner workings

of the concerned services, or into the topology of the un-

derlying networks. This information is however usually not

Loïck Bonniot, Christoph Neumann, François Taïani

accessible, for security or business reasons [21]. We therefore

take a tangential approach to estimate network conditions,

and rely on a set of landmark servers (landmarks for short)

that implement specialized measurement services at diverse

locations of the infrastructure (e.g. a cloud datacenter, a PoP,

a home network). In addition to measurement services, land-

marks also host our headless browsers, and allow us to im-

plement network probing mechanisms that are unavailable

from browsers, such as traceroute.

In the following, we present DiagSys, a crowd-sourced

data collection system targeted at monitoring networks and

third party web-services that implement the strategies we

have just sketched. DiagSys combines browser-based probes,

running both on end-user devices and in headless browsers,

and landmark servers hosting measurement services. Our

browser-based probes are compatible with the recent se-

curity restrictions of modern browsers, and systematically

monitor a set of pre-configured services. We describe a first

set of case studies based on the data collected so far with

DiagSys. Despite a quite recent and therefore limited de-

ployment we can already show that DiagSys can provide

insightful data regarding third-party web service behavior

and load, CDN behaviors and routing or network load issues.

2 DiagSys system description
An overview of DiagSys is depicted in Figure 1. A set of

“landmarks” (reference servers) are deployed in diverse van-

tage points within the Internet (subsection 2.1). We carefully

designed landmarks in order to also measure the effects of

CDNs during probing. The landmarks act as measurement

points for users, that can directly probe them from unmod-

ified web browsers (subsection 2.2). DiagSys also offers a

browser extension as an additional mechanism to probe third-

party Internet services from an end-user browser (subsec-

tion 2.3). Browser extensions can bypass cross-domain secu-

rity policies, thereby providing access to additional measure-

ments regarding third-party web services. In addition to real

users installing the extension, we run headless browsers in

each landmark to emulate a user’s navigation on our targeted

services. For clarity, we refer to user browsers (whether

instrumented with an extension or not) as clients. A dis-

tributed data-store provides up-to-date references to land-

marks and services, along with long-term storage for result

samples. Since DiagSys has no strong consistency require-

ments, we use asynchronous multi-master replication to

provide a highly-available, low-latency data-store.

2.1 Landmarks as reference points
We rely on a fleet of landmark servers, acting as reference

points and providing relevant features (or “metrics”) to clients.

Ideally, one would want to deploy these landmark servers

broadly, covering many autonomous systems, datacenters,

interconnection points etc. to cover all the paths from users

User

Landmarks
Service

Store
Store

Metrics

User emulation

Extension

Figure 1. Overview of DiagSys. Landmarks metrics can be

directly fetched using user browser, while service health

probes can only be executed through a browser extension or

client emulation in landmarks (dashed lines). A distributed

datastore is used to collect experiment samples.

and their service providers to Internet services and their own

cloud resources. With DiagSys, landmark servers are self-

contained stateless public HTTP servers that can be provided

by different ISPs, cloud providers or other third parties in

exchange of measurement analytics. (The approach is similar

to the global network of Speedtest servers [13], which is an

example of practical public landmark servers deployment.)

In our design, a landmark server does not make any as-

sumption about the underlying layers under the HTTP ap-

plication layer: it is possible to serve clients using legacy

HTTP/1 over the TCP transport, to more recent clients re-

quiring HTTP/3 over UDP transport. To avoid data tam-

pering and privacy leaks, landmarks must use TLS. In our

prototype, landmark servers are implemented in Go, and

provide the following endpoints for metric collection:

/ping This endpoint first upgrades the HTTP connection

to WebSocket and replies immediately with an empty mes-

sage for each message sent by a client. The client computes

an accurate round-trip time (RTT) [10], without the clas-

sic overhead of HTTP requests. Multiple messages allow to

estimate the connection jitter between the client and the

landmark.

/download Clients can download uncompressed random

binary data with a single GET query. We use a multithreaded

pseudo-random number generator to provide the maximum

possible throughput server-side and actually measure the

network limit. A waiting queue is also used to limit to only

one download at a time and avoid client concurrency. This

design allows us to reliably measure download speeds up to

8 Gb/s with recent commodity hardware. Clients discard the

first chunk of data to avoid counting the queuing delay, and

can download chunks for a maximum of five seconds. The

client is responsible for measuring the download time.

DiagSys: network and third-party web-service monitoring from the browser’s perspective (industry track)

/upload Clients can upload random binary data using a

single POST query. The main challenge is to limit the over-

head imposed by JavaScript clients browser-side. In practice,

we only generate 1024 bytes of pseudo-random data from the

client and repeat them until we reach the desired sample size.

Again, we rely on a waiting queue to avoid client contention.

Since it is not possible to send data chunk by chunk using

JavaScript APIs, the server is the one responsible for measur-

ing received chunks’ lengths and delays. It sends its report to

the client after having received all the data or encountering

a timeout of five seconds.

/conn While a client cannot extract transport layer sta-

tistics from the available JavaScript functions, the server

can provide its own transport statistics to the client. If the

HTTP connection is supported by a TCP socket, we use the

getsockopt Linux syscall on the server to obtain raw TCP

statistics, containing among others the number of retrans-

missions and the minimum round-trip time measured by

TCP. When available, we also return the congestion control

algorithm used by the server, along with the set of statistics

for supported algorithms. Thanks to the HTTP/1.1 Keepalive

feature, TCP connections are not reset between HTTP calls.

One client can thereby retrieve the full TCP statistics af-

ter having performed the download and upload tests for

in-depth insights on its connectivity towards the landmark.

We plan to also support QUIC statistics for HTTP/3 support.

/traceroute We propose two endpoints to 1) start a

traceroute from the landmark server to the client public IP

and 2) retrieve the result of this traceroute a few seconds later.

(This allows a client to start a traceroute asynchronously

without blocking while waiting for the response.) To detect

NATs and ECMP routes, we use dublin-traceroute, a vari-

ant of the recognized paris-traceroute [1]; and we complete

found intermediate hops with their DNS PTR record (“re-

verse DNS”).

Landmark servers also periodically probe other landmarks

and third-party web services, by emulating real users’ navi-

gation in a headless Chrome browser, and saving response

times of services (home page and all the associated resources).

The special case of CDNs. Content Delivery Networks

(CDNs) are widely used as the public-facing component of

many web service [24]: they cache static resources and relay

requests to “origin” servers. The main advantages of such

architecture are two-fold. First, a CDN can redirect clients to

the closest Points of Presence (PoP) thus lowering latencies.

Second, many CDNs propose security features to protect the

origin server from abnormal traffic, like Distributed Denial

of Service attacks or ill-formed requests.

DiagSys covers common CDN PoPs by leveraging the

caching mechanisms of CDNs to serve degraded landmarks.

The basic idea is to host two files on a controlled origin

server: an empty file (for degraded latency measurement)

and a random file of known size (we use 8MB, for through-

put measurement). A CDN can be configured to cache the

files indefinitely: any client accessing one file will obtain it

from one PoP. Our assumption is that the chosen PoP only

depends on a client’s location, and will be the same when

downloading a resource from a landmark as when using an

actual web service. We deployed this strategy in Cloudflare

and get the name of the selected PoP from the CF-RAY header.

2.2 Browser-based measurements
DiagSys implements browser-based probing in JavaScript,

which can be incorporated into any webpage. We assume

that JavaScript is enabled in user browsers to allow custom

logic to be executed (this is the default, but some users might

want to disable JavaScript). We also note that this analysis is

based on Firefox version 76 and Chromium version 83.

Latency measurement. Recent browsers expose a stan-
dardized JavaScript API (Resource Timing interface [23]) to

extract each HTTP request’s delays. This makes it possi-

ble to retrieve the connection, wait and download delays

with millisecond precision. However, for privacy consid-

erations, the W3C recommendation states that these de-

lays can only be available programmatically if the request

resource is on the same origin (subdomain) or a suitable

Timing-Allow-Origin response header is provided. For raw
network round-trip measurement, another option is to rely

on WebSockets [7, 10]. A simple HTTP request is usually

accompanied by a text header of more than 100 bytes, forc-

ing the server to download and parse it. Compared to this

scheme, an empty WebSocket message has only an over-

head of 6 bytes [2]. A third option would be to use WebRTC

data channels to measure round-trip times without the TCP

overhead. The main issue with that last option is that data

channels require strong permissions from users, such as mi-

crophone or webcam access: this would be questionable for

a latency-measurement tool to request such permissions.

We rely on multiple empty ping/pong messages through a

WebSocket connection to estimate latency to landmarks.

Bandwidth measurement. To estimate available net-

work bandwidth, we only send one HTTP request and mea-

sure its throughput. This minimizes the overhead mentioned

in the last paragraph. Using the JavaScript AJAX API, we re-

trieve the result of an HTTP request chunk by chunk. Chunk

sizes are unpredictable, but are usually a few kilobytes worth

of data. We store each chunk’s size and the absolute time

at which it was received. Then, we aggregate these chunks

in a fixed number of “meta-chunks” (8) and compute the

total time taken to download each meta-chunk. This method

captures the potential variations of measured throughput

and avoid being biased with slow-start and bursts caused by

browser or system buffers.

Cross-origin security restrictions.To protect users from
cross-site scripting (XSS) vulnerabilities, recent browsers

block requests to third-party origins by default. Cross-origin

Loïck Bonniot, Christoph Neumann, François Taïani

Browser
Privileged

Webpage Main

Script

Service

Background page

Content

Script

Background

Script

iframe

1

2

3

4

5

Figure 2. Third-party health check via browser extension:

due to the default cross-origin policy 1 , a webpage cannot

directly fetch a third-party service’s resources. However, it

is possible to communicate with the background script of

an extension via injected content scripts (2 and 3). The

background script can create background iframes 4 that are

allowed to load the resources of any service 5 .

requests are still possible by using the cross-origin resource

sharing (CORS) mechanism: third-parties accepting such re-

quests can add special headers to their HTTP responses to

disable some browsers restrictions. This makes it difficult

for a webpage to probe third-party services’ health: every re-

sponse not having CORS headers (the default) will be blocked.

Similarly, one webpage can create tabs and iframes pointing

to third-party services, but accessing the properties of these

resources is restricted by browsers.

2.3 Browser measurements using extensions
The cross-origin security restrictions motivate the design of

a browser extension for third-party service health check. Di-

agSys’ browser extension relies on theWebExtension API [22].
(At the time of writing, this is the standard method for build-

ing extensions for Mozilla Firefox, Google Chrome and Mi-

crosoft Edge.) The installation of this extension is optional:

browsers can also request a service health check as seen from
landmarks through client emulation (Figure 1). With the ap-

propriate permissions set, a WebExtension can intercept and
modify any web request made to any third-party service. A

first solution to disable cross-origin security would be to

insert the CORS headers in every response. This would open

a major security hole in the browser security model, as there

is no standard method to add these headers only for requests

originating from trusted sources. This is also not sufficient to

verify the global health of a third-party, as it would require

to know the full list of needed web resources in advance.

Our solution is depicted in Figure 2. We first inject a Web-

Extension content script into trusted webpages. The content

script registers itself with the main webpage script 2 and

relays messages from the main script to the extension’s back-

ground script 3 . In this setup, the communication between

each script is secured by safe Messaging APIs provided by

browsers. When the main script requests a health check to a

specific service, the background script creates an iframe in

the extension background page 4 (this operation is invisi-

ble to users). Iframes are used to fully load a service, from

the initial HTML document to the very last resource load.

Another content script is injected in background iframes to

obtain the resources timings and send them back to the main

script (via the reverse path 4 → 3 → 2). The requests origi-

nating from our extension’s background iframes can be iden-

tified using their unforgeable originUrl. We can thereby

safely update CORS HTTP headers of responses correspond-

ing to these requests 5 . More specifically, we remove the

X-Frame-Options and Content-Security-Policy headers
to allow loading the third-party service from iframes, and we

set Timing-Allow-Origin to * to enable precise resource

timings measurements. It is thereby possible to estimate

third-party service QoE through page load time measure-

ment. Some services detect that they are being loaded from

iframes and decide to stop loading or to take ownership of

the parent frame (i.e. the extension background page). Thank-

fully, iframes can be sandboxed with a limited set of features

which avoids losing control of the background page.

2.4 Privacy considerations
Given recent data protection regulations, some rules must be

enforced to protect personally identifying information (PII)

and sensitive personal information (SPI). While the only PII

that could be useful in our case is the public IP address of an

user, we were careful to not collect any user browsing history.
After internal legal validation for GDPR compliance, we

provide two modes of operation for DiagSys. In the default

mode, all data is anonymized and no PII/SPI is collected (even

the client’s IP address is removed). The second mode requires

the explicit written consent of the end-user and enables the

collection of the client’s IP address. In particular, participants

who contributed to the data discussed in the next section

were recruited through community mailing lists, with the

guarantee that their data would be deleted after 2 years.

3 Results
DiagSys has been running continuously since October 2019,

with more than one million measurement samples collected

over 26 landmark servers and 20 third-party services. Around

170 unique end-users are providingmeasurements, and among

them 32 have installed our browser extension and enabled

background measurements. We recall that landmarks em-

ulate additional users to provide supplementary and more

continuous measurement samples. In this section, we present

some case studies extracted from this early dataset.

DiagSys: network and third-party web-service monitoring from the browser’s perspective (industry track)

8,000

10,000

12,000

14,000

16,000
Black Friday

Cyber Monday

P
a
g
e
l
o
a
d

t
i
m
e
(
m
s
)

29/11 30/11 01/12 02/12 03/12 04/12

400

600

800

1,000
1,200

Time of measurement (2019, UTC)

R
T
T
o
f
fi
r
s
t

r
e
q
u
e
s
t
(
m
s
)

Figure 3. walmart.com page load time and RTT of first

HTTP request, as measured by DiagSys. We observe in-

creases in page load time during Black Friday and Cyber

Monday, in contrast with first request timings.

Monitoring page load times. Userswho run theDiagSys
extension allow to regularly measure the page load time

(PLT) of selected third-party services. This can be used to esti-

mate a web service QoE and detect local and global perturba-

tions. As an example, Figure 3 plots the PLT of walmart.com
during Black Friday with visible slowdown periods during

expected traffic peaks. (The measurements were taken by

a landmark in Paris.) We find that measuring PLT is more

insightful than just measuring the first request’s RTT, as

depicted in the lower part of Figure 3: PLT accounts for every
remote resource, including scripts and medias from other

third-parties. Similar highly-correlated patterns have been

observed for different landmarks and users, with different

amplitudes. This demonstrates the need for full browser em-

ulation, as provided by DiagSys.

Highlighting regional differences. The user diversity

of DiagSys makes it possible to spot differences in content

served by third-party services to different visitors. Table 2

shows the number of unique resources fetched by 3 land-

marks around the globe with identical configuration mea-

suring cnn.com around the same time. We notice that the

European landmark loads far fewer resources than its peers,

despite receiving the same HTML page (assumed by identical

uncompressed body size). When we look at the difference in

loaded resources, we find than non-European visitors load

more content related to analytics and ad tracking.

Impact of user mobility. Many users are mobile and use

multiple methods to connect their devices to Internet (wired,

cellular, Wi-Fi, . . .) [12]. As a result, measurement samples

from one user can be very diverse across time. We evaluated

this diversity by using mobility ground truth for a specific

volunteer that used bothWi-Fi and wired connections as pro-

vided by their ISP. As expected, we observed clear differences

in measured throughput between wired and wireless modes.

Table 2. Resources fetched by cnn.com for different regions

(18/05/2020 16:35 UTC)

Region Europe USA Japan
HTML Body Size (bytes)
Compressed 156’908 156’911 156’910

Uncompressed 1’132’658 1’132’658 1’132’658

Number of loaded resources
style 20 19 19

script 28 61 61

query 20 53 54

iframe 3 13 14

media 7 48 57

total 78 194 205

01/04 11/04 21/04 01/05 11/05 21/05

0

20

40

60

80

100

Time of measurement (2020, UTC)
R
T
T
t
o
P
o
P
(
m
s
)

PoP Warsaw Kyiv Moscow

Figure 4. RTT between a landmark in Warsaw and Cloud-

flare. Three different PoP are regularly serving traffic with

up to 5× more latency from Moscow than from Warsaw.

More surprisingly, we noted that some landmarks needed

to retransmit around 10% of packets with wired connection,

compared to zero retransmissions withWi-Fi. We use BBR as

the default TCP congestion control algorithm in landmarks,

and this is certainly the reason why we are observing this

behavior, as previously studied by Cao et al. [3].

Monitoring CDN performance. We measured the diver-

sity of Cloudflare PoPs chosen for each user, and found that

most users always reach the CDN network from the same

PoP (we recall that the selected PoP is added in every HTTP

response’s header). However, we found that PoPs were much

more dynamic for some regions, and we take as an example

one landmark located in Warsaw’s OVH datacenter. While

most (66%) of HTTP responses were served from Warsaw’s

PoP (Figure 4) with a median latency of 8ms, the remain-

ing responses were served from either Kyiv with twice that

latency and even Moscow with a median latency of 50ms.

Because this observation spans over two months of mea-

surements taken from a static landmark, it is possible that

this behavior is due to some load-balancing mechanism or

non-optimal configuration.

Effects of network load and routing. DiagSys does not
have any information about network topology and BGP an-

nouncements. Yet, the collective knowledge gathered from

users and landmarks is sufficient to detect and analyze changes

Loïck Bonniot, Christoph Neumann, François Taïani

0

50

100

150

R
T
T

(
m
s
)

Measure from
Landmark

France

Landmark

Canada

End-user

France

15/12/19 16/12/19 17/12/19

0

25

50

75

100

D
o
w
n
l
o
a
d

(
M
B
i
t
/
s
)

01/04/20 02/04/20

Figure 5. Evolution of RTT and download throughput from

two landmarks to a home-network landmark in France. There

is a pattern of anomalies during evenings in the first time

frame, probably due to congested link.

in Internet paths and links, overcoming the opacity of ISPs

networks. As a first example, we study the performance of a

landmark hosted in a home network served by the French ISP

“Free”. Figure 5 shows the RTT and download throughput

of this landmark as measured from two other landmarks in

France and Canada and one end-user from France. Measures

from end-users are sparser and noisier: this is expected, as

their devices are not powered continuously and may have

less reliable network connections. During the first time frame,

we clearly see anomalies during evenings: the landmark’s

host confirmed that he encountered QoE degradation, which

suggests that the root cause came from an overloaded link in

the Free network. After a few months, the anomalies disap-

peared (second time frame in Figure 5). In a second example

(Figure 6), we detected an important routing change between

some users and a landmark in Singapore. The RTT to Sin-

gapore measured by our landmark in Warsaw dropped by

30%, with one less hop in the reverse traceroute. When look-

ing at the traceroute details, we can assume that the traffic

was redirected on May 13 from NTT (AS 2914) to GTT (AS

3257)—two Tier 1 networks. We used BGPlay [14], a routing

history visualizer and confirmed this finding. The observa-

tions are similar for an end-user in France, but no change is

noticeable for another landmark in Paris with already good

performance before May 13. It would have been difficult to

detect this routing change from within browsers using BGP

announcements alone.

4 Related work
Several studies have taken the browser perspective to collect

network measurements [5, 6, 9, 11]. Netalyzr [9] runs a wide

set of network tests and collects the corresponding network

metrics, using a java applet that runs within the browser

and a set of dedicated measurement servers. Fathom [5] is

also a browser-based measurement framework with support

100

200

300

400

R
T
T
(
m
s
)

Measure from
Landmark

Paris

Landmark

Warsaw

End-user

France

09/05 11/05 13/05 15/05 17/05

12

18

24

Time of measurement (2020, UTC)

H
o
p
s

Figure 6. RTT and number of hops in traceroute to a land-

mark hosted in Vultr Singapore region. We can see a change

in routing strategy on 13/05/2020 at midnight with an imme-

diate decrease of RTT for some regions.

for low-level socket primitives, but only supports Firefox up

to version 57. In our work, we collect metrics to multiple

landmarks using JavaScript only.We also propose an optional

WebExtension for background third-party monitoring from

end-users’ browsers. Furthermore, we enrich our third-party

measurements dataset with samples from landmark servers

running a headless Chrome browser. Advanced browser-

based techniques that give more accurate estimations of QoE

could also be used by DiagSys [4].

Outside the browser, Sundaresan et al. [15, 17, 20] use

home gateways tomeasure and assess the broadband internet

performance. These approaches work well to monitor and

analyze the last mile broadband connection of internet users.

Only [17] measures web page load times. It relies on router-

based Web measurement tools to deconstruct Web page load

time. Running in a gateway, it does not reflect the actual

performance as observed by an end-user using a browser.

5 Conclusion
In this paper we proposed and described DiagSys, a crowd-

sourced data collection system targeted at monitoring net-

works and third party web-services. DiagSys relies on mea-

surement implemented in JavaScript running in browsers as

a dedicated extension or embedded within webpages, while

being compatible with the recent security restrictions of mod-

ern browsers. DiagSys also uses opportunistically-deployed

landmark servers that act as reference points for measures.

These servers also run headless browsers and execute the

same JavaScript code to continuously provide measurement

samples. Despite a quite recent and therefore limited deploy-

ment we showed that DiagSys can provide sharp insights

regarding third-party web service and CDN behavior, routing

and network load issues.

DiagSys: network and third-party web-service monitoring from the browser’s perspective (industry track)

References
[1] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,

Timur Friedman, Matthieu Latapy, Clémence Magnien, and Renata

Teixeira. 2006. Avoiding traceroute anomalies with Paris traceroute.

In IMC.
[2] Maximilian Bachl, Renata Teixeira, Timur Friedman, Claudio Sacchi,

and Anna-Kaisa Pietilainen. 2016. Collaborative Home Network Trou-

bleshooting. CoRR (2016). https://hal.inria.fr/hal-01415767

[3] Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubramanian, and Anshul

Gandhi. 2019. When to use and when not to use BBR: An empirical

analysis and evaluation study. In IMC.
[4] Diego Neves da Hora, Alemnew Sheferaw Asrese, Vassilis

Christophides, Renata Teixeira, and Dario Rossi. 2018. Narrowing

the Gap Between QoS Metrics and Web QoE Using Above-the-fold

Metrics. In PAM.

[5] Mohan Dhawan, Justin Samuel, Renata Teixeira, Christian Kreibich,

Mark Allman, Nicholas Weaver, and Vern Paxson. 2012. Fathom: a

browser-based network measurement platform. In IMC.
[6] Marcel Dischinger, Massimiliano Marcon, Saikat Guha, Krishna P

Gummadi, Ratul Mahajan, and Stefan Saroiu. 2010. Glasnost : Enabling

End Users to Detect Traffic Differentiation. In NSDI.
[7] IETF. 2011. The WebSocket Protocol. https://tools.ietf.org/html/rfc6455

[8] Diana Joumblatt, Renata Teixeira, Jaideep Chandrashekar, and Nina

Taft. 2011. HostView: Annotating end-host performance measure-

ments with user feedback. ACM SIGMETRICS Performance Evaluation
Review 38, 3 (2011).

[9] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson.

2010. Netalyzr: Illuminating The Edge Network. In IMC.
[10] Weichao Li, Ricky K.P. Mok, Rocky K.C. Chang, and Waiting W.T.

Fok. 2013. Appraising the delay accuracy in browser-based network

measurement. In IMC.
[11] Measurement Lab. 2020. NDT (Network Diagnostic Tool). https:

//www.measurementlab.net/tests/ndt

[12] Vikas Mishra, Pierre Laperdrix, Antoine Vastel, Walter Rudametkin,

and Martin Lopatka. 2020. Don’t count me out: On the relevance of IP

addresses in the tracking ecosystem. In The Web Conference.
[13] Ookla. 2020. Speedtest Servers. https://www.speedtest.net/speedtest-

servers

[14] RIPE NCC. 2020. BGPlay. https://stat.ripe.net/widget/bgplay

[15] Srikanth Sundaresan, Sam Burnett, Nick Feamster, and Walter De

Donato. 2014. Bismark: A testbed for deploying measurements and

applications in broadband access networks. In ATC.
[16] Srikanth Sundaresan, Nick Feamster, and Renata Teixeira. 2016. Home

network or access link? Locating last-mile downstream throughput

bottlenecks. In PAM.

[17] Srikanth Sundaresan, Nick Feamster, Renata Teixeira, and Nazanin

Magharei. 2013. Measuring and mitigating web performance bottle-

necks in broadband access networks. In IMC.
[18] Srikanth Sundaresan, Nick Feamster, Renata Teixeira, Srikanth Sun-

daresan, Nick Feamster, and Renata Teixeira. 2015. Measuring the

Performance of User Traffic in Home Wireless Networks. In PAM.

[19] Srikanth Sundaresan, Yan Grunenberger, Nick Feamster, Dina Pa-

pagiannaki, Dave Levin, and Renata Teixeira. 2013. WTF? Locat-

ing Performance Problems in Home Networks. CoRR (2013). http:

//hdl.handle.net/1853/46991

[20] Srikanth Sundaresan, Renata Teixeira, Georgia Tech, Nick Feamster,

Antonio Pescapè, and Sam Crawford. 2011. Broadband Internet Per-

formance : A View From the Gateway. In SIGCOMM.

[21] Yves Vanaubel, Jean-Romain Luttringer, Pascal Merindol, Jean-Jacques

Pansiot, and Benoit Donnet. 2019. TNT, Watch me Explode: A Light

in the Dark for Revealing MPLS Tunnels. In TMA.
[22] W3C. 2020. Browser Extensions (Draft). https://browserext.github.io/

browserext/

[23] W3C. 2020. Resource Timing Level 2. https://www.w3.org/TR/

resource-timing-2/

[24] W3Techs. 2020. Usage statistics of reverse proxy services for websites.
https://w3techs.com/technologies/overview/proxy

https://hal.inria.fr/hal-01415767
https://tools.ietf.org/html/rfc6455
https://www.measurementlab.net/tests/ndt
https://www.measurementlab.net/tests/ndt
https://www.speedtest.net/speedtest-servers
https://www.speedtest.net/speedtest-servers
https://stat.ripe.net/widget/bgplay
http://hdl.handle.net/1853/46991
http://hdl.handle.net/1853/46991
https://browserext.github.io/browserext/
https://browserext.github.io/browserext/
https://www.w3.org/TR/resource-timing-2/
https://www.w3.org/TR/resource-timing-2/
https://w3techs.com/technologies/overview/proxy

	Abstract
	1 Introduction
	2 DiagSys system description
	2.1 Landmarks as reference points
	2.2 Browser-based measurements
	2.3 Browser measurements using extensions
	2.4 Privacy considerations

	3 Results
	4 Related work
	5 Conclusion
	References

