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Abstract. At subdaily resolution, rain intensity exhibits a
strong variability in space and time, which is favorably mod-
eled using stochastic approaches. This strong variability is
further enhanced because of the diversity of processes that
produce rain (e.g., frontal storms, mesoscale convective sys-
tems and local convection), which results in a multiplicity
of space–time patterns embedded into rain fields and in turn
leads to the nonstationarity of rain statistics. To account for
this nonstationarity in the context of stochastic weather gen-
erators and therefore preserve the relationships between rain-
fall properties and climatic drivers, we propose to resort to
rain type simulation.

In this paper, we develop a new approach based on
multiple-point statistics to simulate rain type time series con-
ditional to meteorological covariates. The rain type simula-
tion method is tested by a cross-validation procedure using a
17-year-long rain type time series defined over central Ger-
many. Evaluation results indicate that the proposed approach
successfully captures the relationships between rain types
and meteorological covariates. This leads to a proper sim-
ulation of rain type occurrence, persistence and transitions.
After validation, the proposed approach is applied to gener-
ate rain type time series conditional to meteorological covari-
ates simulated by a regional climate model under an RCP8.5
(Representative Concentration Pathway) emission scenario.
Results indicate that, by the end of the century, the distribu-
tion of rain types could be modified over the area of interest,
with an increased frequency of convective- and frontal-like
rains at the expense of more stratiform events.

1 Introduction

Stochastic weather generators are statistical models designed
to simulate realistic random sequences of atmospheric vari-
ables (e.g., temperature, rain and wind). Their main target is
to reproduce both the internal variability of each variable of
interest and the relationships between these variables (Wilks
and Wilby, 1999; Furrer and Katz, 2007; Ailliot et al., 2015).
These features make stochastic weather generators partic-
ularly well suited for producing synthetic climate histories
for the purpose of impact studies (Mavromatis and Hansen,
2001; Verdin et al., 2015; Paschalis et al., 2014), as well
as for stochastic downscaling of climate projections (Bur-
ton et al., 2010; Wilks, 2010; Volosciuk et al., 2017). Within
stochastic weather generators, rainfall has long been recog-
nized as a critical variable, in particular because of the strong
intermittency (Pardo-Igúzquiza et al., 2006; Schleiss et al.,
2011) and variability (Smith et al., 2009; Gires et al., 2014) of
the rain process. The apparent intermittency and variability
of rainfall increase with the time resolution of interest (Kra-
jewski et al, 2003; Mascaro et al., 2013), and if resolutions
of the order of 1 h (or finer) are considered, it appears that
storms caused by different generation processes (e.g., frontal
storms, mesoscale convective systems and local convection)
result in different rain field organizations and temporal pat-
terns (Emmanuel et al., 2012; Marra and Morin, 2018).

Such changes in rainfall characteristics make rain statistics
time-varying. In terms of stochastic modeling, this implies
that the stochastic process used to model rainfall is nonsta-
tionary through time; i.e., the parameters of the stochastic
model change over time. The most common way to deal with
the nonstationarity of rain statistics is to define a priori (i.e.,
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prior to model calibration) the time periods during which
stationarity is assumed. Afterwards, a piecewise-stationary
modeling is applied; i.e., model parameters are kept constant
within a single stationary period but are allowed to vary be-
tween stationary periods. The temporal scale at which non-
stationarity occurs is defined by the modeler according to
prior knowledge and assumptions about the rain process at
hand and ranges from seasons (Paschalis et al., 2013; Bár-
dossy and Pegram, 2016; Peleg et al., 2017) to a single rain-
storm (Caseri et al., 2016; Benoit et al., 2018a). However,
several empirical studies have shown that at the subdaily
scale, rain statistics can change at a higher rate than alleged
in most piecewise-stationary stochastic rainfall models. More
precisely, rain statistics have been shown to abruptly change
within a single day (Emmanuel et al., 2012) and even within a
single rainstorm (Kumar et al, 2011; Ghada et al., 2019). To
model rain nonstationarity on a more data-driven basis and
thereby account for the subdaily nonstationarities reported
above, it has recently been proposed to classify rain fields
into rain types (e.g., based on weather radar images) prior
to the stochastic modeling of rain intensity (Lagrange et al.,
2018; Benoit et al., 2018b). Rain fields belonging to the same
rain type are then deemed statistically similar, and periods
with a constant rain type can be regarded as stationary peri-
ods for the simulation of rain intensity.

In this context, the main goal of this paper is to propose
a new approach to leverage the use of rain types for encod-
ing nonstationarity in the framework of stochastic weather
generators. However, the finality differs from that of classi-
cal weather generators (Richardson, 1981; Wilks and Wilby,
1999; Peleg et al., 2017), since we aim at simulating rain-
fall conditional to meteorological covariates that are already
known, instead of simulating jointly the whole weather (i.e.,
all variables). More precisely, we develop a method for
stochastic simulation of rain type time series conditional to
the current state of the atmosphere, i.e., conditional to mete-
orological variables such as pressure, temperature, humidity
or wind (Fig. 1a). These meteorological covariates are as-
sumed to be known beforehand, either from observations,
numerical weather model outputs or other stochastic simu-
lations. The advantage of the proposed approach is twofold:
firstly, using a stochastic simulation to generate rain types al-
lows for properly reproducing the natural variability of rain
type occurrence and thereby to indirectly model the nonsta-
tionarity of rain statistics observed in historical datasets. Sec-
ondly, the conditioning of the stochastic rain type model to
the state of the atmosphere preserves the relationships be-
tween rain type occurrence and climatological drivers. Once
realistic rain type time series have been simulated (i.e., the
core of this study; Fig. 1a), high-resolution rain fields can be
generated conditional to rain types using any high-resolution
stochastic rainfall generator (Vischel et al., 2011; Leblois
and Creutin, 2013; Paschalis et al., 2013; Nerini et al., 2017;
Benoit et al., 2018a) as illustrated in Fig. 1b. Using rain types
to guide the stochastic generation of synthetic rains has been

shown to improve the realism of the resulting high-resolution
space–time simulations (Benoit et al., 2018b).

The remainder of the paper is structured as follows. First,
Sect. 2 presents an example of subdaily rain type time series,
and Sect. 3 proposes a stochastic model able to capture the
main statistical features of this dataset. Next, Sect. 4 assesses
the performance of the model through a cross-validation pro-
cedure, and Sect. 5 illustrates the application of the pro-
posed approach to the downscaling of EURO-CORDEX (Eu-
ropean Coordinated Regional Climate Downscaling Exper-
iment) RCM (regional climate model) precipitation future
projections. Finally, Sect. 6 provides some conclusions about
stochastic rain type modeling.

2 Example dataset of rain type time series and related
meteorological covariates

Before proposing a stochastic model able to mimic the rain
type occurrence process (Sect. 3), the present section ex-
plains how rain type time series are derived from weather
radar observations and investigates the main features of rain
type occurrence in a mid-latitude climate.

2.1 Rain type time series

We focus hereafter on a 100 km× 100 km squared area cen-
tered in the city of Jena in the federal state of Thuringia, Ger-
many (Fig. 2a). This area has been chosen because its flat
topography, and its location far from coastlines or major to-
pographic barriers ensures spatially homogeneous rain fields,
allowing for focusing on the temporal component of rainfall
nonstationarity. Over this area, data used for rain typing con-
sist of radar images extracted from the RADOLAN (RAdar-
OnLine-ANeichung) dataset (Winterrath et al., 2012; Kas-
par et al., 2013), which are provided in an open-access way
by the German meteorological agency (Deutscher Wetterdi-
enst – DWD). It consists of raw (i.e., not adjusted on rain
gauges) radar image composites over all of Germany from
1 January 2001 to present. The RADOLAN radar image res-
olution is 1 km× 1 km in space and 5 min in time. In practice,
however, we resampled radar images at a 10 min resolution
and restricted our study to the period 1 January 2001–31 De-
cember 2017. The RADOLAN dataset is used as baseline in-
formation for rain typing, following a space–time classifica-
tion approach (Benoit et al., 2018b). Using raw radar images
can lead to biases in estimated rain intensities, but the impact
of such biases on the classification are deemed negligible,
since the adopted approach focuses on rainfall space–time
behavior rather than rainfall intensity. A problematic source
of errors would be the change of radar biases along time,
which could alter the interannual frequency of rain types. To
alleviate this problem, uniformly reprocessed radar images
are used as the basis for the classification, which ensures
a consistent data cube throughout the period of interest. In
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Figure 1. Overview of stochastic rain type generation (core of this study) and its application to simulate high-resolution synthetic rain fields
whose statistical properties depend on meteorological conditions. (a) Rain type simulation framework developed in this study. (b) Illustration
of stochastic rainfall simulation conditioned to changing rain types. In the bottom row of (a), the observed rain types are in red, and the
gray-shaded background denotes the probability of rain type occurrence derived from stochastic rain type simulations conditioned to the
meteorological covariates displayed in the four top lines. In (b), the upper row displays actual rain fields observed by radar imagery, and the
two bottom rows display two stochastic simulations of synthetic rain fields for the same period generated using the approach of Benoit et al.
(2018a).

practice, no adverse trend is noted in the observed rain type
distribution (Fig. 3).

In a nutshell, the classification method proposed by Benoit
et al. (2018b) and used hereafter for rain typing consists of
the following. First, rainy time steps are defined as periods
with more than 10 % radar pixels measuring rain. The other
time steps are classified as dry and are not considered for
rain typing. For classification, 10 statistical metrics are com-
puted for each rainy radar image in order to assess the space–
time intensity behavior of the rain field observed in the im-

age. Among these metrics, three relate to the statistical dis-
tribution of rain intensity observed in the radar image; three
characterize the spatial arrangement of rain patterns within
the image; and four evaluate the temporal evolution of the
rain field due to rain advection and diffusion between con-
secutive periods. Then, the 10 metrics are used as a basis for
classification using a Gaussian mixture model (GMM). All
details about the 10 metrics and the clustering approach with
a GMM can be found in Benoit et al. (2018b). The result-
ing clusters correspond to rain fields with similar space–time
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Figure 2. Radar dataset used for rain typing. (a) Study area. The red square denotes the area of interest, centered on Jena, Thuringia, Germany.
(Background map from https://www.wikipedia.org/, last access: 27 May 2020, licensed under CC BY 3.0.) (b) Example of RADOLAN radar
images (cropped over the area of interest) for each rain type.

Figure 3. Main features of a rain type time series (2001–2017) observed over central Germany. (a) Frequency of rain type occurrence
computed at a seasonal basis (seasons are December, January and February – DJF – in light blue; March, April and May – MAM – in pink;
June, July and August – JJA – in red; and September, October and November – SON – in yellow). (b) CDF of event duration stratified by
rain type. (c) Empirical matrix of transition probability between rain types.

Hydrol. Earth Syst. Sci., 24, 2841–2854, 2020 https://doi.org/10.5194/hess-24-2841-2020
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behaviors. The number of rain types is selected as a compro-
mise between the goodness of fit to rain field statistics and
model parsimony. In the present case, the parsimony is fa-
vored in order to allow for a physical interpretation of the
resulting rain types. As a result, six rain types are identified
in the example dataset (Fig. 2b). Among them, rain types 1
and 4 correspond to rather stratiform and spread rain events;
rain type 3 corresponds to frontal rainstorms; and rain types 5
and 6 can be associated with rather convective rains. Rain
type 2 cannot be associated to a specific rain behavior but
rather gathers rain fields that are not classified otherwise and
often correspond to partial rain coverage.

Using only radar images with more than 10 % wet pixels
to define rain types ensures a reliable classification but at the
cost of a dry bias (in the present dataset, 32 % of the im-
ages have a rain fraction between 0 % and 10 % and encom-
pass 19 % of the rain total; cf. Fig. 3). To deal with images
with less than 10 % wet pixels, Benoit et al. (2018b) proposed
classifying images with a small rain fraction (i.e., 0 % < rain
fraction < 10 %) in a second step by assigning them the type
of the closest classified image (i.e., nearest neighbor inter-
polation in time). This postprocessing scheme is not directly
transferable to the context of simulation because no informa-
tion about images with low rain coverage is available in sim-
ulation outputs. Two options can be considered to alleviate
this problem. First, the rain type model defined in Sect. 3 can
be calibrated on the final classification (i.e., including images
with low rain coverage), which results in simulations that
preserve the actual rain proportion. However, using a clas-
sification that includes the onset and the end of rainstorms
leads to less clear relationships between climate covariates
and rain type occurrence, which may degrade simulation re-
sults. Hence the second option, which we follow in this pa-
per, which consists of (1) calibrating and running the rain
type model for rain types defined only from radar images
with more than 10 % rain coverage and then (2) readjusting
the dry–wet balance by postprocessing. The dry bias is cor-
rected assuming the ratio R = Ns

Nl
between the number Ns of

images with low rain coverage and the number Nl of images
with large rain coverage as a constant in observations and
simulations. Subsequently, the number of epochs for which
rain is simulated is increased by propagating the closest rain
type to the R×Nl dry epochs located at the beginning and at
the end of rainstorms. Section S1 in the Supplement shows
that such postprocessing performs well to mitigate the dry
bias originating from the use of a 10 % rain coverage thresh-
old to define a wet image. However, since the present study
focuses on climate–rain-type relationships, which are better
defined when considering only the first step of the classifi-
cation, the aforementioned postprocessing is not applied in
the remainder of this paper. Hence, one should keep in mind
that in the following the dry type also includes epochs with a
low rain coverage (under 10 %) and that postprocessing is re-
quired if the end-use application involves the stochastic sim-
ulation of actual rain fields.

Figure 3 investigates the occurrence of rain types through
time and highlights some features. Figure 3a displays the fre-
quency of each rain type at the seasonal scale. It appears
from Fig. 3a that the frequency of occurrence of individual
rain types is strongly variable across the year. For example,
stratiform rain types 1 and 4 occur mostly in winter, while
convective rain types 5 and 6 are most common in summer.
In addition, one can notice a strong interannual variability in
rain occurrence, with summers 2003 and 2011 having a low
occurrence of rain, while rain occurrence is particularly high
during winters 2006 and 2011. Figure 3b displays the cumu-
lative distribution function (CDF) of the duration of each rain
type. Here rain type duration is defined as the duration (i.e.,
length along the time axis) of a segment of constant rain type.
Each curve in Fig. 3b therefore corresponds to the probability
that a rain event of a given type does not exceed the duration
given in abscissa. This figure shows that all rain types are
persistent in time with durations ranging from a few minutes
to more than 3 h and that some types (e.g., rain types 4 and 5)
are more persistent than others (e.g., rain types 2 and 3).
Finally, Fig. 3c displays the empirical transition matrix be-
tween rain types and focuses on inter-type transitions (i.e.,
transitions to the same type are ignored and denoted by red
crosses). This figure shows that the patterns of transition be-
tween rain types are complex and that the transitions involv-
ing type 0 (i.e., no rain) are largely dominant.

2.2 Meteorological covariates

The strong seasonality and interannual variability of rain type
occurrence emerging from Fig. 3a can be explained to a large
extent by regional meteorological conditions. Hereafter, we
investigate the links between rain type occurrence and a set
of five meteorological covariates that are deemed to influ-
ence rainfall behavior (Vrac et al., 2007; Willems, 2001; Rust
et al., 2013), namely sea level pressure, temperature at 2 m,
relative humidity, and the direction and intensity of synop-
tic wind at 850 hPa. The actual values of the meteorological
covariates used in this study are extracted from the ERA5 re-
analyzes (Hersbach et al., 2018) and averaged over the whole
area of interest before further use. Only parameters provided
at daily resolution are used hereafter in order to be compat-
ible with the temporal resolution of RCM projections used
for the illustration of our framework (see Sect. 5). To match
the resolution of rain type data, the above daily resolution
meteorological covariates are disaggregated to a 10 min res-
olution. To this end, the mean daily pressure, humidity, wind
direction and wind intensity are assumed to occur at 00:00 LT
(local time) and are then interpolated at a 10 min resolution
using a polynomial interpolation. For temperature, the daily
minimum is assumed to occur at 05:00 LT, and the daily max-
imum is assumed to occur at 15:00 LT; the diurnal cycle is
captured by spline interpolation. This disaggregation frame-
work leads to 10 min resolution meteorological covariates in
good agreement with actual 10 min resolution observations
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Figure 4. Statistics of meteorological covariates for each rain type. The meteorological data were extracted from the ERA5 reanalysis dataset.

carried out by a weather station located close to the center of
the area of interest, and rain type simulations conditioned to
these two sets of covariates (in situ observations and disag-
gregated reanalysis data) give very similar results (Sect. S2;
Fig. S3).

Figure 4 displays the relationships between meteorolog-
ical covariates and rain type occurrence and confirms the
strong influence of temperature and wind speed on rain types.
Indeed, stratiform rain types 1 and 4 occur at lower tem-
peratures than convective types 5 and 6 and co-occur with
stronger winds. The frontal rain type 3 is characterized by
strong westerlies but occurs for a broad range of tempera-
tures. In contrast to temperature and wind speed, the stan-
dalone knowledge of pressure, relative humidity or wind di-
rection does not allow for discriminating between all rain
types. However, when considered jointly (Sect. S2; Fig. S4),
all meteorological covariates bring information about rain
type occurrence. In particular, pressure and humidity are key
drivers for rain occurrence (no matter the type) and are there-
fore useful to predict dry and wet spells. Furthermore, wind
direction informs the occurrence of rain type 3 and helps to
discriminate between rain types 5 and 6.

3 Stochastic rain type model

Daily resolution stochastic weather generators do not dis-
tinguish between rain types and typically resort to Markov
chain models to simulate rain occurrence (Richardson, 1981;
Wilby, 1994; Wilks and Wilby, 1999). Within Markov chain
models, semi-Markov models are often favored when the
persistence of dry and wet spells is of prime importance
(Foufoula-Georgiou and Lettenmaier, 1987; Bárdossy and
Plate, 1991), and nonhomogeneous Markov models are pre-
ferred when the dry–wet sequence has to be conditioned to
meteorological covariates (Hughes and Guttorp, 1999; Vrac
et al., 2007). An easy option to deal with rain type simulation
conditional to meteorological covariates would therefore be
to extend one of these Markov-chain-based frameworks by
simply increasing the number of states of the Markov chain
in order to account for the diversity of rain types. However,
both rain type persistence and conditioning to covariates are
equally important for the targeted application, which led us to

combine both frameworks to build a nonhomogeneous semi-
Markov model. Unfortunately, semi-Markov models do not
allow for an easy conditioning to continuous-time covariates,
and our attempt to build a nonhomogeneous semi-Markov
model led to a significant dry bias in rain type simulations
(Sect. S3). Hence, it appeared that even relatively sophisti-
cated parametric models are challenged by the complexity of
rainfall at subdaily resolution (Oriani et al., 2018).

One alternative to account for such complexity is to
consider high-order properties through a nonparametric ap-
proach based on the resampling of historical datasets (Oriani
et al., 2014). For the simulation of rain types conditional to
meteorological covariates, we therefore adopt the framework
of a multiple-point simulation (MPS). MPS consists of us-
ing a training dataset (here a past rain type record) to esti-
mate empirically the probability distribution of the variable
of interest (here rain type occurrence at a given time step)
conditionally to the values already simulated in its tempo-
ral neighborhood (Fig. 5a). In the specific MPS algorithm
we use (Gravey and Mariethoz, 2018, 2019), the conditional
probability density function (PDF) is indirectly assessed by
making a random sampling of the training dataset that aims
at finding a pattern that is similar to the local conditioning
neighborhood (Fig. 5b). In practice, we use a 100 h neighbor-
hood for the present application. Once a match is found (i.e.,
a pattern in the training image that minimizes the Hamming
distance with the target pattern), the corresponding value is
imported in the simulation grid (Fig. 5c), and the procedure
is iterated until the full simulation grid is filled. In the MPS
framework, the dependence of rain type occurrence to me-
teorological covariates can be handled by multivariate-MPS
simulation (Mariethoz et al., 2010). It consists of stacking
time series of meteorological covariates with the time se-
ries of rain type occurrence and evaluating the conditioning
neighborhood on the time series of the resulting vector vari-
able. Here we use a simplified version of a multivariate-MPS
simulation where only the co-located covariates (i.e., the val-
ues of the covariates observed at the exact time step to simu-
late) are accounted for during the matching procedure.

Since MPS is a nonparametric approach, it does not re-
quire model calibration strictly speaking. Instead, it requires
a training dataset to resample, which should include both the
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Figure 5. Schematic view of the MPS algorithm used for the nonparametric resampling of historical rain type time series.

variable of interest (here a rain type time series) and optional
covariates (here meteorological covariates). To produce re-
liable results and, in particular, meaningful uncertainty esti-
mates, MPS requires large training datasets (Emery and Lan-
tuéjoul, 2014). In the present case, the training dataset is the
historical record of joint rain types and meteorological co-
variates observations available over the target area (17 years).
After the selection of a training dataset, simulations are ob-
tained by resampling the training dataset using the MPS al-
gorithm described above.

4 Model assessment

4.1 Cross-validation procedure

Model performance is assessed by a cross-validation proce-
dure, using the dataset introduced in Sect. 2. In practice, we
adopt a procedure of leaving 1 year out. For a given sim-
ulation year, the rain type model is first trained using data
from the 2001–2017 period, excluding the year to simulate.
Next, 50 realizations of rain type time series are generated
for the year of interest by MPS simulation and conditioned
to observations of the meteorological covariates derived from
the ERA5 reanalysis as described in Sect. 2. Finally, the
same procedure is iterated for each year of the test period
(i.e., 2001–2017), and 50 realizations of 17-year-long rain
type time series are obtained by concatenating in time the
17 yearly simulations.

The 50 simulations are compared to the reference rain type
time series in Fig. 6. Focusing first on the ability of the model
to simulate dry and wet conditions (i.e., without distinction
between rain types), the first panel of Fig. 6a compares the
observed and simulated frequencies of dry occurrence for
each season of the validation period 2001–2017. The results
show that our model properly simulates the overall propor-
tion of rain (ratio of simulated to observed rain frequency
is 0.93). In addition, the chronology of dry–wet occurrence
at the seasonal scale is reasonably simulated (correlation be-
tween observed and simulated dry type occurrence is 0.6).

Focusing next on the simulation of rain types, Fig. 6
(lines 2–7) assesses the ability of the model to reproduce the

typical features of rain type occurrence highlighted in Sect. 2,
namely seasonality, persistence and transition. Figure 6a as-
sesses rain type seasonality and shows that for strongly sea-
sonal rain types (types 1, 5 and 6) the annual cycle of rain
type occurrence is properly simulated. It is also worth noting
that the interannual variability of the annual cycle is reason-
ably well simulated, as well as the interannual variability of
weakly seasonal rain types (types 3 and 4). This shows that
the proposed approach not only reproduces the annual cycle
of rain type occurrence driven by monthly scale variations of
the covariates but also captures the impact of short-term fluc-
tuations of meteorological conditions that trigger rainstorms
of types 3 and 4. However, when scrutinizing the minima
and maxima in Fig. 6a, one can notice that peaks in obser-
vations are smoothed out in simulations, which traduces the
difficulty of the model to simulate extreme cases. This is a
known drawback of MPS simulations (Mariethoz and Caers,
2015), and it constitutes the main limitation of the present ap-
proach for the simulation of future climates in which unusual
climatic conditions are deemed to become more frequent.
Regarding rain type persistence, Fig. 6b shows that this fea-
ture is in general very well reproduced, except for the long-
lasting types 4 and 5, for which persistence is slightly un-
derestimated. Finally Fig. 6c assesses inter-type transitions.
One can notice that the transition patterns are almost per-
fectly reproduced, except for the transition from dry (and to
a lesser extent from type 5) to rain type 6 that is underesti-
mated (overestimated, respectively).

Overall, the proposed stochastic rain type model properly
reproduces the main features of observed rain type time se-
ries. This good performance is linked to the ability of MPS
to accurately reproduce high-order statistics of rain type time
series.

4.2 Sensitivity to climate variability

To ensure that the proposed rain type model is able to cap-
ture the impact of climatic signals on rain type occurrence,
the results of the cross-validation procedure are stratified ac-
cording to annual climatic signatures. To this end, Fig. 7
compares simulated and observed rain type occurrences at
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Figure 6. Results of the cross-validation experiment. (a) Seasonality of rain (and dry) type occurrence (seasons are DJF in light blue, MAM
in pink, JJA in red and SON in yellow), (b) rain type persistence and (c) probability of transition between rain types. Observations are in red,
and simulations are in blue. In simulations, continuous lines represent the median of the simulated ensembles (50 realizations), and dashed
lines represent the Q10 and Q90 quantiles.
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the monthly scale for four sub-datasets: the 5 coldest years
of the 2001–2017 period (Fig. 7a), the 5 warmest years
(Fig. 7b), the 5 driest years (Fig. 7c) and finally the 5 wettest
years (Fig. 7d). Observations (red curves in Fig. 7) show that
years with different climatic signatures indeed develop dis-
tinct dry / wet ratios and rain type distributions. Simulation
results (blue curves in Fig. 7) show that the proposed model
properly reproduces these climatically driven differences in
rain type distribution.

Figure 7 therefore allows for a detailed investigation of
the impact of climatic signals on local rain type distribution
over central Germany. Comparing first cold and warm years
(Fig. 7a and b), one can notice that warm years tend to be
drier, in particular in late winter and spring. This is mostly
caused by a deficit of type 1 precipitation during warm years,
which corresponds to less snow (type 1 occurs mostly at low
temperatures; cf. Fig. 4). Drier springs during warm years
are also caused by a deficit of type 5 (slightly convective),
which probably corresponds for this time of the year to rain
and sleet showers. Finally, one can notice an increased oc-
currence of type 6 (strongly convective) during warm years,
which is captured by the model despite a slight underesti-
mation of this type for both cold and warm years. Compar-
ing dry and wet years (Fig. 7c and d), one can notice that
all months contribute to the rain imbalance but that the rain
deficit is more pronounced in spring and autumn. In terms
of rain type distribution, this is mostly caused by a deficit
of rain types 1 and 4 (stratiform) as well as 5 (slightly con-
vective) during dry years. It is also worth noting that rain
type 3 (frontal) tends to be slightly more common during
rainy years, but in contrast to other types, its increased oc-
currence is spread along the whole year.

Overall, the proposed approach properly captures the im-
pact of climatic signals on rain type occurrence. This prop-
erty is essential to preserve the relationships between rain
types and climatological drivers and paves the way to RCM
precipitation downscaling.

5 Application to RCM precipitation downscaling

For illustration purposes, the stochastic rain type model de-
veloped in Sect. 3 is used to simulate the evolution of
rain type occurrence in a changing climate simulated by
one RCM run extracted from the EURO-CORDEX climate
downscaling experiment (Jacob et al., 2014). To drive the
simulation of rain types in a changing climate, the same set
of meteorological covariates as the one used in the cross-
validation procedure is derived from one RCM run, more pre-
cisely from the Regional Atmospheric Climate MOdel of the
Dutch national weather service (RACMO-KNMI; Van Mei-
jgaard et al., 2008) driven by the CNRM-CM5 (Centre Na-
tional de Recherches Météorologiques Coupled global cli-
mate Model, version 5) Earth system model (Voldoire et al.,
2013) forced according to the RCP8.5 (Representative Con-

centration Pathway) emission scenario. Three intervals of 20
years each are selected to investigate the evolution of rain
type occurrence over the 21st century: 1997–2017 (reference
period that encompasses the 2001–2017 calibration period
for which rain type observations are available), 2037–2057
and 2077–2097. For each period, the meteorological covari-
ates are extracted from the RCM simulation, averaged over
the area of interest and disaggregated at a 10 min resolution
as described in Sect. 2. In addition, RCM outputs are bias-
corrected using the CDF-t (cumulative distribution function
transform) method for each variable separately (Vrac et al.,
2012). After the bias correction of RCM data, the perfor-
mance of the model to simulate rain types in the present
climate is almost identical for meteorological covariates de-
rived from the RACMO-KNMI RCM and the ones derived
from the ERA5 reanalysis (Sect. S4).

For each 20-year period, 50 realizations are simulated con-
ditional to bias-corrected RCM-derived meteorological co-
variates. To evaluate the projected changes in rain type distri-
bution, Fig. 8 displays the evolution of the monthly frequency
of rain type occurrence between the reference period 1997–
2017 and the two future periods 2037–2057 and 2077–2097.
Observed changes in rain type occurrence frequency are con-
sidered as significant if they exceed the uncertainty of the
projection that is defined as the Q10–Q90 interval of the
50 realizations. It should be noted that in contrast to rain type
occurrence, the simulated persistence and transition behav-
ior of rain types remain constant over the whole test period
(not shown). Results in Fig. 8 show that the frequency of
rain occurrence slightly decreases in summer and increases
in winter, spring and autumn. Among these changes, only
the increase of rain occurrence during autumn and winter is
significant. The distribution of rain types conditional to the
presence of rain is more significantly modified than rain oc-
currence. More precisely, during winter, rain type 1 (strat-
iform) significantly declines, while the frequency of rain
types 3 (frontal) and 5 (moderately convective) significantly
increases. During spring and autumn, rain type 1 (stratiform)
significantly declines, while rain types 5 and 6 (convective)
tend to increase but not significantly. Finally, during summer,
rain types 1, 4 (stratiform) and 5 (moderately convective) de-
crease, while rain types 3 (frontal) and 6 (strongly convec-
tive) increase, with most of these changes being significant.
Overall, it appears from this exploratory study that under the
assumption of the specific RCM run used to simulate the me-
teorological covariates, convective and frontal rains could be-
come more frequent at the expense of stratiform rains by the
end of the 21st century. The most significant changes are ob-
tained during winter and summer. It is worth mentioning that
the evolution of rain behavior along the 21st century sim-
ulated in the present study is qualitatively in line with re-
sults obtained over western Europe by studies using physical
models, which anticipate more frequent heavy rains driven
by convection or active fronts (Molnar et al., 2013; Faranda
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Figure 7. Monthly rain type occurrence stratified according to climate forcing: (a) 5 coldest years of the 2001–2017 period (2001, 2004,
2005, 2010 and 2013), (b) 5 warmest years (2007, 2011, 2014, 2015 and 2017), (c) 5 driest years (2003, 2011, 2012, 2015 and 2016) and
(d) 5 wettest years (2001, 2002, 2007, 2009 and 2010). Observations are in red, and simulations are in blue. In simulations, continuous lines
represent the median of the simulated ensembles (50 realizations), and dashed lines represent the Q10 and Q90 quantiles.

et al., 2019) at the expense of low-intensity stratiform pre-
cipitations.

6 Concluding remarks

6.1 Discussion

By introducing a step of rain type simulation in the frame-
work of stochastic rainfall generators, we suggest that for
high-temporal-resolution applications, the simulation of rain
can be split in two steps (Fig. 1). In a first instance, rain types

are simulated conditional to meteorological covariates to ac-
count for the diversity of rainstorms at the regional scale.
This first step is the main focus of the present paper. For sub-
sequent applications, we assume that the rain intensity can
be simulated conditional to rain types. This is the classical
aim of space–time-distributed stochastic rainfall generators,
which are becoming more and more common to address the
needs of high-resolution hydrometeorological impact studies
(Vischel et al., 2011; Leblois and Creutin, 2013; Paschalis
et al., 2013; Nerini et al., 2017; Benoit et al., 2018a).
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Figure 8. Changes in rain occurrence frequency (left panel) and rain type distribution conditional to the presence of rain (other panels)
simulated using the stochastic rain type model developed in Sect. 3: 2037–2057 vs. 1997–2017 (light blue) and 2077–2097 vs. 1997–
2017 (purple). Continuous lines represent the median of the simulated ensembles (50 realizations), and dashed lines represent the Q10 and
Q90 quantiles.

Hence, two main applications can be considered for
stochastic rain type simulation. The first one, briefly illus-
trated in Sect. 5, consists of assessing the evolution of the sta-
tistical signature of rainfall in a changing climate simulated
by RCMs. It is worth noting that if one wants to carefully
evaluate the change in rain type occurrence that may emerge
in the future, one should rely on a large ensemble of emis-
sion scenario, general circulation model and regional climate
model combinations to properly capture the uncertainty on
meteorological covariates. In addition, one should keep in
mind that the present approach only accounts for changes in
the distribution of existing rain types and therefore ignores
the possible emergence of new rain types in response to cli-
mate conditions that have never been observed over the area
of interest. Such new rain types could potentially be mod-
eled by reparametrizing the stochastic rainfall model used to
simulate local rain fields (Peleg et al., 2019), by using rain
analogs from areas that today experience the climate that is
simulated in the future over the area of interest (Hallegatte
et al., 2007; Fitzpatrick and Dunn, 2019) or by running a
convection-permitting climate model (Prein et al., 2015) for
the newly emerging climate conditions. The development of
a framework to model emerging rain types is however left for
future research.

The second application is the simulation of rain intensity
at high space–time resolution while preserving consistency
with climatological drivers such as temperature, pressure, hu-
midity and wind. As mentioned in the Introduction, simu-
lating rain intensity would require setting up and calibrat-
ing a high-resolution stochastic rainfall model for each rain
type over the area of interest and was therefore not consid-
ered in the present study except in Fig. 1b for illustration
purposes. However, two advantages are expected to emerge
from adding a rain type simulation step into stochastic rain-
fall modeling: first, a relatively low number of rain types can
be specified, which implies that the model of rain intensity
has to be calibrated a limited number of times. This ensures

that enough observations are available to calibrate the rain in-
tensity model for each rain type and therefore prevents model
overfitting. The second advantage is the added flexibility to
simulate rainstorm dynamics, which allows for generating
intra-storm variations of the space–time rainfall statistics.

6.2 Outlook

In this paper, a nonparametric approach based on the resam-
pling of historical records using multiple-point statistics has
been proposed and thoroughly tested for the simulation of
rain type time series conditional to meteorological covari-
ates. Evaluation results based on a 17-year-long rain type
dataset in a mid-latitude climate (central Germany) show that
MPS simulations are able to reproduce both the internal vari-
ability of rain type time series, as well as relationships with
meteorological covariates. After validation, stochastic rain
type simulation is applied to the downscaling of RCM pro-
jections over the 21st century. Rain type simulations condi-
tioned to meteorological covariates simulated by a regional
climate model under an RCP8.5 emission scenario indicate
a possible change in rain type distribution by the end of the
century, with an increased frequency of heavy rains driven
by convection or active fronts, and a decline of low-intensity
stratiform precipitations.

The ability of stochastic simulations to generate realistic
rain type time series when conditioned to meteorological co-
variates advocates for including stochastic rain type simu-
lation into rainfall generators in order to (1) reproduce the
internal variability or rain type occurrence, in particular in-
terannual variability, seasonality, persistence and inter-type
transitions, and (2) preserve the relationships between rain
statistics and meteorological covariates, in the present case
temperature, pressure, humidity and wind. The above fea-
tures make stochastic rain type simulation a convenient tool
to account for the nonstationarity of rain statistics driven by
meteorological conditions. This opens the door to the sub-
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daily stochastic downscaling of climate projections and to
improved stochastic rainfall simulations.
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