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Existing algorithms to compute genus 2 theta constants in quasi-linear time use Borchardt sequences, an analogue of the arithmetic-geometric mean for four complex numbers. In this paper, we show that these Borchardt sequences are only given by good choices of square roots, as in the genus 1 case. This removes the sign indeterminacies when computing genus 2 theta constants without relying on numerical integration.

Résumé

Les algorithmes existants pour le calcul de thêta-constantes en genre 2 en temps quasilinéaire utilisent des suites de Borchardt, un analogue de la moyenne arithmético-géométrique pour quatre nombres complexes. Dans cet article, nous montrons que ces suites de Borchardt sont constituées uniquement de bons choix de signes, comme c'est le cas en genre 1. Ce résultat permet de lever les indéterminations de signes lors du calcul de thêta-constantes en genre 2 sans recours à l'intégration numérique.

Introduction

Denote by H g the Siegel half space of principally polarized abelian varieties of dimension g, consisting of all matrices τ ∈ M g (C) such that τ is symmetric and Im(τ ) is positive definite; for instance, H 1 is the usual upper half plane. The theta constants are the holomorphic functions on H g defined by

θ a,b (τ ) = m∈Z g exp iπ m + a 2 t τ m + a 2 + m + a 2 t b , (1) 
where a and b run through {0, 1} g (by convention, vectors in formula (1) are written vertically). Theta constants have a fundamental importance in the theory of Siegel modular forms, as every scalar-valued Siegel modular function of any weight on H g has an expression in terms of quotients of theta constants [15, Thm. 9 p. 222]. Moreover, for 1 ≤ g ≤ 3, then the stronger result that every Siegel modular form is a polynomial in the theta constants holds [START_REF] Igusa | On the graded ring of theta-constants[END_REF][START_REF] Igusa | On the graded ring of theta-constants (II)[END_REF][START_REF] Freitag | On the variety associated to the ring of theta constants in genus 3[END_REF]. In numerical algorithms manipulating modular forms, the following operations are therefore very common: first, given (quotients of) theta constants at a given τ ∈ H g , compute τ ; second, given τ ∈ H g , compute the theta constants θ a,b (τ ). For instance, these operations are important building blocks in algorithms computing modular polynomials [START_REF] Enge | Computing modular polynomials in quasi-linear time[END_REF][START_REF] Milio | A quasi-linear time algorithm for computing modular polynomials in dimension 2[END_REF][START_REF] Milio | Modular polynomials on Hilbert surfaces[END_REF] or Hilbert class polynomials [START_REF] Enge | The complexity of class polynomial computation via floating point approximations[END_REF][START_REF] Enge | Computing class polynomials for abelian surfaces[END_REF][START_REF] Streng | Computing Igusa class polynomials[END_REF] via complex approximations.

The arithmetic-geometric mean (AGM) [START_REF] Borchardt | Theorie des arithmetisch-geometrisches Mittels aus vier Elementen[END_REF][START_REF] Cox | The arithmetic-geometric mean of Gauss[END_REF][START_REF] Bost | Moyenne arithmético-géométrique et périodes de courbes de genre 1 et 2[END_REF][START_REF] Jarvis | Higher genus arithmetic-geometric means[END_REF] gives an algorithm to find τ given its theta constants. This algorithm is quasi-linear in terms of the required precision. In order to compute theta constants in quasi-linear time as well, a well-studied strategy is to combine the AGM with Newton iterations. This strategy was first described in [START_REF] Dupont | Fast evaluation of modular functions using Newton iterations and the AGM[END_REF] in the genus 1 case, in [START_REF] Dupont | Moyenne arithmético-géométrique, suites de Borchardt et applications[END_REF] in the genus 2 case, and later extended to theta functions, in opposition to theta constants, in [START_REF] Labrande | Computing Jacobi's θ in quasi-linear time[END_REF][START_REF] Labrande | Computing theta functions in quasi-linear time in genus 2 and above[END_REF]. These references also outline extensions to higher genus.

The genus 1 case. Let us detail the genus 1 case to convey the general idea. After reducing the argument τ ∈ H 1 using Gauss's algorithm [25, §6.1], we can assume that τ belongs to the classical fundamental domain under the action of SL 2 (Z), denoted by F 1 .

First assume that theta quotients at τ ∈ F 1 are given. Then the sequence B(τ ) = θ 2 0,0 (2 n τ ) θ 2 0,0 (τ ) , θ 2 0,1 (2 n τ ) θ 2 0,0 (τ ) n≥0 is an AGM sequence, meaning that each term is obtained from the previous one by means of the transformation

(x, y) → x + y 2 , √ x √ y
for some choice of the square roots. This is a consequence of the duplication formula [23, p. 221], the correct square roots being the theta quotients themselves. In the algorithm, the sign ambiguity is easily removed using the fact that √ x and √ y should lie in a common open quarter plane [5, Thm. 2]: we say that the sequence B(τ ) is given by good sign choices. It converges quadratically to 1/θ 2 0,0 (τ ), as the series expansion (1) shows. It turns out that the sequence B(-1/τ ) is also an AGM sequence with good sign choices [START_REF] Dupont | Fast evaluation of modular functions using Newton iterations and the AGM[END_REF]Prop. 7]. Its first term can be computed from theta quotients at τ using the transformation formulas for theta constants under SL 2 (Z). The limit of B(-1/τ ) is 1/θ 2 0,0 (-1/τ ). Finally, we can recover τ using the formula

θ 2 0,0 -1 τ = -iτ θ 2 0,0 (τ ). (2) 
Since AGM sequences with good sign choices converge quadratically, this gives an algorithm to invert theta functions on F 1 with quasi-linear complexity in the output precision, at least for fixed τ . This method was already known to Gauss [10, X.1, pp. 184-206], and we recommend [3, §3C] for a historical exposition of Gauss's works on the AGM and elliptic functions.

In order to compute theta functions at a given τ ∈ F 1 , the most efficient known method is to build a Newton scheme [START_REF] Dupont | Fast evaluation of modular functions using Newton iterations and the AGM[END_REF], using the AGM method to invert theta constants. This yields a quasi-linear algorithm to compute genus 1 theta constants, whose complexity can be made uniform in τ ∈ F 1 [START_REF] Dupont | Fast evaluation of modular functions using Newton iterations and the AGM[END_REF]Thm. 5].

The genus 2 case. A similar strategy can be applied to theta functions in genus 2, using Borchardt sequences, a generalization of AGM sequences for four complex numbers [START_REF] Borchardt | Theorie des arithmetisch-geometrisches Mittels aus vier Elementen[END_REF][START_REF] Bost | Moyenne arithmético-géométrique et périodes de courbes de genre 1 et 2[END_REF][START_REF] Jarvis | Higher genus arithmetic-geometric means[END_REF]. Let us refer to §2 for the definition of Borchardt sequences, the numbering of genus 2 theta constants, and the definition of the matrices γ k ∈ Sp 4 (Z) for 0 ≤ k ≤ 3. The Borchardt sequences we consider are the sequences B(γ k τ ) for 0 ≤ k ≤ 3, where

B(τ ) = θ 2 0 (2 n τ ) θ 2 0 (τ ) , θ 2 1 (2 n τ ) θ 2 0 (τ ) , θ 2 2 (2 n τ ) θ 2 0 (τ ) , θ 2 3 (2 n τ ) θ 2 0 (τ ) n≥0 for every τ ∈ H 2 .
Their first terms are given by different combinations of theta quotients at τ (see Corollary 3.3). It is known that for a given τ , all but a finite number of sign choices in these Borchardt sequences are good, and the other sign choices can be determined using certified computations of hyperelliptic integrals at relatively low precision: see the discussion before Prop. 3.3 in [START_REF] Labrande | Computing theta functions in quasi-linear time in genus 2 and above[END_REF], and [START_REF] Molin | Computing period matrices and the Abel-Jacobi map of superelliptic curves[END_REF] for an algorithm that provides this input. However, the required precision and the cost of the numerical integration algorithms depend heavily on τ .

Actually, when τ belongs to the usual fundamental domain F 2 under the action of Sp 4 (Z), practical experiments suggest that all sign choices are good in the genus 2 algorithm as well [4, Conj. 9.1], [START_REF] Enge | Computing class polynomials for abelian surfaces[END_REF]Conj. 9]. The goal of this paper is to prove this fact. More precisely, we define in §2 a subset F ′ ⊂ H 2 containing F 2 , and prove the following result.

Theorem 1.1. For every τ ∈ F ′ , every 0 ≤ k ≤ 3 and every n ≥ 0, the theta constants θ j (2 n γ k τ ) for 0 ≤ j ≤ 3 are contained in a common open quarter plane.

Dupont [4, Prop. 9.1] proved this result in the particular case of γ 0 = I 4 .

As a consequence, we can invert genus 2 theta constants in quasi-linear time by using only Borchardt sequences with good sign choices. On the practical side, this result reduces the effort needed to invert genus 2 theta constants with controlled precision losses; see for instance [4, §7.4.2] for an analysis of precision losses when computing limits of Borchardt sequences. On the theoretical side, we hope that our result can be a first step towards removing other heuristic assumptions when computing genus 2 theta constants (in particular, the assumption [4, §10.2] that the function used in the Newton scheme is analytic with invertible Jacobian), and obtaining algorithms with uniform complexity in τ ∈ F 2 .

This document is organized as follows. In Section 2, we introduce our notational conventions. In Section 3, we use the action of the symplectic group to bring the matrices 2 n γ k τ ∈ H 2 closer to the cusp at infinity: this is critical to obtain accurate information from the series expansion [START_REF] Borchardt | Theorie des arithmetisch-geometrisches Mittels aus vier Elementen[END_REF]. We give estimates on genus 2 theta constants in Section 4, and we finish the proof of the main theorem in Section 5.
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Theta constants and Borchardt sequences

We define a Borchardt sequence to be a sequence of complex numbers (s

(n) b ) b∈(Z/2Z) 2 , n≥0
with the following property: for every n ≥ 0, there exist t

(n) b for b ∈ (Z/2Z) 2 such that t (n) b is a square root of s (n) b , and 
s (n+1) b = 1 4 b1+b2=b t (n) b1 t (n) b2
for each b ∈ (Z/2Z) 2 .

The duplication formula [23, p. 221] states that for every τ ∈ H 2 , the sequence

B(τ ) = θ 2 0,b (2 n τ ) b∈{0,1} 2 ,n≥0
is a Borchardt sequence; the choice of square roots at each step is given by the theta constants θ 0,b (2 n τ ) themselves. By the series expansion (1), we have

θ 0,b (2 n τ ) = m∈Z 2 exp -2 n πm t Im(τ )m exp iπ 2 n m t Re(τ )m + m t b .
When n tends to infinity, all the terms except m = 0 converge rapidly to zero, because Im(τ ) is positive definite. Therefore the Borchardt sequence B(τ ) converges to (1, 1, 1, 1). We say that a set of complex numbers is in good position when it is included in an open quarter plane seen from the origin, i.e. a set of the form {r exp(i(α 0 + α)) | r > 0 and 0 < α < π/2} for some α 0 ∈ R. The property of being in good position is invariant by nonzero complex scaling. A Borchardt sequence is given by good sign choices if for every n ≥ 0, the complex numbers t Let us now detail the algorithm to recover τ ∈ H 2 from its theta quotients. We first introduce the matrices γ k ∈ Sp 4 (Z) alluded to in the introduction. Let

S 1 = 1 0 0 0 , S 2 = 0 0 0 1 , S 3 = 0 1 1 0 ,
and define the matrix

γ k ∈ Sp 4 (Z) for 0 ≤ k ≤ 3 by γ 0 = I 4 , and γ k = -I 2 -S k S k -I + S 2 k for 1 ≤ k ≤ 3.
For convenience, we also introduce a numbering of theta constants [4, §6.2]:

θ (a0,a1),(b0,b1) =: θ j where j = b 0 + 2b 1 + 4a 0 + 8a 1 ∈ 0, 15 .
Assuming that the choices of square roots in the sequences B(γ k τ ) can be determined, we can compute τ ∈ F 2 from its theta quotients as follows.

Algorithm 2.1 ([4, §9.2.3]).

Input: The projective vector of squares of theta constants θ 2 j (τ ) for j ∈ 0, 15 , for some τ ∈ H 2 . Output: The matrix τ . 

θ 2 0 (γ 1 τ ) = -iz 1 θ 2 4 (τ ), θ 2 0 (γ 2 τ ) = -iz 2 θ 2 8 (τ ), θ 2 0 (γ 3 τ ) = -det(τ )θ 2 0 (τ ).
In the sequel, we use the following notational conventions. For τ ∈ H 2 , we write

τ = z 1 (τ ) z 3 (τ ) z 3 (τ ) z 2 (τ ) and x j (τ ) = Re z j (τ ) y j (τ ) = Im z j (τ ) for 1 ≤ j ≤ 3.
For 1 ≤ j ≤ 3, we also write q j (τ ) = exp(-πy j (τ )).

We denote by λ 1 (τ ) the smallest eigenvalue of Im(τ ), and define

r(τ ) = min λ 1 (τ ), y 1 (τ ) 2 , y 2 (τ ) 2 .
We often omit the argument τ to ease notation. We define F ′ to be the set of all τ ∈ H 2 such that the following conditions are satisfied:

|x j (τ )| ≤ 1 2 for each 1 ≤ j ≤ 3, 2 |y 3 (τ )| ≤ y 1 (τ ) ≤ y 2 (τ ), y 1 (τ ) ≥ √ 3 2 , |z j (τ )| ≥ 1 for j ∈ {1, 2}. (3) 
The domain F ′ contains the classical fundamental domain F 2 for the action of Sp 4 (Z) on H 2 [START_REF] Klingen | Introductory lectures on Siegel modular forms[END_REF]Prop. 3 p. 33]. Assumptions similar to (3) are usual when giving analytic estimates on theta constants: for instance, the domain B in [START_REF] Streng | Computing Igusa class polynomials[END_REF] is defined by the first three inequalities of (3). Finally, for each τ ∈ H 2 , we write

ξ 4,6 (τ ) = 2 exp iπ z 1 (τ ) 4 , ξ 8,9 (τ ) = 2 exp iπ z 2 (τ ) 4 , ξ 0 (τ ) = 1 + 2 exp(iπz 1 (τ )) + 2 exp(iπz 2 (τ )), ξ 0,2 (τ ) = 1 + 2 exp(iπz 1 (τ )), ξ 0,1 (τ ) = 1 + 2 exp(iπz 2 (τ )), and 
ξ 12 (τ ) = exp iπ z 1 (τ ) + z 2 (τ ) 4 exp iπ z 3 (τ ) 2 + exp -iπ z 3 (τ ) 2 . (4) 
These complex numbers correspond to the first term(s) of the series defining theta constants at τ . For instance, ξ 4,6 (τ ) approximates both θ 4 (τ ) and θ 6 (τ ).

We will recall the definitions (4) before using them in the computations of §4.

3 Other expressions for theta constants at 2 n γ k τ

For every n ≥ 0, we define

η (n) 1 =     0 0 -1 0 0 1 0 0 1 0 2 n 0 0 0 0 1     , η (n) 2 =     1 0 0 0 0 0 0 -1 0 0 1 0 0 1 0 2 n     , η (n) 3 =     0 0 0 -1 0 0 -1 0 0 1 2 n 0 1 0 0 2 n     , and η (n) 4 =     0 0 1 0 0 1 0 0 -1 0 0 0 0 0 0 1     η (n) 3 . Lemma 3.1. Let n ≥ 0.
1. For every 1 ≤ k ≤ 4, the matrix η

(n) k belongs to Sp 4 (Z).
2. For every τ =

z 1 z 3 z 3 z 2 ∈ H 2 , we have τ (n) 1 := η (n) 1 (2 n γ 1 τ ) = 2 -n z 1 z 3 z 3 2 n z 2 , τ (n) 2 := η (n) 2 (2 n γ 2 τ ) = 2 n z 1 z 3 z 3 2 -n z 2 , τ (n) 3 := η (n) 3 (2 n γ 3 τ ) = 2 -n τ, and 
τ (n) 4 := η (n) 4 (2 n γ 3 τ ) = -2 n /z 1 -z 3 /z 1 -z 3 /z 1 2 -n (z 2 -z 2 3 /z 1 )
.

(5)

Proof.

1. The lines of each η

(n) k define a symplectic basis of Z 4 .
2. The action of Sp 4 (Z) on H 2 extends to an action of the larger group

GSp 4 (Q) = γ ∈ GL 4 (Q) | ∃µ ∈ Q × , γ t 0 I 2 -I 2 0 γ = µ 0 I 2 -I 2 0 . The matrix 2 n γ k τ is the image of τ under -2 n I 2 -2 n S k S k -I + S 2 i ∈ GSp 4 (Q).
When we multiply this matrix by η

(n) k
on the left, we obtain

Diag(-1, -2 n , -2 n , -1) for k = 1, Diag(-2 n , -1, -1, -2 n ) for k = 2, and 
Diag(-1, -1, -2 n , -2 n ) for k = 3.
We recall the transformation formulas for theta constants in genus 2. For a square matrix m, we denote by m 0 the column vector containing the diagonal of m. 

γ = A B C D ∈ Sp 4 (Z). Define α β = γ t a -(CD t ) 0 b -(AB t ) 0 .
Then, for every τ ∈ H 2 , we have

θ a,b (γτ ) = κ(γ) ζ ε(γ,a,b) 8 det(Cτ + D) 1/2 θ a ′ ,b ′ (τ )
where

ζ 8 = e iπ/4 , a ′ b ′ = α β mod 2, ε(γ, a, b) = 2(Bα) t (Cβ) -(Dα) t (Bα) -(Cβ) t (Aβ) + 2((AB t ) 0 ) t (Dα -Cβ),
and κ(γ) is an eighth root of unity depending only on γ, with a sign ambiguity coming from the choice of a holomorphic square root of det(Cτ + D).

Corollary 3.3. For every τ ∈ H 2 , we have the following equalities of projective tuples:

(θ j (2 n γ 1 τ )) 0≤j≤3 = (θ 4 (τ ) : θ 0 (τ ) : θ 6 (τ ) : θ 2 (τ )) if n = 0, (θ 0 (τ (n) 1 ) : θ 4 (τ (n) 1 ) : θ 2 (τ (n) 1 ) : θ 6 (τ (n) 1 )) if n ≥ 1, (θ j (2 n γ 2 τ )) 0≤j≤3 = (θ 8 (τ ) : θ 9 (τ ) : θ 0 (τ ) : θ 1 (τ )) if n = 0, (θ 0 (τ (n) 2 ) : θ 1 (τ (n) 2 ) : θ 8 (τ (n) 2 ) : θ 9 (τ (n) 2 )) if n ≥ 1, (θ j (2 n γ 3 τ )) 0≤j≤3 = (θ 0 (τ (n) 3 ) : θ 8 (τ (n) 3 ) : θ 4 (τ (n) 3 ) : θ 12 (τ (n) 3 )) for every n ≥ 0, (θ j (2 n γ 3 τ )) 0≤j≤3 = (θ 0 (τ (n) 4 ) : θ 8 (τ (n) 4 ) : θ 1 (τ (n) 4 ) : θ 9 (τ (n) 4 ))
for every n ≥ 0,

where the τ

(n) j
are defined as in [START_REF] Dupont | Fast evaluation of modular functions using Newton iterations and the AGM[END_REF].

Proof. Apply Proposition 3.2 to the matrices η

(n) i .
When τ ∈ F ′ , the real and imaginary parts of τ

(n) k
for 1 ≤ k ≤ 3 are easy to study: for instance, from the second inequality in (3) we always have

y 3 (τ (n) k ) 2 ≤ 1 4 y 1 (τ (n) k )y 2 (τ (n) k ).
Such estimates are less obvious for the matrices τ

(n) 4 . Lemma 3.4. Let τ ∈ F ′ . Then, for every n ≥ 0, we have

y 3 (τ (n) 4 ) ≤ 3 2 n+2 y 1 (τ (n) 4 ), y 3 (τ (n) 4 ) 2 ≤ 3 7 y 1 (τ (n) 4 )y 2 (τ (n) 4
), and

x 2 (τ (n) 4 ) ≤ 9 2 n+3 .
Proof. Write z 1 for z 1 (τ ), etc. We have

y 3 (τ (n) 4 ) = Im(-z 3 /z 1 ) = 1 |z 1 | 2 (x 3 y 1 -y 3 x 1 ), so y 3 (τ (n) 4 ) ≤ 3y 1 4 |z 1 | 2 = 3 2 n+2 y 1 (τ (n) 4 ), since y 1 (τ (n) 4 ) = 2 n y 1 / |z 1 |
2 by (5). For the second inequality, we have

Im(τ (n) 4 ) = 2 -n z 1 -2 -n z 3 0 1 -t (2 -n Im τ ) 2 -n z 1 -2 -n z 3 0 1 -1 so det Im(τ (n) 4 ) = 1 |z 1 | 2 det Im τ.
Moreover det Im τ ≥ 3 4 y 2 1 , so

y 3 (τ (n) 4 ) 2 y 1 (τ (n) 4 )y 2 (τ (n) 4 ) ≤ y 3 (τ (n) 4 ) 2 y 3 (τ (n) 4 ) 2 + 3y 2 1 4|z1| 2 ≤ 1 1 + 4 3 |z 1 | 2 ≤ 3 7 .
For the last inequality, we compute

2 n x 2 (τ (n) 4 ) = x 2 - 1 |z 1 | 2 ((x 2 3 -y 2 3 )x 1 + 2x 3 y 3 y 1 )
and

1 |z 1 | 2 (x 2 3 -y 2 3 )x 1 ≤ 1 2 max{x 2 3 , y 2 3 |z 1 | 2 } ≤ 1 8 , so 2 n x 2 (τ (n) 4 ) ≤ 1 2 + 1 8 + 1 2 = 9 8 .

Bounds on theta constants

Typically, when τ ∈ H 2 is close enough to the cusp at infinity (more precisely when Im z 1 (τ ), Im z 2 (τ ), and det Im(τ ) are large), useful information on theta constants at τ can be obtained from the series expansion (1). Our computations are similar in spirit to those found in [17, pp. 116 

f (k + 2) -f (k + 1) ≥ f (k + 1) -f (k) for every k ≥ 0. Let 0 < q < 1. Then ∞ k=0 q f (k) ≤ q f (0) 1 -q f (1)-f (0) . Proof. Use that f (k) ≥ f (0) + k(f (1) -f (0)) for all k. Lemma 4.2. Let k ≥ 1, and let τ ∈ H 2 such that y 3 (τ ) 2 ≤ 1 4 y 1 (τ )y 2 (τ ) and k |y 3 (τ )| ≤ y 2 (τ ). Define ξ 4,6 (τ ) = 2 exp iπ z 1 (τ ) 4 and ρ (k) 4,6 (q 1 , q 2 ) = q 2 1 1 -q 4 1 + q 1-1 k 2 1 -q 3-1 k 2 + q 1+ 1 k 2 1 -q 3+ 1 k 2 + q 7/8 1 q 1/2 2 (1 -q 3/2 2 )(1 -q 2 1 ) + q 25/8 1 q 3/2 2 (1 -q 9/2 2 )(1 -q 6 1 )
.

Then for j ∈ {4, 6}, we have

θ j (τ ) ξ 4,6 (τ ) -1 ≤ ρ (k)
4,6 q 1 (τ ), q 2 (τ ) .

Proof. Write u = 1/2 0 . Using the definition, we obtain

θ j (τ ) ξ 4,6 (τ ) -1 ≤ 1 2 q -1/4 1 m∈Z 2 m =( 0 0 ), -1 0 exp -π(m + u) t Im(τ )(m + u) .
We split this sum in two parts, according to whether the second coordinate of m is zero or not. The first part gives

q -1/4 1 m∈N+ 3 2 q m 2 1 ≤ q -1/4 1 q 9/4 1 1 -q 4 1 = q 2 1 1 -q 4
1 by Lemma 4.1. The second part is

q -1/4 1 m1∈N+ 1 2 m2≥1 q m 2 1 1 q m 2 2 2 • 2 cosh(2πy 3 m 1 m 2 ).
We use the fact that for every (m 1 , m 2 ) ∈ R 2 + ,

2y 3 m 1 m 2 ≤ y 1 2 m 2 1 + y 2 2 m 2 2 .
When m 1 = 1/2, we use the following bound instead:

2y 3 m 1 m 2 = |y 3 m 2 | ≤ y 2 m 2 k .
Therefore the total contribution of the second part is bounded by

q -1/4 1 m2≥1 q 1/4 1 q m 2 2 2 • 2 cosh π y 2 k m 2 + q -1/4 1 m1∈N+ 3 2 m2≥1 q m 2 1 1 q m 2 2 2 • 2 cosh π y 1 2 m 2 1 + y 2 2 m 2 2 ≤ q 1-1 k 2 1 -q 3-1 k 2 + q 1+ 1 k 2 1 -q 3+ 1 k 2 + q 7/8 1 q 1/2 2 (1 -q 3/2 2 )(1 -q 2 1 ) + q 25/8 1 q 3/2 2 (1 -q 9/ 2 
2 )(1 -q 6 1 ) by other applications of Lemma 4.1. Define

ξ 8,9 (τ ) = 2 exp iπ z 2 (τ ) 4 , and 
ρ (k) 8,9 (q 1 , q 2 ) = q 2 2 1 -q 4 2 + q 1-1 k 1 1 -q 3-1 k 1 + q 1+ 1 k 1 1 -q 3+ 1 k 1 + q 7/8 2 q 1/2 1 (1 -q 3/2 1 )(1 -q 2 2 ) + q 25/8 2 q 3/2 1 (1 -q 9/2 1 )(1 -q 6 2 )
.

Then for j ∈ {8, 9}, we have

θ j (τ ) ξ 8,9 (τ ) -1 ≤ ρ (k)
8,9 q 1 (τ ), q 2 (τ ) .

Proof. We proceed in a similar fashion as in the proof of Lemma 4.2 by switching the roles of q 1 and q 2 . Lemma 4.4. Let τ ∈ H 2 such that

y 3 (τ ) 2 ≤ 1 4 y 1 (τ )y 2 (τ ). Define ξ 0 (τ ) = 1 + 2 exp(iπz 1 (τ )) + 2 exp(iπz 2 (τ )), ξ 0,2 (τ ) = 1 + 2 exp(iπz 1 (τ )), ξ 0,1 (τ ) = 1 + 2 exp(iπz 2 (τ )), and 
ρ 0 (q 1 , q 2 ) = 2q 4 1 1 -q 5 1 + 2q 4 2 1 -q 5 2 + 2q 1/2 1 q 1/2 2 (1 -q 3/2 1 )(1 -q 3/2 2 ) + 2q 3/2 1 q 3/2 2 (1 -q 9/2 1 )(1 -q 9/2 2 )
.

Then we have

|θ 0 (τ ) -ξ 0 (τ )| ≤ ρ 0 (q 1 (τ ), q 2 (τ )), |θ j (τ ) -ξ 0,2 (τ )| ≤ ρ 0 (q 1 (τ ), q 2 (τ )) + 2q 2 (τ ) for j ∈ {0, 2}, |θ j (τ ) -ξ 0,1 (τ )| ≤ ρ 0 (q 1 (τ ), q 2 (τ )) + 2q 1 (τ )
for j ∈ {0, 1}, and |θ j (τ ) -1| ≤ ρ 0 (q 1 (τ ), q 2 (τ )) + 2q 1 (τ ) + 2q 2 (τ ) for 0 ≤ j ≤ 3.

Proof. We proceed again in a similar fashion as in the proof of Lemma 4.2. The terms of ρ 0 (q 1 , q 2 ) are obtained by considering the following subsets of indices m ∈ Z 2 :

{( m1 0 ) | |m 1 | ≥ 2}, { 0 m2 | |m 2 | ≥ 2}, and 
{( m1 m2 ) | |m 1 | ≥ 1, |m 2 | ≥ 1}. Lemma 4.5. Let τ ∈ H 2 such that |x 3 (τ )| ≤ 1 2 and 2 |y 3 (τ )| ≤ min{y 1 (τ ), y 2 (τ )}.
Write

ξ 12 (τ ) = exp iπ z 1 (τ ) + z 2 (τ ) 4 exp iπ z 3 (τ ) 2 + exp -iπ z 3 (τ ) 2 ,
and

ρ 12 (q 1 , q 2 ) = q 3/2 1 1 -q 7/2 1 + q 5/2 1 1 -q 9/2 1 + q 3/2 2 1 -q 7/2 2 + q 5/2 2 1 -q 9/2 2 + q 7/8 1 q 7/8 2 (1 -q 2 1 )(1 -q 2 2 ) + q 25/8 1 q 25/8 2
(1 -q 6 1 )(1 -q 6 2 )

.

Then we have θ 12 (τ ) ξ 12 (τ ) -1 ≤ ρ 12 q 1 (τ ), q 2 (τ ) .

Proof. By (1), we have

θ 12 (τ ) = 2 m1∈N+ 1 2 m2∈N+ 1 2 exp iπ(m 2 1 z 1 + m 2 2 z 2 ) • exp(2πim 1 m 2 z 3 ) + exp(-2πim 1 m 2 z 3 ) .
We leave the term corresponding to (m 1 , m 2 ) = ( 1 2 , 1 2 ) aside, and write

θ 12 (τ ) 2 exp(iπ(z 1 + z 2 )/4) -(exp(iπz 3 /2) + exp(-iπz 3 /2)) ≤ (m1,m2)∈(N+ 1 2 ) 2 (m1,m2) =( 1 2 , 1 2 ) q m 2 1 -1 4 1 q m 2 2 -1 4 2 • 2 cosh(2πm 1 m 2 y 3 ). Since |x 3 | ≤ 1 2
, the absolute value of the argument of exp(iπz 3 /2) is at most π/4. Therefore, exp(iπz 3 /2) + exp(-iπz 3 /2) ≥ exp(π |y 3 | /2).

We obtain

θ 12 (τ ) ξ 12 (τ ) -1 ≤ (m1,m2)∈(N+ 1 2 ) 2 (m1,m2) =( 1 2 , 1 2 ) q m 2 1 -1 4 1 q m 2 2 -1 4 2 • 2 cosh 2π(m 1 m 2 -1 4 )y 3 .
We separate the terms corresponding to m 2 = 1 2 . Since 2 |y 3 | ≤ y 1 , their contribution is bounded by

m1∈N+ 3 2 q m 2 1 -1 2 m1 1 + q m 2 1 + 1 2 m1-1 2 1 ≤ q 3/2 1 1 -q 7/2 1 + q 5/2 1 1 -q 9/2 1
.

Similarly, the contribution from the terms with m 1 = 1/2 is bounded by

q 3/2 2 1 -q 7/2 2 + q 5/2 2 1 -q 9/2 2
.

For the remaining terms, we use the majoration

2π(m 1 m 2 -1 4 )y 3 ≤ 2πm 1 m 2 y 3 ≤ π |y 3 | (m 2 1 + m 2 2 ) ≤ π 2 (m 2 1 y 1 + m 2 2 y 2 ).
Thus, the rest of the sum is bounded by

m1,m2∈N+ 3 2 q m 2 1 -1 4 1 q m 2 2 -1 4 2 • 2 cosh π 2 (m 2 1 y 1 + m 2 2 y 2 ) ≤ m1,m2∈N+ 3 2 q 1 2 m 2 1 -1 4 1 q 1 2 m 2 2 -1 4 2 + q 3 2 m 2 1 -1 4 1 q 3 2 m 2 2 -1 4 2 ≤ q 7/8 1 q 7/8 2 (1 -q 2 1 )(1 -q 2 2 ) + q 25/8 1 q 25/8 2 (1 -q 6 1 )(1 -q 6 2 )
.

We give another version of these estimates that we will use for τ

(n) 4 .
Lemma 4.6. Let k ≥ 2, and let τ ∈ H 2 such that

y 3 (τ ) 2 ≤ 3 7 y 1 (τ )y 2 (τ ) and k |y 3 (τ )| ≤ y 1 (τ ). Let α = 3/7. Define ρ ′(k) 0,1 (q 1 , q 2 ) = 2q 4 2 1 -q 5 2 + 2q 1 1 -q 3 1 + 2q 1-2 k 1 q 2 1 -q 3-2 k 1 + 2q 1+ 2 k 1 q 2 1 -q 3+ 2 k 1 + 2q 1-α 1 q 4(1-α) 2 (1 -q 3(1-α) 1 )(1 -q 5(1-α) 2 ) + 2q 1+α 1 q 4(1+α) 2 (1 -q 3(1+α) 1 )(1 -q 5(1+α) 2 ) and ρ ′(k) 8,9 (q 1 , q 2 ) = q 2 2 1 -q 4 2 + q 1-1 k 1 1 -q 3-1 k 1 + q 1+ 1 k 1 1 -q 3+ 1 k 1 + q 2-9 4 α 2 q 1-α 1 (1 -q 4(1-α) 2 )(1 -q 3(1-α) 1 ) + q 2+ 9 4 α 2 q 1+α 1 (1 -q 4(1+α) 2 )(1 -q 3(1+α) 1
)

.

Then we have

|θ j (τ ) -ξ 0,1 (τ )| ≤ ρ ′ 0,1 (τ ) for j ∈ {0, 1} and θ j (τ ) ξ 8,9 (τ ) -1 ≤ ρ ′ 8,9 (τ ) for j ∈ {8, 9}.
Proof. We bound the cross-product terms by

2y 3 m 1 m 2 ≤ αy 1 m 2 1 + αy 2 m 2 2 , 2y 3 m 1 m 2 ≤ 1 k y 1 m 1 if m 2 = 1 2
, and

2y 3 m 1 m 2 ≤ 2 k y 1 m 1 if m 2 = 1.
For j ∈ {0, 1}, we separate the terms with |m 2 | ≤ 1 or m 1 = 0, and obtain

|θ j (τ ) -ξ 0,1 (τ )| ≤ 2 m2≥2 q m 2 2 2 + 2 m1≥1 q m 2 1 1 + 2 m2≥1 q 2 (q m 2 1 -2 k m1 1 + q m 2 1 + 2 k m1 1 ) + 2 m1≥1 m2≥2 q m 2 1 1 q m 2 2 2 • 2 cosh α(y 1 m 2 1 + y 2 m 2 2 ) ≤ 2q 4 2 1 -q 5 2 + 2q 1 1 -q 3 1 + 2q 1-2 k 1 q 2 1 -q 3-2 k 1 + 2q 1+ 2 k 1 q 2 1 -q 3+ 2 k 1 + 2q 1-α 1 q 4(1-α) 2 (1 -q 3(1-α) 1 )(1 -q 5(1-α) 2 ) + 2q 1+α 1 q 4 (1+α) 2 (1 -q 3(1+α) 1 )(1 -q 5(1+α) 2 
) .

For j ∈ {8, 9}, we separate the terms with

|m 2 | = 1 2 or m 1 = 0. We obtain θ j (τ ) ξ 8,9 (τ ) -1 ≤ q -1/4 2 m2∈N+ 3 2 q m 2 2 2 + m1≥1 q m 2 1 -1 k m1 1 + q m 2 1 + 1 k m1 1 + q -1/4 2 m2∈N+ 3 2 m1≥1 q m 2 2 2 q m 2 2 1 • 2 cosh α(y 1 m 2 1 + y 2 m 2 2 ) ≤ q 2 2 1 -q 4 2 + q 1-1 k 1 1 -q 3-1 k 1 + q 1+ 1 k 1 1 -q 3+ 1 k 1 + q 2-9 4 α 2 q 1-α 1 (1 -q 4(1-α) 2 (1 -q 3(1-α) 1 ) + q 2+ 9 4 α 2 q 1+α 1 (1 -q 4(1+α) 2 )(1 -q 3(1+α) 1
) .

Finally, when n is large, we will show that the theta constants θ j (2 n γ k τ ) for 0 ≤ j ≤ 3 are in good position using the following lemma. Recall the definition of r(τ ) and λ 1 (τ ) from §2. 1. If r(τ ) ≥ 0.4, then the θ j (τ ) for 0 ≤ j ≤ 3 are in good position.

2. If λ 1 (τ ) ≥ 0.6, then the θ j (τ ) for 0 ≤ j ≤ 3 are in good position.

Proof.

1. Write q = exp(-πr(τ )).

For 0 ≤ j ≤ 3, we have

|θ j (τ ) -1| ≤ 4q 2 + n∈Z 2 , n 2 ≥2 exp(-πλ 1 (τ ) n 2 ) ≤ 8q 2 + 4q 4 + 8q 5 + 4q 8 + 4 1 + q (1 -q) 2 q 9 . (6) 
In this inequality, the first term 4q 2 comes from the four vectors n ∈ Z 2 with n = 1. Then we separate the terms n = ( n1 n2 ) such that |n 1 | ≥ 3 and |n 2 | ≥ 3; this accounts for the term 4q 9 (1 + q)/(1 -q) 2 , as in the proof of [START_REF] Dupont | Moyenne arithmético-géométrique, suites de Borchardt et applications[END_REF]Prop. 6.1]. We leave the remaining terms as they are.

If q ≤ 0.287, then the quantity on the right hand side of ( 6) is less than √ 2/2, and the θ j (τ ) are contained in a disk which is itself contained in a quarter plane. We have q ≤ 0.287 when r(τ ) ≥ 0.4.

Write

q = exp(-πλ 1 (τ )).

Then for 0 ≤ j ≤ 3, we have |θ j (τ ) -1| ≤ 4q + 4q 2 + 4q 4 + 8q 5 + 4q 8 + 4 1 + q (1 -q) 2 q 9 . This quantity is less than √ 2/2 when λ 1 (τ ) ≥ 0.6.

We conclude this section with lower bounds on r or λ 1 at γ k τ for τ ∈ F ′ and 1 ≤ k ≤ 3. Proof. We have Therefore,

Im(γ 1 τ ) = z 1 z 3 0 -1 -t Im(τ ) z 1 z 3 0 -1 -1 = 1 |z 1 | 2 y 1 α α β with α = y 1 x 3 -y 3 x 1 , so |α| ≤
λ 1 (γ 1 τ ) ≥ det Im(γ 1 τ ) Tr Im(γ 1 τ ) ≥ y 1 |z 1 | 2 1 1 + 25 16 y 2 1 |z1| 2 det Im(τ ) ≥ 9y 1 34 |z 1 | 2 .
We did not use the property that y 1 ≤ y 2 , so the same proof works for γ 2 τ . Finally, we consider γ 3 τ . We have

Im(γ 3 τ ) = 1 |det τ | 2 β 1 α α β 2 with β 1 = y 1 |z 3 | 2 + y 2 |z 1 | 2 -y 3 (z 1 z 3 + z 3 z 1 )
,

β 2 = y 1 |z 2 | 2 + y 2 |z 3 | 2 -y 3 (z 2 z 3 + z 3 z 2 ).
We compute 

|det τ | 2 Tr Im(γ 3 τ ) = β 1 + β 2 ≤

Proof of the main theorem

In this final section, we prove Theorem 1.1 by separating different cases according to the value of n. If n is large enough, then Lemmas 4.7 and 4.8 are enough to conclude; if n is smaller, then we apply the theta transformation formula (Proposition 3.2) and the bounds on other theta constants given in §4.

In the proofs, we use numerical calculations, typically in order to show that a given angle α(q) is smaller than π/2 for certain values of q. Such calculations are easily certified using interval arithmetic, since the functions α(q) we consider are simple: they are either increasing or convex functions of q.

In order to help the reader visualize the estimates, we created pictures using GeoGebra [12]. Proposition 5.1. Let τ ∈ F ′ . Then for every n ≥ 0, the theta constants θ j (2 n τ ) for 0 ≤ j ≤ 3 are in good position.

Proof. For every n ≥ 0, we have

r(2 n τ ) = 2 n r(τ ) ≥ √ 3/4 ≥ 0.4,
so the result follows from Lemma 4.7.

Lemma 5.2. Let τ ∈ F ′ .

1. For every n ≥ 0 such that 2 n ≤ 8.77y 1 (τ ), the theta constants θ j (τ

(n)
1 ) for j ∈ {0, 2, 4, 6} are in good position.

2. For every n ≥ 0 such that 2 n ≤ 8.77y 2 (τ ), the theta constants θ j (τ (n)

2 ) for j ∈ {0, 1, 8, 9} are in good position.

Proof. We only prove the first statement, the second one being symmetric. We separate three cases: n = 0, n = 1, and n ≥ 2. Case 2: n = 1. We study the relative positions of ξ 0,2 and ξ 4,6 at τ

1 . Since |2 -n x 1 (τ )| ≤ 1/4, the absolute value of the argument of ξ 4,6 (τ (1) 1 ) is bounded above by π/16. Moreover,

ξ 0,2 (τ (1) 1 ) ≥ 1, arg(ξ 0,2 (τ (1) 1 )) ≤ arctan 2q 1 sin(π/4) 1 + 2q 1 cos(π/4) ,
and the arguments of ξ 0,2 and ξ 4,6 have the same sign. Therefore the angle between any two θ j (τ

1 ) for j ∈ {0, 2, 4, 6} is at most max π 16 , arctan 2q 1 sin(π/4) 1 + 2q 1 cos(π/4) +arcsin ρ

4,6 (q 1 , q 2 )+arcsin(ρ 0 (q 1 , q 2 )+2q 2 )

by Lemmas 4.2 and 4.4. This quantity is less than π/2 because q 2 (τ

1 ) ≤ exp(-π √ 3) and q 1 (τ

1 ) ≤ exp(-π √ 3/8).

Case 3: n ≥ 2. We proceed as in Case 2, but we now have

q 2 (τ (n) 1 ) ≤ exp(-2π √ 3), 8 y 3 (τ (n) 1 ) ≤ y 2 (τ (n)
1 ), and x 1 (τ

(n) 1 ) ≤ 1 8 .
Therefore the angle between the θ j (τ

(n) 1 ) for j ∈ {0, 2, 4, 6} is bounded by max π 32 , arctan 2q 1 sin(π/8) 1 + 2q 1 cos(π/8) + arcsin(ρ 0 (q 1 , exp(-2π √ 3)) + 2 exp(-2π √ 3)) + arcsin ρ (8) 4,6 (q 1 , exp(-2π √ 3)). (7) 
This angle remains less that π/2 when q 1 (τ

(n)
1 ) ≤ 0.699. This is the case when 2 n ≥ 8.77y 1 (τ ).

The geometric situation in Case 3 of Lemma 5.2 can be represented as follows.

In this picture, we take q 1 = 0.699, and represent two complex numbers ξ 0,2 and ξ 4,6 with modulus one, separated by an angle of max π 32 , arctan 2q 1 sin(π/8) 1 + 2q 1 cos(π/8) ≃ 0.22.

Then we draw disks centered in ξ 0,2 and ξ 4,6 with radii ρ 0 (q 1 , exp(-2π √ 3)) and ρ (8) 4,6 (q 1 , exp(-2 √ 3)) respectively. Finally we represent the smallest angular sector seen from the origin containing these two disks. The green angle is equal to the quantity [START_REF] Enge | Computing modular polynomials in quasi-linear time[END_REF], and is indeed smaller than π/2. Proposition 5.3. Let τ ∈ F ′ . 1. For every n ≥ 0, the theta constants (θ j (2 n γ 1 τ )) 0≤j≤3 are in good position.

2. For every n ≥ 0, the theta constants (θ j (2 n γ 2 τ )) 0≤j≤3 are in good position. because y 1 (τ ) ≥ √ 3/2. By Lemma 4.7, the θ j (2 n γ 1 τ ) for 0 ≤ j ≤ 3 are in good position when 2 n r(γ 1 τ ) ≥ 0.4. This is the case when 2 n ≥ 1.96y 1 . On the other hand, Lemma 5.2 applies when 2 n ≤ 8.77y 1 . The second statement is proved in the same way.

Lemma 5.4. Let τ ∈ F ′ . Then, for every n ≥ 0 such that 2 n ≤ 1.66y 1 , the theta constants θ j (τ

(n)
3 ) for j ∈ {0, 4, 8, 12} are in good position.

Proof. Write q = q 1 (τ

(n)
3 ) for short. We separate two cases: n ≥ 1, and n = 0.

Case 1: n ≥ 1. In this case, we have

x j (τ (n) 3 ) ≤ 1/4 for each 1 ≤ j ≤ 3.
Therefore, given the expressions of ξ 0 , ξ 4,6 , ξ 8,9 and ξ 12 (see ( 4)), and by Lemmas 4.2 to 4.5,

• The angle between θ 4 (τ 4,6 (q, q).

• The angle between θ 4 (τ

(n)
3 ) (or θ 8 ) and θ 0 (τ

(n)
3 ) is bounded by π 16 + arcsin ρ

4,6 (q, q) + 2q sin(π/4) + arcsin ρ 0 (q, q).

• The angle between θ 12 (τ

(n)
3 ) and θ 4 (τ

(n)
3 ) (or θ 8 ) is bounded by 3π 16 + arcsin ρ 12 (q, q) + arcsin ρ

(2) 4,6 (q, q).

• The angle between θ 12 (τ

(n)
3 ) and θ 0 (τ

(n)
3 ) is bounded by π 4 + arcsin ρ 12 (q, q) + arcsin ρ 0 (q, q). All these quantities remain less than π/2 when q ≤ 0.151. This is the case when 2 n ≤ 1.66y 1 .

Case 2: n = 0. In this case, we have q ≤ exp(-π √ 3/2). Therefore,

• The angle between θ 4 and θ 8 is bounded by

π 4 + 2 arcsin ρ (2) 
4,6 (q, q) < π 2 .

• The angle between θ 4 (or θ 8 ) and θ 0 is bounded by

π 8 + arcsin ρ (2) 
4,6 (q, q) + arcsin(ρ 0 (q, q) + 4q) < π 2 .

• The angle between θ 12 and θ 4 (or θ 8 ) is bounded by 3π 8 + arcsin ρ 12 (q, q) + arcsin ρ

(2) 4,6 (q, q) < π 2 .

These estimations can be represented as follows, with similar conventions as in the picture after Lemma 5.2:

We finally study the angle between θ 12 and θ 0 . The argument of ξ 12 (τ ) is x 1 /4 + x 2 /4 + β with β = arg(exp(iπz 3 /2) + exp(-iπz 3 /2)). Up to conjugating, we may assume that y 3 ≥ 0 and x 3 ≥ 0. Then exp(iπz 3 /2) + exp(-iπz 3 /2) = exp(-iπz 3 /2)(1 + exp(iπz 3 )) so β + πx 3 2 ≥ arctan q 3 sin(πx 3 ) 1 + q 3 ≥ arctan 2x 3 q 3 1 + q 3 .

In general, we have |β| ≤ π 4 arctan q 1/2 1 + q 1/2 .

  (n) b for b ∈ (Z/2Z) 2 are in good position.

1 .

 1 For each 0 ≤ k ≤ 3, compute the first term of the sequence B(γ k τ )/θ 2 0 (γ k τ ) using the transformation formulas for theta constants under Sp 4 (Z) (see Igusa [15, Thm. 2 p. 175 and Cor. p. 176], or Corollary 3.3); 2. For each 0 ≤ k ≤ 3, compute 1/θ 2 0 (γ k τ ) as the limit of the Borchardt sequence B(γ k τ )/θ 2 0 (γ k τ ); 3. Use the input and the newly computed θ 2 0 (γ 0 τ ) = θ 2 0 (τ ) to compute all squares of theta constants at τ ; 4. Recover τ = z 1 z 3 z 3 z 2 using the relations given in [4, §6.3.1]:

  Proposition 3.2 ([15, Thm. 2 p. 175 and Cor. p. 176]). Let a, b ∈ {0, 1} 2 , and let

Lemma 4 . 3 . 4 y 1

 4341 Let k ≥ 1, and let τ ∈ H 2 such that y 3 (τ ) 2 ≤ 1 (τ )y 2 (τ ) and k |y 3 (τ )| ≤ y 1 (τ ).

Lemma 4 . 7 .

 47 Let τ ∈ H 2 .

Lemma 4 . 8 .

 48 For every τ ∈ F ′ , we haver(γ 1 τ ) ≥ 9 y 1 (τ ) 34 |z 1 (τ )| 2 , r(γ 2 τ ) ≥ 9 y 2 (τ ) 34 |z 2 (τ )| 2 , and λ 1 (γ 3 τ ) ≥ 9 44 y 2 (τ ).

Case 1 :

 1 n = 0. Then τ (n) 1 = τ . By [24, Prop. 7.7], we have |θ j (τ ) -1| ≤ 0.405 for j ∈ {0, 1, 2, 3}, andθ j (τ ) ξ 4,6 (τ ) -1 ≤ 0.348 for j ∈ {4, 6}.The absolure value of the argument of ξ 4,6 (τ ) is at most π/8. Therefore the angle between any two θ j (τ ) for j ∈ {0, 1, 2, 3, 4, 6} is at most π 8 + arcsin(0.348) + arcsin(0.405) < π 2 .

Proof. 1 34 |z 1 | 2 ≥

 12 By Lemma 4.8, we have r(γ 1 τ ) ≥ 9 y

On the other hand, 1 ≤ Re(ξ 0 (τ )) ≤ 1 + 4q, Im(ξ 0 (τ )) = 2q 1 sin(πx 1 ) + 2q 2 sin(πx 2 ).

We discuss two cases according to the signs of x 1 and x 2 :

• If x 1 and x 2 have opposite signs, then the angle between θ 12 and θ 0 is at most 3π 8 + arctan(2q) + arcsin ρ 12 (q, q) + arcsin ρ 0 (q, q).

• If x 1 and x 2 have the same sign, say positive, then

Therefore the angle between θ 12 and θ 0 is at most π 2 arctan q 1/2 1 + q 1/2 + arcsin ρ 12 (q, q) + arcsin ρ 0 (q, q). This function of q is not increasing, but it is convex.

A numerical investigation shows that both quantities remain less than π/2 when q ≤ exp( √ 3/2).

Lemma 5.5. Let τ ∈ F ′ , and let n 0 ∈ N such that 2 n0 > 1.66y 1 . Then, for every n ≥ n 0 such that 2 n ≤ 4.2y 2 (τ ), the theta constants θ j (τ

4 ) for j ∈ {0, 1, 8, 9} are in good position.

Proof. By assumption, we have y 1 (τ

4 ) ≤ 0.021. Moreover we must have n ≥ 1, so by Lemma 3.4, x 2 (τ (n) 4 ) ≤ 9/16, and

Therefore, we can apply Lemma 4.6 with k = 8/3: we have

(0.021, q 2 (τ

Let us investigate the difference between the arguments of ξ 8,9 (τ

) and ξ 0,1 (τ

4 ), which we may assume to be positive. If the argument of ξ 8,9 is the largest, then the difference is bounded by

.

If the argument of ξ 0,1 is the largest, we distinguish two cases. If x 2 (τ

On the other hand, if x 2 (τ ) ≤ 3π/8, then arg ξ 0,1 (τ

) is always greater than cos(π/16). Therefore the angle between the θ j (τ (0.021, q 2 ) + arcsin ρ ′(8/3) 0,1 (0.021, q 2 ) cos(π/ 16) .

This quantity is less than π/2 when q 2 (τ

On the other hand, if 2 n > 2.43y 2 (τ ), then we must have n ≥ 2. Moreover, y

4 ) > 2.43 (0.0033, q 2 ) + arcsin ρ ′(16/3) 0,1 (0.0033, q 2 ).

This quantity is less than π/2 when q 2 (τ (n) 4 ) ≤ 0.571, and the latter inequality holds when 2 n ≤ 4.2y 2 (τ ). Proposition 5.6. Let τ ∈ F ′ . Then, for every n ≥ 0, the theta constants θ j (2 n γ 3 τ ) for 0 ≤ j ≤ 3 are in good position.

Proof. By Lemma 4.8, we have

.

Therefore, by Lemma 4.7, the theta constants are in good position as soon as 2 n 9 44y 2 (τ ) ≥ 0.6, or 2 n ≥ 2.94y 2 (τ ).

When n is smaller, we use the transformation formulas. Lemma 5.4 applies when 2 n ≤ 1.66y 1 (τ ), and Lemma 5.5 applies when 1.66y 1 (τ ) < 2 n ≤ 4.2y 2 (τ ).