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COMPLETIONS OF AFFINE SPACES

INTO MORI FIBER SPACES WITH NON-RATIONAL FIBERS

ADRIEN DUBOULOZ, TAKASHI KISHIMOTO, AND KAROL PALKA

ABSTRACT. We describe a method to construct completions of affine spaces into total spaces of Q-factorial

terminal Mori fiber spaces over the projective line. As an application we provide families of examples with

non-rational, birationally rigid and non-stably rational general fibers.

1. INTRODUCTION

We work with complex algebraic varieties. A completion of a given variety U is a complete variety con-

taining a Zariski open subset isomorphic to U . In this article we consider the problem of describing minimal

completions of affine spaces An. Since the Kodaira dimension of An is negative, a natural way to define

minimality in this context is to require the completion to be the total space of a Mori fiber space. Indeed,

by [BCHM10, Corollary 1.3.3] such varieties come as outputs of the Minimal Model Program applied to

smooth projective varieties of negative Kodaira dimension. We call them Mori fiber completions. From

the viewpoint of the Minimal Model Program it is also natural to consider not only smooth but also mildly

singular varieties and their completions, namely those which are Q-factorial and have terminal singularities.

If π : V → B is a Mori fiber completion of An then V is rational and the base variety B is unirational.

The case whenB is a point is especially important, because then V is a Fano variety of Picard rank one. Fano

varieties and their rationality are objects of intensive studies, see [IP99], [KSC04]. Classifying smooth Fano

completions of An of Picard rank one is the projective version of the celebrated problem of finding minimal

analytic completions of complex affine spaces raised by Hirzebruch [Hir54, Problem 27] and studied by many

authors. In case n = 1, 2 there is only Pn. The first difficult case, n = 3, was completed in a series of papers

[PS88, Fur90, Pro91, Fur93], see also [Kis05] for partial classification results concerning completions of A3

into smooth Fano threefolds with Picard rank two. For n = 4 there are some partial results [Pro94, PZ18].

In this article we focus on the situation where the base B is a curve, hence is isomorphic to the projective

line P1. Simple examples of Mori fiber completions of An of this type are given by locally trivial Pn−1-

bundles over P1. Another series of examples can be constructed by taking the product of P1 with any

Q-factorial terminal Fano variety of Picard rank one which is a completion of An−1, see Example 6.1. These

examples are special in the sense that general fibers are completions of An−1. In general, the following

interesting problem arises:

Problem. Let π : V → P1 be a Mori fiber completion of An. What can be said about the geometry of general

fibers of π?

A basic observation is that a general fiber of π is a Fano variety of dimension n−1 with terminal singular-

ities. The property of being a Mori fiber space implies in particular that the generic fiber of π has Picard rank

one over the function field of P1. On the contrary, general fibers do not necessarily have Picard rank one, as

can be seen for instance for del Pezzo fibrations of some threefolds completing A3, see Example 6.2. Still, it

is a restrictive condition for a Fano variety to be a general fiber of a Mori fiber space, see [CFST16, CFST18].

For n = 2, 3 a general fiber of π, being terminal and Fano, is either P1 or a smooth del Pezzo surface, hence

is a completion of A2. In contrast, our first result implies that in higher dimensions general fibers of Mori

fiber completions of An can be very far from being rational.

Theorem 1.1. LetH be a hyperplane in Pn, n ≥ 2. For every integral hypersurface F ⊆ Pn of degree d ≤ n
such that F ∩H is irreducible and contained in the smooth locus of F there exists a Mori fiber completion

π : V → P1 of the affine n-space An ∼= Pn \H such that all hypersurfaces other than dH in the pencil of

divisors 〈F, dH〉 generated by F and dH appear as fibers of π.
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By Bertini’s theorem a general member of a pencil as in Theorem 1.1 is smooth. For (n, d) = (4, 3) it is

a smooth cubic threefold, hence is unirational but not rational [CG72]. For d = n ≥ 4 a general member is

birationally super-rigid (see Definition 2.8) by [dF13, IM71, Puk98]. This gives the following corollary.

Corollary 1.2. For every n ≥ 4 there exists a Mori fiber completion of An over P1 whose general fibers are

smooth birationally super-rigid Fano varieties of Picard rank one.

Another corollary concerns completions of polynomial morphisms f : An → A1 of low degree into Mori

fiber spaces over P1.

Corollary 1.3. Assume that f : An → A1 is a morphism given by a polynomial of total degree at most n
and that in the natural open embedding An ⊆ Pn the intersection of the closure of the zero locus of f with

Pn \ An is smooth. Then f : An → A1 can be completed into a Mori fiber space over P1.

General fibers of polynomial morphisms f : An → A1 as above of degree deg f ≤ n − 1 are smooth

affine Fano varieties in the sense of [CDP18] (see Definition 2.9). We note that for n ≥ 6 and deg f = n− 1
general fibers of the Mori fiber space π : V → P1 are then completions of so-called super-rigid affine Fano

varieties (general fibers of f ), see Definition 2.10 and Example 6.11.

We obtain even more families of possible general fibers by considering singular ambient spaces instead of

Pn. For a definition of quasi-smooth hypersurfaces in weighted projective spaces, see Section 6C.

Theorem 1.4. Let n ≥ 4 and let P = P(1, a1, . . . , an) be a weighted projective space for some positive

integers a1, . . . , an, such that the description of the hyperplane H = P(a1, . . . , an) is well-formed. Then for

every quasi-smooth terminal hypersurface F 6= H of P of degree d ≤ a1 + . . .+ an there exists a Mori fiber

completion π : V → P1 of An ∼= P \ H such that all hypersurfaces other than dH in the pencil 〈F, dH〉
generated by F and dH appear as fibers of π.

For n = 4 we get a class of Mori fiber completions of A4 over P1 whose general fibers are quasi-smooth

terminal weighted Fano threefold hypersurfaces in the 95 families of Fletcher and Reid [IF00, Rei80], see

Corollary 6.13. By [CP17, Main Theorem], see also [CPR00], all such threefolds are birationally rigid and

some of them are even known to be birationally super-rigid [CP17, Theorem 1.1.10]. In a similar vein, we

deduce from [Oka19] the following result, see Example 6.14.

Corollary 1.5. There exists a Mori fiber completion of A4 over P1 whose very general fibers are Fano

varieties of Picard rank one which are not stably rational.

We now briefly describe our approach. A natural way to obtain completions of a given quasi-projective

variety U with Q-factorial terminal singularities (An in particular) is to find some normal projective comple-

tion whose singularities are not worse than those of U , and then to run a Minimal Model Program on it. If

U is smooth then we may take a smooth completion using resolution of singularities. But in general, finding

appropriate completions from which to run the program is already a nontrivial task. Moreover, each step,

whether it is a divisorial contraction or a flip, may change the isomorphism type of the image of U . Prevent-

ing this to happen is one of the key problems. To gain more control over the successive steps of the program

we study completions which are resolutions of specific pencils of divisors on terminal Fano varieties, namely

of those pencils whose general members are Fano varieties of Picard rank one with terminal singularities.

We call them terminal rank one Fano pencils. This assumption on the one hand allows to find a completion

with mild singularities and on the other hand, it gives a chance to analyze the MMP runs in a more detail.

We introduce the notion of a “compatible thrifty resolution” of such pencils, characterized essentially by the

property that it keeps the isomorphism type of general members unchanged. We give sufficient criteria for

the existence of compatible thrifty resolutions and we show that terminal rank one Fano pencils which admit

such resolutions yield interesting Mori fiber spaces over P1.

The article is organized as follows: In Section 2 we recall basic notions concerning varieties and their

singularities in the framework of the Minimal Model Program. Section 3 reviews properties of pencils of

Weil divisors on normal varieties. Section 4 is devoted to the study of terminal rank one Fano pencils, their

resolutions and the outputs of relative MMP’s ran from these. In Section 5 we consider a class of pencils

on Fano varieties with class groups Z. It provides a big supply of terminal rank one Fano pencils admitting

compatible thrifty resolutions. Applications to the construction of Mori fiber completions of An over P1 are

given in Section 6. This section contains proofs of Theorems 1.1 and 1.4 and a series of examples.

Acknowledgements. We thank the Institute of Mathematics of Burgundy, the Saitama University and the

Institute of Mathematics of the Polish Academy of Sciences for excellent working conditions. We thank the

referees for their suggestions of improvements of the text.
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2. PRELIMINARIES

We summarize basic notions concerning varieties and their singularities in the framework of the Minimal

Model Program which are used in the article.

We use the following standard terminology: The domain of the definition of a dominant rational map

f : X 99K Y between algebraic varieties is the largest open subset dom(f) of X on which f is represented

by a morphism. Its complement is called the indeterminacy locus of f . The exceptional locus Exc(f) of a

proper birational morphism f : X → Y is the pre-image of the indeterminacy locus of the birational map

f−1 : Y 99K X. A resolution (of indeterminacy) of a rational map f : X 99K Y is a proper birational

morphism τ : X ′ → X such that f ◦ τ : X ′
99K Y is a morphism.

2A. Singularities in the context of MMP

Let X be a normal variety and let j : Xreg →֒ X be the embedding of the smooth locus. The in-

duced restriction on Picard groups j∗ : Pic(X) → Pic(Xreg) is injective and the restriction on class groups

Cl(X) → Cl(Xreg) ∼= Pic(Xreg) is an isomorphism. This gives a natural injection Pic(X) → Cl(X); see

[Gro67, Corollaire 21.6.10]. A canonical divisor of X is a Weil divisor KX on X whose class in Pic(Xreg)
is the class of the canonical invertible sheaf det(Ω1

Xreg
) ofXreg. A Weil divisor on X is called Q-Cartier if it

has a positive multiple which is Cartier. We say that X is Q-factorial if every Weil divisor on X is Q-Cartier.

We now recall some basic facts about singularities of pairs. We refer the reader to [KM98, Chapter 2]

for details. A log pair (X,D) consists of a normal variety X and a Weil Q-divisor D =
∑
diDi on it,

whose coefficients di belong to [0, 1] ∩ Q, and such that the divisor KX + D is Q-Cartier. Given a proper

birational morphism f : Y → X from a normal variety Y , we denote by E(f) the set of prime divisors E on

Y contained in the exceptional locus Exc(f) of f . We call the image of E the center of E on X.

Given a log pair (X,D) and a birational proper morphism from a normal variety f : Y → X we have a

linear equivalence of Q-divisors

KY + f−1
∗ D ∼ f∗(KX +D) +

∑

E∈E(f)

aX,D(E)E,

where aX,D(E) ∈ Q. The number aX,D(E) is called the discrepancy of E with respect to (X,D). It does

not depend on Y in the sense that if Y ′ → Y is a proper birational morphism and E′ is the proper transform
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of E on Y ′ then aX,D(E) = aX,D(E
′). The discrepancy of the log pair (X,D) is defined as

(2.1) Discrep(X,D) = inf
f,E∈E(f)

aX,D(E),

where the infimum is taken over all f : Y → X as above and all E ∈ E(f).
A log pair (X,D) is terminal if Discrep(X,D) > 0, purely log terminal (plt) if Discrep(X,D) > −1

and Kawamata log terminal (klt) if it is plt and ⌊D⌋ = 0. A normal variety X is terminal (respectively klt)

if the log pair (X, 0) is terminal (respectively klt). The property of being terminal for a variety X and being

klt for any log pair (X,D) can be verified by computing the infimum (2.1) on a single proper birational

morphism f : Y → X which is a log resolution of the log pair (X,D), that is, for which Y is smooth and

Exc(f) ∪ f−1
∗ (D) is a divisor with simple normal crossings, see [Kol13, Corollaries 2.12, 2.13].

Given a normal variety X and a closed subset Z of it, we say that X is terminal (respectively klt) in a

neighborhood of Z if there exists an open neighborhood U of Z which is terminal (respectively klt). Finally,

we say that a log pair (X,S), where S is a prime Weil divisor on X, is plt in a neighborhood of S if

there exists an open neighborhood U of S such that the log pair (U,S) is plt. Equivalently, if for every

log resolution f : Y → X of (X,S) every exceptional divisor E of f whose center on X intersects S has

discrepancy aX,S(E) > −1.

We will need the following known result.

Lemma 2.1. Let (X,S) be a log pair such that S is a prime Cartier divisor. Assume that (X,S) is plt in

a neighborhood of S. Then X is terminal in a neighborhood of S if and only if for every log resolution

f : Y → X of (X,S) every exceptional divisor E of f whose center on X meets S but is not contained in S
has positive discrepancy.

Proof. Let f : Y → X be a log resolution of (X,S). Replacing X by an open neighborhood of S, if

necessary, we can assume that the center on X of every exceptional divisor Ei of f meets S. Since S is a

prime Cartier divisor, we have f∗S = f−1
∗ (S) +

∑
ciEi, where ci is a positive integer if f(Ei) ⊆ S and

ci = 0 otherwise. Writing KY ∼ f∗(KX) +
∑
biEi we get

KY + f−1
∗ (S) ∼ f∗(KX + S) +

∑

Ei,f(Ei)6⊆S

biEi +
∑

Ei,f(Ei)⊆S

(bi − ci)Ei.

Since (X,S) is plt in a neighborhood of S, aX,S(Ei) > −1 for every Ei. It follows that for every Ei such

that f(Ei) ⊆ S we have bi = aX,S(Ei) + ci > 0. Thus X is terminal in a neighborhood of S if and only if

for every Ei such that f(Ei) 6⊆ S the discrepancy bi = aX,S(Ei) is positive. �

Let us recall from [Mat89, Chapter 6] basic properties concerning regular sequences and related notions.

Let (R,m) be a Noetherian local ring. Recall that a sequence (x1, . . . , xr) of elements of m is regular if

for every i = 1, . . . , r the element xi is not a zero divisor in R/(x1, . . . , xi−1). The depth and the (Krull)

dimension of R are defined respectively as the maximal length of a regular sequence and as the maximal

number of strict inclusions of prime ideals. The ring is called Cohen-Macaulay if m contains a regular

sequence of length dimR. Equivalently, R satisfies Serre’s conditions Si: depthR ≥ min(dimR, i), for

all i ≥ 1. The ring is regular if m contains a regular sequence of length dimR generating m. We say that a

prime ideal I ⊆ m of R is a complete intersection if it is generated by a regular sequence of length equal to

its height. A scheme X is called Cohen-Macaulay if all its local rings are Cohen-Macaulay. An irreducible

closed subscheme Y of a scheme X is called a local complete intersection in X if the sheaf of ideals of Y
is a complete intersection in all local rings of X. Finally, we say that an irreducible scheme X is a local

complete intersection if it is locally isomorphic to a local complete intersection in a smooth scheme.

Let us also recall that a normal variety X has rational singularities if for every resolution f : X̃ → X of

the singularities of X we have Rif∗OX̃
= 0 for i ≥ 1. We will use the following known facts about rational

singularities. Note that Kawamata log terminal singularities are rational, see e.g. [Ish18, Theorem 6.2.12].

Lemma 2.2 (Rational singularities). Let X be a normal variety with rational singularities. Then the follow-

ing hold:

(a) X is Cohen-Macaulay and hence every local complete intersection Y in X is Cohen-Macaluay. In

particular, Y is normal if and only if its singular locus has codimension at least 2.

(b) The group Cl(X)/Pic(X) is finitely generated.

(c) If X is projective and N is a big and nef invertible sheaf on X then H i(X,N∨) = 0 for 0 ≤ i ≤
dimX − 1.
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Proof. (a) By [Ish18, Theorem 6.2.14], X is Cohen-Macaulay. Then by [Ish18, Proposition 5.3.12], Y is

Cohen-Macaulay, too. In particular, by Serre’s criterion [Mat89, Theorem 23.8], Y is normal if and only if

it is regular in codimension 1.

(b) This is proved by reducing to the analytification and then to finiteness of singular homology of the

resolution using the exponential sequence, see [Kaw88, Lemma 1.1], cf. also [KM92, Propositions 12.1.4,

12.1.6].

(c) Since X has rational singularities, for every locally free sheaf of finite rank E on X the projection

formula and the Leray spectral sequence (see, [Har77, Exercises III.8.1, 8.3]) give natural isomorphisms

H i(X, E)
∼=
−→ H i(X̃, f∗E) for i ≥ 0. Put Ñ = f∗N . Then H i(X,N∨) ∼= H i(X̃, Ñ∨). Since Ñ is big, nef

and invertible, H i(X̃, Ñ∨) = HdimX−i(X̃,O(K
X̃
) ⊗ Ñ ) = 0 for i < dimX by Serre’s duality and the

Kawamata-Viehweg vanishing theorem for smooth varieties. �

2B. Inversion of adjunction and a Q-factorial terminalization

We recall the following version of adjunction and inversion of adjunction, see [KM98, Remark 5.47 and

Theorem 5.50], cf. [Kol13, Chapter 4] and [FA92, Chapters 16 and 17].

Lemma 2.3 (Inversion of adjunction). Let (X,S) be a log pair such that S is a normal prime Weil divisor

which is Cartier in codimension 2. Then the adjunction formula KS = (KX + S)|S holds. Furthermore,

(X,S) is plt in a neighborhood of S if and only if S is klt.

A Q-factorial terminalization of a normal quasi-projective variety X is a proper birational morphism

f : X ′ → X such that X ′ is a quasi-projective Q-factorial terminal variety and KX′ is f -nef.

Lemma 2.4 (Q-factorial terminalization). Every normal quasi-projective variety X has a Q-factorial termi-

nalization f : X ′ → X. Furthermore, the restriction of f over every Q-factorial terminal open subset of X
is an isomorphism.

Proof. By [Kol13, Theorem 1.33] there exists a proper birational morphism g : Y → X such that Y is

quasi-projective and terminal and KY is g-nef. By [Kol13, Corollary 1.37] there exists a proper birational

morphism h : X ′ → Y such that X ′ is quasi-projective terminal and Q-factorial and h is small, i.e. does not

contract any divisor. Then h ◦ g is a Q-factorial terminalization.

Given an open subset U ⊆ X, the restriction f |f−1(U) is a Q-factorial terminalization of U , so without

loss of generality we may assume that U = X. By assumption KX′ is f -nef, so the divisor KX′ − f∗KX =∑
E∈E(f) aX(E)E is f -nef. Since X ′ is Q-factorial and the latter divisor is contracted by f , the Negativity

Lemma [KM98, 3.39(1)] gives aX(E) ≤ 0 for each E ∈ E(f). Since X is terminal, we infer that E(f) = ∅,

that is, Exc(f) has codimension at least 2. But X is also Q-factorial, so [Kol96, VI.1, Theorem 1.5] implies

that Exc(f) = ∅. Thus f is an isomorphism. �

2C. Fano varieties and Mori fiber spaces

Definition 2.5 (Fano variety and its index). A Fano variety is a normal projective variety whose anti-

canonical divisor is ample (in particular, Q-Cartier).

Let X be a klt Fano variety. By the Kawamata-Viehweg vanishing theorem, see [KM98, Theorem 2.70]

or [Mat02, Theorem 5.2.7], we have H i(X,OX) = 0 for all i > 0. The linear equivalence on X coincides

with numerical and homological equivalence [IP99, Proposition 2.1.2]. In particular, PicX ∼= H2(X,Z) ∼=
NS(X). It is also known that X is simply connected [Tak00] and rationally connected [Zha06, Theorem 1].

Recall [Ful98, §2.1 and Example 19.1.4] that for a (possibly non-normal) complete algebraic variety X
the quotient NS(X) of the Picard group of X by the relation of numerical equivalence is a finitely generated

free abelian group, whose rank ρ(X) is called the Picard rank of X. For a surjective morphism of complete

varieties f : X → B we put ρ(X/B) = ρ(X)− ρ(B).
Note that a Fano variety of Picard rank one is not necessarily Q-factorial in general, see for instance

Example 4.4 below. In contrast, a Fano variety X with class group Cl(X) ∼= Z is automatically Q-factorial,

as the image of the natural inclusion Pic(X) → Cl(X) is a nontrivial subgroup of finite index. For a Fano

variety X with class group Cl(X) ∼= Z the Fano index ofX is the positive integer iX such that −KX ∼ iXH
for some ample generator H of Cl(X).

A morphism f : X → B between quasi-projective varieties is called a contraction if it is proper, surjective

and f∗OX = OB . The latter condition implies connectedness of fibers of f and in case B is normal it is

equivalent to it.
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Remark 2.6 (Contractions from varieties with ρ = 1). A projective variety of Picard rank one has only

trivial contractions. Indeed, let f : X → B be a contraction from such a variety onto a positive dimensional

variety B. Note that since f is proper and B is quasi-projective, B is projective. Let H be an effective ample

Cartier divisor on B. By Kleiman’s criterion a divisor numerically equivalent to an ample divisor is ample,

so since ρ(X) = 1, f∗H is an effective ample Cartier divisor on X. For every irreducible curve C on X,

it follows from the projection formula [Ful98, Proposition 2.3(c)] that H · f∗(C) = (f∗H) · C > 0. Thus,

f : X → B is a proper morphism which does not contract any curve, hence is a finite morphism. Since

f∗OX = OB by assumption, f is an isomorphism.

Definition 2.7 (Mori fiber spaces and completions).

(a) A Mori fiber space is a Q-factorial terminal projective variety X endowed with a contraction f : X → B
onto a lower-dimensional normal variety B such that ρ(X/B) = 1 and −KX is f -ample.

(b) Two Mori fiber spaces fi : Xi → Bi, i = 1, 2, are called weakly square birational equivalent if there

exist birational maps ϕ : X1 99K X2 and ϕ′ : B1 99K B2 such that f2 ◦ ϕ = ϕ′ ◦ f1.

(c) Given a quasi-projective variety U , a Mori fiber completion of U is a Mori fiber space whose total space

is a completion of U .

It follows from the definition that general fibers of a Mori fiber space are Fano varieties. Since the total

space is assumed to be terminal, by [Kol97, Proposition 7.7] general fibers are terminal too. We note that

weakly square birational equivalent Mori fiber spaces are square birational equivalent in the sense of [Cor00,

Definition 1.2] if the induced morphism on generic fibers is an isomorphism.

We have the following notion of rigidity of varieties. See [Che05] and [Puk13] for related results.

Definition 2.8 (Birationally rigid varieties). A Fano variety is called birationally rigid if it has no birational

maps to Mori fiber spaces other than its own birational automorphisms. It is called super-rigid if additionally

all its birational automorphisms are regular.

In particular, positive-dimensional birationally rigid varieties are non-rational. We have the following

analogous affine notions, see [CDP18].

Definition 2.9 (Affine Fano varieties). An affine Fano variety is an affine variety which admits a completion

by a purely log terminal log pair (X,S) such that X is a (normal projective) Q-factorial variety of Picard

rank one, S is prime and −(KX + S) is ample.

Definition 2.10 (Affine super-rigid Fano varieties). An affine Fano variety U is super-rigid if it satisfies the

following conditions:

(a) U does not contain Zariski open subsets which are relative affine Fano varieties over varieties of positive

dimension.

(b) For every completion (X,S) of U and every log pair (X ′, S′) as in Definition 2.9, if there exists an

isomorphism U ∼= X ′ \ S′ then it extends to an isomorphism X ∼= X ′ mapping S onto S′.

Note that A1 is the only affine Fano curve and it is super-rigid. It follows from the definition that a

super-rigid affine Fano variety of dimension ≥ 2 does not contain open A1-cylinders, that is, open subsets

isomorphic to the product of A1 with a variety of smaller dimension.

3. PENCILS AND THEIR RESOLUTIONS

We recall the correspondence between dominant rational maps ψ : X 99K P1 on a normal variety X and

linear systems of Weil divisors of projective dimension 1 on X. In the smooth case it restricts to the well-

known correspondence between such maps and one-dimensional linear systems of Cartier divisors, see e.g.

[Dol12]. For this purpose we use the correspondence between Weil divisors and coherent reflexive sheaves

of rank one, see [Ish18, Section 5.2], [Rei80] or [BS13, Appendix]. For a sheaf F on X we denote the sheaf

HomOX (F ,OX ), dual to F , by F∨.

3A. Divisorial sheaves

Let X be a normal variety and let KX be its sheaf of rational functions. For a Weil divisor D on X the

divisorial sheaf associated to D is the unique subsheaf of OX-modules of KX whose sections over every

open subset U of X are

OX(D)(U) = {f ∈ K∗
X , div(f)|U +D|U ≥ 0} ∪ {0}.



COMPLETIONS OF AFFINE SPACES INTO MORI FIBER SPACES 7

The sheaf OX(D) is a coherent reflexive sheaf of rank one. It is invertible if and only if D is Cartier. If D
is effective then OX(−D) = OX(D)∨ is the ideal sheaf ID of D, which is a coherent reflexive subsheaf

of OX of rank one. Conversely, every coherent reflexive sheaf of rank one F on X embeds into KX and

for each embedding i : F →֒ KX there is a unique Weil divisor D on X such that Im(i) = OX(D). We

henceforth use the term divisorial sheaf to refer to any coherent reflexive sheaf of rank one on X. We note

that OX(0) = OX , because on a normal variety a rational function with no poles is regular, [Mat89, Theorem

11.5]. More generally, given a divisorial sheaf F and an open subset j : U →֒ X such that codim(X\U) ≥ 2,

the natural homomorphism F → j∗(F|U ) is an isomorphism.

The correspondence D 7→ OX(D) induces an isomorphism between the class group Cl(X) of X and the

set of isomorphism classes of divisorial sheaves endowed with the group law defined by F⊗̂F ′ = (F ⊗
F ′)∨∨. In case F or F ′ is invertible, there is a canonical isomorphism F ⊗F ′ ∼= (F ⊗F ′)∨∨. The inclusion

of the smooth locus j : Xreg →֒ X induces an isomorphism

j∗ : Cl(X) → Cl(Xreg) ∼= Pic(Xreg),

whose inverse is given by associating to an invertible sheaf N on Xreg the divisorial sheaf (j∗N )∨∨ on X.

The canonical sheaf of X is ωX = (j∗ det(Ω
1
Xreg

))∨∨ ∼= OX(KX).

Example 3.1 (The quadric cone in P3). Let P be the projective cone in P3 over a smooth plane conic. It is

isomorphic to the weighted projective plane P(1, 1, 2) with weighted homogeneous coordinates x0, x1, x2;

see Section 6C. Let H = {x0 = 0}. Since H ∼= P1 is irreducible and P \H ∼= A2 has a trivial class group,

the class group of P is isomorphic to Z and is generated by H . The divisor 2H is Cartier, but H itself is not

Cartier, equivalently, the divisorial sheaf OP(H) is not invertible. Indeed, the open subset U = P\{x2 = 0}
is isomorphic to the affine quadric cone {x2−yz = 0} ⊆ A3 and the restriction of OP(H) to U is isomorphic

to the divisorial sheaf OU (D) associated to the Weil divisor D = {x = y = 0}. The latter is not Cartier,

since the ideal (x, y) = H0(U,OU (−D)) of R = C[U ] is non-principal.

Note that H0(U,OU (D)) is equal to the R-submodule of Frac(R) generated by 1 and z
x and that, putting

D′ = {z = x = 0} and s = z
x , we have div(s) = div(z) − div(x) = 2D′ − (D′ + D) = D′ − D.

In particular, s ∈ H0(U,OU (D)) and D′ ∼ D. Note also that the natural OU -linear homomorphism

OU (−D) ⊗ OU (−D) → OU (−2D) is not an isomorphism, as on global sections it gives the inclusion of

ideals (xy, y2, x2) = (y) · (x, y, z) →֒ (y).

3B. Pencils of Weil divisors

Let X be a normal variety and let ψ : X 99K P1 be a dominant rational map. Let j : U = dom(ψ) →֒ X
be the inclusion of the domain of definition of ψ and let ψU := ψ|U : U → P1. Since X is normal, X \U is a

closed subset of codimension ≥ 2 of X. Put V = H0(P1,OP1(1)). The invertible sheaf N = ψ∗
UOP1(1) on

U extends to a unique divisorial sheaf F = (j∗N )∨∨ on X and the sections ψ∗
U (s), s ∈ V , extend uniquely

to global sections of F . The obtained homomorphism ψ∗ : V → H0(X,F) is injective and its image is a

2-dimensional linear subspace L ⊆ H0(X,F).
The scheme-theoretic fibers Up = ψ∗

U (p) of ψU over the closed points p of P1 = Proj(Sym·(V )) are

linearly equivalent Cartier divisors on U for which OU (Up) ∼= ψ∗
UOP1(1). For every p ∈ P1 we denote by

Lp the scheme-theoretic closure of ψ∗
U (p) in X. Since X is normal and codimX(X \ U) ≥ 2, these are

linearly equivalent Weil divisors on X for which OX(Lp) ∼= F . Denote by IUp ⊆ OU the ideal sheaf of Up.

Then the ideal sheaf ILp ⊆ OX of Lp is equal to (j∗IUp)
∨∨ ∼= OX(−Lp) ∼= F∨.

In what follows, we call the subspace L ⊆ H0(X,F) the pencil of (Weil) divisors on X defining the

rational map ψ : X 99K P1. The divisors Lp, p ∈ P1 are called the members of L. The base scheme of the

pencil, denoted by BsL, is the scheme-theoretic intersection in X of all members of the pencil.

Proposition 3.2 (Pencils and their associated rational maps). Let X be a normal algebraic variety. There

exists a natural bijection between the set of dominant rational maps ψ : X 99K P1 and the set of equivalence

classes of pairs (F ,L), where F is a divisorial sheaf on X and L ⊆ H0(X,F) is a 2-dimensional space

of global sections generating F off a closed subset of codimension ≥ 2, where two such pairs (F ,L) and

(F ′,L′) are equivalent if there exists an isomorphism α : F → F ′ for which H0(α)(L) = L′.

Proof. We already described above how to associate to a dominant rational map ψ : X 99K P1 a pair

(F ,L) = (Fψ,Lψ) := ((j∗N )∨∨, ψ∗V ). Consider the natural homomorphism

(3.1) e: L ⊗C OX → F
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defined by restricting global sections to stalks of F . By construction, the restriction of ψ to U = dom(ψ)
is isomorphic to the pull-back by ψU : U → P1 of the canonical surjection V ⊗C OP1 → OP1(1). Thus the

sections contained in L generate F outside the indeterminacy locus X \ U of ψ, which is a closed subset of

codimension ≥ 2 of X.

Conversely, let F be a divisorial sheaf on X and let L ⊆ H0(X,F) be a 2-dimensional space of global

sections such that the support Z of the cokernel of the homomorphism (3.1) has codimension ≥ 2 in X.

Since F is divisorial and X is normal, the set Fsing of points x of X such that Fx is not a free OX,x-module

is a closed subset of codimension ≥ 2. Thus, W := W (F ,L) = X \ (Z ∪ Fsing) is an open subset of X

with a complement of codimension ≥ 2, on which e restricts to a surjection e|W : O⊕2
W

∼= L⊗COW → F|W
onto the invertible sheaf F|W . By [Har77, Proposition 7.12] there exists a unique dominant morphism

f = fF ,L : W → P1 such that e|W is equal to the pull-back by f of the canonical surjection V ⊗C OP1 →
OP1(1). This morphism determines in turn a unique rational map ψ : X 99K P1 whose domain of definition

U contains W and for which ψU |W = f .

Two pairs (F ,L) and (F ′,L′) determine the same dominant rational map ψ : X 99K P1 if and only if

their associated morphisms fF ,L : W (F ,L) → P1 and fF ′,L′ : W (F ′,L′) → P1 coincide on the open subset

W̃ = W (F ,L) ∩W (F ′,L′). This is in turn equivalent to the existence of an isomorphism α
W̃

: F|
W̃

→

F ′|
W̃

of sheaves on W̃ which maps the global sections s|
W̃

of F|
W̃

, s ∈ L, bijectively onto the global

sections s′|
W̃

of F ′

W̃
, s′ ∈ L′. Since X is normal, codimX(X \ W̃ ) ≥ 2 and F and F ′ are reflexive, α

W̃

uniquely extends to an isomorphism α : F → F ′ of sheaves over X such that H0(α)(L) = L′. So the

association (F ,L) 7→ ψF ,L induces a well-defined injective map from the set of equivalence classes of pairs

(F ,L) to the set of dominant rational maps ψ : X 99K P1. This map is also surjective, because the equality

ψ = ψFψ ,Lψ holds for every dominant rational map ψ : X 99K P1. �

By a resolution of L we mean a resolution of the associated rational map ψ. Given two linearly equivalent

Weil divisors D and D′ on X without common irreducible component, the pencil 〈D,D′〉 generated by D
andD′ is the pencil of divisors onX, unique up to an isomorphism, which hasD andD′ among its members.

Its base scheme is equal to the scheme-theoretic intersection of D and D′.

3C. The graph of a pencil

Let ψ : X 99K P1 be a dominant rational map on a normal variety X. The graph of ψ is the scheme-

theoretic closure Γ ⊆ X × P1 of the graph of the restriction of ψ to its domain of definition. We let

γ : Γ → X and p: Γ → P1 be the restrictions of the projections from X × P1 onto its factors. We obtain a

commutative diagram

(3.2) Γ
γ

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ p

��
❅❅

❅❅
❅❅

❅

X
ψ

//❴❴❴❴❴❴❴ P1

The proper birational morphism γ : Γ → X provides a natural resolution of ψ such that ψ ◦ γ = p. The next

proposition collects properties of this resolution.

Proposition 3.3 (Properties of the graph resolution). Let X be a normal variety. Let ψ : X 99K P1 be a

dominant rational map and let L be the associated pencil of divisors. Then the following hold:

(a) For every resolution τ : X ′ → X of ψ the birational map γ−1 ◦ τ : X ′
99K Γ is a proper morphism.

(b) The indeterminacy locus of ψ is equal to the support of the base scheme BsL.

(c) The morphism γ restricts to an isomorphism over X \ BsL, and γ−1(x) ∼= P1 for every x ∈ BsL.

(d) For every point p ∈ P1 the birational morphism γp : p∗(p) → Lp induced by γ is an isomorphism.

Proof. Set U = dom(ψ) and let prX : X × P1 → X denote the projection.

(a) Since ψ ◦ τ is a morphism, we have a morphism τ × (ψ ◦ τ) : X ′ → X × P1. Since X ′ is irreducible

and τ is surjective, the image is contained in Γ, so we may write this morphism as a composition of some

morphism τ ′ : X ′ → Γ with the closed immersion Γ →֒ X × P1. Both morphisms γ and τ = γ ◦ τ ′ are

proper, so τ ′ is proper too.

(b) With the notation of the proof of Proposition 3.2, ψ is represented by the morphism f : W → P1

associated to the restriction of e: L ⊗C OX → F to the open subset W = X \ (Supp(Coker e) ∪ FSing).
Let x be a point of X which is not contained in the support of some member Lp. Then ILp,x = OX,x, and



COMPLETIONS OF AFFINE SPACES INTO MORI FIBER SPACES 9

since ILp
∼= F∨, it follows that F∨

x , and hence Fx is a free OX,x-module. Thus FSing ⊆ Supp(Coker e)
and we have U = X \ Supp(Coker e) = X \ Supp(BsL).

(c) By the definition of Γ, γ restricts to an isomorphism over U . Suppose that for some x ∈ BsL,

pr−1
X (x) ∼= P1 is not fully contained in Γ. Since X is normal and γ : Γ → X is proper and birational, it

follows from [Gro61, Proposition 4.4.1] that the fibers of γ are connected, and hence γ−1(x) = pr−1
X (x)∩Γ

consists of a unique point y, and that there exists an open neighborhood V of y such that γ|V : V → X is an

open immersion. Thus the birational map γ−1 is defined at x, and so is ψ = p ◦γ−1. But this is impossible,

because x ∈ BsL = X \ U .

(d) The assertion is local over X, so we can assume without loss of generality that X is affine, say X =
Spec(A). Then ψ is induced by some rational function h ∈ Frac(A). Given a representative h = f/g, where

f ∈ A, g ∈ A \ {0}, let U(f,g) = X \ V (f, g). The restriction of ψ to U(f,g) is given by x 7→ [f(x) : g(x)].

For every point p = [λ : µ] ∈ P1 the restriction of the Cartier divisor ψ∗
U (p) to U(f,g) is the zero scheme

of the regular function s(f,g) = µf − λg. Letting S = {(f, g) ∈ A × (A \ {0}), h = f/g} we have

U =
⋃

(f,g)∈S U(f,g). The scheme-theoretic closure Lp ⊆ X of ψ∗
U (p) is defined by the vanishing of all

functions s(f,g). On the other hand, the graph Γ ⊆ X × P1
[u:v] is defined by the vanishing of all sections

s̃(f,g) = fv − gu ∈ H0(X × P1,OX×P1(1)),

and hence p∗(p) ⊆ X × P1 is defined by the vanishing of the section µu− λv and all s̃(f,g). From this, we

see directly that γp : p∗(p) → Xp is an isomorphism. �

Remark 3.4. Let X be a normal variety and let L ⊆ H0(X,F) be a pencil. The defining ideal sheaf IL of

the base scheme BsL can be described as follows. Consider the homomorphism

(3.3) ev : L ⊗C F∨ → OX

obtained from the evaluation homomorphism e: L⊗COX → F (3.1) by tensoring it with F∨ and composing

with the canonical homomorphism F ⊗OX F∨ → OX . Then the ideal sheaf J = Im(ev) is generated by

the ideal sheaves Is of the zero schemes of the sections s of F , s ∈ L. On the other hand, the members

of L are, by definition, the Weil divisors associated to the zero schemes of these sections, that is, the closed

subschemes of X with defining ideal sheaves I∨∨
s , s ∈ L. So IL is generated by the ideal sheaves I∨∨

s ,

s ∈ L. It follows that J ⊆ IL, with equality in case when F is invertible. Indeed, if F is invertible then

each Is is an invertible ideal sheaf, so Is = I∨∨
s .

For a pencil L on a normal variety X, Proposition 3.3(b) says that γ : Γ → X is a universal minimal

resolution of the dominant rational map ψ : X 99K P1 determined by L, in the sense that every resolution

of ψ factors through it. Another natural resolution of ψ is given by the blow-up τ : BlBsL(X) → X of the

base scheme of L, as shown in the following lemma. In case when members of L are Cartier, it is a classical

fact that the induced birational morphism γ−1 ◦ τ : BlBsL(X) → Γ is an isomorphism; see e.g. [Dol12,

Proposition 7.12 and §7.1.3]. This is no longer true in general for pencils whose members are not Cartier,

see Example 4.2.

Lemma 3.5 (The blowup of BsL is a resolution). Let X be a normal variety. Let ψ : X 99K P1 be a

dominant rational map determined by a pencil of divisors L. Then the blow-up τ : BlBsL(X) → X of the

base scheme of L is a resolution of ψ.

Proof. Let X̃ = BlBsL(X). To verify that ψ ◦ τ : X̃ 99K P1 is a morphism we can assume without loss

of generality that X = Spec(A) is affine and that ψ is the rational map defined by some rational function

h ∈ Frac(A). With the notation of the proof of Proposition 3.3(c), BsL is the closed subscheme of X
whose defining ideal I generated by the regular functions f and g such that (f, g) ∈ S . By definition of the

blow-up, the ideal sheaf J = τ−1(I) · OX̃ is invertible. It is generated by all regular functions τ∗f and τ∗g,

where (f, g) ∈ S . Thus for every point y0 ∈ X̃ there exists an element (f, g) ∈ S such that the stalk Jy0 is

generated by τ∗f or τ∗g, say τ∗f , the situation being symmetric for τ∗g. It follows that there exists an open

neighborhood V ⊆ X̃ of y0 and a regular function g̃ on V such that τ∗g|V = g̃τ∗f |V . On this neighborhood

the composition ψ ◦ τ : X̃ 99K P1 is given by

y 7→ [(τ∗f)(y) : (τ∗g)(y)] = [1 : g̃(y)],

so y0 ∈ dom(ψ ◦ τ). Thus ψ ◦ τ : X̃ 99K P1 is a morphism, and hence τ : X̃ → X is a resolution of

ψ : X 99K P1. �
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4. TERMINAL RANK ONE FANO PENCILS AND ASSOCIATED MORI FIBER SPACES

Our strategy to construct Mori fiber completions of affine spaces is to use pencils of Weil divisors on

normal projective completions of An’s and to produce the desired Mori fiber spaces as outputs of relative

MMP’s ran from suitable resolutions of these pencils. For this approach to work we need in particular to

find properties of a variety X and of the members of the pencil whose combination guarantees that a specific

open subset is preserved under appropriate choices of resolutions and relative MMP’s.

4A. Q-factorial terminal resolutions

Let X be a normal variety. Let L be a pencil of divisors determining a dominant rational map ψ : X 99K

P1. Let τ : X ′ → X be a resolution of L, that is, a proper birational morphism from a variety such that ψ ◦ τ
is a morphism. By Proposition 3.3 there exists a unique morphism Γ(τ) : X ′ → Γ such that τ = γ ◦ Γ(τ)
and a commutative diagram

(4.1) X ′
Γ(τ)

//

τ
  ❆

❆❆
❆❆

❆❆
❆ Γ

γ

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ p

��
❄❄

❄❄
❄❄

❄

X
ψ

//❴❴❴❴❴❴❴ P1

where (Γ, γ,p) are as in (4.1). Let ν : Γ̃ → Γ be the normalization of Γ. We call Γ̃ the normalized graph of

ψ. If X ′ is normal then we have Γ(τ) = ν ◦ Γ̃(τ) for some unique birational proper morphism

Γ̃(τ) : X ′ → Γ̃.

Definition 4.1 (A thrifty resolution). Let X be a normal variety and let τ : X ′ → X be a resolution of a

pencil L on X.

(a) We call the image δ(τ) ⊆ P1 of ExcΓ(τ) by p ◦ Γ(τ) the discrepancy locus of τ .

(b) We say that τ is Q-factorial terminal if X ′ is Q-factorial terminal.

(c) We say that a Q-factorial terminal resolution τ is thrifty if Γ̃(τ) : X ′ → Γ̃ is a Q-factorial terminalization.

The discrepancy locus is a rough measure of how much a given resolution of ψ : X 99K P1 differs from

the (minimal) graph resolution.

Example 4.2 (The affine cone in A4). On the affine cone X = {xv − yu = 0} ⊆ A4 the Weil divisors

L0 = {u = v = 0} and L∞ = {x = y = 0} = L0 + div(x/u) generate a pencil L, whose base scheme

BsL is equal to the isolated singular point p = (0, 0, 0, 0) ∈ X. Since the latter has codimension 3 in X, L0

is not Q-Cartier. In particular, X is not Q-factorial. The associated rational map is

ψL : X 99K P1
[w0:w1]

, (x, y, u, v) 7→ [u : x] = [v : y].

Its graph Γ is isomorphic to the sub-variety of X × P1
[w0:w1]

defined by the equations

xw0 − uw1 = 0 and yw0 − vw1 = 0.

The morphism p: Γ → P1 is a locally trivial A2-bundle, so Γ is smooth. The morphism γ : Γ → X is a

thrifty Q-factorial terminal resolution of L with an empty discrepancy locus. It is a small resolution of the

singularity p ∈ X with the exceptional locus consisting of a single curve γ−1
L (p) ∼= P1

[w0:w1]
. It can be also

described as the blow-up of the ideal sheaf of L0.

On the other hand, the blow-up τL : X̃ → X of BsL = {p} is a resolution of the singularity of X
with exceptional divisor τ−1

L (p) ∼= P1 × P1. In particular, it is a Q-factorial terminal resolution of L. The

birational proper morphism τ ′ := Γ(τL) : X̃ → Γ contracts τ−1
L (p) onto γ−1(p). Since the proper transform

by τ ′ of every closed fiber of p: Γ → P1 is isomorphic to the blow-up of the origin in A2 the discrepancy

locus of τL is equal to P1.

A Q-factorial terminal resolution τ : X ′ → X with a finite discrepancy locus induces isomorphisms

between general fibers of p: Γ → P1 and their proper transforms on X ′. The latter are general fibers of

p ◦ Γ(τ) : X ′ → P1, and since X ′ is terminal, they are terminal varieties by [Kol97, Proposition 7.7]. On

the other hand, by Proposition 3.3(d) the fibers of p: Γ → P1 are isomorphic to the members of the pencil

L determining ψ : X 99K P1. The terminality of general members of L is thus a necessary condition for the

existence of a Q-factorial terminal resolution of L. This motivates the following definition:
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Definition 4.3 (A terminal Q-factorial pencil). A terminal pencil (a Q-factorial terminal pencil) on a normal

variety is a pencil whose general members are terminal (respectively, Q-factorial terminal).

In contrast to terminality, the Q-factoriality of general members of L is not necessary for the existence of

a Q-factorial terminal resolution of ψ : X 99K P1, as illustrated by the following example.

Example 4.4 (Q-factoriality: general vs generic). Let X = P4
[x:y:z:t:w] and let F and H be the projective

cone over the smooth conic {xy− z2 = 0} ⊆ P2
[x:y:z] and the hyperplane {t = 0}, respectively. Denote by L

be the pencil generated by F and 2H . A general member of L is isomorphic to the projective cone Z in P4

over the quadric surface {xy − z2 + t2 = 0} ⊆ P3. The blowup of the vertex is smooth and the exceptional

divisor has discrepancy 1, so Z is a terminal Fano variety. But it is not Q-factorial. Indeed, its class group is

isomorphic to Z ⊕ Z and is generated for instance by the non-Q-Cartier Weil divisor {x = t − z = 0} and

the hyperplane section Z ∩ {w = 0}.

On the other hand, the graph of the rational map

ψ : X 99K P1, [x : y : z : t : w] 7→ [xy − z2 : t2]

determined by L is isomorphic to the subvariety Γ ⊆ X × P1
[u0:u1]

with equation (xy − z2)u1 + t2u0 = 0.

The generic fiber of p: Γ → P1 is isomorphic to the projective cone Y ⊆ P4
C(λ) over the quadric threefold in

P3
C(λ) with equation xy − z2 + λt2 = 0, where λ = u0/u1. As a variety over C(λ), Y is factorial, with the

class group Cl(Y ) = Pic(Y ) ∼= Z generated by the hyperplane section {w = 0}. It follows that Γ is factorial

(in particular Q-factorial), with the class group generated by the proper transform of H and the hyperplane

section {w = 0}.

By the following criterion, on projective varieties the terminality of a pencil is equivalent to the existence

of one terminal member.

Lemma 4.5 (One terminal member is sufficient). A pencil on a normal projective variety which has at least

one terminal (Q-factorial terminal) member is a terminal (respectively Q-factorial terminal) pencil.

Proof. Since X is projective and P1 is a smooth curve, p: Γ → P1 is a flat projective morphism. By

Proposition 3.3(d), γ : Γ → X induces isomorphisms between scheme-theoretic fibers of p and members of

L. Assume that for some p ∈ P1, Lp is terminal. Then p∗(p) is terminal and so [Ish18, Theorem 9.1.14]

implies that general fibers of p, and hence general members of L, are terminal. As a consequence, a general

fiber of p has rational singularities and its singular locus has codimension at least three. By [KM92, Theorem

12.1.10] the Q-factoriality of fibers of p is then an open condition on the set of closed points of P1. So if

Lp is in addition Q-factorial then general fibers of p, and hence the general members of L, are Q-factorial

terminal. �

We now relate properties of members of a pencil in a neighborhood of the base locus to global properties

of the graph of its associated rational map in a neighborhood of the exceptional locus of the graph resolution.

Proposition 4.6 (Singularities of the graph). Let L be a terminal pencil on a normal variety X and let Y be

a member of L. Put Y ′ = γ−1
∗ Y . Then the following hold:

(a) If Y is normal then Γ is normal in an open neighborhood of Y ′.

(b) If Y is klt and KΓ is Q-Cartier in an open neighborhood of Y ′ then Γ is terminal in an open neighbor-

hood of Y ′.

(c) If Y is klt, smooth in codimension 2 and Q-factorial then Γ is Q-factorial terminal in an open neighbor-

hood of Y ′.

Proof. By Proposition 3.3(d), γ restricts to an isomorphism over each member of L. In particular, since L
is a terminal pencil, general fibers of p are terminal. In all three cases Y is normal and Y ′ = p∗(p(Y ′)) is a

prime Cartier divisor on Γ. By [Gro65, Corollaire 5.12.7] there exists a normal open neighborhood V ⊆ Γ
containing Y ′. This proves (a).

(b) By Lemma 2.3 the log pair (V, Y ′) is plt in a neighborhood of Y ′. Let π : V ′ → V be a log resolution

of this pair and let G be any exceptional prime divisor of π whose image is not contained in a fiber of p |V .

Since π induces a log resolution of general fibers of p |V and the latter are terminal, it follows that G has

positive discrepancy; see e.g. [Kol97, Proposition 7.7]. This implies by Lemma 2.1 that V , and hence Γ, is

terminal in an open neighborhood of Y ′.

(c) Since klt singularities are Cohen-Macaulay by Lemma 2.2(a), Y ′ satisfies Serre’s condition S3. Since

Y ′ is Cartier, arguing as in the proofs of [KM92, Corollary 12.1.9, Lemma 12.1.8], we conclude that for
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every Weil divisor D on V there exists an open neighborhood V (D) ⊆ V of Y ′ such that D|V (D) is Q-

Cartier. As in (b) we get a terminal open neighborhood W ⊆ V (KV ) of Y ′. Since terminal singularities are

rational, the group Cl(W )/Pic(W ) is finitely generated by Lemma 2.2(b). The intersection of W and the

open neighborhoods V (Di), where the Di range through a finite set of Weil divisors whose classes generate

Cl(W )/Pic(W ), is then a Q-factorial terminal open neighborhood of Y ′. �

Notation 4.7. For a terminal pencil L on a normal variety X and a finite subset δ ⊆ P1 we put Γδ =
p−1(P1 \ δ) ⊆ Γ and Xδ = X \

⋃
p∈δ Lp ⊆ X. We define the following property:

(TQδ) For every p ∈ P1 \ δ the member Lp is a prime divisor and on some open neighborhood of BsL in

Lp it is klt, smooth in codimension 2 and Q-factorial.

Note that for a pencil L whose general members are Q-factorial terminal the condition (TQδ) holds for

the finite set δ ⊂ P1 consisting of points p for which Lp is not Q-factorial terminal.

Corollary 4.8 (Controlling the discrepancy locus). Let L be a terminal pencil on a normal variety X and

let δ ⊂ P1 be a finite set. If Xδ is Q-factorial terminal and (TQδ) holds then Γδ is Q-factorial terminal.

Consequently, the discrepancy locus of every thrifty Q-factorial terminal resolution of L is contained in δ.

Proof. Let E = γ−1(BsL)red be the exceptional locus of γ. By assumption Γδ \ E ∼= Xδ \ BsL is Q-

factorial terminal. On the other hand, it follows from Proposition 4.6 that for every p ∈ P1 \δ the open set Γδ
is Q-factorial and terminal in a neighborhood of the intersection of E with the proper transform of Lp. Since

the union of such neighborhoods is an open neighborhood of E ∩ Γδ in Γδ, it follows that Γδ is Q-factorial

terminal. The second assertion follows from Lemma 2.4. �

4B. Terminal rank one Fano pencils and relative MMPs

In this subsection we consider pencils of Weil divisors whose general members are terminal Fano varieties

of Picard rank one and the outputs of relative MMP’s ran from their resolutions. We keep the notation of

subsection 4A.

Definition 4.9 (A terminal rank one Fano pencil). Let X be a normal projective variety of dimension at least

2. A terminal rank one Fano pencil on X is a pencil L whose general members are terminal Fano varieties

of Picard rank one. The degeneracy locus of L is the finite set δ(L) ⊂ P1 consisting of points p such that the

member Lp is either reducible or has Picard rank strictly higher than one.

It is known that general fibers of Mori fiber spaces can have Picard rank higher than one (see e.g. Exam-

ple 6.2). But the additional assumption that the Picard rank of general fibers is one, which we impose in

Definition 4.9, allows to control the effect of running relative MMP’s on resolutions of such pencils more

easily. Even with this restriction there is still a large natural geometric supply of pencils that can be used to

construct Mori fiber completions of An’s, see Section 6.

Definition 4.10 (A compatible thrifty resolution). Let L be a terminal rank one Fano pencil on a normal

projective variety. A compatible thrifty resolution of L is a thrifty Q-factorial terminal resolution of L (see

Definition 4.1) whose discrepancy locus is contained in the degeneracy locus of L.

Example 4.11 (Simple low-dimensional examples).

(a) A terminal rank one Fano pencil on P2 consists of lines and or conics, and the usual minimal resolution

of base points of the pencil is a compatible thrifty resolution.

(b) Since P2 is the only terminal del Pezzo surface of Picard rank one, the only terminal rank one Fano

pencils on P3 are the pencils of planes. Clearly, the base scheme of every such pencil is a line and its

blowup gives a compatible thrifty resolution.

Let X0 be a Q-factorial terminal projective variety and let f0 : X0 → P1 be a surjective morphism. Recall

[KM98, 3.31, Example 2.16] that a KX0
-MMP ϕ : X0 99K Xm = X̂ relative to f0 consists of a finite

sequence ϕ = ϕm ◦ · · · ◦ ϕ1 of birational maps

Xk−1
ϕk //❴❴❴❴❴ Xk

P1
��fk−1

❄❄❄❄❄❄ �� fk

☎☎☎☎☎☎
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between Q-factorial terminal projective varieties, where each ϕk is associated to an extremal ray of the

closure NE(Xk−1/P1) of the relative cone of 1-cycles of Xk−1 over P1. The morphisms fk : Xk → P1 are

the induced surjections. Each ϕk is either a relative divisorial contraction or a flip whose flipping and flipped

curves are contained in fibers of fk−1 and fk. We say that a relative MMP terminates if either KX̂/P1 is

fm-nef or if fm factors through a Mori fiber space given by a contraction of a extremal ray in NE(Xm/P1).

Proposition 4.12 (Mori Fiber completions from pencils with compatible resolutions). Let L be a terminal

rank one Fano pencil on a normal projective variety X and let ψL : X 99K P1 be the associated dominant

rational map. Assume that L has a compatible thrifty resolution τ : X ′ → X. Then there exists a KX′-MMP

ϕ : X ′
99K X̂ relative to ψL ◦ τ : X ′ → P1 which terminates. Furthermore, every terminating KX′-MMP

relative to ψL ◦ τ restricts to an isomorphism over P1 \ δ(L) and its output is a Mori fiber space over P1.

Proof. Put X ′ = X0 and f0 = ψL ◦ τ : X0 → P1. Since general fibers of f0 are Fano varieties, their

canonical divisors are not pseudo-effective, hence KX0
is not pseudo-effective over P1. This implies that the

output f̂ = fm : X̂ → P1 of any KX0
-MMP ϕ : X0 99K X̂ relative to f0 : X0 → P1 that terminates, factors

through a Mori fiber space g : X̂ → T over a normal projective variety T given by the contraction of some

extremal ray of NE(X̂/P1). The termination of at least one such relative MMP is guaranteed by [BCHM10,

Corollary 1.3.3].

We show by induction that for every k ∈ {1, . . . ,m} the birational map ϕk : Xk−1 99K Xk restricts to

an isomorphism over P1 \ δ(L). Let σ : Xk−1 → Y be the birational extremal contraction associated to

some extremal ray in NE(Xk−1/P1) and let C be a curve contracted by σ. Since the extremal ray lies in

NE(Xk−1/P1), C is contained in some fiber f∗k−1(p), p ∈ P1. Note that by the rigidity lemma [KM98,

Lemma 1.6], σ does not contract f∗k−1(p). By definition of a terminal rank one Fano pencil and of a com-

patible thrifty resolution, for every p ∈ P1 \ δ(L) the fiber f∗0 (p), and hence by induction the fiber f∗k−1(p)
endowed with its reduced structure is a projective variety of Picard rank one. By Remark 2.6 the restriction of

σ to f∗k−1(p) is an isomorphism. It follows that the exceptional locus of σ is contained in fibers of fk−1 over

δ(L), hence that ϕk restricts to an isomorphism over P1 \ δ(L). Finally, since general fibers of f̂ : X̂ → P1

have Picard rank one, f̂ : X̂ → P1 cannot be decomposed into a Mori fiber space g : X̂ → T over a base

T → P1 of positive relative dimension, hence f̂ : X̂ → P1 itself is a Mori fiber space. �

Corollary 4.13. Let X be a normal projective variety and let L be a terminal rank one Fano pencil on

X that admits a compatible thrifty resolution. Then Xδ(L) \ BsL (see Notation 4.7) admits a Mori fiber

completion π : V → P1. Furthermore if p ∈ P1 \ δ(L) then the scheme-theoretic fiber π∗(p) is isomorphic

to the member Lp of L.

Proof. Let τ : X ′ → X be a compatible thrifty resolution of L. Put τ ′ = Γ(τ) and let ϕ : X ′
99K V be

a KX′-MMP relative to p ◦ τ ′ : X ′ → P1 which terminates. By Proposition 4.12, V has a structure of a

Mori fiber space π : V → P1. The desired open embedding is given by the restriction to Xδ(L) \ BsL of the

birational map ϕ ◦ (γ ◦ τ ′)−1 : X 99K V . Indeed, the birational map γ−1 : X 99K Γ induces an isomorphism

between Xδ(L) \ BsL and Γδ(L) \ E. On the other hand, since by the definition of a compatible thrifty

resolution the image of Exc(τ ′) by p ◦τ ′ : X ′ → Γ → P1 is contained in δ(L), the birational map (τ ′)−1

restricts to an isomorphism over p−1(P1 \ δ(L)) = Γδ(L). It follows in turn from Proposition 4.12 that the

rational map ϕ◦ (τ ′)−1 : Γ 99K V restricts to an isomorphism over Γδ(L). The second assertion follows from

Proposition 3.3. �

The next example illustrates the process of taking a compatible thrifty resolution of a terminal rank one

Fano pencil and then running a relative MMP as above. It shows in particular that different runs of the MMP

may lead to different Mori fiber completions.

Example 4.14 (Mori fiber completions of A2 from pencils). Let L be a pencil on P2 = Proj(C[x, y, z])
generated by a smooth conic C and twice a line H tangent to C . Up to a projective equivalence we may

assume that C = {xz − y2 = 0} and H = {x = 0}. The graph of ψL is the surface Γ ⊆ P2 × P1
[u:v]

defined by the bi-homogeneous equation (xz − y2)v − x2u = 0. It is normal and its unique singular point

p = ([0 : 0 : 1], [1 : 0]) is supported at the intersection of the proper transform of H with the exceptional

divisor E ∼= P1 of γ = pr1 : Γ → P2. The singular point is a cyclic quotient singularity of type A3. Let

τ ′ : X ′ → Γ be the minimal resolution of the singularity of Γ. Then τ = γ ◦ τ ′ is a compatible thrifty

resolution of L. The exceptional locus of τ ′ is a chain of three smooth rational curves F0, F , F1 with self-

intersection numbers equal to −2, having F as its middle component. The proper transforms E′ and H ′ of



COMPLETIONS OF AFFINE SPACES INTO MORI FIBER SPACES 14

E and H in X ′ are smooth rational curves with self-intersection −1, and they intersect Exc(τ ′) transversally

along the curves F0 and F respectively.

The KX′-MMP relative to f ′ = p ◦ τ ′ : X ′ → P1 first contracts H ′, then the image of F and finally

either the image of F0 or the image of F1. The resulting Mori fiber space π : V → P1 is thus isomorphic to

ρ0 = pr2 : F0 = P1 × P1 → P1 in the first case and to the Hirzebruch surface ρ1 : F1 → P1 in the second

case. The first case yields an open embedding of A2 = P2 \ H into F0 as the complement of the proper

transforms of E and F1, which are respectively a section with self-intersection number 0 and a fiber of ρ0.

In the second case we obtain an open embedding of A2 into F1 as the complement of the proper transforms

of E and F0, which are respectively the negative section and a fiber of ρ1.

5. OBTAINING MORI FIBER COMPLETIONS FROM SPECIAL PENCILS

We now consider a class of pencils to which the methods of Section 4 apply. A polarized (Q-factorial)

pair (X,H) is by definition a pair consisting of a normal projective (Q-factorial) variety X of dimension at

least 2 and an ample prime Weil divisor H on X.

Definition 5.1 (H-special pencils). Let (X,H) be a polarized Q-factorial pair. An H-special pencil on X
is a pencil L which satisfies the following properties:

(a) dH is a member of L for some integer d ≥ 1.

(b) The base locus BsL is irreducible.

(c) If d = 1 then the base scheme BsL is smooth or its support is contained in Sing(H).

5A. Integrity of members

Lemma 5.2. Let (R,m) be a noetherian integral local ring and let f ∈ m be a nonzero element such that

the ring R/(f) is regular. Then R is regular and for every h ∈ m
2 the ring R/(f + h) is regular.

Proof. Let π : R → R/(f) be the quotient morphism. Since R/(f) is regular, f /∈ m
2 and the maximal

ideal π(m) is generated by a regular sequence π(a1), . . . , π(an), where ai ∈ m and n = dimR/(f). It

follows that m is generated by the regular sequence f, a1, . . . , an, hence that R is regular. Furthermore,

m
2 ⊆ (f2) + (a1, . . . , an), so for some v ∈ R we have h − vf2 ∈ (a1, . . . , an). Since elements in 1 + m

are invertible in R, we get (f + h, a1, . . . , an) = (f(1 + vf), a1, . . . , an) = m. It follows that the images

of a1, . . . , an under the quotient homomorphism R → R/(f + h) form a regular sequence which and they

generate the maximal ideal of R/(f + h). Thus, R/(f + h) is regular. �

Lemma 5.3 (Integrity and smoothness of members). Let L be anH-special pencil on a polarized Q-factorial

pair (X,H). Assume that some member of L is smooth and Cartier at some point x ∈ BsL and that in case

H is a member of L, x ∈ SingH . Then every member of L not supported on SuppH is a prime divisor

which is smooth and Cartier at x.

Proof. By assumption L has a member dH for some positive integer d and a member F 6= dH which is

smooth and Cartier at x ∈ S = (BsL)red = (F ∩ H)red. Any two members of L differ by a principal

divisor, so we infer that all members of L are Cartier at x. Let m be the maximal ideal of the local ring OX,x

and let f, h ∈ m be generators of the ideals of F and dH in OX,x, respectively. Since F is smooth at x,

by Lemma 5.2, f ∈ m \ m2 and OX,x is regular. If d > 1 then h ∈ m
2. If d = 1 then by assumption x is

a singular point of H , so by the Jacobian criterion in OX,x the residue class of h in m/m2 is trivial, hence

again h ∈ m
2.

The variety X is projective and the divisor H is ample, so since F is Q-Cartier, S is a closed subset of

Supp(H) of pure codimension 1. Let Y be any member of L other than dH . Write Y =
∑r

i=1Di, where

Di are prime divisors. Each Di is Q-Cartier and H is ample, so (Di ∩H)red has pure codimension 1 in H .

But (Di ∩H)red ⊆ (Y ∩H)red = S and S is irreducible, so (Di ∩H)red = S for each i. The ideal of Di in

OX,x is thus contained in m for every 1 ≤ i ≤ r, and hence the ideal of Y is contained in m
r. On the other

hand, the ideal of Y in OX,x is generated by f + th for some t ∈ C. Since f ∈ m \m2 and h ∈ m
2, we have

f + th ∈ m \m2. Thus r = 1 and so Y is a prime divisor, which by Lemma 5.2 is smooth at x. �

In Lemma 5.3 the assumption that the base locus of L is irreducible and that L has a member which is

smooth at some point of BsL are both necessary to ensure primeness of all members of L other than dH .

Similarly for the additional assumption in case d = 1, where H is itself a member of L, that Supp(BsL)
contains a singular point of H . This is illustrated by the following examples.
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Example 5.4 (Failure of integrity).

(a) Let L be a pencil on P2 generated by a smooth conic C and twice a line H meeting C at two distinct

points. The sum of two lines tangent to C at those points is a reducible member of L. Similarly, the

pencil in P3 generated by the projective cones over C and 2H has a reducible member consisting of the

union of two planes. In the latter case the base locus is reducible but connected.

(b) Let L be a pencil on P2 generated by a nodal cubic curve C and 3H , whereH is the line tangent to one of

the two branches of C at its singular point p = (BsL)red. Then every member of the pencil is singular at

p and L has a reducible member. Indeed, up to a projective equivalence we have C = {y2z = x2(x−z)},

H = {x = 0} and p = [0 : 0 : 1]. Then the members of L are L[a:b] = {a(x2 + y2)z = bx3} and L[1:0]

is the union of three distinct lines through p.

(c) Let L be a pencil on P2 generated a smooth conic H and some other smooth conic meeting H in one

point p only. The pencil has a non-reduced member supported on the line tangent to both conics at p.

Corollary 5.5. Let L be an H-special pencil on a polarized Q-factorial pair (X,H). In case H is a member

of L and Supp(BsL) * SingH assume additionally that Cl(X) = Z〈H〉. If L has a member which is

smooth and Cartier on some neighborhood of BsL then every member of L other than dH is a prime divisor

which is smooth and Cartier on some neighborhood of BsL.

Proof. By assumption L has dH as a member for some positive integer d. Put S = (BsL)red. We may

assume that d = 1 and S * SingH , as otherwise the corollary follows from Lemma 5.3. Then every

member of L is prime, because by assumption Cl(X) = Z〈H〉 in this case. Moreover, by the definition of

an H-special pencil (see Definition 5.1(c)), the base scheme BsL is smooth, hence in particular reduced.

Then for every member Y 6= H of L we have S = BsL = Y ∩ H scheme-theoretically. Let m be

the maximal ideal of the local ring OX,x at a point x ∈ S. Then the ring OS,x is regular and isomorphic to

OX,x/(y, h) = (OX,x/(y))/(h) where y and h are generators of the ideals of Y andH in OX,x, respectively.

Since Y ∼ H is prime, the ring OX,x/(y) is integral and its quotient by (h) is regular. So OX,x/(y) is regular

by Lemma 5.2, that is, Y is smooth at x. �

5B. H-special pencils of Cartier divisors

Recall (Definition 2.5) that for a Fano variety X for which Cl(X) ∼= Z〈H〉, where H is an ample divisor,

the index of X is the unique integer iX for which −KX ∼ iXH .

Lemma 5.6. Let X be a Fano variety with the class group Cl(X) ∼= Z〈H〉 and let Y ∼ dH be a normal

prime divisor on X. If Y is Cartier in codimension 2 and d < iX then Y is a Fano variety.

Proof. Since Cl(X) ∼= Z, X is Q-factorial, so KX + Y is Q-Cartier. Since Y is normal and Cartier in

codimension 2, the adjunction formula, Lemma 2.3, implies that −KY = −(KX +Y )|Y is an anticanonical

divisor on Y . We have iX > d, so the divisor −(KX+Y ) ∼ (iX−d)H is ample, hence −KY is ample. �

It is more difficult to provide uniform conditions which ensure that a given member of an H-special pencil

has Picard rank one. For pencils of Cartier divisors on mildly singular varieties we can rely on the following

result for Picard groups proven in [Gro68, Exposé XII, Corollary 3.6].

Lemma 5.7 (Grothendieck-Lefschetz theorem). Let Y be an ample effective Cartier divisor on a normal

variety X. Assume that H i(Y,OX(−ℓY )|Y ) = 0 for i = 1, 2 and every ℓ > 0, and that X \ Y is a local

complete intersection. Then the restriction homomorphism PicX → PicY is an isomorphism.

Corollary 5.8 (Finding terminal Fano pencils of rank one). Let X be a Fano variety of dimension at least

4 whose singularities are rational and whose class group is generated by a prime Weil divisor H . Let

d ∈ {1, 2, . . . , iX − 1} and let L ⊆ H0(X,OX(dH)) be an H-special pencil of Cartier divisors such that

X \ BsL is a local complete intersection and which has a terminal member smooth in a neighborhood of

BsL. Then L is a terminal rank one Fano pencil and every member of L other than dH is non-degenerate.

Proof. Since H generates Cl(X), X is in particular Q-factorial and H is ample, so the pair (X,H) is

polarized Q-factorial. Since L has a terminal member and d < iX , general members of L are terminal Fano

varieties by Lemma 4.5 and Lemma 5.6. By Corollary 5.5 every member Y of L other than dH is prime. By

assumption the divisor Y is Cartier and, since Cl(X) ∼= Z, it is necessarily ample. Then OX(Y ) is an ample

invertible sheaf, so we have exact sequences

0 → OX(−(ℓ+ 1)Y ) → OX(−ℓY ) → OX(−ℓY )|Y → 0 for every ℓ > 0.
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Since OX(Y ) is ample, by [SS85, Corollary 7.67] (see also Lemma 2.2(c)), we have H i(X,OX (−ℓY )) = 0
for every i ≤ dimX − 1 and ℓ > 0. Since dimX ≥ 4, the associated long exact sequence of cohomology

gives H i(Y,OX (−ℓY )|Y ) = 0 for every i = 1, 2 and ℓ > 0. Since X \ Y is contained in X \BsL, Lemma

5.7 implies that Pic(Y ) ∼= Pic(X) ∼= Z. �

Combining the above results we obtain the following theorem.

Theorem 5.9 (Mori fiber completions fromH-special pencils). LetX be a Fano variety of dimension at least

4 whose singularities are rational and whose class group is generated by a prime Weil divisor H . Assume

that X \H is terminal and that for some d ∈ {1, 2, . . . , iX − 1} there exists a Cartier divisor F ∼ dH other

than dH for which the following hold:

(a) F is terminal,

(b) F ∩H is irreducible and contained in Freg,

(c) X \ (F ∩H) is a local complete intersection,

(d) If d = 1 then F ∩H is either a smooth scheme or its support is contained in Sing(H).

Then X \H admits a Mori fiber completion π : V → P1 such that all members of the pencil L = 〈F, dH〉
other than dH appear as fibers of π.

Proof. The pair (X,H) is a polarized Q-factorial pair. Since F is Cartier, the assumptions (b) and (d) imply

that L is an H-special pencil and on some neighborhood of BsL the divisor F is smooth, in particular

Q-factorial. Let ψL : X 99K P1 be the dominant rational map determined by L. By Corollary 5.8, L is a

terminal rank one Fano pencil with degeneracy locus contained in {(ψL)∗H}. Since by Corollary 5.5 every

member of L other than dH is smooth in a neighborhood of Supp(BsL), property (TQδ) (see Notation 4.7)

holds for δ = {(ψL)∗H}. Since X \H is Q-factorial and terminal by assumption, Corollary 4.8 implies that

every thrifty Q-factorial terminal resolution of L is compatible, that is, its degeneracy locus is contained in

δ. The assertion then follows from Corollary 4.13. �

As a corollary we obtain Mori fiber completions of affine varieties of dimension ≥ 4 whose general fibers

are completions of affine Fano varieties in the sense of Definition 2.9.

Corollary 5.10 (Affine Fano fibers). In the setting of Theorem 5.9 assume further that F is Q-factorial, that

(F ∩ H)red is klt and that d ≤ iX − 2. Let π : V → P1 be the Mori fiber completion of the affine variety

U = X \H associated to the pencil L = 〈F, dH〉. Then the general fibers of π|U : U → P1 are affine Fano

varieties.

Proof. Let B = V \ U . For a general point p ∈ P1, let Vp = π∗p and let Bp denote the reduction of

the restriction of B to Vp as a Weil divisor. By Lemma 4.5, Vp is a Q-factorial terminal Fano variety of

Picard rank one. On the other hand, it follows from the proof of Corollary 4.13 that the log pair (Vp, Bp)
is isomorphic to the log pair (Lp, (Lp ∩ H)red). Since (Lp ∩ H)red = (F ∩ H)red is irreducible and klt,

the log pair (Vp, Bp) is plt by Lemma 2.3. We have −(KLp + (Lp ∩H)red) = (−iX + d)H|Lp +H|Lp by

adjunction, so −(KVp +Bp) is ample. �

6. MORI FIBER COMPLETIONS OF AFFINE SPACES OVER P1

We now apply our results to the construction of Q-factorial terminal Mori fiber completions of affine

spaces over P1. We begin with a review of some known examples.

6A. Some known examples

Example 6.1 (Examples of product type). For every n ≥ 1 and every Q-factorial terminal Fano variety X
of Picard rank one which is completion of An, the projection π = pr2 : V = X × P1 → P1 is a Mori fiber

completion of An × A1. For instance, we can take X = Pn, which is the only possibility for n = 1, 2.

For n = 3, smooth Fano threefolds of Picard rank one which are completions of A3 have been classified

by Furushima [Fur93] (see also [Pro91]). These are: P3, the smooth quadric threefold in P4, the quintic

del Pezzo threefold in P6, and a four dimensional family of prime Fano threefolds of genus 12. In higher

dimensions, other examples of smooth Fano completions of An of Picard rank one are the quintic del Pezzo

fourfold [Pro94, Theorem 3.1] in P7 and Fano-Mukai fourfolds of genus 10 [PZ18].
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There are several examples of Mori fiber completions of A3 which are not of product type as in Example

6.1. For instance, for every d ∈ {1, 2, 3, 4, 5, 6, 8, 9} there exists a Mori fiber completion π : V → P1 of A3,

whose general fibers are smooth del Pezzo surfaces of degree d. For d = 9 we have only the locally trivial

P2-bundles over P1. A classical example with d = 8 is recalled below. An example with d = 7 does not

exist, because the generic fiber of the corresponding del Pezzo fibration π : V → P1 would be a minimal

smooth del Pezzo surface of degree 7 and such surfaces do not exist over a field of characteristic zero, see

[Man86, Theorem 29.4]. An example with d = 6 can be found in [Pro16, Theorem 1.2] and [Fuk19]. A

construction for d = 5 is given in Example 6.3 below. For examples with d = 1, 2, 3, 4 see [DK18, Theorem

2]. For d ≤ 6 general fibers of the restriction of π : V → P1 to A3 are not isomorphic to A2. Indeed,

otherwise the generic fiber of π : V → P1 would be a minimal smooth del Pezzo surface of degree d ≤ 6
over the function field C(P1), containing a Zariski open subset isomorphic to A2

C(P1), which is impossible by

[DK18, Proposition 13]. In particular, none of these completions is of product type. Note also that for d 6= 9
general fibers of the corresponding Mori fiber spaces are smooth del Pezzo surfaces of Picard rank higher

than one, hence are not associated to any terminal rank one Fano pencil (cf. Example 4.11).

Example 6.2 (A completion of A3 into a del Pezzo fibration of degree 8). Let Q ⊆ P4 be a smooth quadric

threefold, let H be a hyperplane section of Q cut by a tangent hyperplane and let F be a smooth hyperplane

section of Q such that the scheme-theoretic intersection C = F ∩H is irreducible. Then H is the quadric

cone H ∼= P(1, 1, 2), F ∼= P1 × P1 and C is a smooth rational curve. Let L be a pencil on Q generated

by F and H . For a general member Y of L the pair (Y,C) is isomorphic to the pair consisting of P1 × P1

embedded as a smooth quadric surface in P3 and a smooth hyperplane section of it. Let α : Q̃ → Q be the

blow-up of the unique singular point q of H . Its exceptional divisor is E ∼= P2. Let β : Q̃ → P3 be the

contraction of the proper transform of H onto a smooth conic C ′. The latter is contained in H∞ = β(E),
which is a hyperplane of P3. Let τ : V → Q be the blow-up of Q with center at C and exceptional divisor

D. We then have a diagram of Sarkisov links

(Q̃, α−1
∗ H + E)

β

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

α

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆
(V,D + τ−1

∗ H)

τ

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦

π

��

(P3,H∞) (Q,H)ϕ
oo❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

ΨL

//❴❴❴❴❴❴❴❴❴ P1

where π : V → P1 is a del Pezzo fibration of degree 8.

Since the hyperplane cutting H is tangent to Q, we have Q \ H ∼= A3. The variety V is smooth and

contains A3 as the complement of the total transform of H . General fibers of π : V → P1 have Picard rank

2. On the other hand, the generic fiber Vη of π is a smooth quadric surface over the field C(P1) and we have

ρ(Vη) = ρ(V/P1) = 1. The Picard group of Vη is generated by the restriction Dη of D. We note that since

−(KVη +Dη) = Dη is ample, for every open subset U ⊆ P1 the open subset π−1(U) \D ⊆ V is a relative

affine Fano variety over U .

The birational map ϕ = β ◦ α−1 : Q 99K P3 is induced by the linear projection form the point q ∈ P4.

It restricts to an isomorphism Q \H ∼= P3 \H∞. The composition ΨL ◦ ϕ−1 : P3
99K P1 is given by the

pencil L′ on P3 generated by 2H∞ and the proper transform F ′ ∼= P1 × P1 of F , which is a smooth quadric

surface in P3 intersecting H∞ along the conic C ′.

Recall [Fuj81] that the quintic del Pezzo fourfold W5 ⊂ P7 is the intersection of the Grassmannian

Gr(2, 5) ⊂ P9 with a general linear subspace of codimension 2. In particular, Pic(W5) ∼= Z〈H〉, where

H is a hyperplane section of W5. It is known that W5 is the unique smooth Fano fourfold with Fano index

iW5
= 3 and Pic(W5) ∼= Z generated by an ample generator H such that H4 = 5.

A general hyperplane section of W5, called the quintic del Pezzo threefold, is a smooth Fano threefold

V5 ⊆ P6 with Pic(V5) ∼= Z〈H∞〉, Fano index iV5 = 2 and H3
∞ = 5, where H∞ is a hyperplane section of

V5. Again, by [Fuj81] this is the unique Fano threefold with these invariants. By [Fur93, Theorem A] V5 has

a normal hyperplane section H with a unique singular point p ∈ H of type A4 such that V5 \H ∼= A3. By

[Fur86, Proposition 15] H contains a unique line L ⊆ P6. The line passes through p.

By blowing-up V5 with the center being a suitably chosen anti-canonical curve C in H , we now construct

completions of A3 into Q-factorial terminal threefolds with del Pezzo fibrations of degree 5. In case of

a smooth C the construction was communicated to us by Masaru Nagaoka and in case of nodal C it was

suggested by a referee.
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Example 6.3 (Completions of A3 into del Pezzo fibrations of degree 5). LetH ⊂ V5 be a normal hyperplane

section with a unique singular point p ∈ H of type A4 such that V5 \ H ∼= A3 and let L ⊆ P6 be the

unique line on H . The complement H \ L is isomorphic to A2, so Cl(H) ∼= 〈L〉 ∼= Z. Since iv5 = 2,

by adjunction OH(−KH) ∼= OV5(H)|H (see Lemma 2.3), so H is a singular del Pezzo surface of degree

(−KH)
2 = H3 = 5. Furthermore, given a hyperplane section F of V5 not containing L, we have (−KH) ·

L = F |H ·L = F ·L = 1. So −KH ∼ 5L and hence, Pic(H) ⊂ Cl(H) is the subgroup of index 5 generated

by the class of −KH .

Every divisor C in the complete linear system | −KH | appears as the base locus of a unique pencil LC
on V5 containing H as a member. Indeed, since V5 is a smooth Fano threefold, we have H1(V5,OV5)

∼= 0
and the assertion follows from long exact sequence of cohomology associated with the short exact sequence

of sheaves

0 → OV5 → OV5(H) → OH(−KH) → 0.

By adjunction general members of LC are del Pezzo surfaces of degree 5. Denote the blowup of V5 with

center C by τ : VC → V5. Let E be the exceptional divisor of τ (possibly reducible and non-reduced). The

rational map ψLC : V5 99K P1 lifts to a fibration π : VC → P1 whose general fiber is a del Pezzo surface

of degree 5 and VC contains A3 as the complement of the total transform of H . The class group of VC is

generated be the classes of irreducible components of E and of the proper transform τ−1
∗ H , which is a fiber

of π. Singularities and the Q-factoriality of VC depend on the properties of the chosen anticanonical divisor

C .

Let us briefly recall some elements concerning the geometry of anti-canonical divisors on H . We let

γ : S → H be the minimal resolution of singularities. We have KS ∼ γ∗KH and the exceptional locus

Exc γ is a chain E1 + E2 + E3 + E4 of (−2)-curves. It is known that the proper transform L′ of the

unique line L on H is a (−1)-curve meeting Exc γ only once and normally at a point of E3. There exists a

birational morphism σ : S → P2 which contracts L′ ∪ E3 ∪ E2 ∪ E1 and maps E4 onto a line ℓ. We have

σ∗KP2 ∼ KS − E1 − 2E2 − 3E3 − 4L′, so we obtain

(6.1) σ∗γ
∗(−KH) ∼ −KP2 and (−KH) ∼ γ∗σ

∗(−KP2)− 4L.

Given C ∈ | − KH | we put C ′ = γ−1
∗ C and C = σ(C ′). Clearly, degC ≤ 3. Put q = σ(L′). Write

σ∗γ
∗C = mℓ+D, where m ∈ {0, 1, 2, 3} and D is an effective divisor of degree 3−m not containing ℓ in

its support. By (6.1) C = (3m− 4)L+ γ∗σ
∗D.

We now discuss the geometry of V for some particular choices of C .

Consider the case p /∈ C . Since L is ample, the equality L · C = 1 implies that C is irreducible and

reduced. The induced morphisms γ : C ′ → C and σ : C ′ → C are isomorphisms. By (6.1) σ∗γ
∗C = C is

either an elliptic curve or a rational nodal curve or a rational cuspidal curve smooth at q and intersecting ℓ
with multiplicity 3 at q. The fact that H is smooth along C implies that general fibers of π : VC → P1 are

smooth del Pezzo surfaces. Furthermore, since C is irreducible and reduced, E is irreducible and reduced.

Since E is Cartier, Pic(VC) = Cl(VC) is freely generated by the classes of E and τ−1
∗ H . In particular, VC

is Q-factorial and has Picard rank 2. If C is an elliptic curve then VC is smooth. If C is nodal then locally

analytically around the node the blowup of C is isomorphic to the blowup of {xy = z = 0} ⊆ A3, so its

unique singular point is analytically isomorphic to ((0, 0, 0), [1 : 0]) ∈ {zv = xyu} ⊆ A3 × P1. Thus in

this case VC has a unique ordinary double point supported on the inverse image by τ of the singular point

of C . Finally, if C is cuspidal then locally analytically around the cusp the blowup of C is the blowup of

{x2 + y3 = z = 0} ⊆ A3. In this case VC has a unique compound du Val singularity cA2 supported on

the inverse image by τ of the singular point of C . In any case VC is a Q-factorial terminal threefold and

π : VC → P1 is a del Pezzo fibration.

Consider the case when C is cut out by a general hyperplane section F of V5 passing through p. In

particular, F is smooth away from p by Bertini’s theorem and it does not contain L. The equality F · L = 1
implies that F is smooth at p, hence F is smooth. General fibers of π : VC → P1 are thus smooth del Pezzo

surfaces of degree 5. By the choice of F , L is not an irreducible component of C . In the notation as above,

using the identity C = (3m − 4)L + γ∗σ
∗D one checks that m = 1 and that D is a conic intersecting ℓ

normally at q. By the generality assumption on F , D is a smooth conic and then C is an irreducible and

reduced nodal rational curve smooth off p. So as in the previous situation, VC is a terminal Q-factorial

threefold with a unique ordinary double point supported on the inverse of p by τ and π : VC → P1 is a del

Pezzo fibration.

Remark 6.4. In Example 6.3 one can easily work out all possible geometries of C ∈ | − KH | using the

equality C = (3m − 4)L + γ∗σ
∗D. For instance, if C does not contain L in its support then one shows
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that C is a reduced conic, smooth or singular, meeting ℓ normally at q. Assume that it is singular. Then

C is a sum of two smooth rational curves intersecting at p only and the corresponding threefold VC has a

unique ordinary double point. The class group of VC is freely generated by classes of the two irreducible

components of E and the class of τ−1
∗ H and VC is not Q-factorial.

Example 6.5 (A completion of A4 into a quintic del Pezzo threefold fibration). By [Pro94, Theorem 3.1(iv)]

there exists an open embedding of A4 into the quintic del Pezzo fourfold W5 such that the complement is a

normal hyperplane section H of W5 (its singular locus consists of a unique ordinary double point p). Let L
be a pencil on W5 generated by H and by a general hyperplane section F . The base locus of L is a smooth

del Pezzo surface S of degree 5. Let τ : V → W5 be the blowup of W5 with center at S. The rational map

ψL : W5 99K P1 lifts to a Mori fiber space π : V → P1 and its general fibers are quintic del Pezzo threefolds.

The variety V is smooth and it contains A4 as the complement of the union of the proper transform of H and

of the exceptional divisor E of τ . We note that E intersects a general fiber V5 of π along a smooth del Pezzo

surface B of degree 5. In particular, V5 \B is an affine Fano variety. Since B is smooth, by the classification

in [Fur93], V5 \B is not isomorphic to A3.

We argue that V5 \ B is not super-rigid (see Definition 2.10). Let ℓ ⊆ B be a line and let T ⊂ V5
be the surface swept out by the lines in V5 intersecting ℓ. The projection from ℓ defines a birational map

α : V5 99K Q to a smooth quadric threefold Q in P4, which contracts T onto a rational cubic contained in a

hyperplane section Q0 of Q. The image of B by α is a smooth hyperplane section Q∞ of Q and α induces

an isomorphism V5 \ (B ∪T ) ∼= Q \ (Q0 ∪Q∞). By Example 6.2, Q \ (Q0 ∪Q∞) contains a relative affine

Fano variety over P1 \ {0,∞}. So V5 \ B contains a relative affine Fano variety over a curve, hence is not

super-rigid.

6B. Pencils on smooth Fano varieties

Recall that the Grassmannian Gr(k, n), which parameterizes k-dimensional linear subspaces of a complex

vector space of dimension n, is a smooth Fano variety of dimension k(n − k) with class group isomorphic

to Z and Fano index iGr(k,n) = n (see e.g. [Dol12, Lemma 10.1.1, p. 510]). It has a natural cover by

affine open subsets isomorphic to Ak(n−k). Namely, denoting the vector space by V , we have the Plücker

embedding

pl : Gr(k, n) →֒ P(ΛkV ) = Proj(C[{xI}]),
where I ranges through the set of subsets of k distinct elements in {1, . . . , n}, which associates to a closed

point Λ ∈ Gr(k, n), represented by a k × n-matrix AΛ of rank k, the collection of the k × k-minors of

AΛ. Then for every subset I ⊆ {1, . . . , n} of k distinct elements the open subset Gr(k, n) \ {xI = 0} is

isomorphic to Ak(n−k).

Proposition 6.6 (Mori fiber completions from pencils on Grassmannians). For k(n − k) ≥ 4, let H be a

hyperplane section of Gr(k, n) such that Gr(k, n) \ H ∼= Ak(n−k), let d ∈ {1, . . . , n − 1} and let F ⊂
Gr(k, n) be an integral hypersurface such that F ∼ dH . Assume that S = F ∩ H is irreducible and

contained in the smooth locus of F and that either d ≥ 2 or d = 1 and S ⊆ Sing(H). Then Ak(n−k) =
Gr(k, n) \H admits a Mori fiber completion over P1 such that all members of the pencil 〈F, dH〉 other than

dH appear as fibers.

Proof. Since S = F ∩H is contained in the smooth locus of F , every member of L other then dH is smooth

along BsL by Lemma 5.2. Since on the other hand Gr(k, n) is smooth, it follows from Bertini’s theorem

that a general member of L is smooth away from BsL, hence smooth. Since S is by assumption irreducible

and contained in the smooth locus of F , the assertion follows from Theorem 5.9. �

We now deduce Theorem 1.1, which asserts that given n ≥ 2 and a hyperplane in H ⊂ Pn, for every

integral hypersurface F ⊆ Pn of degree d ≤ n such that F ∩H is irreducible and contained in the smooth

locus Freg of F there exists a completion of the affine n-space An ∼= Pn \H into a Mori fiber completion

over P1 such that all members of the pencil 〈F, dH〉 other than dH appear as fibers.

Proof of Theorem 1.1. The case d = 1 is obvious, so we may assume that d ≥ 2. We have Gr(1, n+1) = Pn,

so for n ≥ 4 the result follows from Proposition 6.6. We are thus left with the three cases (n, d) = (2, 2),
(3, 2) and (3, 3). The case (2, 2) is treated in Example 4.14. In the case (3, 2), F ⊂ P3 is an integral

quadric surface such that F ∩ H is irreducible and contained in Freg. By Corollary 5.5 and by Bertini’s

theorem, a general member of the pencil L = 〈F, 2H〉 is a smooth quadric surface, so the assertion follows

from Example 6.2. In the remaining case (3, 3), F ⊂ P3 is an integral cubic surface such that F ∩ H is
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irreducible and contained in Freg. Again, by Corollary 5.5 and Bertini’s theorem, a general member of the

pencil L = 〈F, 3H〉 is a smooth cubic surface which intersects H along a smooth elliptic curve, so the result

follows from [DK17, Theorem. (a)]. �

Example 6.7 (Families of Mori fiber completions of An). Let n ≥ 4 and d ≥ 2 be integers. Put Pn =
Proj(C[x0, . . . , xn]) and H = {x0 = 0} ⊂ Pn. Let C[x1, . . . , xn]≤d denote the affine space of polynomials

of total degree at most d. Let Vd denote its open subset consisting of polynomials f of total degree precisely

d for which the scheme-theoretic intersection of H with the closure F in Pn of the zero locus of f in

An = Spec(C[x1, . . . , xn]) is smooth. So, for every f ∈ Vd, F is an irreducible hypersurface of degree d
which contains the smooth variety F ∩H in its smooth locus. Theorem 1.1 thus applies and for each f ∈ Vd
gives the existence of a Mori fiber completion π : X → P1 of An = Pn \ H such that all members of the

pencil 〈F, dH〉 other than dH appear as fibers, and for which we have a commutative diagram

An

f
��

// X

π
��

A1 // P1

where the horizontal morphisms are open immersions.

We now present two other examples of completions of A4 constructed respectively from the quintic del

Pezzo fourfold, Fano-Mukai fourfolds of genus 10 and the quintic del Pezzo fivefold.

Example 6.8 (A completion of A4 into a non-rational Fano threefold fibration). As in Example 6.5 above, let

W5 ⊂ P7 be the quintic del Pezzo fourfold and let H ⊂ W5 be a singular hyperplane section with a unique

ordinary double point p whose complement is isomorphic to A4. Let L be the pencil on W5 generated by 2H
and a general quadric section F . A general member Y of L is a smooth Fano threefold of Picard rank one and

index one isomorphic to the intersection of the Grassmannian Gr(2, 5) with two hyperplanes and a quadric

(family B10 in [Bea77, Theorem 5.3]). Furthermore, S = (BsL)red = H|Y is a smooth anticanonical

divisor on Y , hence it is a smooth K3 surface (which implies that Y \ S is not an affine Fano variety). By

Theorem 5.9 the pencil L gives rise to a Mori fiber completion π : V → P1 of A4 =W5 \H , whose general

fibers are isomorphic to the general members of L. Thus, by [Bea77, Theorem 5.6(ii)], general fibers of π
are non-rational.

Example 6.9 (A completion of A4 into a genus 10 Fano threefold fibration). A Fano-Mukai fourfold of genus

10 is a smooth Fano fourfold X of Picard rank one, Fano index iX = 2, and genus g := 1
2(H

4) + 1 = 10,

where H is an ample generator of PicX. By [PZ18, Remark 13.4, Theorem 1.1] the moduli space of such

fourfolds has dimension one and for every such fourfold X there exists an open embedding A4 →֒ X whose

complement is a generator H∞ of PicX and whose singular locus T is a surface.

Let L be the pencil generated by H∞ and a general smooth member F of the complete linear system

|H∞|. Since the restriction homomorphism Pic(X) → Pic(F ) is an isomorphism by Lemma 5.7, the base

locus BsL = F ∩H∞ of L is an irreducible and reduced surface, which we denote by S. The singular locus

of S is equal to the curve C = T ∩ S. Since S is singular but not contained in the singular locus of H∞,

we cannot directly apply Theorem 5.9 to obtain from L a Mori fiber completion of A4 = X \H∞ over P1.

Instead, we argue as follows. By Bertini’s theorem a general member Lλ of L is smooth off the base locus S.

Since the scheme-theoretic intersection Lλ|H∞
= S is smooth off C = T ∩ S, it follows that Lλ is smooth

off the curve C . Since F is smooth at every point x ∈ C whereas H∞ is singular there, every member of

L other than H∞ is smooth at x by Lemma 5.2. We infer that a general member Lλ is smooth, so the base

locus S of L is the scheme-theoretic transversal intersection of any two smooth members of L. The blow-up

τ : V → X of S is then a resolution of ψL : X 99K P1 and ψL ◦ τ : V → P1 is a Mori fiber space whose

general fibers are Fano threefolds of Picard rank one, index 1 and genus 10. They are rational by [IP99,

Theorem 4.6.7] but are not completions of A3 by [Fur93]. The variety V contains A4 as the complement of

the union of the proper transform of H∞ and of the exceptional locus of τ .

Example 6.10 (Mori fiber completions of A5 from pencils on the quintic del Pezzo fivefold Z5). Recall

[Fuj81] that the quintic del Pezzo fivefold Z5 ⊂ P8 is the intersection of the Grassmannian Gr(2, 5) ⊂ P9

with a general linear hyperplane. In particular, Pic(Z5) ∼= Z〈H〉, whereH is a hyperplane section of Z5. It is

known that Z5 is the unique smooth Fano fivefold with Fano index iZ5
= 4 and Pic(Z5) ∼= Z generated by an

ample generator H for which H5 = 5. Furthermore, it follows for instance from the alternative description

of Z5 given in [Fuj81, (7.10)] that there exists an open embedding of A5 into Z5 whose complement is a

non-normal hyperplane section H of Z5.
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Let L3 be a pencil on Z5 generated by 3H and a general cubic section F3. A general member of L3 is a

smooth Fano fourfold of Picard rank one and Fano index one. By Theorem 5.9 the pencil L3 gives rise to a

Mori fiber completion π3 : X3 → P1 of A5 = Z5 \ H , whose general fibers are isomorphic to the general

members of L3. In a similar way, a pencil L2 generated by 2H and a general quadric section F2 gives rise

to a Mori fiber completion π2 : X2 → P1 of A5 = Z5 \H whose general fibers are smooth Fano fourfold of

Picard rank one and Fano index two. We do not know whether general fibers of these fibrations are rational.

Finally, one can consider a pencil L1 generated by H and a general hyperplane section F1 of Z5. The

base locus of L1 is an irreducible singular threefold V whose singular locus is equal to a hyperplane section

of the singular locus of H . Arguing as in Example 6.9, we see that a general member of L1 is smooth, so

the base locus V of L1 is the scheme-theoretic transverse intersection of any two smooth members of L1.

The blow-up τ : X1 → Z5 of V is then a resolution of ψL1
: Z5 99K P1 and ψL1

◦ τ : X1 → P1 is a Mori

fiber space whose general fibers are quintic del Pezzo fourfolds W5. The variety X1 contains A5 as the

complement of the union of the proper transform of H and of the exceptional locus of τ . A general fiber

of the restriction of ψL1
◦ τ to A5 has a completion into W5 with a smooth hyperplane section of W5 as a

boundary, hence by [Pro94, Theorem 3.1] is not isomorphic to A4 (even though W5 is a completion of A4).

Example 6.11 (Mori fiber completions of An with super-rigid affine Fano general fibers). Let n ≥ 4 and let

L be a pencil on Pn generated by a general hypersurface of degree n − 1 and by (n − 1)H , where H is a

hyperplane. By Corollary 5.10, L gives rise to a Mori fiber completion π : V → P1 of An = Pn\H such that

general fibers of π|An are smooth affine Fano varieties, isomorphic to the complement of a smooth hyperplane

section of a hypersurface of degree n− 1 in Pn. If n ≥ 6 then it is known that such affine Fano varieties are

super-rigid [CDP18, Theorem 2.8, Example 2.9]. For n = 4, 5 the super-rigidity of complements of general

hyperplane sections of respectively smooth cubic threefolds in P4 and smooth quartic fourfolds in P5 is an

open problem.

6C. Pencils on weighted projective spaces

An important class of Q-factorial rational Fano varieties consists of weighted projective spaces. We fix

notation and summarize some basic facts (see e.g. [Dol82] and [IF00] for more). Given a non-decreasing

sequence of positive integers ā = (a0, . . . , an), we define an N-grading on C[x0, . . . , xn] by putting deg xi =
ai, and we let P(ā) = Proj(C[x0, . . . , xn]). The inclusion of graded rings C[ya00 , . . . , y

an
n ] ⊆ C[y0, . . . , yn]

leads under the identification xi = yaii to a finite morphism

(6.2) π : Pn → P(ā) ∼= Pn/(Za0 × · · · × Zan),

where the action is diagonal, by multiplication by an ai-th root of unity on the i-th factor, see [Dol82,

§1.2.2]. The variety P(ā) is covered by the affine open subsets {xi 6= 0} ∼= An/Zai , where the generator ε,
a primitive ai-th root of unity, acts by

(x0, . . . , x̂i . . . , xn) 7→ (εa0x0, . . . , ε̂aixi . . . , ε
anxn).

In particular, P(ā) is normal and Q-factorial [KM98, Lemma 5.16], with finite quotient singularities. (For a

criterion when P(ā) is klt see [Kas13, Proposition 2.3], cf. [CLS11, Proposition 11.4.12]). Since for every

d > 0 we have P(a0, da1, . . . , dan) ∼= P(a0, a1, . . . , an), we can assume without loss of generality that

gcd(a0, . . . âi, . . . , an) = 1 for every i ∈ {0, 1, . . . , n}, in which case one says that the description of the

weighted projective space is well-formed. The singular locus of a well-formed P(ā) can be described as

follows [IF00, 5.15]:

(6.3) [x0 : . . . : xn] ∈ SingP(ā) ⇔ gcd{ai : xi 6= 0} > 1.

By [Mor75, Proposition 2.3] the class group of P(ā) is isomorphic to Z and is generated by the class of the

divisorial sheaf OP(ā)(1) on P(ā). Furthermore, the sheaf OP(ā)(m), where m is the least common multiple

of a0, . . . , an, is invertible and its class generates the Picard group of P(ā); see also [CLS11, Exercise 4.1.5

and 4.2.11].

Put x̄ = (x0, . . . , xn). After fixing ā such that the description of P(ā) is well-formed, we denote by

C[x̄](d) the set of weighted homogeneous polynomials of degree d in the variables x̄ with respect to the

weights ā. Let f(x̄) ∈ C[x̄](d). A zero scheme Y = Z(f(x̄)) has, by definition, degree d. We say that Y is

quasi-smooth if its affine cone

C(Y ) = Spec(C[x̄]/(f(x̄))) ⊆ An+1 = Spec(C[x̄])
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is smooth off the origin, equivalently, if {π∗f = 0} is a smooth subvariety of Pn, see (6.2). The singularities

of a quasi-smooth subvariety are finite quotient singularities, hence, in particular klt by [Ish18, Theorem

7.4.9].

From now on we assume that n ≥ 4 and that a0 = 1. We put

(6.4) P = P(1, a1, . . . , an) and H = {x0 = 0} ∼= P(a1, · · · , an).

Then OP(H) ∼= OP(1) generates Cl(P) and P \H is isomorphic to the affine n-space An with inhomoge-

neous coordinates xi/x
ai
0 , where i = 1, . . . , n. Furthermore, since KP ∼ −

∑n
i=0{xi = 0} (see e.g. [Dol82,

§2.1]), the Fano index iP of P is equal to 1 +
∑n

i=1 ai. The induced description of H as P(a1, . . . , an)
is not necessarily well-formed (take for instance ā = (1, 1, d, . . . , d)), but if it is, then by (6.3) we have

SingP = SingH , so in this case the singular locus of P has codimension at least 3.

Theorem 1.4 is a consequence of the combination of the following result with Corollary 4.13.

Proposition 6.12 (Mori fiber completions from pencils on P(1, ā)). Let P and H be as in (6.4). Assume that

P is smooth in codimension 2 (equivalently, the induced description of H is well-formed) and let F ⊆ P be

a quasi-smooth terminal hypersurface of degree d ∈ {2, . . . ,
∑n

i=1 ai}. Then the pencil L generated by F
and dH is a terminal rank one Fano pencil with quasi-smooth general members and the associated rational

map ψL : P 99K P1 admits a compatible thrifty resolution with discrepancy locus contained in {(ψL)∗H}.

Proof. Let f ∈ C[x̄](d) be the irreducible weighted homogeneous polynomial defining the hypersurface F .

The base locus BsL is the codimension 2 weighted complete intersection of P with weighted homogeneous

ideal (f(x̄), xd0). The graph Γ of ψL is isomorphic to the hypersurface in P × P1
[u0:u1]

defined by the bi-

homogeneous equation f(x̄)u1 + xd0u0 = 0 and the projection prP induces isomorphisms between closed

fibers of the restriction to Γ of the projection p = (prP1)|Γ and members of L.

Since F is terminal, L is a terminal pencil by Lemma 4.5. By the Lefschetz hyperplane section theorem for

weighted projective spaces [Mor75, Theorem 3.7] and [Oka19, Remark 4.2], the group Cl(F ) is isomorphic

to Z. It is generated by the restriction H|F ofH to F as a Weil divisor, for which OF (H|F ) ∼= (OP(1)|F )
∨∨.

This implies in particular that F ∩ H = S is irreducible, hence that the exceptional locus E ∼= S × P1 of

prP : Γ → P is a prime divisor on Γ. Since P is smooth in codimension two, every Weil divisor on it is

Cartier in codimension two in P. By assumption F is terminal, so it is smooth in codimension 2, hence

smooth and Cartier at general points of S. We have d ≥ 2, so every member of L other than dH is prime

by Lemma 5.3, and since 2 ≤ d < iP, every normal member of L is Fano by Lemma 5.6. Since members

of L are not necessarily Cartier but only Q-Cartier, the fact that all of them have class group isomorphic to

Z, hence have Picard rank one, follows again from the Lefschetz hyperplane section theorem for weighted

projective spaces. Thus, L is a terminal rank one Fano pencil with degeneracy locus δ(L) = {(ψL)∗H}.

The affine cone C(Y ) over a member Y of L other than dH is isomorphic to the hypersurface in An+1

defined by the equation f(x̄) + txd0 = 0 for some t ∈ C. Since C(F ) is smooth off the origin {O}, it follows

from Bertini’s theorem that a general C(Y ) is smooth outside its intersection with C(H) = {x0 = 0}.

Furthermore, since d ≥ 2, it follows from Lemma 5.2 that C(Y ) \ {O} is smooth in a neighborhood of

(C(Y ) ∩ {x0 = 0}) \ {O}. A general member Y is thus quasi-smooth and every member Y other than dH
is klt in a neighborhood of S.

In view of Lemma 2.4, every thrifty Q-factorial terminal resolution of L is compatible, provided that

the open subset Γ∞ = Γ \ H ′ of Γ, where H ′ is the proper transform of H , is terminal and Q-factorial.

Thus it remains to show that Γ∞ is Q-factorial terminal. Every member Y of L other than dH is klt in a

neighborhood of S, so by Proposition 4.6(a), Γ∞ is normal in a neighborhood of E∞ = E ∩ Γ∞. We have

Γ∞ \ E∞
∼= P \H ∼= An, so Γ∞ is normal and its class group is generated by irreducible components of

E∞. Since E∞ is irreducible and Q-Cartier, we conclude that Γ∞ is normal and Q-factorial. The pencil

L is terminal and its members other than dH are klt in a neighborhood of S. By Proposition 4.6(b), Γ∞ is

terminal in a neighborhood of E∞, hence it is terminal. �

As a corollary we obtain the following result (cf. Definition 2.7):

Corollary 6.13 (Mori fiber completions of A4 with birationally rigid fibers). There exist at least 95 pairwise

non weakly square birationally equivalent Mori fiber completions of A4 over P1 with quasi-smooth terminal

birationally rigid general fibers.

Proof. Let āj = (a
(j)
1 , a

(j)
2 , a

(j)
3 , a

(j)
4 ) for j = 1, 2 be two distinct sequences in the list of 95 non-decreasing

sequences of [IF00, §13.3, Lemma 16.4 and §16.6]. Put Pj = P(1, āj) and let dj =
∑4

i=1 a
(j)
i . Looking
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at the list one checks that the hyperplane Hj = P(āj) ⊂ Pj is a well-formed weighted projective space.

Let Fj ⊆ Pj be a general hypersurface of degree dj . By construction Fj is a quasi-smooth and terminal

Fano variety of index 1 anticanonically embedded into Pj . The intersection of Fj with Hj generates the

class group of Fj , so it is irreducible. General members of the pencil Lj on Pj generated by Fj and dHj are

then quasi-smooth terminal hypersurfaces of Pj of degree dj , too. By [CP17, Theorem 1.1.10] they are all

birationally rigid.

By Theorem 1.4 general members of the pencil Lj on Pj are realized as general fibers of a Mori fiber

space pj : Vj → P1, which contains A4 ∼= Pj \ Hj . Assume that two Mori fiber spaces for j = 1, 2 are

weakly square birational equivalent. Then there exists a birational map χ : V1 99K V2 and an isomorphism

ϕ : P1 → P1 of the base curve such that p2 ◦ χ = ϕ ◦ p1. Then for a general point t ∈ P1, χ induces a

birational map between (V1)t = p−1
1 (t) and (V2)ϕ(t) = p−1

2 (ϕ(t)). Since for a general t these threefolds

are isomorphic to general members of L1 and L2 respectively, which are birationally rigid, it follows that

general members of L1 are isomorphic to general members of L2. In particular, the self-intersections of their

respective anti-canonical divisors are equal and their singularities are the same. By [IF00, §16.6] this implies

that ā1 = ā2. �

Finally, the following example gives a proof of Corollary 1.5.

Example 6.14. Let n = 4 and let the quadruple ā = (a1, a2, a3, a4) be one of those with numbers:

No. 97− 102, 107 − 110, 116, 117

in [Oka19, Table 1]. Then a very general quasi-smooth hypersurface F ⊂ P(1, ā) of degree d =
∑4

j=1 aj−α
is a Q-factorial terminal Fano threefold that is not stably rational if α = 3 for No. 107 − 110 or if α = 5 for

No. 116, 117 or if α = 2 otherwise. Fixing any such quadruple and choosing a very general hypersurface F
of indicated degree d we obtain by Theorem 1.4 a Mori fiber completion of A4, π : V → P1, whose fibers

are isomorphic to the members of the pencil 〈F, dH〉 other than dH , hence whose very general fibers are not

stably rational.
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