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Generalized Modal Amplitude Stability Analysis for the
prediction of the nonlinear dynamic response of mechanical
systems subjected to friction-induced vibrations

E. Denimal · J.-J. Sinou · S. Nacivet

Abstract The numerical prediction of the dynamic
behaviour of mechanical systems subjected to friction-
induced vibrations is still a tedious problem. Different
methodologies exist nowadays to study it. The first one
is the complex eigenvalue analysis, which is widely
used by the scientists and the industrials to predict the
appearance of instabilities despite its disadvantages.
Other methodologies, namely temporal integration and
frequential approaches, have been developed to deter-
mine the transient and/or the steady-state response to
assess the history of the dynamic response, and so to
identify the unstable modes involved in the nonlin-
ear dynamic response as well as the vibration levels.
However, because of their complex implementation,
their high numerical cost and sometimes the strong
assumptions made on the form of the solutions, these
methods are not widely and currently used in indus-
try. To cope with the limitations of the CEA, namely
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the over- or under-predictability and the lack of infor-
mation about modal participations in the nonlinear
dynamic response, developing complementary tools is
necessary. Thus, this paper is devoted to the exten-
sion and generalization of a nonlinear approach, called
the modal amplitude stability analysis, to the multi-
instability case. The method, called the Generalized
Modal Amplitude Stability Analysis (GMASA), allows
to identify the evolutions and contributions of unsta-
ble modes involved in the nonlinear self-sustaining
vibration response and to estimate the limit cycles.
The method is applied on a phenomenological sys-
tem for which it is easy to provide an understanding
of the unstable mode(s) contribution to the nonlinear
dynamic response of the system and for which the
calculations can be performed with reasonable com-
putational times. Thus, the efficiency and validity of
the GMASA approach are investigated by comparing
the GMASA results with those of the reference results
based on temporal approach.

Keywords Instability · Friction · Nonlinear dynamic ·

Mode coupling · Complex eigenvalue analysis

1 Introduction

Instabilities for mechanical systems subjected to friction-
induced vibrations (squeal, for example) are a com-
plex phenomenon studied by both industrials and aca-
demics since several decades [1–3]. At the beginning,
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the studies focused on the tribological aspect of the
problem and a velocity friction dependency was con-
sidered as the squeal mechanism [4]. Then, Spurr [5]
developed a sprag–slip model that highlights squeal
with a constant friction coefficient. A generalization of
this phenomenon was proposed by some researchers
[6–8] by considering geometrical coupling as the origin
of friction-induced vibrations and squeal noise. This
mode coupling theory allows the appearance of the
squeal phenomenon by assuming a constant friction
coefficient. This approach is often accepted as one of
the first causes of friction-induced vibration and squeal
noise in the automotive industry.

In terms of numerical strategies, different method-
ologies exist to predict the appearance of instability.
The first strategy is the well-known Complex Eigen-
value Analysis (CEA), which consists in the determina-
tion of the stability of the static sliding nonlinear equi-
librium of the system. Instability is then characterized
by the notion of unstable modes: an eigenvalue with a
positive real part indicates the presence of an instabil-
ity, and the associated eigenvector defines the unstable
mode shape of the system around the equilibrium point.
Vibrations are then generated by considering a small
perturbation of the sliding equilibrium position that
leads to an increase in the oscillation levels. This CEA
method is relatively easy to implement, and results are
easy to analyse since the unstable modes identified by
the method are potentially the modes present in the
nonlinear dynamic response. However, this method is
often over- or under-predictive [9,10]. It means that all
the unstable modes identified by the CEA are not nec-
essarily present in the nonlinear dynamic response and
some frequencies of the dynamic response might not
be identified by the CEA. Moreover, one of the major
drawbacks is that the nonlinear dynamic behaviour of
the system (i.e. the self-sustained vibrations) cannot be
predicted by this approach.

In order to cope with the limitations of the CEA, it
is necessary to determine the dynamic response and
the associated vibratory levels with other numerical
strategies complementary to the CEA that allows for
the obtaining of the transient and/or the steady-state
regime. Two classes of strategies exist to do that,
namely the temporal integration and nonlinear meth-
ods to predict self-sustaining vibrations. The tempo-
ral integration solves for each time step the solution
of the nonlinear dynamic problem. Thus, one of the
major advantages of this approach is that no assump-

tions are made on the form of the nonlinear solution.
Moreover, this method makes it possible to predict the
transitory regimes as well as the steady-state solution
if it exists [11–15]. Thus, it is possible to analyze the
history of the system dynamic and to identify the dif-
ferent modal interactions that occurred during the tran-
sient part. However, the numerical cost is often pro-
hibitive and performing a study for different initial con-
ditions is not possible in an industrial context. Since
performing temporal integration is not a reliable solu-
tion because of the too high numerical cost, numerical
strategies have been developed to predict the steady-
state regime. It is worth reminding that the frequencies
of the self-sustained vibrations are unknown and so
remain an unknown of the problem. A first approach
consisted in an extension of the classical harmonic
balance method called the Constrained Harmonic Bal-
ance Method (CHBM) [16]. The solution is assumed
to be periodic or multi-periodic, and the self-sustained
vibrations are approximated with a Fourier or a gen-
eralized Fourier series. One of the difficulties of this
approach is due to the fact that the frequencies of the
nonlinear solution are unknown. So a constraint has
to be added to solve the nonlinear dynamic problem
and to find the self-sustaining vibrations, as well as
the associated frequencies. While the CHBM method
gave interesting results on a simplified finite element
model of an industrial brake system in [16], the initial-
ization and the convergence of the method remain diffi-
cult to control. Moreover, the assumptions made on the
form of the approximated self-sustained vibration are a
major drawback. Other nonlinear approaches can also
be found in the literature, such as the shooting method.
This method is based on a temporal method that iden-
tifies a periodic solution of a problem by transforming
it into an initial value problem [17]. For mechanical
systems subjected to friction-induced vibrations, Char-
royer et al. [18] proposed to iterate on specific initial
conditions (based on an energetic criterion) and the fun-
damental period of the nonlinear system to predict the
self-sustaining vibration. However, no extension to the
multi-instability case exists today.

The nonlinear approaches mentioned above have
undeniable advantages and allow to approximate the
vibratory levels of the system for mono- or multi-
instabilities. However, the a priori choice of the form
of the approximate solution, the potential complexity
of the numerical implementation and the high asso-
ciated numerical cost make their use in an industrial
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context limited. For these reasons, the CEA remains
the most widely used method in industry despite its
limitations. Indeed, this last one does not allow to iden-
tify all the frequency contributions that are involved in
the nonlinear dynamic response. Some recent devel-
opments try to give additional information to com-
plete the CEA results in order to identify the modes
involved in the squeal. These methods are aimed to
be applicable on real industrial systems. One method
developed by Brunetti et al. [19] defined the Modal
Absorption Index (MAI) of each mode. It describes
the capacity of each mode to absorb energy and to
generate squeal. This method was applied on an aca-
demic system and gave good prediction results. A sec-
ond strategy is the Modal Amplitude Stability Analysis
(MASA) developed by Nacivet and Sinou [20] in the
case of mono-instability. The method assumes that the
dynamic response is driven by only one unstable mode;
thus, the dynamic response is approximated by a lin-
earization of the initial dynamic response around a non-
linear sliding equilibrium position for a given modal
amplitude. The evolution of the dynamic behaviour (i.e.
increase or decrease in the amplitude of the unstable
mode) is studied.

The objective of the present paper is to extend the
MASA method to the case where several instabilities
are identified by the CEA and to cope with the cou-
pling effects that may exist between unstable modes.
This extended approach is named generalized Modal
Amplitude Stability Analysis (GMASA). One of the
main objectives is to demonstrate the validity of this
new extension of the MASA methodology by consid-
ering an application on a phenomenological model for
which it is possible to perform temporal integration to
obtain rapidly reference results. The use of this simpli-
fied model also allows to provide a deep understanding
of the contribution of each unstable mode to the non-
linear dynamic response of the system and so to make
extensive comparisons between the GMASA and the
reference solutions.

The paper is composed of two main parts. The first
one consists in the presentation of the extension of
the MASA method and its theoretical and numerical
description. In the second part, the GMASA method is
applied on an academic mechanical model subjected to
friction-induced vibration. Thus, the prediction results
of the GMASA method are compared to the reference
results from the temporal integration and the validity
of the method is demonstrated.

2 Presentation of the Generalised Modal

Amplitude Stability Analysis

This section is devoted to the description of the modal
amplitude stability analysis generalized to the multi-
instability case. In a first time, the problem under study
is presented and the CEA is briefly summarized since
it is the starting point of the GMASA methodology.
Then, the different steps of the method are described.
Finally, in the last subsection, the global scheme of the
method is given.

2.1 Formulation of the problem

Let us consider a mechanical system subjected to
friction-induced vibrations; for example, the associated
nonlinear dynamic equation can be written as:

MÜ + CU̇ + KU + Fnl(U) = Fext (1)

where U is the displacement vector and the dot denotes
the time derivative. M, C and K are, respectively, the
mass, damping and stiffness matrices. Fnl is the nonlin-
ear effort vector and represents the friction forces and
contact conditions. Fext represents the external forces
that are applied initially on the system, as the piston
pressure for a brake system. It is worth noticing that
the latter is constant and does not depend on the time.

The CEA is the first step of the GMASA method,
and it identifies the unstable modes to be taken into con-
sideration initially in the GMASA. The global strategy
is the following: a scanning on the modal amplitude
of these modes is performed. Thus, for each amplitude
level, an approximate displacements field is obtained.
The divergent behaviour of this approximate solution is
then studied by considering a linearization of the non-
linear efforts. During the process, new instabilities (i.e.
the appearance of new unstable modes) can be identi-
fied by the GMASA. If this is the case, these new unsta-
ble modes are added in the group of unstable modes and
are taken into consideration for the displacements field
approximation.

A complete and detailed description of each step of
the GMASA is presented and discussed in the following
sections.
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2.2 Stability analysis

The first step of the method consists in the identification
of the different unstable modes with a CEA procedure.
The methodology is reminded here.

The nonlinear static equilibrium US of the system is
determined by solving:

KUS + Fnl(US) = Fext (2)

In order to study the stability of this equilibrium, a
small perturbation �U is considered, hence:

U = US + �U (3)

Since the perturbation is small, the nonlinear efforts
can be linearized around the nonlinear static equilib-
rium US with a first-order Taylor development. By
denoting Jnl the Jacobian matrix of the nonlinear efforts
Fnl at the point US, it comes:

Fnl(U) = Fnl(US) + Jnl�U + O(�U2) (4)

By injecting the previous equation in the dynamic
equation (1), it comes:

M�Ü + C�U̇ + (K + Jnl)�U = 0 (5)

Assuming a solution of the form �U = �eλt where
λ represents the eigenvalues of the system and � the
matrix of the eigenvectors, system (5) becomes:

(

λ2M + λC + (K + Jnl)

)

� = 0 (6)

with the following characteristic equation:

det
(

λ2M + λC + K + Jnl

)

= 0 (7)

Friction contributions bring nonsymmetric terms
in the Jacobian matrix Jnl, so the eigenvalues λ j =

a j + iω j and the eigenvectors � j are complex. ω j cor-
responds to the angular frequency of the mode � j and
a j to its real part. According to the Lyapunov theory,
the asymptotic stability of the static equilibrium posi-
tion of the system is obtained by considering the sign of
the a j . If at least one of the real parts a j is strictly posi-
tive, then the nonlinear static equilibrium is unstable. It
is important to remind that this analysis is locally valid

since the matrix Jnl is defined only in a neighbourhood
of US.

For the rest, it is assumed that Ni unstable modes are
identified with the CEA, characterized by their angular
frequencies ωk for k ∈ [1, Ni ]. The system is subjected
to self-sustained vibrations that can be decomposed
into N f incommensurable frequencies corresponding
to the frequencies of the unstable modes. It is impor-
tant to note that the number of unstable modes Ni via
the CEA is not necessarily identical to the number of
unstable modes N f whose contributions are present in
the vibration response. Indeed, the over- and under-
predictive aspect of the CEA [9] means that some of
the Ni unstable modes are not part of the real dynamic
response and that other modes may become unsta-
ble. The objective of the GMASA is to identify which
modes are part of the real dynamic response.

2.3 Quasiperiodic solution

From Eq. (4), let us define � as:

Fnl(US + �U) = Fnl(US) + Jnl�U + � (8)

� represents the error made on Taylor’s develop-
ment at first order. The dynamic equation (5) becomes:

M�Ü + C�U̇ + (K + Jnl)�U + � = 0 (9)

In the following, the solution is supposed to be
quasiperiodic and characterized by N f incommensu-
rable frequencies corresponding to the frequencies of
the N f unstable modes. It is worth noticing that N f can
be different of the value Ni as explained in the previous
section. The oscillations are characterized by frequen-
cies that are a linear combination of the fundamental
incommensurable frequencies. Thus, if Nh harmonics
of the solution are retained, then the different angular
frequencies that might be observed are of the form:

k1ω1 + · · · + k jω j + · · · + kN f
ωN f

(10)

where k j ∈ [−Nh,+Nh] and j ∈ [1, N f ], and where
only the positive terms are retained. Then, the dynamic
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response of the system can be decomposed in a gener-
alized Fourier series:

�U(t) =

Nh
∑

k1=−Nh

. . .

Nh
∑

kN f
=−Nh

(

�UC
k1...kN f

cos((k1ω1 + · · · + kN f
ωN f

)t)
)

+

Nh
∑

k1=−Nh

. . .

Nh
∑

kN f
=−Nh

(

�US
k1...kN f

sin((k1ω1 + · · · + kN f
ωN f

)t)
)

(11)

where the �UC
k1...kN f

and the �US
k1...kN f

correspond

to the Fourier coefficients associated with all the pos-
sible linear combinations of frequential components
ω1, ω2, . . . , ωN f

. A more condensed writing consists
in the introduction of the basis ω =

[

ω1, ω2, . . . , ωN f

]

and defining:

τ = ωt (12)

where τ =
[

τ1, τ2, . . . , τN f

]

is the hyper-time variable
[21]. It is 2π -periodic on each dimension τ j . Thus, it
is possible to define k =

[

k1, k2, . . . , kN f

]

, the vector
of the number of harmonics in each dimension τ j . By
denoting as (.) the dot product, Eq. (11) can be written
as:

�U(τ ) = �U0 +
∑

k∈Z
N f

�UC
k cos(k · τ )

+
∑

k∈Z
N f

�US
k sin(k · τ ) (13)

Instead of manipulating a single time domain t ∈

R+ for the solution �U(t), this transformation allows

to deal with a multiple periodic time domain τ ∈ R
N f

+

where each dimension τ j represents an incommen-
surable frequency of the solution. Thus, Eq. (13) is
2π -periodic in each dimension and �U(τ ) is a N f -
dimensional time function that describes the multi-
frequential function �U(t). This function is often
denoted as torus function. For example, in the case
of dimension 2, the function �U(t) is biperiodic and
evolves in R

3 on a torus formed by the two hyper-time
parameter [τ1, τ2], as represented in Fig. 1.

Therefore, the different equations written in the
mono-frequential Fourier domain remain valid in the

Fig. 1 Trajectory on an invariant torus of dimension 2

multi-frequential domain. The displacements �U can
be written as:

�U(τ ) = �U0 +
∑

k∈Z
N f

�UC
k cos(k.τ )

+
∑

k∈Z
N f

�US
k sin(k.τ ) (14)

The nonlinear efforts � are also expected to be
quasiperiodic and so can also be decomposed on a gen-
eralized Fourier series:

�(τ ) = �0 +
∑

k∈Z
N f

�C
k cos(k.τ )

+
∑

k∈Z
N f

�S
k sin(k.τ ) (15)

2.4 Projection on the first harmonic and linearization
of �

As in the methodology proposed in [20], a first-order
truncation of the Fourier series is considered. In other
words:

�U1 =

N f
∑

k=1

�Uvk
=

N f
∑

k=1

�UC
vk

cos(ωk t)

+

N f
∑

k=1

�US
vk

sin(ωk t) (16)

�1 =

N f
∑

k=1

�vk
=

N f
∑

k=1

�C
vk

cos(ωk t)

+

N f
∑

k=1

�S
vk

sin(ωk t) (17)
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where vk is a vector of 0 of size N f where the kth
value is equal to 1 (i.e. only the first harmonic of each
frequency is retained).

Similarly, the dynamic equation projected on first-
harmonic terms is:

M

N f
∑

k=1

�Üvk
+ C

N f
∑

k=1

�U̇vk

+ (K + Jnl)

N f
∑

k=1

�Uvk
+

N f
∑

k=1

�vk
= 0 (18)

And the orthogonality of the Fourier series gives the
N f following equations:

∀k ∈ [1, N f ], M�Üvk
+ C�U̇vk

+ (K + Jnl)�Uvk
+ �vk

= 0 (19)

From Eq. (8), the nonlinear efforts � are equal to:

� = Fnl(US + �U) − Fnl(US) − Jnl�U (20)

By injecting Eq. (16) and projecting on the first har-
monic, it comes:

�1 =

N f
∑

k=1

�vk
= Fnl (US + �U1) − Fnl(US)

−Jnl�U1 (21)

The term Fnl (US + �U1) = Fnl(US+
∑N f

k=1 �Uvk
)

couples the different angular frequencies and so the
different unstable modes. Cameron [22] proposed the
Alternating Frequency/Time (AFT) method to com-
pute the periodic nonlinear forces in the time domain
and then to extract their exact Fourier coefficients. In
the case of a hyper-time domain where the functions
are 2π -periodic on each dimension, the AFT can be
extended to a N f -dimensional frequency domain by
using N f -dimensional FFT and �1 can be determined.

The originality of the GMASA method relies in the
following linearization of each �vk

[20]:

�vk
= Kvk

�Uvk
+ Cvk

�U̇vk
(22)

where Kvk
and Cvk

are the equivalent stiffness and
damping matrices on the kth angular frequency, respec-
tively. They can be computed analytically with the fol-
lowing method. On the one hand, for each contact ele-
ment n, the normal relative displacement δn

k at the point
n projected on the kth angular frequency is given by:

δn
k (t) = δc cos(ωk t) + δs sin(ωk t) (23)

On the other hand, the nonlinear efforts at the same
contact element n in the dimension d , which can be
tangential or normal, between two contact nodes are:

�n,d
vk

(t) = αc cos(ωk t) + αs sin(ωk t) (24)

And so, from the assumption done in Eq. (22), for each
contact element n and for each direction d , these efforts
must verify:

�n,d
vk

(t) = Kn,d
vk

δn
k (t) + Cn,d

vk
δ̇n

k (t) (25)

The matrix Kvk
and Cvk

can be determined analytically
from Eqs. (23, 24, 25); the resolution gives:

⎧

⎨

⎩

Kn,d
vk

=
αcδc + αsδs

δ2
c + δ2

s

and Cn,d
vk

=
αcδs − αsδc

ωk (δ2
c + δ2

s )
if δc �= 0 or δs �= 0

Kn,d
vk

= 0 and Cn,d
vk

= 0 otherwise

(26)

2.5 Subsystems definition

Hence, injecting Eq. (22) in (19), it comes:

∀k ∈ [1, N f ], M�Üvk
+ (C + Cvk

)�U̇vk

+
(

K + Jnl + Kvk

)

�Uvk
= 0 (27)

This leads to N f subsystems of the form:

∀k ∈ [1, N f ], Ẏk = AkYk (28)

where Yk =
[

�Uvk
�U̇vk

]T
and the dynamic matrices

Ak are given by:

Ak =

[

0 I

−M−1 (

K + Jnl + Kvk

)

−M−1 (

C + Cvk

)

]

(29)

Thus, each instability k is characterized by a
dynamic subsystem of dynamic matrix Ak . From the
latter, it is possible to analyze the temporal evolution
of the dynamic solution linearized around an equilib-
rium point for a given modal amplitude (i.e. increase or
decrease in the vibratory amplitudes of the mechanical
system). This analysis is performed, for each mode k,
from the associated eigenvalue in the kth subsystem.
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Each Yk is only related to ωk , indeed there is no contri-
bution from modes j with j �= k in Yk . Moreover, the
projection on the first harmonic does not show any term
in A j Yk . Hence, if the real part of the eigenvalue associ-
ated with the kth mode in the kth subsystem is positive,
the kth mode brings a divergence in the global solution
of the system defined by Eq. (18). If it is negative, then
the associated vibrations decrease, and if it is zero, then
the associated vibrations remain constant, which then
corresponds to obtaining self-sustained vibrations.

If a mode j is unstable in a subsystem k, where
j �= k, then it is necessary to consider the subsys-
tem j to know whether the divergence associated with
the mode j is effectively translated by a divergence
in the dynamic equation (18) because the contribution
of a mode is only given by its own subsystem. In the
case where the mode j is identified as stable with the
CEA (i.e. a j = 0), it is necessary to introduce it in
the GMASA methodology and to consider a GMASA
modal basis of N f +1 unstable modes (i.e. N f is equal
to Ni plus the number of instabilities detected by the
method).

2.6 Determination of the modal amplitudes and of the
displacements field

In the GMASA, the displacements �U1 are known
(based on assumptions explained in the following) and
depend on the modal amplitudes of the unstable modes.
For each modal amplitude, the increase or decrease in
the amplitudes of �U1 is studied. �U1 expressed in
Eq. (16) is equivalent to:

⎧

⎪

⎨

⎪

⎩

�U1 =

N f
∑

k=1

(

Xkeλk t + Xkeλk t
)

∀k ∈ [1, N f ], ℜ(λk) = 0

(30)

where Xk = 1
2

(

�UC
vk

− i�US
vk

)

. If �U1 is nonzero
and known, then each Kvk

and Cvk
is known, and so

each Ak . So for each unstable mode k, its eigenvalue
λk is deduced from the matrix Ak by performing an
eigenvalue analysis on it.

The quasiperiodic response of a system defined
by Eq. (5) is mainly driven by the N f identified
unstable modes linearized around the equilibrium,
so that the displacements can be approximated by

�U(t) ≈
∑N f

k=1 ck

(

�keiωk t + �ke−iωk t
)

where ck are
real coefficients.

Let us consider that Ni unstable modes of mode
shapes

(

�0
k

)

k∈[1,Ni ]
and of eigenvalues λ0

k = a0
j + iω0

k

are identified by the CEA. The GMASA is initialized
with these Ni unstable modes and the associated fre-
quencies (i.e. N f = Ni ); then, for each scan step m, the
modal amplitudes p = [pm

1 , . . . , pm
k , . . . , pm

Ni
], where

each pm
k corresponds to the amplitude of the mode k

for the scanning index m, are evaluated. The number of
unstable modes is updated each time a new instability
appears as explained in Section 2.5, and the modal con-
tribution of this new instability is added in the expres-
sion of the displacements. The GMASA is based on
the assumptions that the amplitudes are assumed to
be low enough to consider that the mode shapes �0

k

and the angular frequencies ω0
k remain almost constant.

Thus, the angular frequencies in the generalized Fourier
series are the ω0

k , and for each mode, it comes:

[

Xm
k

iω0
k Xm

k

]

= pm
k �0

k (31)

Hence, an approximation of the displacements �U1 is
obtained by summing the contributions of the different

modes:�U1(t) =
∑N f

k=1

(

pm
k �0

keiω0
k t + pm

k �0
ke−iω0

k t
)

.

So for each modal amplitude p, the displacements �U1

are known and correspond to an approximate solution
of problem (5). Since �U1 is known, � is also known
(see Eq. (21)) and the matrices Kvk

and Cvk
can be

determined (see Eq. (26)). Finally, each matrix Ak is
completely known for a given modal amplitude p. The
GMASA proposes to perform a scanning on this param-
eter to study the dynamic behaviour of the system.

For the determination of the modal amplitude p, an
approach that proposes a physical description of the
vibratory response is considered and consists in com-
ing back to a temporal approach in order to establish
a connection between the different modal amplitudes.
In this way, if each mode is characterized by a modal
amplitude pk(tm) at an instant tm and an eigenvalue
λm

k = am
k + iωm

k , then the modal amplitude pk(tm+1)

at the moment tm+1 = tm + δt is related to pk(tm) and
λm

k by:

pm+1
k = pm

k exp(am
k δt) (32)

7



which is equivalent to:

∀(i, j) ∈ [1, N f ]
2,

(

pm+1
j

pm
j

)1/am
j

=

(

pm+1
i

pm
i

)1/am
i

(33)

The scanning is then carried out in time instead
of modal amplitude. The time step is chosen so that
Eq. (32) remains valid, i.e. considering a constant
increase an

k between the instants tm and tm+1 is a valid
approximation. For a reminder, each λm

k is determined
from the matrix Am

k associated with the system of the
mode k at the instant tm . In the case of an unique insta-
bility, the scanning can be realized directly with the
modal amplitude instead of the time as proposed in
[20]. It is worth noticing that the time defined here is
not a real time but a fictional one that corresponds to
the discretization of the method. Thanks to this for-
mulation, displacements are known, and the different
matrices defined previously can be determined for each
level of amplitude.

For the sake of clarity, it is worth pointing out
that contrary to the CHBM where the Fourier coef-
ficients and the angular frequency are to be found
and are the solution of an optimization problem, here
they are imposed and the stability of the corresponding
behaviour is studied.

2.7 General scheme of the GMASA procedure

In a nutshell, the general approach can be summarized
as follows:

• Initialization (m = 0): a CEA is performed on the
initial system. The Ni unstable modes are identified
as well as their eigenvectors (�0

k)k∈[1,Ni ] and their
associated angular frequencies (ω0

k )k∈[1,Ni ]. This
step corresponds to a zero modal amplitude factor
p0 = 0. An initialization with a perturbation �p is
considered, and N f = Ni .

• Step 1: Do m = m + 1. Modal amplitudes pm
j are

determined from Eq. (32) if m > 1, or from the
perturbation �p if m = 1.

• Step 2: From each modal amplitude pm
j , the Xm

k are
determined from Eq. (31).

• Step 3: �UC,m
vk

and �US,m
vk

are computed from
Eq. (30).

• Step 4: Each �Um
vk

(t, ω0
k ) is determined by using

the inverse Fourier transform.
• Step 5: The nonlinear efforts �m

1

(

∑N f

k=1
�Um

vk
(t),

ω0
k

)

are determined from Eq. (21) and written in the

Fourier space.
• Step 6: Matrices Kvk

and Cvk
are determined from

Eq. (22).
• Step 7: The eigenvalues λm

k are computed from the
different matrices Am

k .

Steps 1–7 are repeated for each value of the modal
amplitude pm , where each pm is determined from
Eq. (32).

The analysis of the divergence of each unstable
mode k is performed with the study of the evolution
of its eigenvalue λk = ak + iωk in the subsystem k.
At the step m, if am

k is positive, then the vibrations
associated with the mode k increase. If am

k is negative,
then the associated vibrations decrease, and if am

k = 0,
then the amplitudes of the oscillations are constant. The
total behaviour is deduced by summing the individual
contributions. It can be noted that if one or more subsys-
tems have one or more eigenvalues with a zero real part
(the others being negative), while all the other subsys-
tems have eigenvalues with negative real parts, then the
solution corresponds to self-sustained vibrations of the
mechanical system subjected to friction-induced vibra-
tions.

If during the process, in a subsystem k the real part of
an eigenvalue λ j is positive (with k �= j), then it is nec-
essary to check the sign of the eigenvalue of the mode j

in its own subsystem. If the mode j was not taken into
consideration in the GMASA process, it means that the
GMASA has identified a new potential instability and
it is necessary to add it in the process presented (i.e.
N f is incremented).

The main interest of this method is that it finally
relies on performing only eigenvalue analysis and so
can be applied on large finite element models with
potential significant gain in computation time com-
pared to other methods such as temporal integration.

3 Application

In this part, the GMASA method is applied on a
phenomenological model subjected to friction-induced
vibrations. In a first time, the model is introduced,
and the CEA is performed to determine the stabil-

8



Fig. 2 Mechanical system under study

ity behaviour of the mechanical system. Then, the
GMASA method is applied and its results are com-
pared to the results of the temporal integration.

3.1 Mechanical system under study

The system under study is a phenomenological model,
which makes it possible to study stability and nonlinear
vibrations for mechanical systems subjected to friction-
induced vibration. This four-degree-of-freedom model
is represented in Fig. 2. It corresponds to an extension
of the two-degree-of-freedom model proposed by Hul-
ten [6,23]. In this study, an extension of this minimal
system is considered in order to investigate the case of
multi-instabilities. It has already been used in [24] to
study the nonlinear behaviour of the system.

The model has two masses m1 and m2 held against
moving bands, as displayed in Fig. 2. Each contact
between masses and bands is modelled by a plate sup-
ported by springs and damping. Each spring k11, k12,
k21 and k22 is a nonlinear stiffness defined so that the
efforts are equal to ki j u + ki j,nlu

3 for the stiffness ki j

where u are the displacements. The two masses m1 and
m2 are coupled by a stiffness ka and a damping ca . The
bands and the masses are supposed to be always in con-
tact. The friction forces are determined with a classical
Coulomb’s law, and the friction coefficient at the differ-
ent contacts is supposed to be constant and equal to µ;
the stick-slip phenomenon is not taken into considera-
tion. The velocity of the moving bands is supposed to
be constant, and the relative velocity between the bands
and the masses are positive so that the tangential friction
forces Ft do not change. According to the Coulomb’s
law, the tangential friction forces Ft are related to the
normal forces Fn by the following formula: Ft = µFn .
In addition, in order to get a Jacobian matrix of the

nonlinear efforts which is nonzero at the sliding equi-
librium position, an effort P is initially applied on the
system. It is worth noticing here that the dynamic of
the system studied is smooth.

Thus, the dynamic equation of the system is:

MẌ + CẊ + (K + Kµ)X + Fnl(X) = P (34)

with

M =

⎡

⎢

⎢

⎣

m1 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m2

⎤

⎥

⎥

⎦

(35)

C =

⎡

⎢

⎢

⎣

c12 + ca 0 −ca 0
0 c11 0 0

−ca 0 c22 + ca 0
0 0 0 c21

⎤

⎥

⎥

⎦

(36)

K =

⎡

⎢

⎢

⎣

k12 + ka 0 −ka 0
0 k11 0 0

−ka 0 k22 + ka 0
0 0 0 k21

⎤

⎥

⎥

⎦

(37)

Kµ =

⎡

⎢

⎢

⎣

0 µk11 0 0
−µk12 0 0 0

0 0 0 µk21

0 0 −µk22 0

⎤

⎥

⎥

⎦

(38)

The vector of the nonlinear efforts is defined as fol-
lows:

Fnl(X) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

k12,nlx
3
1 + µk11,nl y

3
1

k11,nl y
3
1 − µk12,nlx

3
1

k22,nlx
3
2 + µk21,nl y

3
2

k21,nl y
3
2 − µk22,nlx

3
2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(39)

The Jacobian matrix of nonlinear efforts at the point

X0 =
[

x0
1 , y0

1 , x0
2 , y0

2

]T
is equal to:

Jnl(X0) =

⎡

⎢

⎢

⎢

⎣

3k12,nlx
02

1 3µk11,nl y
02

1 0 0

−3µk12,nlx
02

1 3k11,nl y
02

1 0 0

0 0 3k22,nlx
02

2 3µk21,nl y
02

2

0 0 −3µk22,nlx
02

2 3k21,nl y
02

2

⎤

⎥

⎥

⎥

⎦

(40)

The objective of the present study is to illustrate the
validity of the GMASA method to predict the stabil-
ity of systems subjected to friction-induced vibrations.
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Table 1 Parameter of configurations under study

Cfg m1 m2 k11 k12 k21 k22 ka c11 c12 c21 c22 ca k11,nl k12,nl k21,nl k22,nl

(kg) (kg) (N/m) (N/m) (N/m) (N/m) (N/m) (Ns/m) (Ns/m) (Ns/m) (Ns/m) (Ns/m) (N/m) (N/m) (N/m) (N/m)

1 1 2 2000 4000 1000 3000 100 1 1 1 1 1 104 106 104 106

2 500

For this reason, it is applied here to a phenomeno-
logical model for which the dynamic response can
be determined by time integration. Thus, two config-
urations of the system are retained, their character-
istics are given in Table 1 and an initial pressure of
P = [100,−100,−100,−100]T is applied on the sys-
tem.

In the rest of the study, the following strategy will be
applied. First, the CEA is used to determine the eigen-
values and so the stability behaviour of the system for
different values of the friction coefficient µ. Five dif-
ferent cases with a different number of unstable modes
(predicted by the CEA) are retained. Then, for these
different cases, a temporal integration is performed to
get the dynamic behaviour of the system. Finally, the
GMASA method is used and its results are compared
to the temporal integration results.

3.2 Stability analysis and preamble of the GMASA
methodology

In a first time, the CEA is used to determine the eigen-
values and the stability behaviour of the system for
different values of the friction coefficient µ. The evo-
lution of the eigenvalues is given in Fig. 3 for the two
configurations. The stability behaviours are different
according to the considered configuration. Indeed, the
first configuration has a unique interval of instability
for µ > 0.48, whereas the second configuration has
two intervals of instability for µ ∈ [0.17, 0.23] and
µ > 0.55. For the first configuration, two mode cou-
pling phenomena take place: the first one at µ = 0.48
for an unstable mode detected at 5.8 Hz and the second
at µ = 0.54 at 10 Hz. Concerning the second config-
uration, a unique mode is unstable between µ = 0.17
and µ = 0.23 at 7.4 Hz. Then, two mode coupling
phenomena are observed, the first one at µ = 0.55 at
4.8 Hz and the second at µ = 0.58 at 9.9 Hz.

In the following sections, different cases are stud-
ied in order to illustrate the capacity of the GMASA

method to predict the evolution of the vibration
behaviour of the system around its nonlinear equilib-
rium, in other word the prediction of the increase or the
decrease in the self-excited vibrations. Five different
cases with different dynamic behaviours are selected.
They are summarized in Table 2; the characteristics
as well as the unstable frequencies with the associated
real parts computed by the CEA are given. The first two
cases (i.e. Cases 1 and 2) correspond to cases where a
unique instability is detected by the CEA, and the last
three cases (i.e. Cases 3, 4 and 5) correspond to cases
where two instabilities are identified with the CEA.

3.3 Cases 1 and 2: one instability

In a first time, the two first cases are studied. They cor-
respond to cases where a unique instability is detected
with the CEA. The corresponding parameters are given
in Table 2.

3.3.1 Temporal integration: reference results

First, a small perturbation of the equilibrium is consid-
ered and a time integration is performed on the system
to determine its dynamic response for Cases 1 and 2.
The steady-state regime is reached in a few seconds,
and the corresponding limit cycles associated with the
different degrees of freedom (dofs) are given in Fig. 4
on the right column in green and purple, respectively.

The FFT are also determined, and the different fre-
quencies observed are given in Table 3. In both cases,
the signal is composed of a main frequency and its har-
monics. The main frequency is equal to 5.18 Hz for
Case 1 and to 7.57 Hz for Case 2. In those cases, only
three harmonics are observed so the dynamic response
is driven by a unique frequency and mostly by the first
harmonic. For these cases, the frequency of the unsta-
ble mode has slightly evolved between the CEA predic-
tion and the time integration: from 5.29 to 5.18 Hz and
from 7.39 to 7.57 Hz for the first and the second cases,
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Fig. 3 Evolution of real parts (a, c) and frequencies (b, d) of eigenvalues obtained with CEA versus the friction coefficient µ for the
first (a, b) and the second (c, d) configurations — one color per complex eigenvalue. (Color figure online)

Table 2 Cases under study

Case number μ ka funs
1 (Hz) Re(λuns

1 ) funs
2 (Hz) Re(λuns

2 )

1 0.5 100 5.29 0.24

2 0.2 500 7.39 0.22

3 0.55 100 5.47 3.3 9.27 0.007

4 0.63 100 5.47 5.75 10 5.75

5 0.65 500 5.56 4.26 10.06 4.36

respectively. A unique unstable mode is identified in
the dynamic response, and only a few harmonics are
involved in the nonlinear dynamic response.

3.3.2 Application of the GMASA method

Then, the GMASA method is applied on Cases 1 and
2. Because there is a unique unstable mode predicted
by the CEA, it is possible to perform directly a modal
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ẋ
1

(m
/
s)

-1.5

-1

-0.5

0

0.5

1

1.5(a)

x1 (m)
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

ẋ
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Fig. 4 Comparison of limit cycles obtained with the GMASA
method (left) and by time integration (right) for the four degrees
of freedom: x1 (a, b), y1 (c, d), x2 (e, f), y2 (g, h) for Case 1

(green), Case 2 (purple), Case 3 (yellow), Case 4 (orange) and
Case 5 (blue). (Color figure online)
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Table 3 Decomposition of the frequencies identified in the FFT for the five cases

Case number 1 2 3 4 5

Nb. of fundamentals 1 1 2 2 2

Nb. of harmonics 3 3 3 5 5

Nb. of linear combinations 0 0 7 10 13

Decomposition f1 f1 6 f1 − 3 f2 2 f1 − f2 2 f1 − f2

2 f1 2 f1 f1 − f1 + f2 −3 f1 + 2 f2

3 f1 3 f1 3 f1 − f2 f1 − f1 + f2

4 f1 4 f1 f2 f2 f1

2 f1 2 f1 3 f1 − f2

f1 + f2 4 f1 − f2 −2 f1 + 2 f2

3 f1 − f1 + 2 f2 f2

2 f2 f1 + f2 2 f1

−5 f1 + 5 f2 3 f1 −3 f1 + 3 f2

−3 f1 + 4 f2 −2 f1 + 3 f2 − f1 + 2 f2

7 f1 − f2 2 f2 f1 + f2

9 f1 − 2 f2 2 f1 + f2 3 f1

4 f1 −2 f1 + 3 f2

− f1 + 3 f2 2 f2

f1 + 2 f2 2 f1 + f2

5 f1 4 f1

−2 f1 + 4 f2 − f1 + 3 f2

f1 + 2 f2

3 f1 + f2

5 f1

amplitude scanning for the identified unstable mode.
Hence, the method is initialized with the mode shape
and the angular frequency of the unstable mode identi-
fied with the CEA and a scanning on the modal ampli-
tude between 0 and 1 is performed. For each value of
the modal amplitude p, the equivalent nonlinear efforts
and the associated dynamic matrix are determined and
the eigenvalues of the latter are determined. The evo-
lution of these eigenvalues is given in Fig. 5 for both
cases.

The behaviour is similar for both configurations. The
eigenvalue corresponding to the unstable mode is the
purple one, and the evolution of the real part of this
eigenvalue allows to conclude on the divergence of
the approximate dynamic solution for each amplitude
level. When this real part is positive, then the approxi-
mate solution is divergent; when it is negative, then the
vibratory levels decrease. If the real part is zero, then

the vibratory levels remain constant and the approxi-
mate solution corresponds to a limit cycle.

For the first configuration, the real part of the eigen-
value of the unstable mode decreases and becomes null
for p = 0.33. Hence, when the modal amplitude is infe-
rior to 0.33, the real part of the associated eigenvalue is
positive, and the vibratory levels increase. And when
the modal amplitude p is superior to 0.33, then the
real part of the associated eigenvalue is negative, and
so the approximate solution has decreasing vibratory
levels. Then, when p = 0.33, the real part is equal to
zero and so the vibratory levels remain constant. So, if
a small initial perturbation of the mode is considered
(i.e. an initial low value of p), then the vibratory levels
will increase since the real part is positive. As long as
the real part is positive, the growth of the limit cycles
will be slower and slower since the associated real part
decreases when the modal amplitude increases. Finally,
when the modal amplitude reaches p = 0.33, then the
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Fig. 5 Evolution of real parts of eigenvalues (a, c) and natural frequencies (b, d) of the successive dynamic matrices versus the modal
amplitude for Case 1 (a, b) and Case 2 (c, d) — one color per complex eigenvalue. (Color figure online)

real part is equal to zero, which implies that the approx-
imated solution describes a steady-state regime and that
the limit cycle of the self-excited vibrations of the non-
linear mechanical system is reached. This solution is
composed of a unique contribution with a frequency
equal to 5.19 Hz, which is almost equal to the first fre-
quency peak observed on the FFT of the nonlinear solu-
tion obtained from temporal integration (i.e. 5.18 Hz).
These results are summarized in Table 4.

Results are similar for the second case: when p

increases, the real part decreases and becomes null for
p = 0.79 (see Fig. 5 and Table 4). The GMASA iden-
tifies a steady-state regime driven by one frequency at
7.54 Hz, which is very close to the first frequency peak

observed on the FFT from temporal integration equal
to 7.57 Hz.

In these two cases, the GMASA identifies modal
amplitudes for which the real part of the eigenvalue
becomes zero, i.e. an approximate steady-state solu-
tion. The latter one is characterized by a limit cycle
given by Eqs. (30) and (31). These limit cycles obtained
with the GMASA method can be compared to the limit
cycles obtained with temporal integration. The com-
parison between the limit cycles is given in Fig. 4 for
the four dofs and for the five cases, on the left column
for GMASA and right column for temporal integra-
tion. The limit cycles corresponding to the Cases 1 and
2 are in green and purple, respectively. Moreover, the
maximal amplitudes of the displacements and of the
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Table 4 Comparison of CEA results, time integration and GMASA method on the different cases

Case μ ka CEA Temporal GMASA

Freq. (Hz) Real part Freq. (Hz) Nb. peaks Freq. (Hz) Real part p

1 0.5 100 5.29 0.24 5.18 4 5.19 0 0.33

2 0.2 500 7.39 0.22 7.57 4 7.54 0 0.79

3 0.55 100 5.47 3.3 5.31 12 4.76 0 0.47

9.27 0.007 9.27 9.13 0 0.97

4 0.63 100 5.47 5.75 5.5 17 4.98 0 0.64

10 5.75 10.13 10.32 0 1.34

5 0.65 500 5.56 4.26 5.73 20 4.86 0 0.58

10.06 4.36 10.01 9.92 0 1.11

Table 5 Comparison of the amplitudes of the FFT peaks of the incommensurable frequencies

Case Freq (Hz) Ampl. peak FFT

x1 (m) y1 (m) x2 (m) y2 (m)

1 f1,GMASA 5.19 1.5 10−4 3.4 10−4 8.7 10−3 1.7 10−2

f1,Temporal 5.18 2.1 10−4 5.9 10−4 1.2 10−2 3.4 10−2

2 f1,GMASA 7.54 4.3 10−3 3.6 10−2 1.6 10−2 4.3 10−3

f1,Temporal 7.57 9.3 10−3 5.6 10−2 2.7 10−2 7.2 10−3

3 f1,GMASA 4.76 7.4 10−5 2.2 10−4 6.4 10−3 3.0 10−2

f2,GMASA 9.13 1.2 10−2 3.1 10−2 5.0 10−4 2.3 10−4

f1,Temporal 5.31 2.9 10−4 1.1 10−3 2.9 10−2 7.2 10−2

f2,Temporal 9.27 3.3 10−2 8.3 10−2 1.4 10−3 5.7 10−4

4 f1,GMASA 4.98 2.2 10−4 8.6 10−4 1.9 10−2 2.9 10−2

f2,GMASA 10.32 1.9 10−2 3.4 10−2 4.8 10−4 1.4 10−4

f1,Temporal 5.5 5.4 10−4 1.3 10−3 4.2 10−3 1.1 10−1

f2,Temporal 10.13 6.2 10−2 1.7 10−1 2.7 10−3 1.3 10−3

5 f1,GMASA 4.86 8.1 10−4 3.4 10−3 1.6 10−2 2.6 10−2

f2,GMASA 9.92 1.7 10−2 3.0 10−2 1.8 10−3 5.4 10−4

f1,Temporal 5.73 2.3 10−3 3.4 10−3 2.5 10−2 4.7 10−2

f2,Temporal 10.01 6.1 10−2 1.7 10−1 8.7 10−3 3.5 10−3

velocities are determined and summarized in Table 6.
The associated amplitudes of the main frequency peak
in the FFT are given in Table 5 for each dof. For the
reader comprehension, fi,GMASA and fi,Temporal refer to
the resonance peak for the i th frequency predicted by
the GMASA and the temporal approach, respectively.

From Fig. 4, it is clear that the evolutions of the
limit cycles obtained with the GMASA are similar to
the evolution of the limit cycles obtained with the tem-
poral integration. For example, by considering Case 1
for the first two dofs, the limit cycles obtained with

the GMASA and the temporal integration are visually
represented just by a point compared to the other limit
cycles due to the very low levels of vibration; this is
confirmed by the amplitudes given in Table 6. The ratio
of amplitudes for x1 between Cases 1 and 2 is equal to
0.025 (resp. 0.039) with the GMASA (resp. temporal
integration). It demonstrates well that amplitudes of
x1 are negligible for Case 1 compared to Case 2 and
that the GMASA estimates well this tendency. Similar
analysis can be bone for the other dofs. This is also con-
firmed by comparing the participation of the main peak
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Table 6 Comparison of the amplitudes of limit cycles based on the GMASA and the temporal integration

DOF Case 1 Case 2 Case 3 Case 4 Case 5

x1 (m) GMASA 2.26 10−4 0.009 0.026 0.042 0.036

Temporal 7.54 10−4 0.019 0.071 0.141 0.145

ẋ1 (m/s) GMASA 0.008 0.414 1.513 2.656 2.218

Temporal 0.043 0.988 4.338 9.145 9.363

y1 (m) GMASA 7.37 10−4 0.074 0.063 0.076 0.069

Temporal 0.002 0.118 0.176 0.368 0.388

ẏ1 (m/s) GMASA 0.024 3.438 3.607 4.739 4.127

Temporal 0.075 5.601 10.121 22.574 24.005

x2 (m) GMASA 0.017 0.032 0.029 0.041 0.039

Temporal 0.031 0.057 0.063 0.093 0.071

ẋ2 (m/s) GMASA 0.583 1.512 1.022 1.443 1.482

Temporal 1.007 2.677 2.245 3.518 3.065

y2 (m) GMASA 0.034 0.008 0.046 0.063 0.057

Temporal 0.070 0.015 0.148 0.234 0.109

ẏ2 (m/s) GMASA 1.138 0.394 1.601 2.201 2.034

Temporal 2.266 0.705 4.848 7.932 4.095

in the FFT in Table 5. For Case 1, considering x2 and y2,
the limit cycles are larger than those of x1 and y1; this
behaviour is observed on the limit cycles obtained by
temporal integration as well as on those obtained with
the GMASA. Moreover, in the case of y2, the amplitude
of displacements is greater in Case 1 than in Case 2 (see
Table 6 and Fig. 4) and this difference is well predicted
by the GMASA. A last remark concerns the prediction
of the dynamic equilibrium position. Indeed, for both
Cases 1 and 2, the limit cycles are not centred around
the (0,0) point, and for x1, the limit cycle is shifted on
the right, whereas it is shifted on the left for the other
dof (see Fig. 4). This is well predicted by the GMASA
since the position of the limit cycles follows the same
behaviour. Considering the comparison of the associ-
ated amplitudes of the main frequency peak in the FFT
(see Table 5), the amplitudes given by the GMASA are
good approximation of the amplitudes obtained from
the temporal integration for both Cases 1 and 2. This
demonstrates that in these cases, the GMASA iden-
tifies well the contribution of the first harmonic in the
dynamic response of the system. It should be noted that
the FFT obtained from the limit cycles of the GMASA
are composed only of one peak at the frequency iden-
tified by the GMASA, whereas the FFT obtained from
temporal integration have many peaks as described in
Table 3.

As a conclusion, in the case of one instability, the
GMASA method identifies the frequency of the self-
sustained vibrations as well as the modal amplitude of
the unstable mode in the steady-state regime. Moreover,
the limit cycles of the steady-state response obtained
with the GMASA give an approximation of the limit
cycles obtained by temporal integration. If the vibra-
tory levels are not exactly predicted, it is still possi-
ble to compare the vibratory levels between different
configurations of the system. Moreover, the contribu-
tion of the first harmonic of the main frequency is well
approximated by the GMASA. The good level of pre-
diction in these cases may be due to the fact that the
dynamic response is mainly driven by one frequency
(i.e. the first harmonic of the frequency of the original
unstable mode) and that a low number of harmonics are
involved making the truncation at the first harmonic a
good approximation of the real solution.

3.4 Cases 3, 4 and 5: multi-instabilities

The GMASA method shows a good ability to approx-
imate the dynamic behaviour of the system when one
instability is present. The main objective of the fol-
lowing study is to undertake the effectiveness and the
ability of the method to treat multi-instability cases. For
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this purpose, the GMASA methodology is applied on
Cases 3, 4 and 5 (see Table 2 for more details on each
case), where two unstable modes are identified with
the CEA. The validation process is identical to the pre-
vious part: a time integration is performed to get the
reference solution (i.e. the self-excited vibration of the
nonlinear system). The effectiveness of the GMASA
methodology is performed by comparing the GMASA
results to this reference.

Since a few parameters must be tuned by the user
for the GMASA method, a preliminary analysis is pro-
posed to discuss the choice of these tuning parameters.
This will be more specifically illustrated for Case 3.

3.4.1 Preamble and GMASA parameters tuning

As previously explained, a preliminary study is per-
formed on Case 3 to discuss the choice of the GMASA
tuning parameters. As a reminder, two unstable modes
are identified with the CEA for Case 3 (see Table 2) and
the two associated frequencies (resp. the real parts) are
equal to 5.47 Hz and 9.27 Hz (resp. 3.3 and 0.007). It
is worth noticing that the second instability has a real
part that is largely inferior to the other one.

By using temporal integration, the dynamic behaviour
of the system is obtained. The steady-state regime is
reached in a few seconds, and the associated limit
cycles are given in Fig. 4 on the right column in yellow.
The FFT are determined, and the frequencies observed
are given in Table 3. Compared to Case 1, the vibra-
tory levels have largely increased (see the limit cycle
amplitude about 100 times larger for x1 in Table 6), and
the dynamic behaviour is more complex since the sig-
nal is composed of two incommensurable frequencies,
equal to 5.31 Hz and 10.13 Hz, their harmonics and
their linear combinations (see Table 3). Twelve peaks
are observed in the FFT when only four were detected
in Case 1. However, the dynamic response is mainly
driven by the first harmonic of each incommensurable
frequency since they correspond to the main peaks
on the FFT. Moreover, it appears that the first mass
m1 (i.e. x1 and y1) oscillates principally at 10.13 Hz,
and the second mass m2 (i.e. x2 and y2) oscillates at
5.31 Hz. Therefore, each mass oscillates mainly at one
frequency and the contributions related to the other
frequency as well as the interaction between the two
masses are relatively weak.

The GMASA method is then applied on the sys-
tem. In a first time, it is applied for predefined values

of the modal amplitudes p1 and p2 associated with
each unstable mode. Thus, for each amplitude pair, the
dynamic matrices A1 and A2 of each subsystem are
computed and their eigenvalues are determined. The
evolution of the eigenvalues of each subsystem is given
in Fig. 6. It appears that the evolutions of the eigen-
values are different in each subsystem. Indeed, in the
first subsystem, the real part of the purple eigenvalue
remains almost constant and equal to −1.5, whereas in
the second subsystem, it increases when p1 > 2.3. In
the same way, a variation in p1 has no impact on the fre-
quency of this mode in the first subsystem, whereas in
the second, when p1 > 2.3, the frequency increases and
is impacted by a variation in p2. In both subsystems, the
evolution of the eigenvalues is complex. For example,
the real parts of the orange and yellow modes evolve
abruptly on certain zones, whereas they remain almost
constant on the rest of the space. So it seems compli-
cated to identify areas where the unstable modes will
evolve and so to conclude on the increase or decrease in
the vibratory levels of the solution. Moreover, this kind
of results requires a large number of calculations which
cannot be done easily on a system with a large number
of degrees of freedom. For these reasons, it is neces-
sary to use relations between the different pi under the
form of Eq. (32) in order to follow the evolution of the
system.

The use of a recurrence formula such as Eq. (32)
requires the tuning of two parameters, namely the time
discretization, i.e. the choice of δt , and the initial con-
ditions on the modal amplitudes, i.e. p0

1 and p0
2 . The

influence of these two parameters will be studied in the
following.

In a first time, the influence of the initialization of
the modal amplitude on the results is studied. In this
way, different initializations are considered, namely
(p0

1, p0
2) = [(0.1, 0.1), (0.001, 0.01), (0.01, 0.001),

(0.5, 0.5)]. Because these initializations correspond to
a perturbation of the system, they are voluntarily low.
The evolutions of the different parameters that charac-
terize the evolution of the unstable modes are given in
Fig. 7. For each mode, it corresponds to the evolution of
its modal amplitude pi , of the real part of its eigenvalue
and of its frequency. It is important to remind that the
real parts and the frequencies are determined from the
eigenvalues of the dynamic matrices associated with
the mode at each iteration. Moreover, at t = 0, values of
real parts and frequencies are those of the CEA, in other
words when p = 0. Because the problem is not contin-

17



Fig. 6 Case 3: evolution of real parts of eigenvalues (a, b) and
frequencies (c, d) of the subsystem associated with the first (a, c)
and the second (b, d) unstable modes for a grid of modal ampli-

tudes (p1, p2) — one color per complex eigenvalue. (Color figure
online)

uous in 0, large variations may be observed. According
to Fig. 7, whatever the initialization is, whether it is
identical or not for the two modes, the different param-
eters always converge towards the same value. Indeed,
the two real parts converge always to 0, and the fre-
quency of the first mode converges to 4.76 Hz, and to
9.13 Hz for the second one. The modal amplitude of
the first mode always converges to p1 = 0.47, and
to p2 = 0.97 for the second mode. These results are
summarized in Table 4. Of course, the time needed to
converge to the solution is highly influenced by the ini-
tial conditions. Indeed, the initializations (0.1, 0.1) and
(0.5, 0.5) lead to a faster convergence of the method.
In other words, less calculations are required to get the
results. However, the (0.5, 0.5) initialization is slightly

different from the other: the first mode has a decreasing
modal amplitude, and the evolution of the real part of
the second mode has a different evolution compared to
the other cases. This demonstrates that an initialization
with a perturbation too far from the origin implies a
different “path” on the surface given in Fig. 6. For the
reader interest and to be more comprehensive on this
analysis, initializations with higher values of (p0

1, p0
2)

have been tested and systematically lead to a divergence
of the method. Therefore, the choice of the initialization
of the modal amplitudes is important and a compromise
has to be found between a low number of iterations and
the convergence of the method. For the rest of the study,
an initialization equal to (p0

1, p0
2) = (0.1, 0.1) is con-

sidered.
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Fig. 7 Case 3: influence of initialization in modal amplitudes
(p0

1, p0
2) on the evolution of modal amplitudes (a, d), real parts

of eigenvalues (b, e) and frequencies (c, f) of the first unstable
mode (top) and of the second mode (bottom) — initialization

1: (0.1; 0.1) ( ) — initialization 2: (0.001, 0.01) ( )
— initialization 3: (0.01, 0.001) ( ) — initialization 4: (0.5,
0.5) ( )

In a second time, the influence of the scan step (i.e.
δt) is studied. Four different values of δt are consid-
ered, namely [0.01, 0.1, 1, 10] s. For each case, the
GMASA method is applied and the evolution of the dif-
ferent parameters is determined and displayed in Fig. 8.
First, it can be noticed that the choice of a δt too large
generates a divergence of the solution (see δt = 10 s
in Fig. 8). This result can easily be explained by the
fact that, when this interval is too large, considering
a constant growth during this time interval is a rough
assumption that prevents from following the evolution
of the modes. For the other time intervals, a modifica-
tion of the discretization has no impact on the solution.
Indeed, whatever the value of δt in [0.01, 0.1, 1] s, the
different parameters converge to the same value. How-
ever, between the case δt = 1 s and the case δt = 0.1
s, 100 times less calculations are needed. In conclu-
sion, the choice of the time interval is crucial. A time
interval that is too large does not allow the evolution of
the different modes to be followed correctly, and a time
interval that is too small will require a high number of

iterations. In the rest of the study, a time interval equals
0.1 s is chosen.

3.4.2 Case 3

Once those parameters are determined, it is possible to
get the evolutions of the eigenvalues of each subsystem
for Case 3. Results are given in Fig. 9. As a reminder,
the diverging behaviour or not (i.e. the increase or the
decrease in the vibratory levels) of each unstable mode
in the global dynamic solution is given by its behaviour
in its subsystem. If a subsystem shows a divergence on
another mode, it is necessary to consider the subsystem
related to this other mode to conclude on its participa-
tion in the global dynamic response. In this case, in each
subsystem, the real part associated with each unstable
mode decreases until it stabilizes to a zero value.

Finally, the results show that the modal amplitudes
evolve until the vibration levels remain constant (i.e.
the associated two real parts are equal to 0). As long
as both real parts are not null and that at least one of
them is positive, the dynamic response approximated
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Fig. 8 Case 3: influence of the time discretization on the evolu-
tion of the modal amplitudes (a, d), on real parts of eigenvalues
(b, e) and on frequencies (c, f) of the first unstable mode (top)

and the second (bottom) — δt = 0.01s ( ) — δt = 0.1s
( ) — δt = 1s ( ) — δt = 10s ( )

by the GMASA method is divergent (i.e. a growth of the
vibratory levels is found) and the modal amplitudes of
the unstable modes evolve. After a while, the different
parameters do not longer evolve: the two real parts are
equal to zero, which means the two contributions corre-
sponding to the evolution of the initial unstable modes
are involved in the nonlinear self-sustained dynamic
response. These results are consistent with the refer-
ence results where the two instabilities are present (see
Fig. 4b, d, f, h in yellow). Thus, the GMASA identifies
a steady-state response composed of two modes: one
at 4.76 Hz with a modal amplitude p1 = 0.46, and the
second at 9.13 Hz with a modal amplitude p2 = 0.97.

The solution found by the GMASA defines quasiperi-
odic limit cycles given in Fig. 4 in yellow, and the peak
amplitudes of the FFT are given in Table 5. It is worth
noticing that for the GMASA, since only the first har-
monic is retained, the number of peaks corresponds
to the number of unstable modes. The GMASA iden-
tifies well the evolution of the limit cycles compared
to the other cases (see Fig. 4, Tables 6 and 5): for x1,
the displacement amplitudes are about 100 times larger

compared to Case 1; for x1 and y2, the limit cycles are
larger compared to Case 2; and for y1 and x2, the limit
cycles are of the same order of magnitude for Cases 2
and 3, etc. The levels of vibrations are not accurately
predicted but the tendencies of the evolution of the limit
cycles are well predicted and comparison between the
different systems is possible. Moreover, the estimation
of the participation of the first harmonic of the incom-
mensurable frequencies in the FFT is also well approx-
imated. Indeed, the GMASA identifies well that the
contribution of the first frequency is more important
for the degrees of freedom x2 and y2 than for x1 and
y1 (and vice versa); see the two orders of magnitude of
difference in Table 5).

In conclusion, the GMASA makes it possible to fol-
low the contributions of the two unstable modes for
different modal amplitudes and leads to decide on the
participation (or not) of each unstable mode initially
identified by the CEA in the final steady-state regime
of the system. In this case, the estimated frequencies of
the two unstable modes that contribute to the steady-
state regime approximated by the GMASA method
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Fig. 9 Case 3: evolution of the real parts of the eigenvalues (a,
b) and of frequencies (c, d) in function of the GMASA time of
the subsystems associated with the unstable modes 1 (left) and

2 (right) — mode associated with the subsystem: ( ) — one
color per complex eigenvalue. (Color figure online)

are close to those of the reference solution. In addi-
tion, the CEA highlights two instabilities, one with a
real part almost null and much lower than the other.
The GMASA method succeeds in identifying that the
two modes are present in the dynamic response with
modal amplitudes of the same order of magnitude. This
demonstrates the relevance of the proposed method for
obtaining the contribution and evolution of the initial
unstable modes in the final self-sustained solution. On
the other hand, in the present case, the GMASA method
has identified an approximate solution of the steady-
state regime of the system. By comparison of the limit
cycles to the reference for Cases 1 and 2, it appears

that the GMASA is able to predict well the growth and
the evolution of the limit cycle amplitudes between the
different cases and can predict well the participation of
the first harmonic of each frequency.

3.4.3 Cases 4 and 5

Finally, two last cases are investigated. As a reminder,
physical parameters for Cases 4 and 5 are given in
Table 1. In both cases, the CEA identified two unstable
modes (see Table 2). The major difference with Case
3 is that the associated real parts of the two unstable
modes are of the same order of magnitude.
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Fig. 10 Evolution of the modal amplitudes (a, d), of the real parts of eigenvalues (b, e) and frequencies (c, f) of the unstable modes
versus GMASA time for Case 4 (a, b, c) and Case 5 (d, e, f) — first mode: blue — second mode: orange

The limit cycles obtained from temporal integration
are given in Fig. 4 in orange and blue for Cases 4 and 5,
respectively, and the frequencies of the FFT are given
in Table 3. Compared to Case 3, the dynamic is more
complex for both cases: several harmonics and more
linear combinations of the two incommensurable fre-
quencies are involved in the dynamic of the system (see
Table 3).

The GMASA method is then applied on the system.
The evolutions of the modal amplitudes, of the real
part of the eigenvalues and of the frequencies are dis-
played in Fig. 10. Results are summarized in Table 4.
The real parts of the two unstable modes converge to 0
in both cases. For Case 4 (resp. Case 5), the frequen-
cies converge to 4.98 Hz and 10.32 Hz (resp. 4.86 Hz
and 9.92 Hz), and the modal amplitudes to p1 = 0.64
and p2 = 1.34, respectively (resp. p1 = 0.58 and
p2 = 1.11). Even if the real parts of the unstable modes
obtained with the CEA are of the same order of magni-
tude, the GMASA predicts that the modal participation
of the mode with the highest frequency is almost two
times higher than the other one in both cases.

As in previous cases, the GMASA identifies a set
of modal amplitudes that characterizes a steady-state
response, corresponding to the limit cycles given in
Fig. 4. The amplitudes of the limit cycles are given
in Table 6, and the amplitudes of the FFT peaks of
the two incommensurable frequencies that describe the
dynamic are given in Table 5. As previously, the limit
cycles obtained by the GMASA follow the same evolu-
tion than those obtained by temporal integration: limit
cycles of Cases 4 and 5 are larger than those of the
other cases, the displacement amplitudes of x2 are of
the same order of magnitude for Cases 3 and 5, the
limit cycles of x2 are very spread (2 incommensurable
frequencies involved), the limit cycle of y2 is larger for
Cases 4 and 3 than for Case 5, etc. If the prediction is
not exact, the global tendency is well predicted, and it is
possible to compare the vibratory levels of each config-
uration with the vibratory levels given by the GMASA.
By considering the amplitudes of the FFT peaks of
the two incommensurable frequencies detected in the
FFT, the GMASA estimates well the participation of
the first harmonics. Indeed, the dynamic response of
x1 and y1 is more driven by the second frequency than
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by the first one: see for Case 4 and for x1 and y1 FFT
peaks of the first harmonic are equal to 5.4 10−4 m
and 1.3 10−3 m for the first frequency and equal to
4.2 10−3 m and 1.1 10−1 m for the second frequency
for the temporal integration. This tendency is also well
predicted by the GMASA (2.2 10−4 m and 8.6 10−4 m
versus 1.9 10−2 m and 2.9 10−2 m, respectively). A
similar analysis can be done for the contribution of the
first frequency, which contributes more to the dynamic
response of x2 and y2. Similar analyses can be done for
Case 5.

In both cases, the approximation of the frequen-
cies is close to the frequencies of the reference results.
As in the previous case, the GMASA method predicts
the contribution of two initial unstable modes in the
dynamic response of the system, which is consistent
with the results obtained with the temporal integra-
tion. Moreover, even if the two real parts predicted
by the CEA are equal, the GMASA identifies that the
modal amplitudes of the two modes are different and
that the modal amplitude of the second one is about
the double of the modal amplitude of the first unstable
mode. So even if the dynamic behaviour of the sys-
tem is more complex, the GMASA method is able to
predict well the dynamic behaviour of the system. The
comparison of the dynamic solution approximated by
the GMASA with the results obtained by temporal inte-
gration demonstrates that the GMASA is able to give
an estimation of the vibratory levels and more partic-
ularly it gives the correct global evolution of the limit
cycles with regard to the different configurations of the
system. Moreover, the frequencies involved in the self-
sustained vibrations are also well estimated.

4 Conclusion

The objective of the present study is to propose a
nonlinear approach complementary of the CEA. This
methodology, called the Generalised Model Amplitude
Stability Analysis (GMASA), consists in the exten-
sion and the generalization of the modal amplitude sta-
bility analysis from the mono-instability to the multi-
instability case. It consists in considering an approxi-
mation of the displacements as a function of the modal
amplitudes of the unstable modes identified by the
CEA. For each level of amplitude, the evolution of the
transient nonlinear vibrational responses (i.e. increase
or decrease in the amplitude of a predefined approx-

imate vibratory solution) is estimated and studied.
This evolution of the response behaviour estimated by
GMASA characterizes the potential divergence or mit-
igation of the nonlinear dynamic response of the sys-
tem. Hence, the GMASA approach identifies the unsta-
ble modes involved in the nonlinear dynamic response
of the system and gives a good approximation of the
associated frequencies that are present in the dynamic
response of the self-sustaining system.

Moreover, this approach can also estimate the con-
tribution and the associated modal amplitude of each
initial unstable mode (predicted by the CEA) in the final
steady-state vibrational response. Indeed, the GMASA
is able to predict an approximation of the vibratory lev-
els by estimating quite well the participation of the first
harmonic of frequencies of the self-sustained vibra-
tions. The GMASA methodology allows the compari-
son of the vibratory levels for different configurations
of the mechanical system subjected to friction-induced
vibration and can be used to identify design tendencies.

The application of the GMASA methodology on a
finite element model of an automotive brake system
subjected to multi-instabilities will be the subject of
future developments.
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