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Abstract. The Ultimatum Game is an experimental economics game in
which an agent has to propose a sharing partition of a limited amount
of resources to other agents who have to accept it or not. If the offer is
rejected per consensus, the process of sharing is abandoned. So all agents
have to guess what are the best decisions (offer and vote) to optimise
their respective gain. We focus on an iterated multi-agent version of
Ultimatum Game also known as the Pirate Game, a riddle in which
pirates have to share coins according to specific rules. To solve such game,
we employ a multi-agent model. In particular, we design a new kind of
Artificial Neural Network model able to output an integer partition of
discrete finite resources, trained by a Reinforcement Learning agent to
identify an acceptable offer to the voting agents. We take an interest in
evaluating the performances against several kinds of voting behaviours.
The results are close to theoretical optima for all tested scenarios thus
demonstrating the flexibility of our method.

Keywords: Multi-Agents Systems - Ultimatum Game - Reinforcement
Learning - Game Theory

1 Introduction

Numerous use-cases involve resource sharing between multiple actors in multi-
agents systems (MAS) where the involved actors try to gain a common quantity
of interest and reach consensus [1]. For instance, in the context of telecommunica-
tion, one given Mobile Network Operator (MNO) can share 5G network resources
with vertical industries |2], thereby allowing them to request the reservation of
a network slice in the MNO infrastructure [3].

As modern networks (e.g. IoT and UAV) become more decentralized and
autonomous, network agents entities often incorporate Artificial Intelligence (AI)
strategies to achieve local decisions and maximize the network performance [4].
Some approaches like [5] propose to solve such network resource management
with the application of the Reinforcement Learning (RL) approach [6], which is
a trial and error process where an agent can identify the best sequence of actions
to maximise its cumulative reward. In such approaches, resources management
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depends solely on the MNO sharing of its infrastructure. In several use-cases,
the demanding agents can accept or refuse an offer (i.e. a sharing distribution),
which is a critical assumption for the MNO in case the total demand exceeds its
available resource capacity.

Obviously, for an offerer agent, the design of sharing strategies is crucial as
failing to satisfy the demands of other agents could result in excluding the offerer
from the business. For dynamic and unpredictable environments (e.g. in hybrid
human-agent groups [7]), it is extremely difficult to completely specify the offerer
strategy at the time of its design and before runtime applications [8]. Indeed, the
design of a MAS based on the understanding of actions and interactions within
artificial agents remains a challenging task. In this respect, the Ultimatum Game
(UG) paradigm can be considered as a viable candidate to capture such complex
interactions in a dynamic and heterogeneous environment [7]. In this context,
we investigate a multi-agent version of UG.

UG had already been studied in particular with a multi-agent setting [9H13].
In this paper, we tackle the problem of UG with discrete finite resources which
is a rather interesting hypothesis of the game. We focus on the application of a
Reinforcement Learning approach to model the behaviour of a given proposer
(i.e. offerer) and voter agents in the multi-agents version of UG with discrete
resources.

From a more complex and more attractive perspective, we focus on a partic-
ularly interesting version of the UG, which is inspired by a curious riddle called
the Pirate Game where several agents are hierarchically ranked. The principle
of this riddle is as follows: np pirates have to share ng coins. There is a hierar-
chy among pirates: Py, Ps, ..., P, and the proposer is the Highest Rank Pirate
(HRP) who initiates the offer of coins partition. Then, all pirates (including the
proposer) vote for or against the partition. If the partition is accepted, the game
is over and the coins are distributed; if it is rejected, the HRP is eliminated and
the next HRP has to propose a new partition; and so forth. It is worth noting
that all the pirates are considered as rational players (meaning that they prefer
one coin rather than zero regardless of any feeling of injustice, fairness, etc.).
Moreover, each pirate knows his rank in the hierarchy and prioritises to survive
then to maximise its profit. The PG can be summarised as an iterated game
of maximum np rounds in each of which the remaining pirates play an ultima-
tum game. The rationality of agents leads to one interesting equilibrium that is
demonstrated in appendix [Al The Pirate Game (PG) presents many motivating
properties as in many real-world applications, it involves multiple agents (the
pirates) trying to share a pool of common finite resources (the coins); it has
a well-defined set of rules; it benefits from a mathematical modelling, which is
a perfect baseline for evaluating the obtained results. In this work, in order to
model such MAS, we propose an Artificial Neural Network (ANN) base model
able to output a discrete partition. Thanks to an Reinforcement Learning (RL)
algorithm (REINFORCE algorithm described of Section , the ANN is trained
to have the highest chances to generate a partition that will be accepted by most
rational players involved in the sharing.
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The paper is structured as follows: after a brief background on Reinforcement
Learning methods (section7 we present our model in section in particular, a
method to generate a stochastic integer partition. Then, after introducing some
scenarios of behaviours that we experiment (section , we show the results of
the RL agent learning in section |5} Finally, we discuss our results and provide
some perspectives in section [6]

2 Background on Reinforcement Learning

RL is a trial and error process that generates an optimal policy m(a|s) which
relates the best action a to a current state s (each action delivers a single reward
) so that the cumulated reward R, is maximal.

2.1 Value-based methods

A popular category of value-based algorithms is Temporal-Difference learning
(TD-Learning) [6] which consists, for each state s, to evaluate a function value
V' (s) representing the reward expectancy from the state s and according to a
policy 7: V(s) = E[R¢|s: = s]. The principle of TD-learning is to evaluate the
mean of value at each state. The update is computed at each step t of episodes:

Vi(st) < V(st) + alres1 + 9V (st41) — V(st))

where 0 < a < 1 is a learning rate and 0 < v < 1 is a discount-rate which
attenuates the importance of future rewards.

2.2 Policy-based methods

The core idea of such methods is to directly determine a policy that relates the
optimal actions to the states (e.g. REINFORCE algorithm [14]). The principle is
to find an optimal policy 7*(a|s) modelised with parameters 6: 7y, the problem
consists in finding optimal parameters 6* such as:

0 = arggnax J(0), where J(0) = ZP(TW)R(T)

with 7 a sequence of states and actions (called a trajectory) and R(7) the cu-
mulative reward of trajectory 7. Then, the gradient is computed:

N
VoI (6) ~ 1 D Volog(mo(r) ) R(r)

=1

Then, the algorithm consists of sampling trajectories thanks to current stochas-
tic policy mp in order to compute the gradient VyJ(0) to finally update the
parameters with gradient descent.
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3 Model

As presented previously at the outset of this paper, we implement a model using
RL to solve the riddle. This means that our proposed model learns the best
decisions to fulfil priorities induced by the game rules: survive first, then earn
coins.

3.1 Players

In order to solve the PG with our proposed model, we introduce two functions:
a proposer function to propose a partition and a wvoter function allowing each
agent to vote for or against the offer. Both functions are shared by all pirates
because every pirate’s goal is to find out his optimal behaviour whatever his rank.
Then, at any time during the learning process, any pirate is able to compute an
offer according to his hierarchical situation or vote according to the proposed
partition, the proposer’s rank and his own.

If Against
PROPOSER(P)  [*—— 09 1
N 0.1 | softmax 0
R —
Reward ™ T 0 T)
rzn 0.2 | softmax —— | 0
VOTER(P,) = 0.1 Ex: Probability | 0
g MODEL | to give Coinn°3 [ > n
VOTER(Py) [ | § 0.3 ||+ to Piraten°1 0 Proposal
Rewards E 0.6 | r softmax 1
Voters = o1 0
VOTER(Py) — —
0.1 0
A L . —
0.2 | softmax ———— | 0
Against / For E E

(a) The models of proposer and voter  (b) Model of Proposer: neural network
are trained together toward the outputting a distribution of integer
equilibrium partition (np =3, nc =4)

Fig. 1: Architecture of algorithm

Proposer As mentioned above, the proposer function is generic, therefore it
takes as input at least the rank of the proposer. The use of a neural network
which is a priori not necessary is motivated by the possibility to use a more com-
plex input to represent the state (for example, the history of previous behaviours
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using recurrent hidden state or communication protocols between agents of dif-
ferent hierarchy, see Section @ The output is an integer partition describing
the number of coins ne with a maximum number of pirates np terms. Several
techniques can be considered: first, we can use a network output of np neurons
in each of which there would be the number of coins assigned to each pirate.
The problem of this method is that neurons values must be integers where the
total sum is a specific integer equals to the number of resources. Hence, there are
major constraints which are technically difficult to impose. Another possibility
would be to normalise the output of np neurons, multiply it by nc and take the
closest integer for each neuron. Unfortunately, this method can lead to an issue
of rounded values as the sum would differ from expected no with a difference up
to 50% in the worst cases, which would be difficult to adjust. To overcome this
problem, we propose a new encoding of the integer partition. We use an output
Y of npne neurons, and we apply one softmax every np neurons in such a way
that we obtain nec vectors of probabilities (of np values). We can formally link
the output Y and f(c, p) the probability to give coin ¢ to pirate p :

Y[i] = f(l—1, i mod np) < f(c,p) = Ynpc+p]

i
p
Then, the partition P of integer nc with np terms can be formally written
as follows:

P[i] = Card{c, i = argmax f(c,z)} Vi€ [0,np — 1]

The proposed model ensures that every coin is attributed to one and only
one pirate, which is the definition of a partition. Moreover, the model provides
stochasticity which is interesting for training and allows to use the REINFORCE
algorithm.

Figure [IB] depicts an example of the model used for the partition proposal
when ngc = 4 coins and np = 3 pirates.

Voters To model and train the voter function, we use a value-based algorithm
(simple Monte-Carlo) which evaluates the mean score of coins for each state
proposer id and voter id). Thanks to this baseline, each voter can compare the
number of coins proposed to the number of coins he could get in the next step.
Then he can choose to accept or to reject the offer. When at least 50% of the
voters accept the offer, the offer is declared accepted, otherwise, the offer is
declared rejected.

3.2 Training

Both the proposer and voter functions are trained simultaneously. For the pro-
poser, we use the REINFORCE algorithm with deep learning. The environment
provides a reward of + exp (¢) with ¢ the number of coins when the offer is ac-
cepted and a reward of —1 for death (elimination) when the offer is rejected.
We use the exponential function to insist on the greediness of pirates, which
somehow corresponds to an increasing marginal utility.



6 Le Gleau et al.
4 Experimented scenarios

In this section, we present the scenarios we want to study in addition to the
Pirate Game (version with hierarchical ranks as mentioned in the introduction).
For reproducibility, the code has been made availableﬂ

4.1 Selfish and rational vote

In this scenario, all pirates vote according to the rules of the original PG [15].
Each pirate is purely rational and only considers its interests, hence voting self-
ishly. As mentioned in the introduction, the rationality of agents leads to an
equilibrium (demonstrated in appendix .

4.2 Prosocial votes

In this scenario, we ignore the assumption of rationality. Each pirate (except the
proposer who remains selfish) votes for a proposal if and only if the partition
looks equally fair to all pirates, otherwise votes against it. Hence, the pirates’
vote becomes a prosocial vote.

To this purpose, the voters decide according to the result of a Jain’s index
calculation [16]. If a system allocates resources to n contenting users, such that
the i*" user receives an allocation z;, then the index for the system is:

(o, @)
(n ZZL:I xf)

When this index approaches 1, a distribution is considered equally fair to
all parties; when this index approaches 1/n, a distribution is considered com-
pletely unfair. For our work, we decided arbitrarily that when the Jain’s index
of the distribution proposal is equal to the theoretical maximum possible Jain’s
index (provided in appendix 7 a voter accepts the proposed partition, oth-
erwise it votes against it. We can easily guess that the optimal strategy will
converge towards a partition where each integer of coins distribution will differ
from maximum one coin.

J(J?l,l‘g, .’L‘n) =

4.3 Prosocial vote with partial observation

In this scenario, we extend the previous scenario with a partial observation of
the proposal: we suppose that each pirate knows only what he received. So the
proposer who has to guarantee only a majority of votes can adapt more easily
his offer.

!'https://github.com/tlgleo/Pirate_Riddle/blob/master/pirates_riddle.
ipynb
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5 Results

For each behaviour of voters, our REINFORCE training algorithm provides the
proposer with a policy which is a probabilities distribution over possible parti-
tions.

The results are presented using tables displaying the number of coins received
by each pirate according to his rank and the number of living pirates. The up-
per row of a table represents the distribution when np pirates are alive with
the first pirate P; being the HRP. The second row represents the distribution
when np — 1 pirates are alive with P, being the HRP; and so forth. A white bin
represents a case where a HRP is eliminated, meaning that this dead pirate will
not receive any coins.

The learning graphs represent two curves: the orange one is the reward of
RL algorithm which is the mean number of coins received by the proposer. The
blue one shows the evolution of the euclidean distance between the predicted
TD-learning of voter function and theoretical solutions (when a deterministic
optimal solution exists).

5.1 Selfish votes only

This sub-section presents the results obtained when all pirates vote according to
the original rules of the PG. Figure |2a] shows that the proposer’s reward grows
quickly and is close to the optimal solution as soon as the training reaches 2000
episodeaﬂ As mentioned previously, the results may seem counter-intuitive but
we demonstrated in appendix [A] that this is the best strategy for the proposer
being faced with rational agents.

Figure 2b] shows that the proposed distribution is close to the optimal solu-
tion.

5.2 Prosocial vote

In this part, we present the evaluation results obtained when only the HRP
votes selfishly and when all the other agents vote prosocially by accepting the
partition plan if and only if Jain’s index is maximal. Figure [3b] shows that the
new behaviour of the voters leads to a distribution which is fairer for the different
pirates.

As expected, the only cases where the selfish vote of the proposer is enough
to win most resources are when there are only one or two pirates in the MAS
(represented by the last two rows in . In all other cases, the selfish vote of
the proposer agent is thwarted by the prosocial votes of the other agents.

! The training of REINFORCE algorithm can be seen here: https://youtu.be/
gh4USNJViuw


https://youtu.be/gh4USNJVWuw
https://youtu.be/gh4USNJVWuw

8 Le Gleau et al.

Pirate rank

P1 P2 P3 P4 P5
5 8.0£0.1 | 0.0£0.0 | 1.0+0.1 | 0.0+00 [ 1.0£0.0 | 22222
z 9.000| 0.0+00 | 1.0£00 | 0.0400 | 2222
L
9.0£00 | 0.0+00 [ 1.0400 [ aaa
3 PR o M b e s 99403 | 0,1+03 | a2
2000 4000 6000 8000 10000 12000 14000
Episodes
(a) Learning curves of RL agents, (b) The number of coins for each sit-
shaded areas represent confidence  uation (one to five players). The ta-
intervals (95% over 10 runs). The or-  ble shows the means and standard

ange curve is the reward of the pro-  deviations from probabilities distri-
poser and the blue one shows the  bution learned by our proposer RL
voter TD-learning error (with the-  agent in 15 000 episodes.

oretical equilibrium).

Fig. 2: Results with the PG original behaviour (i.e. with purely rational players)
with np = 5 pirates and n¢ = 10 coins. Our RL agent is looking for the best
probabilities distribution to earn the highest score.

Pirate rank

P1 P2 P3 P4 PS5

2.0£00 | 2.0+0.0 | 2.0£00 | 2.040.0 [ 2.0+0.0 | 22222

3.0£02 | 2.2+05 | 2.8+06 | 2.0£03 | a3aa

4.0+03 | 3.0+02 | 3.0+0.2 aia

1000 2000 3000 4000 5000 6000 7000 8000
Episodes

(a) Learning curves (b) Learned distribution

Fig. 3: Results in mixed mode (highest rank is selfish, the voters are prosocial
with np = 5 pirates, nc = 10 coins

5.3 Partial observation

In this scenario, each voter knows only his part of the plan. We can see that
our agent succeeds to achieve a good strategy. The best one consists in selecting
enough pirates and convince them to vote for his sharing. Since the observation
is partial which means that they only know their part, the proposer only has to
concentrate the resources on the minimal number of agents, for example with
two of the five pirates and give the minimal number that requires the optimal
value of Jain’s index. Figure [] shows the results of the distribution. Thought
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the choice of voters doesn’t change the optimal strategy, we can notice that the
learning algorithm deterministically selects the same pirates to give them the
minimum number of coins.

Pirate rank

P1 P2 P3 P4 P5

5.0+00 | 3.040.0 [ 2.0+00 | 0.040.0 [ 0.0+00 | 22222

8.0£00 | 2.0400 | 0.0+0.0 [ 0.0+00 | 2222

1000 2000 3000 4000 5000
Episodes

(a) Learning curves (b) Learned distribution

Fig.4: Results in prosocial mode with partial observation (np = 5 pirates,
ne = 10 coins)

6 Discussion and Next Steps

In this section, we discuss the salient technical aspects of our proposed model
and some perspectives raised.

6.1 Adaptability of the model

The empiric work shows that the same ANN model can predict near to optimal
offers in different scenarios without knowing a priori the voting criteria of the
other players, which demonstrates a great deal of flexibility.

The results also illustrate the divide and conquer proverb: the proposer gen-
erally obtains a bigger reward when all other agents vote selfishly than when
all other agents vote prosocially. In the selfish scenario, the proposer earns
ne — [(np — 1)/2] coins whereas in the prosocial scenario, he wins [n¢/np| £1
coins. In other words, the lesson learned by the players is that they gain more
rewards by collaborating than by acting selfishly.

One of the most outstanding results is the one of Section an HRP willing
to act selfishly is forced to propose a prosocial offer when two or more lower-
rank pirates vote prosocially, otherwise the offer is rejected. In other words, the
adaptability of the model also leads to a high influenceability.

6.2 Communication between players

In the experimented scenarios, the agents do not communicate and their be-
haviour is assumed to be purely rational. This means that the decisions of agents
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are based on their unique personal interest without communicating with other
agents before voting. Thanks to this rationality, their behaviour can be predicted
therefore allowing proposers to adapt the offers. It could be interesting to intro-
duce a communication canal directly linked to a specific action such as voting
against the next offer. This canal should be binary and would be used as an
implicit message addressed to a specific agent. The agent would learn to inter-
pret the received message and then change his vote to encourage the proposer to
modify his offer. For this purpose, it would be interesting to use an LSTM layer
to take into account the previous messages [17/18] and observe how the agents
adapt their offers. As described in [19], introducing communication can leads to
implicit collaboration between agents.

7 Conclusion

In this work, we addressed a multi-agent version of Ultimatum Game, an eco-
nomics game in which a proposer offers a partition of resources and voters accept
it or not. In the version called the Pirate Game, the players are hierarchically
ranked. If the vote is rejected, the proposer is eliminated from the game leaving
his role to his successor. We showed that a Reinforcement Learning agent can
solve such UG, which means that the agent gains the ability to decide optimally
when processing a given offer of resources sharing so it earns enough and stays
7alive”.

For technical conclusions, we succeeded to implement a learning algorithm
able to solve a discrete problem where the solution is represented by an integer
partition which is not trivial. This same proposed approach can address similar
real-world problems such as resource affectation, allocation, sharing, etc. Finally,
we showed empirically that the reinforcement learning paradigm was a robust
mean to address these problems. Specifically, it converges to an equilibrium
even in a case where several adversary agents try to earn payoff with a different
hierarchical situation.
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A Proof of Optimal Selfish partition

For np pirates and nc coins, the optimal proposal P following the game rules
and satisfying the rational priorities of pirates is:

ne — [(np—1)/2], ifi=0
Pl =11, ifi=2(k+1)
0, if i =2k + 1

with | | denoting the floor function.

We can show this by backward induction on the number of pirates np:

— Base Case: for np = 1, there is only one possible partition: P[0] = n¢

— Induction step: let us assume the assertion is valid for np, let us show the
assertion is valid for np + 1.
The proposer (decision maker) who will naturally vote for himself needs to
convince only |[np/2] other pirates to guarantee the majority of acceptance
ie his survival. Then to fulfil the priority of maximal gain, it is optimal to
choose the |np/2] lowest gains in the partition P, , and to offer them only
one coin more (this will convince them thanks to their rationality) and offer
zero coins to others. In the partition P, ., there are |np/2] null gains, so
we choose to offer one coin to them and zero to others. In the new partition
P, .11, it doesn’t change the explicitation since the incrementation of index
(highest rank is always 0) compensates the parity modification. Finally, the
decision maker takes for him the remaining coins: P, ,+1[0] = nc — [np/2].
Therefore, the propriety is verified for np + 1.

B Maximal Jain’s index of an integer partition

We can show that the maximal value of the Jain’s index of any partition of the
integer ne¢ in np terms is given by:

2

Ty = |1+ 220

where

— x is the ratio x = n¢/np
— d the decimal part of z: d = z — |z

When n¢ is divisible by np, d =0, so J(np,nc) = 1. If not, J(np,nc) < 1. For

example, J(4,10) = 0.962 with for example the optimal partition [4433].
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