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Wind farm cable layout optimization with
constraints of load flow and robustness

Cédric Bentz, Marie-Christine Costa, Pierre-Louis Poirion, Thomas Ridremont, and Camille Zakour,

Abstract—We consider an offshore wind farm defined by the
location of the wind turbines and the amount of energy supplied
per turbine, as well as the location of the central station responsible
for redistributing the collected energy to users on the power grid.
Knowing the power injected at each node, the capacities, susceptance
and costs of the cables that can be used, the goal is to determine the
least expensive cabling to route the energy supplied by the wind
turbines to the central station. This cabling must respect the capacity
constraints on the cables as well as the electrical constraints of Load
Flow defined at each node of the network. In a second step, we
look for a cabling that is also robust in case of failure of a cable,
the notion of robustness being seen here as the protection again the
worst case of failure. This work was carried out in collaboration with
EDF Energies renouvelables.

We give a mathematical model of the problem taking into account
all the constraints of capacity, connectivity, load flow, cable types
and incompatibility between edges, in the form of a mixed integer
quadratic program that can be linearized and solved using a MIP
solver. We then propose two mathematical models for the robust
problem, formulation inspired by the previous one and a bi-level
program where the second level is a max min program. Finally we
present the results of our tests which provide solutions for real data
up to about 50 nodes, before concluding.

Keywords—IEEEtran, Operational Research, Bilevel Optimization,
Robust Optimization, Renewable Energy.

I. INTRODUCTION

A. Presentation of the problem

Optimizing a renewable energy system is an important
topic nowadays [9] and the design of wind farms involves
many challenges in optimization ([7], [10]). More specifically,
the search for an optimal wiring of wind farms has been
recently investigated ([3],[6], [8], [12], [15]), but to our
knowledge without taking into account simultaneously
load flow and robustness constraints. More generally, the
design of resilient network is a today’s research topic ([2], [5]).

In this paper, we assume that one of the cables can fail
and we consider the problem of designing a robust cabling
network of an offshore wind-farm, at minimal cost, once
the location of the turbines has already been decided. More
precisely, given a set of offshore wind turbines producing a
known quantity of energy, we look for the cheapest network
able to route the energy produced by all the wind turbines
to the point of common coupling (PCC), called root node

Cédric Bentz and Marie-Christine Costa are at CEDRIC, CNAM, 292
rue Saint-Martin 75003, Paris, France. Marie-Christine Costa also belongs
to ENSTA IP-Paris.

Pierre-Louis Poirion is at RIKEN Center for Advanced Intelligence Project,
Tokyo, Japan.

Thomas Ridremont is at ARTELYS, Paris, France.
Camille Zakour is at EDF Power Systems Engineering Center, Saint-Denis,

France.

thereafter, that will collect the energy and dispatch it to the
grid. One of the main characteristics of our network is that it
should be robust, i.e. resilient to the failure of a cable: hence,
it should be able to route, for any possible breakdown, all the
produced energy from the wind turbines to the root node. An
important constraint of our problem is that the flow of energy
routed in the network must satisfy the Load Flow equations.

We model the problem by using an undirected graph
G = (V,E) representing the given support network. In
offshore wind-farm, the graph G is generally the union of
a partial grid on n nodes, of some diagonal edges and of
the root node r ∈ V linked to a subset of nodes of the grid.
The set of wind turbines is denoted by T ⊂ V \ {r}. Hence
V \ (T ∪ {r}) denotes the set of junction nodes. The location
of the root, of the wind turbines and of the possible junction
nodes are known, so the lengths of the edges of E are given.
There are Q different types of electrical cables numbered by
q ∈ [1, ..., Q], and Q is generally a small number (≤ 3). For
each q ∈ [1, ..., Q] and each [v, w] ∈ E, we denote by cqvw,
the cost of installing a cable of type q on [v, w]. This cost
depends on the type of cable chosen and on the length of
[v, w]. The capacity of a cable of type q on [v, w] is denoted
by uqvw (cqvw = cqwv and uqvw = uqwv ). Hence, we aim to
design the cheapest sub-network of G spanning T ∪{r}, such
that the capacity on each installed cable is greater than the
active power flow routed from the terminals to the root node
through this cable, i.e. Πuv ≤ uquv and Πvu ≤ uquv for each
edge [u, v] where a cable of type q is installed. See Figure 1
for an example where the production of each turbine is equal
to 1 and the capacity of each cable equal to 2.

For technical constraints given by EDF, there is a set I ⊂
E ×E of pairs of edges {e, e′} such that it is not allowed to
install a cable on both e and e′. In practice, the set I is used to
avoid installing cables on two edges that intersect each other,
and hence to ensure that the resulting network is planar (on
Figure 1, we would have for example {e1, e2} ∈ I).

In this paper, we first explain briefly the Load Flow
equations and how to take them into account. Then we
formulate the problem when no breakdown can occur as a
mixed-integer linear program which can be solved exactly
by using a MIP solver. Then we propose two mathematical
formulations for the robust case: the first one, derived from
the problem without any breakdown, is a mixed-integer linear
program; the second one is a bi-level mixed integer linear
program which is a compact formulation. The number of
constraints and variables can be huge in the robust case and
we propose to use a constraint generation algorithm ([1]) to
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Fig. 1. Support network and solutions on a grid 4× 4

solve the problem. Finally, we give some results obtained on
real data before concluding.

B. The Load Flow problem

1) Approximation of the load flow equations: Load flow
studies, also known as power flow studies, are power system
analysis. We briefly explain them in this section but we
refer the reader to [14] for more information about electrical
power system planning. We define a bus as a node of an
electrical network (for example circuit breakers, transformers,
conductors or capacitors): in our application, a node is either
a junction node or a wind turbine or the substation.

Given the production capacities of the different generators
(here, the wind turbines), the load flow analysis is a non-linear
system which determines voltage magnitude and phase angle
at each node, and the real and reactive power flowing through
each line of the network. In order to introduce the load-flow
constraints in the optimization model, we consider the Direct
Current (DC) estimations of the load flow for which it is
customary to make the following assumptions [14]:

• Line resistances (including active power losses) are neg-
ligible

• Phase angle differences are small
• Magnitudes of node voltages are equal to 1.0 per unit
Let Pv denote the given net active power injection at node

v, θv denotes the phase angle in radians at node v and Bvw

denotes the given susceptance, physical quantity related to the
cable, on the line [v, w], with Bvw = 0 if no line is built on
[v, w]. Then the DC approximation of the load flow is given
by:

Pv =

n∑
w=1

Bvw(θv − θw) (1)

2) Integration of the Load Flow equations in our problem:
Regarding the design of a wind farm and the associated
graph G = (V,E), we are given for each edge [v, w] ∈ E
a susceptance Bvw. However, if we do not build a cable on
the edge [v, w] in the final network, we can set Bvw to 0.
We also consider ~G = (V, ~E) which is the bi-directed graph
associated with G, i.e. for each edge [v, w] ∈ E in G, there
are the arcs {(v, w), (w, v)} ⊂ ~E in ~G.

For each node v different from the root node (i.e. v ∈ V \
{r}), it is known that Pv ≥ 0: either Pv > 0 if v provides
some power injection in the network (i.e. v is a wind turbine
in our case), or Pv = 0 if v is a junction node. If v is a
wind turbine, Pv is known and gives the estimation of the
production of energy of the wind turbine v. For the root r,
the load flow equations imply that Pr = −

∑
v∈V \{r} Pv . For

each (v, w) ∈ ~E, we define:

Πvw := Bvw(θv − θw)

as the active power flow through [v, w] from v to w, and thus
we have Πvw = −Πwv and Pv =

∑n
w=1 Πvw.



Proposition 1. If the load flow equations (1) are satisfied at
each node of a subgraph Ĝ = (V, Ê) of G = (V,E), with
Ê ⊆ E and Bvw set to 0 if no cable is built on the edge
[v, w] (i.e. [v, w] /∈ Ê), then there exists a chain in Ĝ between
each node v producing a positive active power flow (i.e. such
that Pv > 0) and the root.

Proof: Assume that there exists v′ ∈ V such that Pv′ >
0 and v′ is not connected to the root node r. Let G(v′) =
(V ′, E′) be an inclusion-wise maximal connected subgraph of
G that contains v′. By assumptions r /∈ V ′. Let us consider
the sum

S =
∑
v∈V ′

Pv

Since Pv′ > 0, Pv ≥ 0 ∀v ∈ V \ {r}, and r /∈ V ′, we have
S > 0. However, using Equation (1), we also have:

S =
∑
v∈V ′

Pv =
∑
v∈V ′

∑
w∈V ′

Πvw = 0

since Πvw = −Πwv . Hence a contradiction.
Proposition 1 ensures that if Constraints (1) are satisfied in

a mathematical program, we do not have to add connectivity
constraints to ensure that there exists a path between the root
and each wind turbine, since load flow equations will not be
satisfied otherwise.

II. A FORMULATION FOR THE PROBLEM WITHOUT
BREAKDOWNS

In this section, we present the problem when no breakdown
can occur on the cables and we give a mixed-integer linear
model to solve the problem. In the following, we are given
Pv for every node different from the root node, and Pr =
−
∑
v∈V \{r} Pv .

Recall that the power injection Pv at node v ∈ V is
given for each node v. Moreover, Bqvw, corresponding to
the susceptance of a cable of type q installed between v
and w, is also given for each [v, w] ∈ E and each q ∈ [1, .., Q].

We introduce the following variables:
• For each q ∈ [1, ..., Q] and for each e = [v, w] ∈ E, let
yqe be the binary variable such that yqe = 1 if and only if
a cable of type q is installed on e = [v, w]. Notice that, in
the following, for each e = [v, w] ∈ E, yqe can be written
indifferently yqe , yqvw or yqwv .

• For each v ∈ V , let θv be the voltage angle at v.

We aim to minimize the total cost of the resulting network,
i.e.:

min
∑
e∈E

Q∑
q=1

cqey
q
e

We now give the different constraints associated with our
problem:

a) Cable types constraints:
: For each e ∈ E, we cannot install more than one type of
cable:

Q∑
q=1

yqe ≤ 1, ∀e ∈ E (2)

b) Constraints of incompatibility between edges:
: The set I ⊂ E × E contains every pair {e1, e2} such that
there cannot be a cable on both edges e1 and e2:

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I (3)

We also introduce EI the set of edges e with at least one
constraint of incompatibility with another edge, i.e. e ∈ EI if
there exists at least one edge e′ such that {e, e′} ∈ I.

c) Voltage angles constraints:
: In the load flow equations, we only consider the differences
of angles θv−θw for each pair (v, w) ∈ V 2 with v 6= w, i.e. the
value of θv alone is useless. Using this fact and Assumption
B, which states that voltage angles are assumed to be small,
we can fix arbitrarily and without loss of generality the value
of the angle at the root node r,

θr = 0, (4)

and for all v ∈ V , −ε ≤ θv − θr ≤ ε for some small ε > 0,
which implies:

−ε ≤ θv ≤ ε ∀v ∈ V

Differences of voltage angles are assumed to be less than 10−1,
hence we have ε ≈ 10−1.

d) Load Flow constraints:
: For all v ∈ V , the load flow equations are given by:

Pv =
∑

w:[v,w]∈E

Q∑
q=1

Bqvwy
q
vw(θv − θw) (5)

where
Q∑
q=1

Bqvwy
q
vw(θv − θw) = Πvw

corresponds to the active power sent through (v, w) ∈ ~E.
Using Property 1, Constraints (5) ensure the connectivity
between the root and the wind turbines.

e) Capacity constraints:
: For each e ∈ E, the power flow Πe routed through e must
be smaller than the capacity of the cable installed on e:

Πvw =

Q∑
q=1

Bqvwy
q
vw(θv−θw) ≤

Q∑
q=1

uqvwy
q
vw ∀(v, w) ∈ ~E

(6)

One can notice that, if
Q∑
q=1

Bqvwy
q
vw(θv − θw) < 0 (resp. > 0),

then
Q∑
q=1

Bqwvy
q
wv(θw − θv) > 0 (resp. < 0), depending on

whether the energy is routed from v to w or from w to v.

The mathematical program to solve can be written as



follows:

(LFF) :

min
y,θ

∑
e∈E

Q∑
q=1

cqey
q
e

s.c.
Q∑
q=1

yqe ≤ 1, ∀e ∈ E \ EI (2)

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I (3)

θr = 0, (4)∑
w:[v,w]∈E

Q∑
q=1

Bqvwy
q
vw(θv − θw) = Pv, ∀v ∈ V \ {r}

(5)
Q∑
q=1

Bqvwy
q
vw(θv − θw) ≤

Q∑
q=1

uqvwy
q
vw, ∀(v, w) ∈ ~E

(6)

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V |

The above program have non-linear terms, yqvwθv and
yqvwθw in Constraints (5) and (6). Since −ε ≤ θv ≤ ε ∀v ∈ V ,
we have that 0 ≤ θv + ε ≤ 2ε for each v ∈ V \ {r}. To deal
with such term, we use a well-known technique consisting in
linearizing each term yqvw(θv+ε) which is the product of a bi-
nary variable by a non-negative bounded real variable, see for
instance [4]. For all (v, w) ∈ ~E, q ∈ [1, ..., Q], we introduce
a non-negative variable ρqvw satisfying the constraints below:

ρqvw ≤ θv + ε ∀(v, w) ∈ ~E, ∀q ∈ [1, .., Q] (7)

ρqvw ≤ 2εyqvw ∀(v, w) ∈ ~E, ∀q ∈ [1, .., Q] (8)

ρqvw ≥ θv + ε− 2ε(1− yqvw) ∀(v, w) ∈ ~E, ∀q ∈ [1, .., Q]
(9)

We know introduce the following polyhedron L(θ, y),

L(θ, y) =
{
ρ ∈ R|~E|Q | (7), (8), (9)

}
We have:

ρ ≥ 0, ρ ∈ L(θ, y)

⇒ ρqvw = yqvw(θv + ε)∀(v, w) ∈ ~E, ∀q ∈ [1, .., Q]

Since we have yqvw(θv − θw) = yqvwθv − yqvwθw = yqvw(θv +
ε)− yqvw(θw + ε), we also have

yqvw(θv − θw) = ρqvw − ρqwv

.

We can then linearize the mathematical program (LFF) and

we obtain:

(LLFF) :

min
y,θ,ρ

∑
e∈E

Q∑
q=1

cqey
q
e

s.t.
Q∑
q=1

yqe ≤ 1, ∀e ∈ E \ EI (2)

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I (3)

θr = 0 (4)
Q∑
q=1

∑
w:[v,w]∈E

Bqvw(ρqvw − ρqwv) = Pv,∀v ∈ V \ {r}

(5)
Q∑
q=1

Bqvw(ρqvw − ρqwv) ≤
Q∑
q=1

uqvwy
q
vw,∀(v, w) ∈ ~E

(6)
ρ ∈ L(θ, y), ρ ≥ 0

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V |

A solution to (LLFF) can easily be obtained by using a
MILP software.

III. FORMULATIONS FOR THE ROBUST PROBLEM

We consider now that a breakdown may occur on one of the
installed cables. We assume that the support network always
admit a robust solution, for instance by installing a cable on
all the edges.



A. A mixed-integer linear formulation

We use the same binary variables yqe , for each q ∈ {1, ..., Q}
and e ∈ E as in Section II and we denote by ξ ∈ E the cable
where the breakdown occurs. We also introduce the following
variables: for each v ∈ V and each ξ ∈ E, θξv is the voltage
angle at v in the network when there is a breakdown on the
cable built on the edge ξ, and ~ξ is the set of bi-directed arcs
associated with ξ. We propose the following mathematical
program (ROB) to design an optimal robust network:

(ROB) :

min
y,θ

∑
e∈E

Q∑
q=1

cqey
q
e

s.t.
Q∑
q=1

yqe ≤ 1,∀e ∈ E \ EI (10)

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I (11)

θξr = 0∀ξ ∈ E (12)
Q∑
q=1

∑
[v,w]∈E\{ξ}

Bqvwy
q
vw(θξv − θξw) = Pv,

∀v ∈ V \ {r}, ∀ξ ∈ E (13)
Q∑
q=1

Bqvwy
q
vw(θξv − θξw) ≤

Q∑
q=1

uqvwy
q
vw

∀ξ ∈ E, ∀(v, w) ∈ ~E \ {~ξ} (14)

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V ||E|

Constraints (10) and (11) are identical to (2) and (3), while
Constraints (12) ensure that θr is equal to 0 for each case
of breakdown ξ ∈ E. Constraints (13) ensure that the load
flow is respected (and so each turbine is connected to the
root) for any breakdown ξ ∈ E by not considering the active
power on ξ in this case. Constraints (14) ensure that, for any
breakdown ξ ∈ E, the capacities in the resulting network
are high enough to support the active power through the cables.

Again, we have a product of variables θ and y, which we
linearize in a similar way as in the non-robust model: Lξ(θ, y),
is the set of linearization constraints where ρq,ξvw = yquv(θ

ξ
v+ε)

for all (v, w) ∈ ~E, q ∈ Q and ξ ∈ E. The linearized problem
becomes:

(LPROB)

min
y,θ,ρ

∑
e∈E

∑
q∈Q

cqey
q
e

s.c.
Q∑
q=1

yqe ≤ 1,∀e ∈ E \ EI (10)

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I (11)

θξr = 0∀ξ ∈ E (12)
Q∑
q=1

∑
[v,w]∈E\{ξ}

Bqvw(ρq,ξvw − ρq,ξwv) = Pv,

∀v ∈ V \ r, ξ ∈ E (13)
Q∑
q=1

Bqvw(ρq,ξvw − ρq,ξwv) ≤
Q∑
q=1

uqvwy
q
vw∀(v, w) ∈ ~E, ξ ∈ E

(14)

ρ ∈ Lξ(θ, y)

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V ||E|, ρ ≥ 0

The number of variables and constraints of (LPROB) can
be very high depending on the size of the graph. We propose
a cutting plane algorithm to deal with this case. We initialize
(LPROB)ES

which corresponds to (LROB) with only a
small subset of edges ES ⊂ E in Constraints (12)-(14), i.e.
we define those constraints only for ξ ∈ ES . We begin to
solve the reduced problem (LPROB)ES

. We define the set of
edges selected in the current integer solution (ŷ, θ̂, ρ̂): ÊC =

{e ∈ E |
Q∑
q=1

ŷqe = 1} and ~EC corresponds to the set of

bi-directed arcs associated to ÊC . We define ÊS = ES ∩
ÊC corresponding to the intersection between the set of edges
which are in the solution (ŷ, θ̂, ρ̂) and the set of edges for
which the scenario of breakdown has been taken into account
at this moment in the algorithm. Finally, we define:

B̂vw =

Q∑
q=1

Bqvwŷ
q
vw and ûvw =

Q∑
q=1

uqvwŷ
q
vw ∀(v, w) ∈ ~EC

where B̂vw (respectively ûvw) corresponds to the susceptance
(respectively capacity) on the cable built on [v, w]. For the
integer feasible solution (ŷ, θ̂, ρ̂), we introduce the following
sub-problem (SUB)e for each e ∈ ÊC \ ÊS :



(SUB)e
min
θ

0

s.c. θr = 0 (15)∑
w:[v,w]∈EC\{e}

B̂vw(θv − θw) = Pv, ∀v ∈ V \ r (16)

B̂vw(θv − θw) ≤ ûvw, ∀(v, w) ∈ ~EC \ {e} (17)

θ ∈ [−ε, ε]|V |

The formulation (SUB)e allows to determine whether if
the load-flow constraints are still satisfied even if we remove
the edge e from the current integer solution, i.e. to ensure
that the solution is resilient to a breakdown on e. We already
ensure that the energy is still routed to the sub-station even
in the event of a breakdown on any edge in ÊS , and we have
to ensure that this is the case for edges in ÊC \ ÊS . When
an integer solution better than the current one is found, we
solve the set of sub-problems (SUB)e for e ∈ ÊC \ ÊS .
If one subproblem (SUB)ē for a given ē ∈ ÊC \ ÊS does
not have any feasible solution, we add ē to ES and we
add the constraints associated to (LROB)ES

. Otherwise, if
all subproblems have feasible solutions, the integer solution
is feasible for the general problem. Please note that the
subproblems (SUB)e have only continuous variables and so
are easy to solve.

B. Bilevel formulation

Bilevel formulations are a good approach for modeling
network design optimization [11]. The bilevel formulation
proposed here is particular in that the second level is a
max min problem: it can be seen as a game with a defender
who makes his decisions in two steps and an attacker who
intervenes between these two decisions.

The variables y and θ are defined as in Section III-A. For
each [i, j] ∈ E, we introduce a binary variable bij where bij =
1 if and only if the attacker chooses to delete the edge [i, j].
We also introduce the variables ηv for each v ∈ V \{r}, which
correspond to penalty variables used to satisfy the load flow
equations. We define the following polyhedron:

B(y) = { b ∈ {0, 1}|E| |
∑

[i,j]∈E bij = 1 ; bij ≤∑
q∈Q y

q
ij ∀[i, j] ∈ E }

which defines the set of possible scenarios of edge deletions
(i.e. the set of constraints of the attacker): the deleted edge
must belong to the ones selected by the defender. We also
introduce for each [i, j] ∈ E and q ∈ Q the notation

βqij = Bqij(y
q
ij − bij)

where βij is equal to Bqij if a cable of type q is built by the
defender on the edge [i, j] and not deleted by the attacker,
and to 0 otherwise (since we have bij ≤

∑
q∈Q y

q
ij).

We then define the following polyhedron:

X (y, b) = {
θr = 0 (18)
Q∑
q=1

∑
[v,w]∈E

βqvw(θv − θw) + ηv = Pv,∀v ∈ V \ r (19)

βqvw(θv − θw) ≤ uqvw ∀(v, w) ∈ ~E, ∀q ∈ Q (20)

η ∈ R|V |−1
+ , θ ∈ [−ε, ε]|V |}

The polyhedron X (y, b) corresponds to the set constraints
(12), (13) and (14) for given values of y and b, i.e. once
the network has been built and the attacker has deleted an
edge. Then, β corresponds to the susceptances in the residual
network defined by (y, b). The variables ηv are penalty
variables which ensure that the polyhedron is non-empty: the
solution where we have θv = 0 and ηv = Pv for each node v
is always feasible. The load flow and capacity constraints are
satisfied if there exists a feasible solution with

∑
v∈V ηv = 0.

We propose the following bilevel program:

(BIL) :

min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t.
Q∑
q=1

yqe ≤ 1,∀e ∈ E \ EI (21)

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I (22)

f(y) = 0 (23)

where f(y) = max
b∈B(y)

min
(θ,η)∈X (y,b)

∑
v∈V

ηv (24)

y ∈ {0, 1}|E|Q (25)

The defender first builds a network considering the
constraints on the types of cables and the planarity constraints
given by Constraints (21) and (22) respectively. Let ŷ be
the solution associated to this network. Then, the attacker
deletes an edge that the defender has built. Finally, the
defender verifies that the load flow and capacity constraints
are still satisfied: he minimizes

∑
v∈V

ηv , which is a sum of

positive variables and ŷ is a feasible solution if and only if∑
v∈V

ηv = 0. Recall that there is at least one solution which is

to set yij = 1 for all [i, j] ∈ E. The defender search for the
minimum cost feasible solution.

Let (PLη) denote the min problem of the second level:
min

(θ,η)∈X (y,b)

∑
v∈V

ηv .

At this step, y and b are fixed and so β is fixed too, thus
(PLη) is a linear program bounded by 0 since ηv ≥ 0 for
all v and it can be dualized. Let κ, λ and µ denote the dual
variables associated respectively to constraints (18), (19) and
(20) and let DX (y, b) be the the dual polyedron, not detailed



here, defined by the dual constraints of X . Then (PLη) can
be written as

max
κ,λ,µ∈DX (y,b)

∑
v∈V \{r}

Pvλv +
∑

(v,w)∈~E

∑
q∈Q

uqvwµ
q
vw

and we have:

f(y) = max
b∈B(y),κ,λ,µ∈DX (y,b)

∑
v∈V \{r}

Pvλv+
∑

(v,w)∈~E

∑
q∈Q

uqvwµ
q
vw .

We can rewrite (BIL) as the following linear integer
program:

(BILL) :

min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t.
Q∑
q=1

yqe ≤ 1, ∀e ∈ E \ EI

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I

f(y) = 0

f(y) ≥
∑

v∈V \{r}

Pvλv +
∑

(v,w)∈~E

∑
q∈Q

uqvwµ
q
vw

∀b ∈ B(y) ∀κ, λ, µ ∈ DX (y, b) (26)

y ∈ {0, 1}|E|Q

We use CPLEX as MIP-solver but there is an exponential
number of constraints (26). To tackle this issue, we use a con-
straint generation algorithm (see for instance [1]): a relaxation
of the formulation containing only a subset of Constraints (26)
is first solved. Then a separation procedure is called. Let ŷ
be the current solution: we solve the linear program f(ŷ) =

max
b∈B(ŷ),κ,λ,µ∈DX (ŷ,b)

∑
v∈V \{r}

Pvλv +
∑

(v,w)∈~E

∑
q∈Q

uqvwµ
q
vw; let

b̂, κ̂, λ̂ and µ̂ be the solution. If f(ŷ) > 0, the constraint∑
v∈V \{r}

Pvλ̂v +
∑

(v,w)∈~E

∑
q∈Q

uqvwµ̂
q
vw = 0 is added to the set

of constraints (26).

IV. RESULTS ANALYSIS

In this section, we present the results of the tests for the
formulations proposed for the design of wind farm cabling
networks with load flow constraints. All experiments were
performed on a computer with a 2.40GHz Intel(R) Core(TM)
i7-5500U CPU and 16GB RAM, using the solver IBM ILOG
CPLEX version 12.6.1, interfaced with Julia 0.6.0. We used
in particular the package JuMP, a tool allowing mathematical
modeling. For each test, the algorithm has been stopped after
3000 seconds if it has not terminated yet.

We introduce five real or subpart of real data sets data10,
data23, data28, data35 and data53 related to EDF offshore
windfarms. Each data set data|T | contains a set of the |T |

wind turbines, their geographical location as well as the one
of the sub-station. The graphs are partial grids with some
diagonal edges. For each type of cable, we are given a cost
per meter, a capacity and a susceptance. For the robust case,
both formulations give about the same results and Table I
presents the results of the tests.

The column I gives the instance on which the formulations
are tested. The column |Q| gives the number of types of
cables that we consider for the instance. The column gapf
gives the final gap between the best integer solution found
and the best lower bound (i.e. 0 if an optimal solution has
been found). The column gapr gives the gap between the
best integer solution found and the best lower bound at the
root node of the branch-and-cut. Finally, the column time(s)
gives the time to find the optimal solution (or 3000 if an
optimal solution has not been found in 3000 seconds).

In Table I, the formulation for the non-robust case allows
to solve exactly the problem for all instances with a number
of wind turbines of at most 35, except for data35 with
|Q| = 3 where it founds an integer solution within a gap of
at most 0.04 to the optimal solution. For data53, the final gap
is 0.02 for |Q| = 1, 0.06 for |Q| = 2 and 0.14 for |Q| = 3.
The solving time or the final gap logically increase with the
number of types of cables available, but the formulation still
manages to find a solution within a reasonable gap from the
optimum value.

For the robust case, the formulation is efficient especially
for |Q| = 1, where it solves all the instances to the optimum
except data53, for which the gap between the best integer
solution and the optimal value is 8%, which sounds reasonable
in this case. For |Q| = 2, the formulation gets slower and is
not efficient on data53. However, it allows to solve optimally
data10 and data28 and find an integer solution guaranteed
to be within a really small gap of the optimum (0.3 %) for
data24. For data35, the final gap is 10%. For |Q| = 3, the
formulation is not efficient on data35 and data53 but find
an integer solution which is optimal or at least close to the
optimal value (gaps of 4% and 2%) for the other data.

The robust formulation has a number of variables |E| times
bigger than the one of the non-robust one, which logically
explains why it is importantly slower. Furthermore, each
incrementation of |Q| adds 3|E| variables for the non-robust
formulation and 2|E||E| + |E| variables for the robust
formulation. Logically, the incrementation of |Q| has thus a
higher impact on the robust formulation. Furthermore, the
case where |Q| = 1 corresponds to the case with uniform
capacities, which appears to be easier to solve.

V. CONCLUSION

We presented an exact formulation to determine the best
cabling of an offshore wind farm when no breakdown can
occur. We have taken into account the load flow constraints



Non-Robust Robust
I |Q| gapf gapr time(s) gapf gapr time(s)

data10 1 0 0.13 0.12 0 0 2.44
- 2 0 0.1 1.13 0 0.12 2.63
- 3 0 0.11 0.94 0 0.17 10.48

data24 1 0 0.07 3.07 0 0.04 84.3
- 2 0 0.17 6.33 0.003 0.34 3000
- 3 0 0.14 8.21 0.04 0.41 3000

data28 1 0 0.14 2.75 0 0.05 58.59
- 2 0 0.22 28.1 0 0.17 2349
- 3 0 0.26 77.9 0.02 0.29 3000

data35 1 0 0.21 74.9 0 0.18 553
- 2 0 0.17 375 0.1 0.37 3000
- 3 0.04 0.33 3000 - - -

data53 1 0.02 0.22 224 0.08 0.33 3000
- 2 0.06 0.2 3000 - - -
- 3 0.14 0.38 3000 - - -

TABLE I: Results of the tests

and shown how they can be formulated so as to be integrated
into a mathematical model. Then we extended our model
to find a robust network allowing any cable breakdown.
We use a cutting plane method and IBM ILOG CPLEX to
solve instances up to 53 wind turbines and obtain either an
optimal solution or a good enough approximate solution. For
instances of larger sizes, a heuristic approach will be required
(see for instance [13]). The efficiency of this heuristic could
be verified by comparing its results with the results obtained
with our approach, on small instances.

For the robust case, we proposed two formulations which
seem equivalent in case of one breakdown. Nevertheless, if
we allow an arbitrary number of breakdowns, the number of
variables and constraints becomes huge for the first linear
formulation (Section III-A): with k breakdowns, we would
have to consider O(|V ||E|k + |E|Q) variables before lin-
earization and we end up with an intractable model to solve.
On the contrary, the bilevel formulation (Section III-B) is
more compact and, most importantly, the number of variables
doesn’t get bigger with the size of the example. Thus, the
bilevel formulation could be considered to search a robust
networks in case of more than one breakdown.
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