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Review Article 

The emerging potential of cold atmospheric plasma in skin biology 
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A B S T R A C T   

The maintenance of skin integrity is crucial to ensure the physiological barrier against exogenous compounds, 
microorganisms and dehydration but also to fulfill social and aesthetic purposes. Besides the development of new 
actives intended to enter a formulation, innovative technologies based on physical principles have been proposed 
in the last years. Among them, Cold Atmospheric Plasma (CAP) technology, which already showed interesting 
results in dermatology, is currently being studied for its potential in skin treatments and cares. CAP bio-medical 
studies gather several different expertise ranging from physics to biology through chemistry and biochemistry, 
making this topic hard to pin. In this review we provide a broad survey of the interactions between CAP and skin. 
In the first section, we tried to give some fundamentals on skin structure and physiology, related to its essential 
functions, together with the main bases on cold plasma and its physicochemical properties. In the following parts 
we dissected and analyzed each CAP parameter to highlight the already known and the possible effects they can 
play on skin. This overview aims to get an idea of the potential of cold atmospheric plasma technology in skin 
biology for the future developments of dermo-cosmetic treatments, for example in aging prevention.   

1. Introduction 

The skin is the largest organ of the human body and ensures several 
distinct functions because of its particular position, in connection be-
tween the outside and the inside of the body. This keratinized tegument 
envelops the whole body and protects it from environmental aggressions 
and from massive water loss [1]. Although the physical barrier against 
environmental and pathogen insults is the main role of this organ, the 
skin possesses several other functions such as vitamin D production [2], 
humidity, temperature and mechanical sensing [3–5], temperature 
regulation [6], molecule absorption [7], excretion and secretion [8–11] 
and some immunological functions [12]. In view of the above, daily 
cares of this organ are necessary to preserve its integrity and functions. 
Skin care practices are not only needed for the whole body health but 
also for social and aesthetic purposes. Cosmetic skin care was practiced 
from the dawn of time by the ancient civilizations. In the 21st century, 
with the increase of span life, people from all walks of life ask to live 
healthy and look younger. Consequently, the global consumer demand 
of cosmetic products is rapidly expanding today. In 2018, the value of 
the global cosmetics market was 508 billion U.S. dollars. The market is 

projected to value at about 758 billion U.S. dollars by 2025 [13]. 
Modern skin treatment-offer ranges from chemical product application 
to physical treatments. Among the treatments, creams, sera and oils are 
commonly used as at-home beauty treatments while skin peeling treat-
ments are often administered by professional beauticians. Physical 
treatments are also administered in beauty centers although today some 
devices can be bought for domestic use. Among them, LED lights and 
lasers are often used for rejuvenation purposes. These light sources 
stimulate skin renewal by physically removing the external layers of the 
skin (resurfacing) thus activating skin cell metabolism [14,15]. For a 
deeper skin rejuvenation, more invasive and expensive techniques such 
as aesthetic surgery are required. Currently, a physicochemical 
approach, based on ionized gases, is joining the skin non-surgical 
treatments. This technology, named Cold Atmospheric Plasma (CAP), 
was already used in dermatology to promote wound healing. Today, 
CAP is entering into the cosmetic field, thus providing a new challenge. 
In reason of their unique ability to generate a complex chemical mix and 
thanks to their physical properties, CAPs could be a promising alterna-
tive in non-invasive treatment of skin. However, the scientific bases of 
cold plasma effects on skin and the identification of their exact 
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mechanisms of action, both at the cellular and at the molecular levels, 
are still lacking and they constitute a new active field of investigation. 

In the present review, based on skin fundamental notions and on 
chemo-physical properties of plasmas, we described the possible benefic 
interactions between CAPs and skin and how they could participate in 
improving skin wellness and regeneration. 

2. Fundamentals on skin and its microenvironment 

To understand how CAP could be used for skin treatments, it is 
important to take into consideration all skin parameters contributing to 
skin health that could be potentially modified by plasma treatment. 

2.1. Skin structure 

The skin covers and isolates the whole body. In humans its thickness 
can vary from 0.5 to 4 mm. Skin thickness strictly correlates with the 
collagen content of the dermis and it is gender dependent [16]. The 
different cell types composing the skin form a complex structure that can 
be divided in three main layers: the epidermis, the dermis and the hy-
podermis (Fig. 1). The epidermis is the layer that takes contact directly 
with the external environment. Its thickness can change at the different 
body sites and it is also age, gender and phototype dependent [17,18]. 
The epidermis (Fig. 1A) is mainly made up of keratinocytes and mela-
nocytes, these latter confer the typical color tone of the skin. Some other 
cells can be found in this part of the skin, the immune system Langherans 
cells and the mechanosensors Merkel cells. Human epidermis can be 
further divided in four or five functional layers. The deeper layer of the 
epidermis is called stratum basale or germinativum and is made of 
non-differentiated keratinocytes, melanocytes and Merkel cells laying 
on the basal lamina (lamina basalis). The presence of keratinocyte stem 
cells permit the epidermis turnover [19–21]. Once divided, one of the 
keratinocyte daughter cells moves and differentiates toward the upper 
layers of the epidermis forming, in sequence, the strata spinosum, gran-
ulosum, lucidum (found only in the palms of the hands and soles of the 
feet) and the corneum. Epidermis in healthy and young humans forms 
digitations that penetrate the dermis (papillary dermis). The epidermis 
is separated from the dermis thanks to a thin layer of extracellular ma-
trix called basal lamina. This latter is mainly made up of collagen IV, 

laminins and glycosaminoglycans (GAGs) and ensures the mechanical 
link between the basal layer of the epidermis and the underlying con-
nective tissue, the dermis. This middle layer between the epidermis and 
the hypodermis (Fig. 1B), is made up of a network of fibrillar proteins, 
collagens, elastin and an amorphous ground substance rich in GAGs such 
as dermatan sulfate and hyaluronic acid. These negatively charged 
macromolecules attract water molecules keeping the skin hydrated. Few 
cell types can be found in the dermis, essentially papillary and reticular 
fibroblasts with some mast cells. The dermis possesses a sensitivity to 
mechanic stimuli thanks to the presence of mechanosensors such as the 
Ruffini’s, Meissner’s and Pacini corpuscles. The hypodermis is the third 
deeper layer of the skin. It is an adipose tissue made up of fibroblasts, 
adipose cells and macrophages. The main function of this tissue is to 
store fat for thermal insulation and as a source of energy. Besides its 
three horizontal layers, mammalian skin possesses typical appendages 
crossing this structure. During the embryogenesis some cells of the 
ectoderm forming the epidermis invaginate into the dermis creating 
cutaneous annexes like hair follicles, nails, sweat and sebaceous glands 
(Fig. 1). 

The skin possesses a heterogeneous vascularization (Fig. 1). Vessels 
coming from the hypodermis enter the dermis and form the deep 
vascular plexus in the reticular dermis, supplying nutrients and oxygen 
to hair bulbs and glands. The whole dermis layer is vascularized thanks 
to the ascending arterioles and descending collecting venules coming 
from the deeper layers of the skin. In the upper dermis, these vessels 
form the superficial vascular plexus from which originate the capillary 
loops extending in dermal papilla [22]. Unlike the other cutaneous 
layers the epidermis is not vascularized at all. 

2.2. Skin oxygenation and antioxidant status 

A consequence of the typical skin vascularization is a non-uniform 
oxygenation. Indeed oxygen diffuses inside the skin from two sources: 
the atmosphere (21% O2) and the blood stream circulating in the dermis 
(5–9% O2) [23,24]. This results in two oxygen gradients that reach a 
point of minimum (1–3% O2) at the basal lamina where keratinocytes 
stem cell reside (Fig. 1D). Although oxygen has a vital importance for 
aerobic cells, during the respiratory metabolism a small part of this 
diatomic molecule is converted in reactive oxygen species (ROS). While 

Fig. 1. The skin and its microenvironment. In the 
middle, the 3D structure of the whole skin with its 
vascular system: superficial vascular plexus (svp), 
capillary loops (cl), ascending arteriole (aa), 
descending collecting venule (dv), deep vascular 
plexus (dvp). Typical skin appendages: hair and hair 
follicles (hf) with the associated sebaceous gland (seg) 
and a sweat gland (swg). Sensory organs such as the 
Pacini corpuscle (Pc) permit to feel the external 
stimuli. A) Keratinocytes forming the epidermis 
layers: stratum corneum (st c), stratum lucidum (st l) 
only present in the palms of the hands and soles of the 
feet, stratum granulosum (st g), stratum spinosum (st s) 
and stratum basale (st b). The epidermis is separated 
from the dermis by the lamina basalis (lam b). Some 
other cell types found in this epidermis: melanocytes 
(mel), Langerhans cells (Lan) and Merkel cells (Merk). 
B) The vascularized dermis layer made up of extra-
cellular matrix fibers and few cell types such as: fi-
broblasts (fib) and mast cell (mast). C) The acidic 
surface of the skin and the associated microbiota 
living on the stratum corneum and inside the hair 
follicles. D) Skin oxygenation with the two gradients 
created by oxygen coming on one side from the at-
mosphere and on the other side from dermis blood 
vessels.   
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in low doses ROS play an essential role in cell signaling and in the 
maintaining of cell homeostasis, in case of overproduction, these free 
radicals can induce the so-called oxidative stress [25]. Being exposed to 
different percentage of oxygen, the different skin layers are likely to 
possess a different sensitivity to oxidative stress. However, to avoid 
ROS-induced damages, skin cells are able to eliminate the excess of these 
reactive species keeping their concentration at a physiological level. 
This task is performed by the antioxidant system that is made up of both 
small molecules and enzymes such as glutathione peroxidases, catalase 
and superoxide dismutases allowing the conversion of ROS into harm-
less molecules [26]. 

2.3. Skin surface and its physiological pH 

A healthy epidermis is relatively acidic. Its outer layer, the stratum 
corneum, possesses an “acidic mantle” that confers it a pH ranging be-
tween 4 and 6 (Fig. 1C). Keeping an acidic pH fulfills several physio-
logical roles [27]. At birth, the skin is exposed to a non-sterile 
environment and it is rapidly colonized by microorganism. The acidic 
mantle inhibits the growth of pathogen microorganisms and promotes 
the growth of the physiological microflora [28]. The acidic mantle is 
generated thanks to endogenous factors but also to exogenous ones such 
as bacteria. Among the endogenous factors, the relatively-low pH seems 
to be induced by the generation of urocanic acid [29], and free fatty 
acids [30]. The maintaining of this acidic mantle seems to be due to the 
activity of the sodium-proton exchanger (NHE1) [31]. The low pH 
contributes also to preserve the skin barrier. Indeed, stratum corneum 
enzymes, involved in the synthesis of the ceramide barrier, possess an 
optimal activity at acidic pH [32]. In addition, a disregulated acidic 
mantle can have a negative impact on the skin barrier [33]. Moreover, a 
high pH of the stratum corneum is correlated with skin pathologies such 
as atopic dermatitis [34,35]. To keep the pH at physiological values, the 
skin possesses its own buffering system permitting to avoid rapid pH 
variations induced by external insults [36]. 

2.4. The skin as a semipermeable barrier of the body 

As already described, the stratum corneum creates a protective, 
semipermeable barrier [37–41]. The first representation of the stratum 
corneum was made in 1975 by Michaels and collaborators who 
simplistically described the outer layer of the skin as a brick and mortar 
like structure [42]. Although the skin isolates and protects the body from 
external aggressions, this cornified organ is not a sealed barrier. Skin 
actively communicates and interacts with the external environment. The 
organ can expel, in a controlled way, water containing organic and 
inorganic molecules but can also absorb exogenous compounds from the 
environment. Molecules can penetrate the skin in three ways: through 
the cells (intracellular way), via the inter-cellular space (intercellular 
way) or through the skin pores, glands and hair follicles (trans-
appendageal way) [43]. In order to understand how molecules can enter 
the skin, several models have been proposed. In 1992, Auton tried to 
construct a mathematical model of skin penetration considering either 
diffusion or metabolism of the compound passing through the skin 
layers [44]. He considered two main barriers in his skin model 1) the 
external barrier of the skin, the stratum corneum - this physical barrier 
lets lipophilic compound to pass more easily than hydrophilic molecules 
-, 2) the second barrier made up of living cells in the epidermis and the 
dermis where exogenous molecules are subjected to enzymes such as 
esterase and oxygenase. In 2001 a more complex model, called “single 
gel phase” was proposed by Norlén and colleagues to describe the stra-
tum corneum of the skin [45]. This model is in accordance with the Mi-
chaels’ “brick and mortar” one. Other approaches, focused on how 
different chemical compounds can penetrate the stratum corneum, were 
developed by Trommer and Neubert [46]. Mathematical models of skin 
permeability have been summarized in a complete review by Mitragotri 
and collaborators [47]. 

2.5. The skin microbiota 

Thanks to the previously described structure, the skin possesses a 
unique and complex microenvironment. Because of the low water con-
tent of the stratum corneum, the low physiological pH, lysozyme and 
RNase production, skin is a poor substrate for microbial colonization. 
However, even in healthy conditions, the skin is the host of commensal 
or symbiotic bacteria [48] at the epidermal but also at the dermal level 
[49]. After birth, the skin is directly exposed to environmental micro-
organisms and rapidly colonized by some of them leading to a balance 
that is unique to each individual. In adults, considering the skin ap-
pendages such as follicles and sebaceous glands, the total exposed sur-
face is estimated to be 30 m2. This makes our external organ the largest 
epithelial surface for interacting with microorganisms [50]. Different 
types of microorganisms can be found in different sites of the skin, 
depending on humidity, sweat production and local temperature. 
Commensal bacteria not only protect skin from pathogen bacteria 
colonization, avoiding thus skin diseases, but play also a symbiotic role 
with this organ [51,52] that is currently under investigation [53,54]. 

2.6. Skin homeostasis and aging 

The whole skin wellness resides on the physiological equilibrium of 
all the mentioned biochemical, bio-physical and symbiotic parameters. 
Although the skin is a powerful organ able to rapidly regenerate, the 
continuous biological, chemical and physical aggressions weaken its 
structure over time. 

Skin aging is a natural process driven by our genes (chronological 
aging), that can be drastically accelerated by our way of life, sun and 
pollutant exposures [55] more largely named exposome [56]. This aging 
process is mainly mediated by the oxidative stress, an overproduction of 
ROS able to damage biological molecules such as lipids, proteins and 
nucleic acids and inducing the alteration of their activity. Typical signs 
of time in skin are the loss of elasticity and hydration, the slowing down 
of cell metabolism and the alteration of melanocyte activity. All these 
changes lead to a decrease of the complexion radiance and the occur-
rence of light or dark spots and the appearance of wrinkles. 

Since the dawn of humanity, people tried to find methods to hide the 
signs of senescence. Cosmetic treatments have always been the answer 
to slow down skin deterioration process and ameliorate its aesthetic 
appearance. To achieve such goal, besides cosmetic products, new 
physical technologies such as LED- or ultrasounds-based devices have 
recently been developed. Among these, cold atmospheric plasma may be 
an innovative and interesting approach in this field. To know CAPs 
characteristics and how they can interact with the skin, the following 
chapter will provide some fundamentals about these ionized gases. 

3. Plasma bases and biomedical applications 

Understanding the physicochemical aspect of plasmas, and the 
mechanisms involved in the interactions between them and biological 
tissues, is primordial in order to use them on skin in efficient and secure 
conditions. 

3.1. Introduction to plasmas 

The stars, the sun, the lightning and the aurorae have always fasci-
nated human being. All of these wonders of the nature share a common 
feature, they are forms of plasma: the fourth state of the matter. From 
the first attempt to artificially generate and master these ionized gases, 
plasmas have been exploited in different fields. The first artificial plasma 
was generated by the German physicist Johann Heinrich Wilhelm 
Geissler who created the ancestor of the fluorescent tube in 1857. Based 
on the Geissler tube, William Crookes built the first cathode tube in 
1879. In his high vacuum tube, Crookes observed that the rarefied gas, 
exposed to the high voltage between two electrodes, emitted a weak 
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light at the cathode. Since he did not know that the light was due to the 
electrons flowing from the cathode, he called them “cathode rays”. 
Crookes understood that the rarefied gas inside the tube, exposed to the 
high voltage, was in a particular state that he described as a fourth state 
of the matter or “radiant matter”. Gases possess almost no interatomic or 
intermolecular forces. Since they are formed by neutral atoms or mol-
ecules, gases are perfect electric insulators. In 1889, Friedrich Paschen 
studied the loss of the insulating property of the gases exposed to a high 
electric field between two planar electrodes. Paschen called “breakdown 
voltage” the minimum voltage needed to generate a discharge in the gas. 
This voltage is depending on the gas pressure and the distance between 
the two electrodes [57]. Arc generation is due to the ionization of the gas 
with consequently a loss of the insulating property. It’s only in 1928 that 
the chemist Irving Langmuir described the state of a rarefied gas exposed 
to a high voltage between two electrodes. In his paper, Langmuir wrote 
that except near the electrodes, the ionized gas was made up of an equal mix 
of ions and electrons and proposed to use the term of plasma for this state 
of the matter [58]. 

3.2. Hot and cold plasmas 

To generate a plasma, a gas must be supplied with enough energy to 
ionize it. The gas could be heated at very high temperatures in order to 
permit the external electrons to escape the atoms. The electron and the 
ionized atoms can interact with other atoms creating a cascade reaction. 
Thus the generated plasma is a mix of electrons, ions and neutral species. 
Although it is formed by charged species, the plasma is neutral on its 
whole. As described previously, a gas can be ionized and form plasma 
also under a strong electric field generated between two electrodes. 
Plasmas can be divided in two main categories: thermal and non-thermal 
plasmas. Most of the natural occurring plasmas belong to the thermal 
category. These hot plasmas possess electrons and heavy particles at the 
same temperature. Artificial hot plasmas are produced for some appli-
cations such as hard material cutting and toxic waste destruction [59, 
60]. In non-thermal plasmas (NTPs), free electrons possess a higher 
temperature than ions and neutral gas molecules, these latter conferring 
a relatively low temperature to the whole plasma. Thanks to this char-
acteristic, NTPs are used in a plethora of industrial applications: 
micro-electronics, lighting, surface treatment and functionalization. 
Most NTPs conceived for industrial purposes are produced using low 
pressure gases inside reactors. The controlled atmosphere inside the 
reactors results in a well-controlled plasma generation. NTPs, can also 
be generated at atmospheric pressure and are called Cold Atmospheric 
Plasmas (CAPs). 

3.3. Cold atmospheric plasmas generation and characterization 

CAPs are mainly generated by means of energy coming from electric 
alternate or direct currents, radiofrequencies or microwaves. Several 
methods and configurations are today used to produce these ionized 
gases: volume and surface Dielectric Barrier Discharge (DBD) [61,62], 
Atmospheric Pressure Plasma Jets [63], plasma needles and Plasma 
Pencils [64] (Fig. 2A, B, C). These different configurations, together with 
the choice of the feeding gas, result in a plasma having peculiar char-
acteristics. Commonly used gases are atmospheric air, pure nitrogen, 
noble gases or custom gas mixtures of these latter. Once the gas is 
ionized to plasma, the charged species can react with the matter (target) 
with which they enter in contact. In the case of CAPs the first encoun-
tered medium is the atmospheric air. Reacting with the nitrogen and 
oxygen composing the air, CAPs produce the so-called Reactive Oxygen 
and Nitrogen Species (RONS) (Fig. 2 D). Plasma treatment can be per-
formed on several types of targets, either solids or liquids. When CAPs 
interact with a solid surface, the generated reactive species can modify, 
charge or ablate the external layers of the target. These modifications 
can change the physical characteristics of the surface modifying for 
example its wettability [65]. 

Aqueous media exposed to a CAP are enriched of new chemical 
species. Once generated in the surrounding atmosphere, RONS can be 
carried and solubilized in the liquid medium [66–68]. Some species such 
as hydrogen peroxide (H2O2) are produced directly from water vapor 
entering in contact with the plasma effluents [69]. Oxygen already 
dissolved in the liquid medium also participate to RONS generation [70, 
71]. The amount of generated and solubilized species is proportional to 
the plasma working frequencies [70,72], the voltage waveform, the CAP 
exposure time [72,73] and the distance from the treated target. Gases 
passing to the state of plasma emit electromagnetic radiations in the 
visible and infra-red spectrum. Low amount of UV are commonly 
generated together with other visible radiations whose wavelength de-
pends on the feeding gas used to produce the plasma. Since CAPs are 
generally ignited by a strong electric field, once the plasma is generated, 
the movement of the charged species produces itself an electric field. 
Lastly, although these plasmas are named cold, they generate thermal 
energy and develop temperatures between 30◦ and 100 ◦C. While tem-
peratures higher than 40 ◦C are not suitable for the treatment of 
mammalian tissues, tuning the gas flow rate and the distance of the CAP 
source from the target permits to avoid overheating effects. The complex 
interplays between CAP and the treated target are summarized on Fig. 3. 
In view of the above mentioned characteristics CAPs can be compatible 
with applications on biological tissues. 

Taking into account all the above-mentioned parameters and 

Fig. 2. Cold atmospheric plasma devices and 
plasma chemistry. Most commonly used CAP-setup 
for bio-medical applications: A) Volume dielectric 
barrier discharge reactor; B) Surface dielectric barrier 
discharge reactor; C) Plasma jet reactor. (HV) High 
Voltage generator. D) The plasma chemistry: the 
ionized gas forming a plasma, with its negative and 
positive ions (X+, X-) and free electrons (e− ), gener-
ates a mix of reactive oxygen and nitrogen species 
(RONS) from the atmospheric gases and water vapor.   
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knowing that each research laboratory developed its own CAP device, 
the plethora of data obtained with these sources are not easy to compare. 
Moreover, depending on the selected technical parameters, such as 
voltage, frequency, carrier gas composition and gas flow, as well as at 
different temperatures and humidity, a single individual device also 
produces very different plasmas inducing different effects. Conscious of 
this heterogeneity, in the following paragraphs we will make use of the 
generic term of CAP to indicate different devices and settings employed 
to generate a Cold Atmospheric Plasma. 

3.4. Biomedical applications of plasmas 

Plasma application in the bio-medical field is called plasma medicine 
[74]. In the last decade this field has rapidly expanded. CAPs have 
shown promising results in cancer therapy either in vitro or in clinical 
case studies [75–80]. Being more sensitive to RONS than normal cells, 
cancer cells can be selectively killed by plasma exposure [81,82] 
Non-thermal plasmas for biomedical applications can be used in indirect 
or direct configuration. In indirect configuration, the long lived reactive 
species generated between the electrodes are carried to the target thanks 
to the gas flow. In direct configuration, the biological target is one of the 
two electrodes and actively participates to plasma generation [83,84]. 
Although CAP effluents can now be brought inside the body by means of 
catheters for in situ treatments [85,86], at the beginning plasma medi-
cine was conceived for surface, non-invasive applications. Most of the in 
vivo studies are performed by treating directly the external tissues of the 
body. Besides cancer applications, CAPs are also used in dermatology 
with promising effects on chronic wound disinfection and healing 
[87–94]. Lately some CAP devices have been developed for skin 
regeneration [95,96]. These plasma sources, operating with atmo-
spheric air, nitrogen or argon, can reach temperatures higher than 60 ◦C 
and are mostly used in skin resurfacing. Like laser resurfacing, this type 
of cosmetic plasma treatment is mostly used to burn the outer layers of 
the skin and force its renewal [97–100]. Although plasma resurfacing is 

a less invasive alternative to facial plastic surgery, the high tempera-
tures, the long recovery after treatment and the limited trial data on long 
term side effects suggest a careful use of these treatments [101]. 
Whereas the above mentioned plasma treatments work by a mechanic 
ablation of the dead outer skin layers, some recent evidences suggest 
that mild CAP treatments may actually stimulate the deeper layer of the 
skin and play an anti-age role on skin cells [102]. Hence, plasma ap-
plications in dermatology and in cosmetics are, today, hot topics. 

4. Cold atmospheric plasma activity on skin 

As previously mentioned, CAP features are under the dependency of 
several parameters of the device such as the voltage and the pulse fre-
quency. The characteristics of the generated plasma are modified by the 
environment and the gas composition, the nature of the target, the 
distance from the target and the treatment time (Fig. 3). This results in 
differences in terms of RONS nature and amount, in the generated 
electric field and so in a different effect on the treated biological tissue. 
This is why it is important to understand how plasma chemistry and 
physics can interact with the skin and how the different parameters can 
be adapted to achieve the desired effect. 

4.1. Effects of CAP-generated RONS on biological components 

4.1.1. On biomolecules 
Liquid physiological media treated by plasma are enriched in RONS 

species and have been shown to carry out interesting biological activities 
on cells and tissues [103,104]. 

Among the CAP-produced RONS, nitrites (NO2
− ), nitrates (NO3

− ), ni-
tric oxide (NO•), hydroxyl radical (•OH), superoxide anion (O2

•− ), singlet 
oxygen (1O2), hydrogen peroxide (H2O2) and ozone (O3) are of great 
interest in biology [105,106]. 

Biomolecules, in contact with the plasma-generated RONS, can be 
chemically changed, inactivated or irreversibly damaged [107,108]. 
Takai and collaborators analyzed the chemical structure of 
water-dissolved amino acids after CAP exposure and demonstrated that 
most of the treated amino-acids can be oxidized and acquire new 
chemical groups by hydroxylation or nitration [109]. The amino acid 
cysteine, involved in the redox activities of enzymes and abundant in the 
keratin, has been shown to be oxidized by CAP exposure [110]. Since 
amino acid can be modified by cold plasma treatment, the whole pro-
teins exposed to CAP can be altered either at their primary amino-acid 
sequence or at their secondary and tertiary structure. These modifica-
tions can change the activity or induce a loss of function of the protein 
[111–114]. 

Lipids have also been shown to be oxidized by CAP exposure 
[115–117]. Phospholipids composing cell membranes can directly be 
peroxided by a non-thermal plasma treatment [118]. This oxidation can 
temporarily change the permeability of the cell membrane facilitating 
the penetration of exogenous molecules [119]. Lipid oxidation is a 
phenomenon that naturally occurs during oxidative stress and chronic 
inflammation [120–122]. 

CAP-induced modifications and damages were observed equally in 
nucleic acids [123,124] although strong DNA damages have been 
observed after long plasma exposure [125]. Taken together, these 
CAP-induced effects on biological molecules underpin the toxic impact 
that plasma can have on living matter. Although cold plasmas are a 
source of potentially toxic reactive species, CAPs delivery can induce a 
hormesis effect [126] since a proper use of these ionized-gas source, 
with adapted and controlled conditions, can bring beneficial effects on 
the treated biological tissue. 

4.1.2. On cell metabolism 
As already mentioned, a proper CAP treatment can, for example, 

accelerate wound healing or selectively kill cancer cells with little or no 
impact on normal cells [81,82,127,128]. CAPs have been largely used to 

Fig. 3. The interplays between CAP and the treated target. CAP charac-
teristics intrinsically depend on the electrical setup, the feeding gas and its flow 
rate. The fine tuning of these parameters influences the amount of the produced 
charged species and RONS, the CAP-generated electric field, the acidification 
and de-gasification (sparging) of the target. Although marginal, the emitted 
UVs and the small thermal increase can play a role in the administered treat-
ment. In addition, the treatment conditions such as the nature of the target, the 
plasma-target distance and the exposure duration also strongly influence the 
CAP behavior and performances. 
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treat easily accessible tissues and organs and therefore they are suitable 
to treat the skin, the external organ of our body. Being exposed to the 
external environment, the skin is continuously stressed by physical and 
chemical insults. Every day the epidermis is exposed to UV radiations, 
ozone, cigarette smoke, pollutants, organic solvents or alcohols that 
directly generate or induce the formation of large amount of ROS [129]. 
Beside these exogenous sources, cellular metabolism also generates in a 
lesser extend endogenous free radicals [130]. Human and animal tissues 
produce reactive oxygen species such as O2

•− , 1O2, H2O2 and O3 [131]. 
These ROS are mainly produced in mitochondria during cell respiration 
[132]. Although these highly reactive species can be harmful, the cells 
are able to neutralize free radicals in excess using their anti-oxidant 
system. Moreover our body can adapt to chronic exposure of toxic 
compounds. Human adaptation to lethal poisons by ingestion of 
sub-lethal doses was known thousands of years ago thanks to Mithri-
dates and his Antidotum Mithridaticum [133]. In mitochondria the 
adaptation to chronic exposure of small doses of ROS is a phenomenon 
called mitohormesis [134,135]. 

4.1.3. On skin cellular signaling 
Besides their damaging role, well known as oxidative stress when in 

large amount, ROS are required molecules for cell viability and activity. 
In fact, right amounts of ROS play some physiological effects as they can 
act as second messengers [136–138], stimulators for stem cells prolif-
eration [138,139], and as a booster for the immune system [140,141]. In 
injured skin, the immune system cells entering in contact with patho-
gens, start to produce large amounts of RONS. This phenomenon called 
“respiratory burst” helps wound disinfection. Correct wound healing 
depends on the equilibrium between ROS generation and the activity of 
the antioxidant system [142]. Among the reactive nitrogen species 
(RNS), the small gaseous molecule NO• possesses several biological ac-
tivities [143] acting as a signaling molecule [144], a vasodilator [145], 
an angiogenesis modulator [146], an immune system stimulator [147] 
and a melanogenesis enhancer [148]. In skin NO• is also involved in hair 
growth, in the proliferation and differentiation of epidermal cells and in 
wound healing [149,150]. Nitrates present in sweat can be converted in 
nitrites and then in NO• thanks to the skin bacterial microflora [28] or 
directly from the photo-decomposition of nitrites [151,152]. NO•

derived from photo-decomposition of nitrites has been shown to protect 
human skin cells from lipid peroxidation and thus apoptosis induced by 
UVA exposure [152,153]. However an over production or a high expo-
sure to these reactive species, can be harmful [154,155]. Indeed high 
doses of ROS can contribute to the development of several pathologies 
such as psoriasis [156–158]. Moreover the oxidative stress in skin can 
accelerate the natural process of ageing [159,160]. As cold plasmas 
generate a heterogeneous mix of RONS and considering the “Janus ef-
fect” of most of the above mentioned reactive species, the final effect on 
the treated tissues will depend on the amount of the released reactive 
species. CAP treatment has been shown to induce an oxidative stress in 
human keratinocytes [161] but the same cell line exposed for short 
periods to a helium-fed CAP with a low flow rate increases its viability 
[126]. Moreover, Schmidt and collaborators observed a hormesis-like 
increase of the antioxidant system in human keratinocytes cells 
exposed to an argon fed CAP [162]. In light of the biphasic effect of CAP 
treatment on skin, mastering the delivery of CAP-produced RONS is a 
challenge in dermatology and in cosmetics where CAP could be a 
powerful tool. 

4.2. CAP influence on skin proliferation and motility 

Cutaneous cell proliferation is important for epidermis turnover and 
to ensure the healing process in case of skin injuries. When correctly 
administered, CAP treatment can stimulate these processes. Short ex-
posures to a helium-fed CAP were shown to stimulate HaCaT human 
keratinocytes proliferation and motility [126,163]. A beneficial effect of 
plasma treatment on HaCaT cells was also observed with the use of 

argon-DBD. Choi et al. showed that CAP treatment inhibits the 
E-caderin-mediated intercellular junctions and activates a β-cat-
enin-mediated proliferative signal. This plasma-activated proliferative 
pathway accelerates in-vivo re-epithelialization in mice wound [164]. 
Furthermore, short treatments (1–3 min) with argon-based plasma jet 
were shown to increase the proliferation of the stratum basale kerati-
nocytes in human, intact skin explants [165]. On dermal fibroblasts very 
short treatments were shown to increase the proliferation [163,166] 
while treatments of few minutes exert a toxic effect [166,167]. The 
higher sensitivity of fibroblasts to CAP treatment, when compared to 
keratinocytes, can be explained by the fact that these cells reside in a 
deep layer of the skin. Being protected in the deep dermis, fibroblasts are 
less equipped to endure an external oxidative stress. In vivo, skin fibro-
blasts can be directly exposed to CAP only in case of wounds. Moreover, 
in wound treatments, the CAP anti-proliferative effect can be advanta-
geous to avoid the anti-aesthetic side effects of the healing process such 
as excessive scarring [168]. 

4.3. CAP influence on skin oxygenation 

CAPs have been shown to influence the oxygen content in the treated 
target. In plasma jets, the gas flow rate exerts the so-called “sparging 
effect”, de-oxygenating the treated liquid [70,169] while in vivo CAP 
applied on mouse skin has been shown to enhance underneath tissues 
oxygenation [170]. An increase of the post capillary oxygen saturation 
after plasma treatment has also been observed in human skin [84,171]. 
The mechanism on how the plasma source increases in vivo skin 
oxygenation is still unclear. As previously mentioned CAPs are not really 
cold sources and the devices used in biology develop temperatures be-
tween 30◦ and 40 ◦C. The application of this relatively warm sources on 
the skin could induce a local vasodilation and so the increase of tissue 
oxygenation. Furthermore, since CAP directly or indirectly induces NO•

formation, this vasodilator molecule could be also responsible of the 
observed phenomenon. A correct oxygenation is fundamental for a 
proper cellular metabolism. Some skin cosmetic therapies are based on 
the increase of tissue oxygenation. Hyperbaric Oxygen Therapy, already 
used for decompression sickness, is currently used in skin-rejuvenation. 
The administration of pressurized oxygen seems to protect the skin from 
UVB-induced photoaging [172]. However skin oxygenation needs to be 
carefully controlled. Oxygen has a double face and its excess can 
generate an oxidative stress accelerating the ageing process. Moreover 
skin stem cells need a very low oxygen partial pressure to keep their 
stemness [23] and thus ensure the renewal of the epidermis. 

4.4. CAP effect on skin vascularization and extracellular matrix 

Skin oxygenation is directly related to the vascularization of the 
organ. A healthy skin possesses a well-organized vasculature. With the 
age, skin microcirculation reactivity such as vasodilation and vasocon-
striction as well as vascular density are impaired [173]. The inability to 
handle ROS generation and the endothelial oxidative stress seem to be 
one of the reason of the loss of this age-related vessels functionality 
[174]. Although ROS are down regulators of vascular endothelial 
functions, CAP treatments, in right conditions, seem to play a stimu-
lating action. Human Umbilical Vein Endothelial Cells (HUVEC) were 
shown to release pro-angiogenic factors and increase in vitro angiogen-
esis when exposed to an argon-fed CAP for 30s [175]. An increase of 
proliferation was also shown in porcine endothelial cells where a 30s 
treatment with an air-DBD induced the release of the fibroblast growth 
factor-2 (FGF2) [176]. The CAP-angiogenesis stimulatory effect was 
recently showed by Dzimitrowicz et al. who used a He-fed CAP on 
human endothelial cells for very short treatments (10s) [163]. In vivo, 
since endothelial cells are not directly affected by plasma treatment, the 
increase of angiogenesis could be induced via a paracrine mechanism 
mediated by keratinocytes exposed to plasma treatment [175,177]. The 
small molecule NO• also plays a role in angiogenesis. NO• can act as a 
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pro- or anti-angiogenic factor depending on its amount [146,178,179]. 
Moreover NO• can increase the synthesis of collagen IV and activate 
endothelial cells adhesion [180]. Duchesne et al. demonstrated that CAP 
treatment stimulates endogenous NO• synthesis in in vitro and in vivo 
models. Indeed, in a murine burn wound model, plasma-generated 
RONS was shown to increase the expression of the endothelial nitric 
oxide synthase (eNOS). The increase of the enzyme producing endoge-
nous NO•, together with proangiogenic factors, speeds up the healing 
process [181]. In wounds, the extracellular matrix (ECM) of the dermis 
is directly exposed to CAP treatment and the improvement of the healing 
process could depend on a direct modification of the ECM properties. 
Ring and collaborators showed that plasma-treated collagen-elastin 
matrix scaffolds implanted under mice skin induce an enhancement of 
neovascularization [182]. In addition, a well-organized ECM is also 
essential to keep a youthful looking skin. Murine fibroblasts directly 
exposed for 15s to an argon-CAP were shown to increase the expression 
of collagen I and III while slightly longer treatments exert an opposite 
effect [166]. Unlike wounds, in intact skin CAP cannot directly influence 
the extracellular matrix metabolism. However some in vivo studies 
suggested that CAP can indirectly induce dermal remodeling. An in-
crease of dermal collagen content was observed in intact mouse skin 
exposed to an argon-DBD plasma [183]. Type I collagen is the major 
component of the dermis. While the neo-synthesis and a well-organized 
network of the fibrillary protein is a sign of a young and healthy skin, its 
overproduction is sometimes the expression of skin damages and dis-
eases. Interestingly CAP is able to stimulate physiological collageno-
genesis while inhibiting the pathological synthesis of the protein. In vitro 
and in vivo studies have shown this selective effect in dermo-aesthetic 
disorders such as scars and keloids [184,185]. 

5. Cold atmospheric plasma effect on skin surface 

5.1. CAP-induced pH modification 

In addition to their stimulating/oxidizing effects, CAP-generated 
RONS were shown to induce an acidification of the treated target. A 
decrease of the initial pH is commonly observed in non-buffered or 
weakly buffered treated liquids [186,187] and in hydrated 3D matrices 
[188]. The pH-drop can be mainly attributed to acidic species origi-
nating from the precursor NO• that generates nitric (HNO3) and nitrous 
(HNO2) acids in solution [187]. The induced acidification is propor-
tional to the plasma exposure time. It has been shown that the pH of 
alkaline or neutral non-buffered media drops rapidly after few minutes 
of CAP treatment. The quick pH-decrease tends to stabilize at pH values 
between 3.5 and 2.5 thanks the transient formation of HONO/ONO−

buffer and to the generation of nitrous acid (pKa 3.3) [187–189]. In light 
of the above, CAP exposure can lower the pH of biological tissues. 

Pork skin sebum and human lipids can be rapidly acidified when 
exposed to an air-fed CAP [190]. The CAP-induced acidification was also 
confirmed by clinical trials on intact human skin [84,150]. Thanks to 
these acidifying properties, CAP treatment can contribute to keep the 
skin in healthy conditions. Indeed, by lowering the pH, cold plasmas can 
stimulate and accelerate skin renewing. In acute skin wound, a physio-
logical acidification was shown to enhance the proteases activity and 
stimulate fibroblast proliferation [191]. While skin pH higher than the 
physiological values can lead to pathologies, very acidic pH can burn the 
external tissues of the organ. In order to avoid chemical burns, skin 
exposure to CAP should be carefully controlled [150]. However, in 
cosmetic, chemical peel or chemexfoliation is used to gently ablate the 
external layer of the epidermis and force skin renewal. This approach 
uses often organic acids to lower the pH and peel off the epidermis layers 
[192]. A well administered plasma treatment could exert a similar 
noninvasive exfoliating effect. Moreover, as the pH of the acidic mantle 
increases with the aging process leading to a weakening of this barrier 
[193], CAP treatments could be beneficial to re-establish the physio-
logical pH barrier and stimulate the regeneration in mature skin. 

5.2. CAP effect on bacterial decontamination and skin disinfection 

Cold atmospheric plasmas possess a well-known bactericidal activity 
[194–197]. In CAP-treated solutions such as plasma-activated water 
(PAW), short and long lived species react with each other and create a 
powerful anti-microbial mix. Some authors reported that the biocidal 
properties mostly derives from a combination of oxidative and nitro-
sative effects induced by the synergistic activity of H2O2 and NO• [198]. 
Zhou et al. demonstrated that the biocidal effect is achieved by the 
combination of H2O2 and NO2

− . The two molecules alone possess a very 
weak anti-bacterial activity while reacting together they can form per-
oxynitrite (ONOO-), an unstable isomer of NO3

− . Peroxynitrite was 
described as the key species in PAW-induced bacterial damages [199]. 
Moreover in PAW the protonated form of peroxynitrite, the peroxyni-
trous acid (ONOOH), can be further oxidized by H2O2 and produce the 
peroxinitric acid (O2NOOH), a stronger bactericidal molecule [200]. 
Within the ROS, O3, mainly produced by air-fed CAPs, also contributes 
to the plasma-induced biocidal effect [201]. While bacteria directly 
exposed to plasma can be quite easily killed by the chemical attack of 
short and long lived RONS, in real life most of these microorganisms are 
protected by biofilms. Biofilm is a complex consortium of various mi-
croorganisms growing on a substrate. Bacteria are embedded in a sort of 
clammy extracellular matrix made up of extracellular polymeric sub-
stances such as polysaccharides, lipids, protein and DNA that are meant 
to protect bacteria from dehydration and external environment insults. 
Thanks to this physical barrier, bacteria are more resistant to antibiotic 
treatments. In vitro tests have shown that CAP is able to destroy biofilms 
of skin pathogens such as the candida albicans yeast [202] and the 
staphylococcus aureus [203]. In direct CAP treatment, biofilms are not 
only exposed to the highly reactive species but also to an intense electric 
field that can destabilizes the physicochemical structure of the micro-
organisms [204]. Interestingly, the CAP ability to destroy biofilms has 
been demonstrated also in vivo in wounds that are not any more 
responsive to common antibiotics [93,205,206]. Although CAP treat-
ment can be efficiently used to deteriorate biofilms, some bacterial 
strains could adapt and tolerate plasma treatment stress. Tailoring of 
CAP devices and treatment conditions are to date a big challenge for a 
safe and efficient biofilm decontamination [207]. It was already 
mentioned that skin microbiota plays a physiological role on the intact 
organ. However when the symbiotic equilibrium between the skin and 
the microorganisms is disrupted, these latter can become pathogenic 
[208]. The previously mentioned acidic mantle controls this equilibrium 
by inhibiting the growth of pathogen organisms and by promoting 
commensal skin bacteria proliferation. Low pH is unfavorable to the 
growth of several pathogens, and the already discussed CAP-induced 
acidification enhances the antimicrobial activity of these sources [187, 
209–211]. Thanks to their anti-microbial activities, CAP devices can be 
used as an alternative and efficient method to sanitize intact skin [92, 
212]. CAPs can inhibit the growth of the anaerobic pathogen Cuti-
bacterium (Propionibacterium) acnes involved in the oily skin inflamma-
tion known as acne vulgaris and in other more severe pathologies [213]. 
A CAP patented-device was shown to inhibit, in vitro, the growth of 
Malassezia restricta and Malassezia globosa, yeasts responsible for 
dandruff [214]. Onychomycosis caused by the bacterium Escherichia coli 
and by the fungus Trichophyton rubrum was successfully treated by a 
helium CAP [215]. In most cases pathogens like the above proliferate in 
the deep skin appendages. The eradication of these microorganism with 
topic antibiotic applications is often difficult since the drugs fail to 
penetrate inside the deep structure of the skin. As will be explained later, 
CAP treatment can overcome this issue. 

5.3. Plasma and skin hydration 

A healthy and functional skin needs the right amount of water. In the 
dermis the hydration is guaranteed by the high hygroscopic GAGs such 
as hyaluronic acid. In the epidermis, water content varies between 70% 
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in the viable part and 15–30% in the external layers [216]. The stratum 
corneum is able to sense the environmental humidity and adapt its 
biochemical metabolism [217]. Corneocytes, the dead cells composing 
the stratum corneum, can keep water thanks to hygroscopic molecules 
composing the Natural Moisturizing Factor and keratins [218,219]. 
Corneocytes adhere tightly each other avoiding massive water loss. 
Furthermore, intercellular lipids such as ceramides create a hydrophobic 
barrier against desiccation [220]. Cold plasma treatment can exert a 
double effect on skin hydration. CAP can at first destabilize the skin 
barrier and desiccate the external layer of the epidermis. A small tem-
porary water loss was observed in vivo in human stratum corneum after 
plasma exposure [221]. Epidermis desiccation is a desired effect in 
plasma skin resurfacing where the non-ablated dried epidermis protects 
the thermally damaged layers during the recovery process [222]. 
Paradoxically since CAPs can deposit charges on the treated surface, it is 
likely that after a plasma treatment skin could attract more water mol-
ecules. Human stratum corneum wettability rapidly increases in the first 
seconds of plasma treatment [223]. The increased hydrophilicity was 
also demonstrated in finger nails where plasma treatment ameliorates 
the adhesion of cosmetic nail varnish [224]. 

5.4. RONS skin penetration and CAP-mediated percutaneous absorption 

During CAP treatment, RONS can directly influence the skin cell 
physiology or mediate the activation of downstream responses. One of 
the hot topic in dermocosmetic plasma therapies is to understand the 
ability of these reactive species to penetrate and diffuse inside the skin 
layers. While short lived species rapidly react and deactivate in contact 
with the stratum corneum, long lived molecules such as H2O2, NO3

− NO2
−

and NO• can diffuse deeply. Knowing how these molecules penetrate 
inside the skin during CAP treatment is of crucial importance in treat-
ment planning. Whether in dermatological therapies the deep penetra-
tion of these species is allowed, in pure cosmetic treatments the effect of 
RONS must be superficial and affects only the epidermis. Simple organic 
skin mimics such as agarose gel and gelatin have been used to quantify 
and measure the diffusion kinetics of the reactive species after CAP 
treatment [225], These models permit to have an idea on the ability of 
RONS to cross the mesh of semi-solid gel but they overestimate the 
ability of these molecules to diffuse into the biological tissues. In real 
world, the physicochemical barriers of the skin can slow down the 
diffusion and neutralize most of the reactive species. Even using real 
skin, the exact quantification of RONS passing through the tissues can be 
distorted by the nature of the liquid medium used to collect and analyze 
them [226]. As already mentioned, molecules can cross the skin either 
through the cells, the intercellular space or via the external pores. Small 
species such as NO• can passively diffuse through cell membrane, 
whereas some others can pass via channel proteins. Indeed, the water 
channel aquaporins [227,228] were shown to facilitate the cellular 
diffusion of H2O2 produced upon CAP treatment [229,230]. In addition, 
as previously evoked, thanks to lipid peroxidation RONS can generate 
transient pores on the membrane and so facilitate their own penetration. 
Furthermore, by destabilizing the cellular membrane, the electric field 
generated during the plasma treatment participates to the pore forma-
tion [231,232]. 

Beside the direct role of CAP in skin treatment, cold plasma sources 
could be also used to ameliorate the effect of topic dermocosmetic cares. 
Thanks to their ability to destabilize the skin barrier, CAP were shown to 
facilitate the transdermal delivery of other molecules with a mechanism 
similar to electroporation [233–236]. This temporary loss of the 
epidermis barrier could permit the intercellular diffusion of drugs or 
cosmetic actives. Lastly, RONS and ointments can easily penetrate 
through the appendageal way whose density depends on the body zone. 

6. CAP delivery and skin electrical parameters 

CAPs can behave differently depending on the electrical nature of the 

target [237–240]. Human organs possess different values of electrical 
conductivity and this latter depends on the biochemical and biophysical 
structure of the organ, on its water content and on its extracellular 
electrolyte composition. In skin, the conductivity varies greatly in the 
three different layers composing the organ. The stratum corneum, with its 
low water content and its lipid composition, acts as a real dielectric 
barrier, insulating the whole body from electric shocks. However as 
already mentioned in the previous paragraph, CAP can temporarily in-
crease the conductivity of the epidermis promoting transdermal pene-
tration of molecules. The electroporation induced by high-voltage pulses 
lets also the current flow deeper into the tissues. CAP-transported 
electric current, penetrating the skin layers, could have beneficial ef-
fects. High frequency electrotherapy was used since the early 20th 
century to treat several dermatological conditions and other diseases 
[241]. It is known that a certain electrical stimulation can speed up the 
wound healing process by promoting dermal fibroblast motility [242, 
243]. In addition, direct and pulsed currents were shown to stimulate 
keratinocytes differentiation, epidermis proliferation, vascularization 
and new collagen deposition [244,245]. 

The interaction between CAPs and the skin is bidirectional, CAP can 
modify the initial physico-chemical parameters of the targeted tissue 
while the characteristics of this latter can influence the plasma perfor-
mance (Fig. 3). The knowledge of the body electrical parameters is 
crucial for planning a safe, controlled and effective CAP treatment [240, 
246]. We already mentioned that the thickness and the structure of the 
skin change along the body which is why the same plasma treatment can 
produce a different effect depending on the treated zone. Moreover, the 
conductivity of the skin itself can vary over the time according to its 
hydration and to the temporary psychological and hormonal state of the 
treated person [247,248]. To overcome these variations, CAP delivery 
should dynamically adapt to the electrical changes of the skin [249]. The 
applied electric field has to be carefully chosen and controlled and will 
depend on the desired effect on skin, either a stronger for dermatological 
use or a lighter for cosmetic applications. 

7. Towards a potential role of CAP in skin biology and ageing 
prevention 

In this review we tried to summarize the interactions between cold 
atmospheric plasmas and the skin, based on the current knowledge of 
their own properties and characteristics, highlighting the already known 
and some other possible effects of these sources on the integumentary 
system biology (Fig. 4). We described how the multiple physical pa-
rameters involved in cold plasma can individually or together impact the 
cutaneous microenvironment and skin cell activities. The coaction of all 
these effects tends towards a beneficial role of CAPs on skin biology and 
brings relevant arguments in favor of the use of cold plasma for restoring 
skin functional barrier and thus improving skin health and appearance. 

In the light of these findings, one could ask: can CAPs be considered 
as a fountain of youth for the skin? Answering this question is not 
simple. 

From a technical point of view, the interesting in vitro and in vivo data 
found in the literature come often from different cold-plasma devices. 
Indeed, worldwide researchers have developed devices with different 
designs, gases and characteristics for plasma generation. This makes the 
biological results hardly comparable. Whether one specific device is 
better for one desired biological effect remains to be determined. 
Moreover, for a single device, parameters such as voltage, frequency and 
distance from the target also strongly influence plasma behavior and 
composition. In one hand, while these technical variables add a new 
level of complexity, in the other hand they also bring the possibility to 
modulate the plasma production. Moreover CAP physics and chemistry 
also depend on the operating conditions, such as ambient temperature 
and humidity. Thus the device should automatically adapt to the envi-
ronmental conditions in order to deliver the same performance at every 
use. Hence, for each treatment, a systematic diagnosis of the device 
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plasma composition should bring a new tool for the control and mod-
ulation of RONS generation. The development of means to finely analyze 
and control plasma delivery in interaction with skin with the support of 
modern plasma medicine studies should allow to determine the optimal 
conditions of use and contribute to the evaluation of this technology for 
skin wellbeing. Finally this CAP “plasticity” can become a strong point 
for specific applications. 

From a biochemical point of view, the mechanisms involved in 
plasma effect on cells and tissues still remains to be determined. Progress 
in this field are currently ongoing by making a precise diagnosis of 
plasma composition with the characterization of RONS produced in 
liquid or in tissues. The next step is to understand how these species are 
able to induce a biological effect either alone or in synergy [250]. The 
last challenging step is to master all the other CAP components (charged 
particles, UV, electric field, thermal emission) that cooperate to the final 
biological effect. Such rational approaches should strengthen plasma 
effects understanding and bring new insight in plasma applications for 
skin but also more generally in plasma medicine domain [251]. 

From a biological point of view and according to the results reported 
till now in the literature and presented here, CAPs should be a promising 
technology to stimulate and/or regenerate skin. However, as noted in 
this work, relatively little is known about the molecular and cellular 
mechanisms involved in the plasma-induced biological effects and about 
the consequences of these treatments in the long term. Data obtained 
from in vitro experiments are essential to understand the cellular 
signaling activated by the CAP exposure. However, the biggest limit in 
the use of cell cultures in plasma treatments is that most of the time the 
cells are not directly exposed to the CAP. Cells are either treated through 
the physiological medium covering them or put in contact with plasma- 
pretreated medium. Thus, cells in culture receive only long-lived species 
diffusing from the surface of the medium or dissolved in the plasma- 
activated medium. Conversely, in vivo, the skin will be impacted by all 
the CAP-produced species since the stratum corneum of the epidermis is 
directly exposed to the atmosphere. To overcome this issue, the use of 
skin explants or more complex skin models such as Reconstructed 
Human Epidermis or Reconstructed Whole Skin could strengthen the 
understanding of the CAP-activated processes in vitro and allow to 
modulate the effects, define and correct the limits of this technology. 
Finally, once clear cause-and-effect mechanisms are defined in these 
studies, real life treatment must be adapted to each user as the skin 

structure depends on the phototype but also on the age, sex and 
ethnicity. Indeed dermo-cosmetic CAP-based treatments should be 
considered as adapted and personalized therapies which are currently 
increasingly in demand. Thus a new generation of plasma-based treat-
ments could emerge in the field of cosmetics and dermatology to 
improve skin aspect and health. 

Taking into account the flexibility of plasma generation, thanks to its 
many parameters, CAPs could become new and promising treatments for 
skin care and regeneration. This will go through an optimization of 
devices, in terms of efficacy, control and safety for use as well as through 
the deciphering of mechanisms involved in plasma-induced effects on 
the skin. This innovative technology opens new areas of research at the 
interface between plasma physics and skin biology and should lead to-
wards new applications in the dermo-cosmetic field. 
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Abbreviations 

CAP Cold atmospheric Plasma 
ROS Reactive Oxygen Species 
RNS Reactive Nitrogen Species 
RONS Reactive Oxygen and Nitrogen Species 
DBD Dielectric Barrier Discharge 
ECM Extracellular Matrix 

Fig. 4. Potentials of CAP in skin biology. CAP 
performs its activity at various levels of the skin. At a 
superficial level it promotes the hydration, acidifica-
tion and decontamination of the stratum corneum. 
CAP-generated RONS can penetrate inside the skin via 
the intercellular way (inter), the intracellular way 
(intra) or via the transappendageal way (trans). By 
loosening the cutaneous barrier, CAP also promotes 
the absorption of other molecules such as drugs. At a 
molecular level, once penetrated into the skin, RONS 
can have a direct effect on skin biomolecule oxidation 
or activate cell metabolism and signaling. At the tis-
sue level, CAP treatment lead to an increase in skin 
oxygenation, stimulates the vasculogenesis and the 
ECM remodeling or de-novo synthesis.   
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