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Abstract

Given a graph G = (V,E) with a root r ∈ V , positive capacities
{c(e)|e ∈ E}, and non-negative lengths {`(e)|e ∈ E}, the minimum-
length (rooted) edge capacitated Steiner tree problem is to find a tree
in G of minimum total length, rooted at r, spanning a given sub-
set T ⊂ V of vertices, and such that, for each e ∈ E, there are
at most c(e) paths, linking r to vertices in T , that contain e. We
study the complexity and approximability of the problem, consider-
ing several relevant parameters such as the number of terminals, the
edge lengths and the minimum and maximum edge capacities. For
all but one combinations of assumptions regarding these parameters,
we settle the question, giving a complete characterization that sepa-
rates tractable cases from hard ones. The only remaining open case
is proved to be equivalent to a long-standing open problem. We also
prove close relations between our problem and classic Steiner tree as
well as vertex-disjoint paths problems.

Keywords: Steiner trees, capacity constraints, computational complexity,
approximation algorithms.

1 Introduction

The graphs in this paper can be directed or undirected. Consider a connected
graph G = (V,E) with a set T ⊂ V of terminal vertices, or simply terminals,
and a length (or cost) function ` : E → Q+. Let r ∈ V \ T be a root
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vertex (i.e. there is a path from r to any vertex in V ) if G is directed or a
special vertex called root ifG is undirected. The (rooted) Steiner tree problem
(STEINER-TREE) is to determine a directed tree S in G, rooted at r, spanning
all terminals of T and having a minimum total length. The undirected Steiner
tree problem, where one searches for a minimum-length tree spanning the
terminals in an undirected graph, has been widely studied and the associated
decision problem was one of Karp’s 21 NP-complete problems [20, 24, 31]. It
also has many applications, as shown in [8, 12]. This problem is APX-hard
[3], but it can be solved in polynomial time when the number of terminals
is fixed [11, 17, 39], and admits constant ratio approximation algorithms
otherwise [6, 33]. There are fewer results about the directed version, which
is a generalization of the undirected one and of the Set Cover problem, and
only non constant ratio approximation algorithms are known [7, 16]. Directed
problems occur for instance in VLSI design [9] or in multicast routing [8].

We consider in this paper a generalization of the (rooted) Steiner tree
problem. Assume we are given a capacity function c : E → N∗, where c(e) is
an upper bound on the number of paths containing e and linking r to termi-
nals. Equivalently, for every e = (u, v) in a tree S rooted at r, the subtree
of S rooted at v cannot contain more than c(e) terminals. Without loss of
generality, we assume that c(e) ≤ K for each edge e. The minimum-length
capacitated (rooted) Steiner tree problem is defined as follows:

Minimum-length (rooted) Capacitated Steiner Tree Problem (ML-CAP-STEINER-TREE)
Input. A connected graph G = (V,E); a set T = {t1, ..., tK} ⊂ V of K ≥ 2
terminals; a root vertex r ∈ V \T ; two functions on E: a nonnegative length
function ` and a positive capacity function c.
Objective. Determine, if it exists, a minimum-length directed tree S rooted
at r, that spans all the vertices of T and does not violate the capacity con-
straints.

If G = (V,E) is undirected and e = (u, v) is an arc of S, then [u, v]
must be an edge of E. Note that STEINER-TREE is the special case of
ML-CAP-STEINER-TREE where c(e) = K for all e ∈ E (in this case, a fea-
sible solution always exists). ML-CAP-STEINER-TREE appears naturally in
several contexts, for example when designing a wind farm collection network
[30], in the design of telecommunication networks [27] or in power distri-
bution system optimization [14]. In particular, ML-CAP-STEINER-TREE was
formally defined in [23] for the first time, where a natural application to
the cabling of a wind farm collection network at minimum cost was also de-
scribed in details. When `(e) = 0 for all e ∈ E, ML-CAP-STEINER-TREE turns
into a decision problem, denoted by CAP-STEINER-TREE, and consisting of
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determining whether there exists or not a tree rooted at r, spanning all the
terminals, and not violating the capacity constraints.

WhenK = n−1, i.e. a feasible solution is a spanning tree, ML-CAP-STEINER-TREE
is solvable in polynomial time if c(e) = 2 for all e ∈ E, while it is NP-hard if
c(e) = 3 for all e ∈ E [20, 29]. Several authors propose models and methods
based on mathematical programming to solve this capacitated spanning tree
problem for real-life applications such as telecommunication network design
problems [5, 37, 38]. Their methods allow to solve the case where there is
a positive integer demand at each vertex (instead of a unit demand as in
ML-CAP-STEINER-TREE). In [2, 25], the authors provide approximation algo-
rithms for a variant of ML-CAP-STEINER-TREE where the capacities are uni-
form and the problem always admits a feasible solution, since it is assumed
that a metric completion of the graph is available. This paper addresses
the problem where the demand is equal to 1 for each terminal vertex and
K ≤ n− 1.

As will be made clear in the next sections, there are strong links be-
tween ML-CAP-STEINER-TREE and the two following famous problems, namely
the minimum-length vertex-disjoint paths problem (ML-VDISJ-PATH) and the
minimum-length edge-cost flow problem (EDGE-COST-FLOW).

Minimum-Length Vertex-Disjoint Paths Problem (ML-VDISJ-PATH)
Input. A graph G = (V,E); a nonnegative length function ` on E; p disjoint
vertex pairs (s1, s

′
1), . . . , (sp, s

′
p).

Objective. Find p mutually vertex-disjoint paths µ1, . . . , µp of minimum total
length so that µi links si to s′i (i = 1, . . . , p).

Minimum Edge-Cost Flow Problem (EDGE-COST-FLOW)
Input. A graph G = (V,E); a positive integer K; two specified vertices s and
t; a nonnegative length function ` on E; a positive capacity function c on E.
Objective. Find a minimum-length feasible flow of K units from s to t, where
the length of a flow is the sum of the lengths of the arcs/edges carrying a
positive flow.

When `(e) = 0 for all e ∈ E, ML-VDISJ-PATH is known as the vertex-
disjoint paths problem and will be denoted by VDISJ-PATH. It is NP-complete
in directed and undirected graphs [20] and remains NP-complete for fixed p
in directed graphs [19], but it can be solved in polynomial time if p is fixed
and the graph is either undirected [32] or a directed acyclic graph [19]. The
NP-hardness results for VDISJ-PATH apply to ML-VDISJ-PATH as well, but
for this latter problem the complexity is unknown in the case where p is
fixed and the graph is undirected. However, a polynomial-time probabilistic
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algorithm for p = 2 has been recently presented in [4].
For any graph theoretical terms not defined here, the reader is referred to

[40]. We use the term path both for a chain when the graph is undirected, and
for a directed path when the graph is directed, i.e. when it is a digraph. If
the graph is directed, recall that, in the definition of ML-CAP-STEINER-TREE,
r is assumed to be a root vertex. This is a trivial necessary condition for
the existence of a feasible solution and can be easily checked. Since all trees
studied in this paper are directed from r towards the terminals, we use the
term tree instead of directed tree. For a vertex v in a tree S, we denote by
S(v) the subtree of S rooted at v. For a subgraph G′ = (V ′, E ′) of G, we
indifferently denote by `(G′) or `(E ′) the sum of the lengths of the arcs/edges
in G′. Also, for e ∈ E, a rooted tree S in G, and two vertices u and v such
that v is a descendant of u in S, we say that u is e-linked (resp. ē-linked)
to v in S if e belongs (resp. does not belong) to the path µuv from u to v
in S. Similarly, when we write that r is ē-linked to a subset T ′ of terminals
in S, this means that e does not belong to the paths in S that link r to
the terminals of T ′. The capacity constraints therefore impose that, for all
e ∈ E, r is e-linked to at most c(e) terminals in any feasible solution S to
an ML-CAP-STEINER-TREE instance. Equivalently, S(v) contains at most c(e)
terminals for all e = (u, v) in S.

The next section gives an overview of our results concerning ML-CAP-STEINER-TREE

and explains how the paper is organized.

2 Overview of the results

In this section we show that our results provide a complete characterization
of the complexity of ML-CAP-STEINER-TREE that allows us to distinguish be-
ween easy and hard cases of the problem for digraphs, directed acyclic graphs
(called DAGs) and undirected graphs. Notice that any undirected instance of
ML-CAP-STEINER-TREE can be transformed into a directed one by replacing
each edge by two opposite arcs having the same length and capacity. Hence,
any positive result (existence of a polynomial-time algorithm or approxima-
tion result) for directed graphs is also true for undirected graphs, while any
negative result for undirected graphs (NP-hardness or non-approximability
result) is also true for directed graphs.

Apart from the assumption on the graph itself (undirected, directed or
directed without circuits), the following parameters are considered: the num-
ber K of terminal vertices, the minimum and maximum edge capacities, and
the edge lengths. More precisely, K can be fixed or not; the minimum and
maximum edge capacities can be non depending on K (equal to 1 or not),
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they can be greater than or equal to K − κ (1 ≤ κ ≤ K − 1), and they
can be equal (uniform capacity) or not; the edge lengths can be all equal
to 0, all equal to a positive value (i.e. uniform), or non uniform. We settle
all cases except one, namely the undirected case with uniform capacity and
fixed K ≥ 3, but we prove that ML-CAP-STEINER-TREE is then equivalent
to ML-VDISJ-PATH in undirected graphs with fixed p, whose complexity is a
long-standing open problem in this case [26].

Our results are summarized in four tables. Each line of each table corre-
sponds to a specific case of ML-CAP-STEINER-TREE and refers to the theorem
where the case is settled. The first table contains results that are valid for
the three types of graphs, while the next three tables contain results that are
specific to digraphs, undirected graphs, and DAGs, respectively. In these ta-
bles, we denote by ρ the best possible approximation ratio for STEINER-TREE,
and by ρ′ the best possible approximation ratio for ML-VDISJ-PATH with a
fixed number of source-sink pairs.

The three trees drawn in Figure 1 provide another picture of the possible
cases for the three types of graphs (digraphs, DAGs and undirected graphs).
The numbers assigned to the leaves of these trees refer to the corresponding
rows in the tables. The values of the three parameters appear on the branches
and each branching node corresponds to a partition of the possible cases:
the value on a branch excludes the values on the branches to the left. For
instance, in undirected graphs, the capacities can be either uniform equal to
1, or at least K − 1, or uniform of value at least 2 and at most K − 2, or,
finally, any capacities not yet considered.

Moreover, if a leaf corresponds to a branch where the values of some
parameters are unspecified, then this means that the associated result holds
even in the most general case (if it is a positive, i.e., tractability result) or in
the most specific case (if it is a negative, i.e., hardness result) with regard to
the unspecified values. For instance, the NP-hardness result associated with
Leaf 7 holds even if K is fixed and if all lengths are 0 (since neither the value
of K nor the lengths appear on this branch), and the result associated with
Leaf 11 holds for any lengths and any capacities (since only the assumption
on K being fixed appears on this branch).

Therefore, for digraphs, the branch “any capacity” includes the case of
uniform capacities between 2 and K−2 for K fixed (or not). Concerning the
last line of Table 3, if the capacity is uniform and K is fixed, then there exists
some constant κ such that all capacities are equal to K − κ: hence, in the
tree dealing with undirected graphs in Figure 1, the branch “any capacity”,
which leads to Case 8 of Table 3, excludes the case where K is fixed.

We describe in Section 3 the structure of optimal solutions to an ML-CAP-STEINER-TREE

instance. Section 4 is devoted to relations between ML-CAP-STEINER-TREE
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Table 1: General results for ML-CAP-STEINER-TREE in digraphs, DAGs, and
undirected graphs.

Condition Complexity Theorem

1 Unit capacities Polynomial Theorem 4.1

2 K = 2 Polynomial Theorem 7.3

3 Capacities ≥ K−κ, for any con-
stant κ ≥ 0

NP-hard, even with lengths 1, even with
uniform capacities

Theorem 3.1

4 Capacities ≥ K − 1 Polynomial with lengths 0
(CAP-STEINER-TREE), and (1 + ρ)-
approximable otherwise

Theorem 7.4

5 Capacities ≥ K−1, for fixed K Polynomial Theorem 7.3

Table 2: Results for ML-CAP-STEINER-TREE in digraphs.

Condition Complexity Theorem

6 K ≥ 3 (fixed or not) NP-complete even if all lengths are 0
(CAP-STEINER-TREE), and even if the
minimum capacity cmin and the maxi-
mum capacity cmax ≥ cmin are any fixed
constants, with cmin ∈ {1, . . . ,K − 2}
and cmax ≥ 2

Theorem 5.1

and ML-VDISJ-PATH. We prove in Section 5 some NP-completeness results,
while special cases where the number K of terminals is fixed, or where all
capacities are almost equal to K, are studied in Sections 6 and 7.

3 Structural properties of optimal solutions

We can assume, without loss of generality, that there is a bijection between
the set of 1-degree vertices (leaves) in V \{r} and T . Indeed, if t ∈ T is not a
leaf, we can add a new terminal vertex t′ and an edge [t, t′] (or an arc (t, t′))
with capacity 1 and length 0, and replace t by t′ in T . Moreover, if there is a
leaf v /∈ T ∪ {r} in G, then v can be removed from G since the removal of v
from a solution S to an ML-CAP-STEINER-TREE instance gives a solution S ′

which is at least as good as S.
A solution S (if any) to an ML-CAP-STEINER-TREE instance is a tree rooted

at r, and defines K paths from r to the K terminals. The vertices with degree
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Table 3: Results for ML-CAP-STEINER-TREE in undirected graphs.

Condition Complexity Theorem

7 Non uniform capacities and
K ≥ 3 (fixed or not)

NP-complete even if all lengths are 0
(CAP-STEINER-TREE), and even if the
minimum capacity cmin and the maxi-
mum capacity cmax > cmin are any val-
ues, with cmin ∈ {1, . . . ,K − 2}

Theorem 5.3

8 Uniform capacity (non unit and
not depending on K)

NP-complete even if all lengths are 0
(CAP-STEINER-TREE), and even if the uni-
form capacity is any value ≥ 2 not de-
pending on K

Theorem 5.5

9 Uniform capacity equal to K −
κ, for any constant κ ≥ 0

Polynomial if all lengths are 0
(CAP-STEINER-TREE), and (ρ + ρ′)-
approximable otherwise

Theorems 6.1
and 7.1

10 Uniform capacity and fixed
K ≥ 3

Equivalent to ML-VDISJ-PATH with fixed
p, and hence open

Theorem 6.1

at least 3 in S\{r} are called branch vertices (and form, together with the
vertices in T , the key vertices [13]).

To each branch vertex v, we associate the set Tv ⊆ T of terminals in
the subtree S(v) rooted at v. Moreover, for an arc e = (u, v) in S, |Tv| is
the number of terminals to which r is e-linked in S. If there is no directed
path linking two vertices v and w in S, then Tv ∩ Tw = ∅, otherwise S would
contain a cycle.

Given a tree S spanning a set T of terminals, its skeleton is the tree
obtained from S by iteratively contracting vertices v /∈ T ∪ {r} with exactly
one incoming arc (u, v) and exactly one outgoing arc (v, w) (i.e., the path
(u, v, w) is replaced by an arc (u,w)). This means that there is an arc (u, v)
in the skeleton of S if and only if there is a path from u to v in S, each
internal vertex of this path being of degree 2 in S. When all capacities are 1,
the skeleton of a feasible solution is a star, since the root is the only possible
vertex with degree ≥ 2 in this skeleton. We now prove some properties which
will be useful later.

Property 3.1. The skeleton of an inclusion-wise minimal tree S rooted at
r and spanning K terminals (all of degree 1) contains at most 2K + 1 − dr
vertices, where dr is the degree of root r in S.

Proof. Let nB be the number of branch vertices in the skeleton R of S.
Clearly, R contains nR = K + 1 + nB vertices and nR − 1 edges. Since
the sum of the degrees of all vertices in R is 2(nR − 1) = 2K + 2nB, we
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Table 4: Results for ML-CAP-STEINER-TREE in DAGs.

Condition Complexity Theorem

11 Fixed K Polynomial Theorem 6.3

12 Non unit capacities not depend-
ing on K

NP-complete even if all lengths are 0
(CAP-STEINER-TREE), and even if the ca-
pacity is uniform and takes any value ≥ 2
not depending on K

Theorem 5.5

13 Capacities larger than K − κ,
for any constant κ ≥ 0

Polynomial if all lengths are 0
(CAP-STEINER-TREE), and (1 + ρ)-
approximable otherwise

Theorem 7.2

have 2K + 2nB ≥ K + dr + 3nB, which implies nB ≤ K − dr and nR ≤
2K + 1− dr.

Property 3.2. Given an inclusion-wise minimal tree S rooted at r and span-
ning K terminals (all of degree 1), the path with minimum number of vertices
from root r to a terminal in the skeleton of S contains at most O(log(K))
vertices.

Proof. Let R be the skeleton of S, nR its number of vertices, and lmin the
minimum number of vertices on a path from r to a terminal in R.

• If r has degree 1 in S, then R contains one vertex at levels 1 and
2, and at least 2i−2 vertices at levels i = 3, . . . , lmin. Hence, nR ≥
2 +

∑lmin−2
i=1 2i = 2lmin−1, which implies lmin ≤ log2(nR) + 1.

• If r has degree at least 2 in S, then R contains at least 2i−1 vertices at
levels i = 1, . . . , lmin. Hence, nR ≥

∑lmin−1
i=0 2i = 2lmin − 1, which implies

lmin ≤ log2(nR + 1).

In both cases, it follows from Property 3.1 that lmin = O(log(K)).

Notice that, if S is a complete binary tree, then lmin = Ω(log(K)): there-
fore, up to a constant factor, the bound in the previous property cannot be
improved.

Given a graph G with a root r and K terminals, a potential skeleton in
G is defined as a directed tree P defined over the vertices of G, rooted at r,
spanning the K terminals, whose arcs correspond to paths in G, and such
that the only vertices without outgoing arcs are the K terminals, while any
other vertex, except possibly r, has degree at least 3 (i.e., outdegree at least
2) in P . While the skeleton of an inclusion-wise minimal feasible solution to
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Figure 1: Results for ML-CAP-STEINER-TREE (CAP-STEINER-TREE if all
lengths are 0) in digraphs, DAGs and undirected graphs.
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an ML-CAP-STEINER-TREE instance is a potential skeleton, the reverse is not
necessarily true, as illustrated in Figure 2. If we select the left arc incident
to r in the first potential skeleton of the figure, then there are no three
vertex-disjoint paths from the left neighbor of r to the terminals in G.

A potential skeleton which is the skeleton of four solutions to 
 ML-CAP-STEINER-TREE

A potential skeleton

which is not the

skeleton of a solution to 
ML-CAP-STEINER-TREE

r

t1 t2 t3

An undirected graph with uniform capacity 3

Figure 2: Potential skeletons in a graph G.

Property 3.3. Given a graph G with n vertices, K terminals, and a root
vertex r, it is possible to enumerate in O(nK−1KO(K)) time all potential skele-
tons of inclusion-wise minimal trees rooted at r and spanning the K terminals
in G.

Proof. As shown in the proof of Property 3.1, the skeleton of such a tree
contains at most K−1 branch vertices. There are O(nK−1) ways of choosing
at most K − 1 branch vertices, and, for each such choice, it follows from
Cayley’s formula that there are at most (2K)2K−2 different labelled trees
containing only r, the K terminals, and the chosen branch vertices. We can
orient the edges of every labelled tree from the root r towards the other
vertices, which takes O(K) time per tree, and reject the labelled rooted trees
that do not satisfy the definition of a potential skeleton. The whole procedure
therefore takes O(nK−1KO(K)) time.

We close this section by noticing that, in some cases (e.g., when all capac-
ities are K), optimal solutions to ML-CAP-STEINER-TREE are simply optimal
Steiner trees, and nevertheless hard to find:
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Theorem 3.1. ML-CAP-STEINER-TREE is as hard as STEINER-TREE, even if
all capacities are equal to K − κ for any nonnegative constant κ.

Proof. Take any STEINER-TREE instance in a graph G′ = (V ′, E ′) with K ′

terminals and a root r. Build an equivalent instance of STEINER-TREE in
a graph G′′ = (V ′′, E ′′), by adding κ new terminals linked to r with new
edges/arcs. Then, build from G′′ an ML-CAP-STEINER-TREE instance in a
graph G = (V,E) where there are K = K ′ + κ terminals, by setting all
capacities to K ′. Clearly, optimal solutions in G are optimal Steiner trees in
G′′.

Note in particular that, since we can set to 1 the length of each edge/arc
added to obtain G′′ from G′, this implies that ML-CAP-STEINER-TREE is NP-
hard when all lengths are 1 even in very special classes of graphs (such as
planar graphs), since STEINER-TREE is [20].

4 Links with vertex-disjoint paths problems

We detail in this section several links between ML-CAP-STEINER-TREE and
some vertex-disjoint paths problems. Other links between Steiner problems
in capacitated networks and vertex-disjoint paths can be found in [28]. We
begin with a simple complexity result in the case of unit capacities. An
optimal solution to ML-CAP-STEINER-TREE then necessarily consists of K
vertex-disjoint paths with minimum total length, each one linking r to a
terminal, and we obtain the following theorem.

Theorem 4.1. ML-CAP-STEINER-TREE is polynomial-time solvable if c(e) =
1 ∀e ∈ E.

Proof. Assume the input graph G is directed, and let us add to G a new ver-
tex s and an arc (tk, s) of length 0 and capacity 1 for each terminal t1, . . . , tk.
Solving ML-CAP-STEINER-TREE then amounts to finding K internally vertex-
disjoint paths from r to s, with minimum total length. It is well-known that
this can be done in polynomial time, but we briefly recall how. We consider
the graph H obtained from G by replacing each vertex v /∈ {r, s, t1, . . . , tk} by
an arc (v′, v′′) of length 0, and each arc (v1, v2) (resp. (r, v), (v, ti), i = 1, ..., k)
by an arc (v′′1 , v

′
2) (resp. (r, v′), (v′′, ti), i = 1, ..., k) having the same length

as the original one. All capacities are set equal to 1. It is then sufficient
to determine a minimum-cost flow of k units from r to s in H by using any
min-cost flow algorithm [21]. Recall that, if the graph G is undirected, we
can transform it into a directed one by replacing each edge by two opposite
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arcs. In this case, only one of two opposite arcs associated to an edge carries
a positive flow in the solution.

The following problem is a generalization of both ML-VDISJ-PATH and other
disjoint path problems, that to the best of our knowledge has not been stud-
ied yet, and that we shall need later on:

Minimum-Length Labelled Vertex-Disjoint Paths Problem (ML-LAB-VDISJ-PATH)
Input. A graph G = (V,E); an integer k ≥ 1; a nonnegative length function
` on E; a label λ(e) ∈ {1, . . . , k} on every e ∈ E; p disjoint vertex pairs (si,
s′i), each one being associated with a set Li ⊆ {1, . . . , k} of labels.
Objective: find p mutually vertex-disjoint paths µ1, . . . , µp of minimum total
length so that µi links si to s′i and all labels on µi belong to Li (i = 1, . . . , p).

When `(e) = 0 for all e ∈ E, ML-VDISJ-PATH (resp. ML-LAB-VDISJ-PATH)
turns into a decision problem, denoted by VDISJ-PATH (resp. LAB-VDISJ-PATH).
Notice that ML-VDISJ-PATH is the special case of ML-LAB-VDISJ-PATH where
Li = {1, . . . , k} for i = 1, . . . , p. We now show several links between ML-CAP-STEINER-TREE

and some variants of ML-VDISJ-PATH and ML-LAB-VDISJ-PATH.

Theorem 4.2. ML-VDISJ-PATH with p source-sink pairs is polynomially re-
ducible to ML-CAP-STEINER-TREE with p(p+ 1)/2 terminals.

Proof. Assume first that the input graph G = (V,E) of the ML-VDISJ-PATH

instance is undirected. Let G′ = (V ′, E ′) be defined as follows: V ′ is obtained
by adding to V a vertex r and K = p(p + 1)/2 terminals tij , 1 ≤ j ≤ i ≤ p;
E ′ is obtained from E by adding an edge of capacity i and length 0 between r
and every si, i = 1, . . . , p, as well as edges of capacity 1 and length 0 between
s′i and every tij , 1 ≤ j ≤ i ≤ p. The edges of E keep their original length,
while their capacity is fixed to p. We prove that solving ML-VDISJ-PATH in
G is equivalent to solving ML-CAP-STEINER-TREE in G′. The construction of
G′ from G is illustrated in Figure 3 for p = 3, with the pair (c(e), `(e)) on
every e ∈ E ′.

Given a solution S to ML-VDISJ-PATH in G, one can get a solution S ′

to ML-CAP-STEINER-TREE in G′ of same total length by orienting all paths
from si to s′i, i = 1, . . . , p, and then adding the p arcs (r, si), as well as the
p(p+ 1)/2 arcs incident to the terminals.

Now, assume there is a solution S ′ for ML-CAP-STEINER-TREE in G′. Since
there are p(p + 1)/2 terminals while the sum of the capacities of the edges
incident to r is precisely this amount, we know that r is (r, si)-linked to
exactly i terminals in S ′, i = 1, . . . , p. In particular, r is (r, sp)-linked to p
terminals, and these are necessarily tp1 , . . . , tpp , otherwise S ′ would contain a
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Figure 3: From ML-VDISJ-PATH in G = (V,E) with p = 3 to
ML-CAP-STEINER-TREE in G′ = (V ′, E ′) with K = 6.

cycle. Using the same argument, with i decreasing from p to 1, we get that r
is (r, si)-linked to ti1 , . . . , tii . Notice that all paths from r to tij , j = 1, ..., i,
use the same sub-path from si to s′i. Hence, by removing from S ′ all arcs
incident to r and to the terminals, we get a solution S to ML-VDISJ-PATH

with same total length.
The proof for digraphs is obtained by replacing “edge” by “arc” in the

construction of G′.

Theorem 4.3. Given two integers K and c with K ≥ 4 and 2 ≤ c ≤ K − 2,
ML-VDISJ-PATH with p = 2 source-sink pairs is polynomially reducible to
ML-CAP-STEINER-TREE with K terminals and uniform capacity c.

Proof. The proof is similar to the previous one. The main difference is the
definition of G′ = (V ′, E ′). In the undirected case, V ′ is obtained by adding
to V two vertices r and v and K terminals t1, . . . , tK ; E ′ is obtained from E
by adding the edges [r, v], [r, s2], [v, s1], [v, t1], [s′1, t2], [s′2, ti] for i = 3, . . . , c+2,
and [r, ti] for i = c+3, . . . , K. The edges of E keep their original length while
those in E ′ \ E have length 0. All capacities are set equal to c. We then
prove that ML-VDISJ-PATH on G is equivalent to ML-CAP-STEINER-TREE in
G′ in a similar way as in the previous theorem. The only path that goes from
r to t1 contains rv, and hence the remaining capacity on this edge is c − 1:
this implies that the paths from r to the c terminals adjacent to s′2 must
contain rs2, and the rest of the proof is unchanged. The proof for digraphs
is obtained by adding arcs instead of edges to obtain G′.

Theorem 4.4. ML-VDISJ-PATH with p ≥ 2 source-sink pairs is polynomially
reducible to ML-CAP-STEINER-TREE with p2 terminals and uniform capacity
p.

13



Proof. Again, the proof is similar to the one of Theorem 4.2. In this case,
G′ = (V ′, E ′) is constructed as follows. V ′ is obtained by adding to V a
vertex r, p − 1 vertices v1, . . . , vp−1 and p2 terminals tij with 1 ≤ i, j ≤ p;
E ′ is obtained from E by adding the edges [r, sp], [r, vi] and [vi, si] for i =
1, . . . , p − 1, as well as edges between s′i and every tij with 1 ≤ j ≤ i ≤ p
and edges between vi and every tij with 1 ≤ i < j ≤ p. The edges of E
keep their original length while those in E ′ \E have length 0. All capacities
are set equal to p. We then prove that ML-VDISJ-PATH on G is equivalent
to ML-CAP-STEINER-TREE in G′ in a similar way as in Theorem 4.2. Notice
that, in this case, given any solution S ′ to ML-CAP-STEINER-TREE in G′, r is
necessarily (r, vi)-linked to terminals tij (j = 1, . . . , p) for all i = 1, . . . , p−1,
and r is (r, sp)-linked to terminals tpj (j = 1, . . . , p).

Remark 4.1. The results stated in Theorems 4.2, 4.3 and 4.4 are also valid
for ML-VDISJ-PATH and ML-CAP-STEINER-TREE with strictly positive lengths,
since the arcs or edges added to G in order to obtain G′ can have arbi-
trary lengths. Indeed, the total length of a solution S to ML-VDISJ-PATH

will then differ from the total length of the corresponding solution S ′ to
ML-CAP-STEINER-TREE by a value equal to the total length of the added arcs
or edges.

We next show that, when the numberK of terminals is fixed, ML-CAP-STEINER-TREE
is polynomially reducible to ML-LAB-VDISJ-PATH.

Theorem 4.5. When K ≥ 1 is fixed, ML-CAP-STEINER-TREE can be reduced
in polynomial time to ML-LAB-VDISJ-PATH with a fixed number of source-sink
pairs.

Proof. We first consider the undirected case. Let I be an instance of ML-CAP-STEINER-TREE
in a graph G containing K terminals. It follows from Property 3.3 that the
set of potential skeletons of optimal solutions to I can be enumerated in
O(nK−1) time (since K is a constant), where n is the number of vertices in
G.

To every such potential skeleton S, we associate a graph G′ = (V ′, E ′)
constructed as follows, in order to deal with vertex-disjoint paths (and not
internally vertex-disjoint paths). For each arc (u, v) of S, we create a copy
uv of u and a copy vu of v; hence, every vertex v of S is replaced in G′ by dv
copies of v, where dv is the degree of v in S. All vertices of G that do not
appear in S are also put in V ′ (with only one copy of each). For each edge
[u, v] of G we put an edge of same length in G′ between each copy of u and
each copy of v. This construction is illustrated in Figure 4.

We then create a source-sink pair (uv, vu) in G′ for all arcs (u, v) in S.
From Property 3.1, S contains at most 2K vertices, and there are therefore
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at most 2K − 1 such pairs. For each v ∈ V , let Kv denote the number of
terminals in the subtree S(v) of S rooted at v, and let Luv be the set of labels
associated with the source-sink pair (uv, vu). We set Luv = {Kv, . . . , K}. In
the example of Figure 4, we have Lrb = {3}, Lbe = {2, 3}, and Lbt1 = Let2 =
Let3 = {1, 2, 3}. The label λ(e) associated with an edge e in G′ is the capacity
of the corresponding edge in G.

An optimal solution to ML-LAB-VDISJ-PATH in G′ (if any) corresponds
to a minimum-length solution to ML-CAP-STEINER-TREE in G having S as
skeleton. Since we enumerate all potential skeletons, the best solution to
ML-CAP-STEINER-TREE obtained during this enumeration is an optimal solu-
tion for I.
The proof is similar for digraphs, by replacing edge by arc.
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et2 et3
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The given graph G A potential skeleton
The associated graph G’ 

with a solution in bold lines 

to ML-LAB-VDISJ-PATH

The associated solution to 

 ML-CAP-STEINER-TREE

t1 t2 t3

h h h

g g g

Figure 4: From ML-CAP-STEINER-TREE in G = (V,E) to ML-LAB-VDISJ-PATH

in G′ = (V ′, E ′). (The length of [b, e] is equal to 3, and all other lengths are
equal to 1.)

Theorem 4.6. When K ≥ 1 is fixed, ML-CAP-STEINER-TREE (resp. CAP-STEINER-TREE)
with uniform capacity is polynomially reducible to ML-VDISJ-PATH (resp.
VDISJ-PATH) with a fixed number of source-sink pairs.

Proof. The proof is similar to the proof of Theorem 4.5. However, since
the capacities are all equal to a constant c, we do not have to use labels.
Consider any potential skeleton S: if r has at least one successor v such that
the number of terminals in the subtree S(v) of S rooted at v is strictly larger
than c, then S can be rejected since it cannot correspond to the skeleton of
a tree satisfying the capacity constraints. Otherwise, an optimal (resp. a
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feasible) solution to ML-VDISJ-PATH is a minimum-length (resp. a feasible)
solution to ML-CAP-STEINER-TREE having S as skeleton.

VDISJ-PATHML-LAB-VDISJ-PATH

ML-CAP-STEINER-TREE ML-CAP-STEINER-TREE
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Polynomial  
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Trivial  
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Figure 5: Polynomial-time reductions between capacitated Steiner tree and
vertex-disjoint paths problems.

The relations proved in this section are summarized in Figure 5, where
a trivial polynomial reduction corresponds to a generalization of a special
case. We recall that VDISJ-PATH is NP-complete in digraphs, even with
p = 2 souce-sink pairs [19], while it is polynomial-time solvable in undirected
graph [32] and DAGs [19] when p is fixed.

We close this section by mentioning that the reductions given in Theorems
4.2 and 4.4 are FPT-reductions [10] with parameters p and K = O(p2).

5 NP-completeness of the case with lengths

0

In this section, we prove some NP-completeness results for CAP-STEINER-TREE,
i.e., the case with lengths 0. Note, in particular, that such results exclude
the existence of approximation algorithms, even arbitrarily bad ones, for
ML-CAP-STEINER-TREE (under the same assumptions).

We first show that CAP-STEINER-TREE is NP-complete in digraphs even
if K ≥ 3 is fixed, the minimum capacity cmin is any value in {1, . . . , K − 2},
and the maximum capacity cmax is at least 2.

Theorem 5.1. CAP-STEINER-TREE is NP-complete in digraphs, even if K ≥
3 is fixed, for any cmin ∈ {1, . . . , K − 2} and cmax ≥ 2, with cmin ≤ cmax.
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Proof. This is a direct consequence of Theorem 4.2 (for K = 3, cmin = 1 and
cmax = 2) and Theorem 4.3 (for K ≥ 4). Indeed, VDISJ-PATH is NP-complete
in digraphs with p = 2 source-sink pairs [19], and the two theorems show
how to polynomially reduce VDISJ-PATH in this case to CAP-STEINER-TREE

with the right number of terminals. Notice that we can fix the values of
cmin and cmax in the constructed CAP-STEINER-TREE instances (with cmin ∈
{1, . . . , K − 2}, and cmax ≥ 2) by assigning these two values to two different
arcs incident to terminals.

Corollary 5.2. CAP-STEINER-TREE with uniform capacity c ∈ {2, . . . , K−2}
is NP-complete in digraphs, even if K ≥ 4 is fixed.

For undirected graphs, we have the following result:

Theorem 5.3. CAP-STEINER-TREE is NP-complete in undirected graphs,
even if K ≥ 3 is fixed and if the minimum capacity cmin and the maxi-
mum capacity cmax are two fixed constants, with cmin ∈ {1, . . . , K − 2} and
cmin < cmax.

Proof. We give a polynomial-time reduction from SAT. Assume first that
K = 3 and all edge capacities are equal to 1 or 2. Let X = {x1, ..., xξ} be the
set of variables and let C = {C1, ..., Cν} be the set of clauses in an arbitrary
instance I of SAT. For each variable xi, we denote by oi (resp. ōi) the number
of occurrences of xi (resp. x̄i) in the clauses. We can assume, without loss
of generality, that oi ≥ ōi for every i (by exchanging xi and x̄i everywhere in
the clauses, if necessary). The following instance I ′ of CAP-STEINER-TREE is
associated to I.

For each variable xi, we construct a variable gadget as follows: we add
two vertices vi0 and vi2oi+1, and two vertex-disjoint paths between them. The
first one, µi, corresponding to literal xi, is vi0, v

i
1, . . . , v

i
2oi+1, where, for each

j ∈ {1, . . . , oi}, the edge vi2j−1v
i
2j has capacity 2, and, for each j ∈ {0, . . . , oi},

the edge vi2jv
i
2j+1 has capacity 1. The second path, µ̄i, corresponding to literal

x̄i, is vi0, v̄
i
1, . . . , v̄

i
2ōi
, vi2oi+1, where, for each j ∈ {1, . . . , ōi}, the edge v̄i2j−1v̄

i
2j

has capacity 2, and, for each j ∈ {1, . . . , ōi−1}, the edge v̄i2j v̄
i
2j+1 has capacity

1. The edges vi0v̄
i
1 and v̄i2ōiv

i
2oi+1 also have capacity 1. The variable gadgets

are linked together as follows: for each i ∈ {1, . . . , ξ − 1}, there is an edge
vi2oi+1v

i+1
0 of capacity 1.

For each clause Cj, we construct a clause gadget as follows: we add two
vertices uj1, u

j
2, and, for each literal xi (or x̄i) contained in Cj, we add edges

uj1v
i
2`−1 (or uj1v̄

i
2`−1) and vi2`u

j
2 (or v̄i2`u

j
2) of capacity 2, if this literal occurs

` − 1 times in clauses C1, . . . , Cj−1. The clause gadgets are linked together
as follows: for each j ∈ {1, . . . , ν − 1}, there is an edge uj2u

j+1
1 of capacity 2.
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We complete the construction of I ′ by adding a root r and 3 terminals
t1, t2, t3, as well as 3 edges vξ2oξ+1t1, uν2t2 and uν2t3 of arbitrary capacity (1 is

fine, but any value fits), an edge rv1
0 of capacity 1, and an edge ru1

1 of capacity
2. The construction of I ′ is illustrated in Figure 6 for I with X = {x1, x2, x3}
and C = {x1x̄2, x1x2x3, x̄1x2x̄3}. Solid lines have capacity 2 while dotted
edges have capacity 1. Moreover, a solution to I ′ is given in bold lines.
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Figure 6: From SAT to CAP-STEINER-TREE.

Let S be a feasible solution to I ′ (if any). To avoid cycles, the paths
from r to t2 and t3 must use the same sub-path π2 from r to uν2, and thus
all edges of π2 must have capacity 2. So, π2 starts with the edge ru1

1. Then,
the only possibility is to use the edge u1

1v
i
1 (or u1

1v̄
i
1) for some i, and then

the edges vi1v
i
2 and vi2u

1
2 (or v̄i1v̄

i
2 and v̄i2u

1
2). The next step is to use the edge

u1
2u

2
1. Using similar arguments with increasing values of j, we get that π2

necessarily contains all edges uj2u
j+1
1 with 1 ≤ j < ν, and ends at uν2 (which

is adjacent to t2 and t3).
Since π2 starts with the edge ru1

1, the path π1 from r to t1 starts with the
edge rv1

0. Moreover, to avoid cycles, π1 and π2 are internally vertex-disjoint.
Since uj1 and uj2 belong to π2 for all j, we conclude that, for each i, either
π1 contains µi and then π2 may contain only edges of µ̄i, or π1 contains µ̄i
and then π2 may contain only edges of µi. This means that, for each j, there
is a subpath of three edges of π2, from uj1 to uj2, containing one edge of µi
(resp. µ̄i) for i such that xi (resp. x̄i) is one of the literals contained in
clause Cj, and there is no k for which the subpath from uk1 to uk2 contains one
edge of µ̄i (resp. µi). We can therefore define a satisfying truth assignment
τ : X → {true, false} as follows: for each i, if µi is a subpath of π1, then
τ(xi) = false, else τ(xi) = true.

Conversely, if there is a satisfying truth assignment τ for I, we construct
a feasible solution for I ′ as follows. The path π1 from r to t1 begins with the
edge rv1

0 and, for each i, π1 has µi as a subpath if τ(xi) = false, and it has
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µ̄i as a subpath if τ(xi) = true. The path π2 from r to uν2 begins with the
edge ru1

1 and can be constructed sequentially by using edges not contained
in π1 (this is always possible, since τ is a satisfying truth assignment for
I). The solution to I ′ is then obtained by adding edges vξ2oξ+1t1, uν2t2 and
uν2t3 to π1 ∪ π2. The solution to I ′ corresponding to the truth assignment
τ(x1, x2, x3) = (true, true, false) for I is represented in Figure 6 with bold
lines.

In order to generalize this reduction to any K ≥ 3, any cmin ∈ {1, . . . , K−
2}, and any cmax > cmin, we attach cmin + 1 terminals to uν2 (instead of 2)
and K − cmin − 2 terminals to r (instead of 0): the edges with capacity 1
and 2 become edges with capacity cmin and cmin + 1, respectively. Moreover,
since the edges incident to the terminals can have any capacity, we can set
the capacity of one of them to cmax.

Notice that the previous result is not valid for DAGs since the graphs
constructed in the above proof possibly contain circuits. We now prove a
complexity result for LAB-VDISJ-PATH, i.e. ML-LAB-VDISJ-PATH with lengths
0.

Corollary 5.4. LAB-VDISJ-PATH with p source-sink pairs is NP-complete
in undirected graphs, and hence in digraphs, for any fixed p ≥ 2, even if Li
contains all labels for every i < p and Lp contains all labels but one.

Proof. For p = 2, this follows from the proof of Theorem 5.3. Indeed, consider
the two source-sink pairs (s1, s

′
1) = (v1

0, v
ξ
2oξ+1) and (s2, s

′
2) = (u1

1, u
ν
2), identify

the label of each edge with its capacity, and set L1 = {1, 2} and L2 = {2}.
We have shown that there is a feasible solution to the instance I of SAT if
and only if there are two vertex-disjoints paths P1 and P2 linking s1 to s′1
and s2 to s′2, and such that P1 uses edges of label 1 or 2, while P2 uses only
edges with label 2. For larger values of p, we simply add dummy source-sink
pairs.

Note that this is in contrast with VDISJ-PATH, which is polynomial-time
solvable in undirected graphs [32] and in DAGs [19] when p is fixed. A simi-
lar problem has been studied in [41]. More precisely, TWOCOL-VDISJ-PATH is
defined as follows: given an undirected graph in which every edge has color
1 or 2, and two source-sink pairs (s1, s

′
1) and (s2, s

′
2), determine whether

G contains two vertex-disjoint paths, the first one from s1 to s′1 using only
edges of color 1, and the second one from s2 to s′2 using only edges of color
2. TWOCOL-VDISJ-PATH is the special case of ML-LAB-VDISJ-PATH where
there are p = 2 source-sink pairs, all lengths are 0, and Li = {i} for each
i ∈ {1, 2}. It is proved in [41] that this problem is NP-complete. The re-
duction given in the proof of Theorem 5.3 yields an alternative proof of the

19



NP-completeness of TWOCOL-VDISJ-PATH: indeed, as in the previous corol-
lary, we can fix (s1, s

′
1) = (v1

0, v
ξ
2oξ+1) and (s2, s

′
2) = (u1

1, u
ν
2), and identify

the colors of the edges with their capacities. Also, for every variable gad-
get, we add a path consisting of two edges of capacity (color) 1 between the
endpoints of the edges of capacity 2 so that P1 (the path that goes through
edges of capacity 1 and 2) can avoid edges with color 2.

The next result deals with DAGs and undirected graphs with uniform capac-
ity.

Theorem 5.5. CAP-STEINER-TREE is NP-complete in DAGs and undirected
graphs, even in the case of uniform capacity c, for any c ≥ 2 (not depending
on K).

Proof. Let 3-SAT3 be the satisfiability problem in which every clause contains
at most 3 variables, every variable appears in at most 3 clauses, and every
litteral (a variable or its complement) appears in at most 2 clauses. 3-SAT3 is
known to be NP-complete [36]. We show how to polynomially reduce 3-SAT3

to CAP-STEINER-TREE with uniform capacity c ≥ 2.
Let I = (X,C) be an instance of 3-SAT3 with X = {x1, ..., xξ} as set

of variables and C = {C1, ..., Cν} as set of clauses. To obtain an instance
I ′ of CAP-STEINER-TREE with uniform capacity c, we construct the follow-
ing graph G = (V,E): for every variable xi ∈ X, we create three ver-
tices vi, v̄i, si and c terminals TVi,1, . . . , TVi,c; for every clause Cj ∈ C we
create a terminal TCj; finally we add a vertex r. For the directed case,
we consider the following arcs: for every i = 1, ..., ξ, we create the arcs
(r, vi), (r, v̄i), (vi, si), (v̄i, si), (si, TVi,1), . . . , (si, TVi,c); for every j = 1, ..., ν we
create the arcs (vi, TCj) (resp. (v̄i, TCj)) if xi (resp. x̄i) is in Cj. All the
arcs have capacity c. The resulting graph G can clearly be obtained in poly-
nomial time and is a DAG. For the undirected case, we consider the same
graph, but we replace each arc by an edge. The construction is illustrated in
Figure 7 for c = 2 and the 3-SAT3 instance where X = {x1, x2, x3, x4} and
C = {x1x̄2x3, x̄2x̄3x4}, the arcs being oriented from r down to the terminals
in the directed case.

Assume there is a truth assignment τ : X → {true, false} for I. We
construct a feasible solution S to I ′ as follows. If τ(xi) = false (resp.
τ(xi) = true) then we include (vi, si) (resp. (v̄i, si)) in S. For each clause
Cj, we choose one of the true litterals in Cj, say xi (resp. x̄i), and add
the arc (vi, TCj) (resp. (v̄i, TCj)) to S. Finally, for all i = 1, ..., ξ, we add
the arcs (r, vi), (r, v̄i), (si, TVi,1), . . . , (si, TVi,c) to S. Clearly, S is a tree
rooted at r and spanning all the terminals; in fact, S is a spanning tree. For
every i = 1, . . . , ξ with τ(xi) = false (resp. τ(xi) = true), r is (r, vi)-linked
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Figure 7: From 3-SAT3 to CAP-STEINER-TREE.

(resp. (r, v̄i)-linked) to TVi,1, . . . , TVi,c, and is (r, v̄i)-linked (resp. (r, vi)-
linked) to at most two terminals TCj associated with clauses containing x̄i
(resp. xi), since there are at most two such clauses. Since c ≥ 2, all capacity
constraints are satisfied. The solution S associated with the truth assignment
τ(x1, x2, x3, x4) = (true, false, false, true) is represented in Figure 7 with
bold lines.

Now, let S be a feasible solution to I ′. Consider first the directed case.
For all j = 1, ..., ν, there is at least one index i such that either (vi, TCj) ∈ S
and we then set τ(xi) = true or (v̄i, TCj) ∈ S and we then set τ(xi) = false.
If a variable did not get any value, we arbitrarily choose one, say true. This
gives a truth assignment satisfying each clause Cj. Let us verify that we have
not assigned simultaneously values true and false to some variable. Notice
first that, since S has no cycle, r is either (r, vi)-linked or (r, v̄i)-linked to
the c terminals TVi,1, . . . , TVi,c. Since all capacities equal c, this means that
either vi or v̄i has no TCj (j = 1, . . . , ν) as successor, which means that we
do not assign both values true and false to a variable xi.

Consider now the undirected case. If there is an index i such that
(si, vi) ∈ S, then (v̄i, si) ∈ S since, in this case, r must be (v̄i, si)-linked
to TVi,1, . . . , TVi,c in S. Hence, (r, vi) /∈ S (otherwise, there would be a cy-
cle in S) and we can replace (si, vi) by (r, vi). Similarly, if (si, v̄i) ∈ S for
some index i, we replace this arc by (r, v̄i). Assume now that (vi, TCj) ∈ S
and (r, vi) /∈ S for some i ∈ {1, . . . , ξ} and j ∈ {1, . . . , ν}. Then, we have
(TCh, vi) ∈ S for some index h 6= j and we replace (TCh, vi) by (r, vi).
We make a similar exchange if (v̄i, TCj) ∈ S and (r, v̄i) /∈ S. After hav-
ing performed all these replacements, we get a new spanning tree S ′, since
each vertex (except the root) still has exactly one incoming arc. Moreover,
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S ′ has the same structure as the tree S analyzed in the directed case. We
can therefore obtain a satisfying truth assignment using the same rules as
above.

Remember (see Section 1) that EDGE-COST-FLOW consists in determining
a minimum-length feasible flow of K units from s to t in a given graph, where
the length of a flow is the total length of the arcs/edges carrying a positive
flow. EDGE-COST-FLOW is very close to ML-CAP-STEINER-TREE. Indeed, given
an instance of ML-CAP-STEINER-TREE in a graph G with K terminals, we
can construct a graph G′ obtained from G by adding a vertex r′ and linking
every terminal to this new vertex. Solving EDGE-COST-FLOW in G′ with s = r
and t = r′ is then equivalent to solving ML-CAP-STEINER-TREE in G, except
that a feasible solution is not required to be a tree. The proof of Theorem
5.5 provides the following corollary:

Corollary 5.6. EDGE-COST-FLOW is NP-hard in DAGs and undirected graphs,
even if all lengths are 1 and all capacities are 1 or 2.

Proof. Consider first the directed acyclic case. Given an instance I = (X,C)
of 3-SAT3, let us construct a graph G = (V,E), as in the proof of Theorem
5.5, setting c = 2. We then add a vertex r′ and link TVi,1, TVi,2 (i = 1, . . . , ξ)
and TCj (j = 1, . . . , ν) to r′. For all arcs e incident to r, as well as those
linking si to TVi,1 and TVi,2, we set `(e) = 1, while `(e) is set to 4ξ + 1 for
all other arcs e. All arcs have capacity 2, except those incident to r′ which
have capacity 1. We then solve an EDGE-COST-FLOW instance, looking for a
flow of K = 2ξ+ ν units from r to r′. Let I ′ be this instance. We prove that
I is satisfiable if and only if the total length of an optimal solution to I ′ is
at most L = (4ξ + 1)(3ξ + 2ν) + 4ξ.

If there is a satisfying truth assignment for I, we construct a solution S
to I ′ as in the proof of Theorem 5.5, except that we add an arc from every
terminal to r′. It is not difficult to check that the total length of such a
solution is at most L.

Consider now a solution S to I ′ of total length at most L. Since the
2ξ + ν arcs incident to r′ have capacity 1, they all carry a positive flow.
Hence, for every j = 1, . . . , ν, there is at least one index i such that (vi, TCj)
or (v̄i, TCj) carries a positive flow in S. Moreover, for every i = 1, . . . , ξ, at
least one of the arcs (vi, si) and (v̄i, si) carries a positive flow in S. Therefore,
the total length of S is at least (4ξ + 1)(3ξ + 2ν) = L − 4ξ, which means
that no other arc e with `(e) = 4ξ + 1 can belong to S. In particular, for
every j = 1, . . . , ν, there is exactly one arc in S with a positive flow linking a
vertex in {v1, v̄2, v2, v̄2, . . . , vξ, v̄ξ} to TCj, and, for every i = 1, ..., ξ, exactly
one of the arcs (vi, si) and (v̄i, si) carries a positive flow flow in S. If (vi, si)
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(resp. (v̄i, si)) carries a positive flow in S, then there is no flow on the arcs
linking vi (resp. v̄i) to a TCj since (r, vi) (resp. (r, v̄i)) has capacity 2 while
2 units of flow are used to reach TVi,1 and TVi,2. Hence the structure of S is
the same as in the proof of Theorem 5.5, and we can set xi = false if (vi, si)
carries a positive flow in S, and xi = true otherwise, to obtain a satisfying
truth assignment for I.

To obtain a graph with uniform length 1, we replace each arc e by a path
with `(e) arcs of length 1.

The proof is similar for the undirected case.

6 ML-CAP-STEINER-TREE with a fixed num-

ber of terminals

In this section, we assume that the number K of terminals is fixed. The first
theorem deals with undirected graphs having uniform capacity, and comple-
ments Theorems 5.3 and 5.5.

Theorem 6.1. In undirected graphs with a fixed number K of terminals and
uniform capacity, CAP-STEINER-TREE is solvable in polynomial time, and
ML-CAP-STEINER-TREE is polynomially equivalent to ML-VDISJ-PATH with a
fixed number of source-sink pairs.

Proof. The first part of the theorem is a direct consequence of Theorem 4.6,
since VDISJ-PATH is polynomial-time solvable –and even FPT– in undirected
graphs when the number of source-sink pairs is fixed [32]. The second part
comes from Theorems 4.4 and 4.6.

On the one hand, recall that, for a fixed number p of source-sink pairs,
the complexity of ML-VDISJ-PATH in undirected graphs is open for a long
time [26] (and so determining the one of ML-CAP-STEINER-TREE in this case
is as hard as settling this open problem); however, there exists a probabilistic
polynomial-time algorithm to solve the case with two source-sink pairs [4],
although no deterministic one is known yet. On the other hand, Corollary
5.4 shows that ML-LAB-VDISJ-PATH with lengths 0 is already NP-complete
in undirected graphs when p ≥ 2 is fixed. The next theorem shows that
ML-LAB-VDISJ-PATH is tractable in DAGs if p is fixed, which will come in
handy for proving that ML-CAP-STEINER-TREE is solvable in polynomial time
in DAGs if K is fixed.

Theorem 6.2. In DAGs, ML-LAB-VDISJ-PATH is solvable in polynomial time
for any fixed number of source-sink pairs.
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Proof. We solve ML-LAB-VDISJ-PATH by using a dynamic programming al-
gorithm. More precisely, consider a DAG G = (V,E) with a label λ(e) on
each arc e ∈ E, and with p vertex-disjoint pairs (si, s

′
i) and their associated

label sets Li. We first order the vertices of G using a topological ordering,
and denote by num(v) the position of each vertex v in such an ordering (i.e.,
num(u) < num(v) for all (u, v) ∈ E).

Let P be the set of p-tuples (v1, . . . , vp) of vertices of G, and let f : P → N
be the function such that f(v1, . . . , vp) is the minimum total length of a set
of p vertex-disjoint paths in G such that the ith one goes from si to vi and
uses only arcs with labels in Li. If num(vi) ≤ num(si) for all i = 1, . . . , p,
then f(v1, . . . , vp) = 0 if vi = si for all i, and f(v1, . . . , vp) = +∞ oth-
erwise. Consider now a p-tuple (v1, . . . , vp) such that num(vi) > num(si)
for at least one index i, and let h be the index such that num(vh) =
maxi:num(vi)>num(si){num(vi)}. If vh = vi for some i 6= h, then f(v1, . . . , vp) =
+∞. Otherwise, let F be the set of vertices v such that num(v) ≥ num(sh)
and there exists an arc (v, vh) whose label is in Lh. If F = ∅ then f(v1, . . . , vp) =
+∞; otherwise, we have

f(v1, . . . , vh−1, vh, vh+1, . . . , vp) = min
v∈F
{`(v, vh)+f(v1, . . . , vh−1, v, vh+1, . . . , vp)}.

The dynamic programming algorithm works as follows. For val from 2 to n,
we enumerate all p-tuples v1, . . . , vp with maxi:num(vi)>num(si){num(vi)} = val
and, for each of them, we compute the corresponding value of f . The number
of enumerated p-tuples is thus in O(np+1) and the value of each one can be
computed in O(n), which yields an O(np+2)-time algorithm. The optimal
value to the ML-LAB-VDISJ-PATH instance is then equal to f(s′1, . . . , s

′
p).

Theorem 6.3. ML-CAP-STEINER-TREE is solvable in polynomial time in
DAGs if K is fixed.

Proof. This is a direct consequence of Theorems 4.5 and 6.2.

Notice that ML-LAB-VDISJ-PATH in DAGs cannot be FPT in p (unless
FPT=W[1]), since VDISJ-PATH (i.e., the special case where all arcs have
zero length and Li = {1, . . . , k} for each i) is W[1]-hard with respect to
p in DAGs [35]. Moreover, ML-CAP-STEINER-TREE cannot be FPT in K
(unless FPT=W[1]), since Theorem 4.4 shows that ML-VDISJ-PATH can be
FPT-reduced to ML-CAP-STEINER-TREE (with respective parameters p and
K = p2).
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7 ML-CAP-STEINER-TREE with large ca-

pacities

In this section, we study the case where all capacities are almost equal to
the number of terminals. We first consider the case where the minimum
capacity cmin is at least equal to K−κ, where κ ≥ 0 is an arbitrary constant.
In what follows, we denote by ρ the best possible approximation ratio for
STEINER-TREE (ρ ≤ 1.39 in undirected graphs [6]), and by ρ′ the best possible
approximation ratio for ML-VDISJ-PATH with a fixed number of source-sink
pairs. As mentioned in the previous section, ρ′ = 1 in DAGs, and determining
whether ρ′ = 1 or not in undirected graphs is a long-standing open problem.

Without loss of generality, we assume in this section that `(e) ∈ N∗ for
all e ∈ E. If this is not the case, we modify the lengths as follows: for all
e ∈ E, we multiply `(e) by D|E| if `(e) > 0, where D is the lowest common
multiple of the denominators of the lengths `(e), and we set `(e) = 1 if e has
length zero.

7.1 ML-CAP-STEINER-TREE with cmin ≥ K − κ for
any constant κ ≥ 0

The first result obtained in this section complements Theorem 3.1 and gen-
eralizes the first part of Theorem 6.1. Notice that, from Theorem 5.1,
CAP-STEINER-TREE is NP-complete in digraphs with uniform capacity c =
K − κ for any constant κ ≥ 2.

Theorem 7.1. In DAGs and undirected graphs having uniform capacity c =
K−κ, CAP-STEINER-TREE is solvable in polynomial time and ML-CAP-STEINER-TREE

can be approximated within a ratio of ρ′ + ρ, for any constant κ ≥ 0.

Proof. We first state and prove some useful properties. Let I be an instance
of CAP-STEINER-TREE.

Claim 7.1. There is a feasible solution S for I if and only if there is a tree
SR (called reduced tree) rooted at r, spanning a subset T ′ ⊆ T of terminals,
and such that, for every edge e incident to r in SR, r is ē-linked to at least
κ terminals in SR.

Proof. A feasible solution for I is clearly such a tree. So, assume that such
a tree SR exists. We iteratively complete SR to obtain a Steiner tree S
spanning also the terminals in T \ T ′ as follows. For every terminal t /∈ T ′,
we consider any path µ from r to t in G, and we add to SR the subpath of
µ from v to t, where v is the vertex in SR ∩ µ the closest to t on µ. From
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the hypothesis, given any edge e of G (including those not in SR), we know
that r is ē-linked to at least κ terminals in SR. Hence, S does not violate
the capacity constraints and is therefore a feasible solution to I.

Claim 7.2. If SR is a minimal, i.e. inclusion-wise minimal, reduced tree,
then each of its subtrees rooted at a vertex distinct from r contains at most
κ terminals.

Proof. Let SR be a minimal reduced tree, and assume it contains a vertex
v 6= r such that SR(v) contains at least κ + 1 terminals. We can assume
without loss of generality that v is a child of r. Since all terminals are leaves,
we can remove one of the terminals of SR(v) from SR to obtain a smaller
reduced tree, a contradiction.

Claim 7.3. A minimal reduced tree contains at most 2κ terminals.

Proof. Assume a minimal reduced tree SR contains at least 2κ+1 terminals,
and consider any child v of r in SR. It follows from the previous claim that
r is (r, v)-linked to at least κ+ 1 terminals in SR. All terminals being leaves,
we can therefore delete any terminal from SR to obtain a smaller reduced
tree, a contradiction.

We can now prove Theorem 7.1. We first consider CAP-STEINER-TREE.
According to Claim 7.3 and Property 3.1, the undirected skeleton of a min-
imal reduced tree can contain up to 4κ vertices. We therefore enumerate
all labelled trees (including potential skeletons of reduced trees) on at most
4κ vertices. We then orient each of them from the root to the leaves, and
for each such rooted tree we try to replace the arcs by vertex-disjoint paths
in a similar way as in Theorem 4.6. If such a replacement is possible, we
test whether the extended skeleton is a reduced tree: in such a case, we stop
the enumeration since we know from Claim 7.1 that the CAP-STEINER-TREE

instance I has a feasible solution. If no potential skeleton can be extended
to a reduced tree, then I has no solution: indeed, if such a solution S exists,
it contains a minimal reduced tree, whose skeleton is necessarily considered
in our enumeration and then extended to a reduced tree, which leads to a
contradiction.

There are O(K2κ) ways of choosing at most 2κ terminals among K. For
each such choice of at most 2κ terminals, it then follows from Property
3.3 that the set of potential skeletons of minimal reduced trees spanning
these terminals can be enumerated in O(n2κ−1) time (since κ is a constant).
Finally, at most 4κ−1 arcs must be replaced by vertex-disjoint paths in every
potential skeleton (recall that this can be done in polynomial time in DAGs

26



and undirected graphs, since κ is a constant). Hence, the whole process takes
a polynomial time.

Consider now a ML-CAP-STEINER-TREE instance I ′. We proceed as above,
but instead of choosing arbitrary vertex-disjoint paths, we solve the associ-
ated ML-VDISJ-PATH instance with a ρ′-approximation algorithm, and, in-
stead of stopping the enumeration when a reduced tree is found, we enumer-
ate all of them and store the best one, denoted by S1. Notice that the total
length of S1 is at most ρ′ times larger than the total length of an optimal
solution to I ′ since such an optimal solution contains a reduced tree. We then
use a ρ-approximation algorithm to determine a minimum-length Steiner tree
S2 spanning all the terminals not already spanned by S1. Clearly, the total
length of S2 is at most ρ times larger than the total length of an optimal
solution to I ′. We finally build a solution S to I ′ by removing from S1 ∪ S2

all arcs of S2 entering a vertex with in-degree 2 in S1 ∪ S2. This yields a
(ρ′ + ρ)-approximation algorithm to ML-CAP-STEINER-TREE (with ρ′ = 1 for
DAGs).

It follows from Theorem 5.3 that CAP-STEINER-TREE with non-uniform
capacities is NP-complete in undirected graphs when the minimum capacity
cmin equals K − κ, for any constant κ ≥ 2. We show however that Theorem
7.1 can be extended to DAGs with non-uniform capacities.

Theorem 7.2. In DAGs with cmin ≥ K − κ, CAP-STEINER-TREE is solvable
in polynomial time and ML-CAP-STEINER-TREE can be approximated within
a ratio of 1 + ρ, for any constant κ ≥ 0.

Proof. As was the case for the previous theorem, we start with some claims.
In particular, we extend the definition of a reduced tree to take into account
the non-necessarily uniform capacities. Let I be an instance of CAP-STEINER-TREE
in a DAG with cmin ≥ K − κ for some constant κ ≥ 0. If K < κ, then the
result follows from Theorem 6.3. So, assume K ≥ κ.

Claim 7.4. There is a feasible solution S to I if and only if there is a tree
SR (called a reduced tree) rooted at r, spanning at least κ terminals, and
such that, for each arc a with capacity c(a) (not only those incident to r), r
is ā-linked to at least K − c(a) terminals in SR.

Proof. A solution for I is clearly such a tree. Now, assume the existence of a
reduced tree SR that spans a subset T ′ of at least κ terminals. We complete
SR to obtain a Steiner tree S spanning also the terminals in T \ T ′, as in
Claim 7.1. From the hypothesis, for each arc a of SR, r is ā-linked to at least
K − c(a) terminals in SR, and, for each arc b of G not in SR, r is b̄-linked to

27



at least |T ′| ≥ κ ≥ K − c(a) terminals of SR. Hence, S does not violate the
capacity constraints and is thus a feasible solution to I.

Claim 7.5. In any minimal, i.e. inclusion-wise minimal, reduced tree SR,
no vertex has out-degree greater than κ+ 1.

Proof. Assume that a minimal reduced tree SR contains a vertex v with at
least κ + 2 outgoing arcs and let v′ be a child of v in SR. Let S ′R denote
the subtree obtained from SR by removing all vertices of SR(v′). Since every
subtree SR(w) of SR rooted at a child w of v contains at least one terminal
(otherwise SR is not minimal), we know that S ′R(v) (and thus also S ′R)
spans at least κ+ 1 > κ terminals. Hence, for every arc a of S ′R not on the
path from r to v in SR and not in S ′R(v), we know that r is ā-linked to at
least κ + 1 > K − c(a) terminals in S ′R. For every child w of v in S ′R, we
know that, for any arc a in S ′R(w) ∪ {(v, w)}, r is ā-linked to the at least
κ ≥ K− c(a) terminals in the subtree of S ′R(v) obtained by removing all the
vertices of S ′R(w). Finally, for any arc a on the path from r to v in S ′R, we
know that r is ā-linked to at least K − c(a) terminals in S ′R, since this was
the case in SR. Hence, we have proved that S ′R satisfies the definition of a
reduced tree, and is included in SR while being smaller, a contradiction.

Claim 7.6. Any directed path in the skeleton of a minimal reduced tree SR

contains at most κ+ 1 arcs.

Proof. Assume that the skeleton of a minimal reduced tree SR contains a
directed path with at least κ + 2 arcs. Without loss of generality, we can
choose such a path µ from r to a terminal t ∈ T , since each leaf is a terminal
(otherwise SR is not minimal). We denote by v the predecessor of t in µ.
Since each internal vertex of µ has degree at least 3 in the skeleton of SR

(and hence in SR), and since SR is minimal, we know that SR spans at
least κ + 2 terminals. We now remove the path from v to t in SR and thus
obtain a subtree S ′R spanning at least κ + 1 terminals. Using arguments
similar to those in the proof of Claim 7.5, it is easy to check that S ′R satisfies
the definition of a reduced tree, which means that SR was not minimal, a
contradiction.

We can now prove Theorem 7.2. It follows from Claims 7.5 and 7.6 that
the skeleton of a minimal reduced tree has maximum out-degree κ + 1 and
maximum height κ+ 1. Hence, the undirected skeleton of a minimal reduced
tree contains at most Λ = (κ+ 1)κ+1 terminals (which are its leaves), and it
follows from Property 3.1 that such a skeleton has at most 2Λ vertices.

We therefore enumerate all trees with at most 2Λ vertices, keeping only
those that span at least κ and at most Λ terminals, in order to ensure that
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any potential skeleton of a minimum reduced tree is enumerated. Each such
enumerated tree is oriented from r to the leaves, and we then try to replace
its arcs by vertex-disjoint paths but, unlike in Theorem 7.1, when replacing
an arc (u, v) of a tree by a path, we impose that each arc of the path from
u to v has a label (capacity) ≥ K − x, where x is the number of terminals
which are not descendant of v in the tree. In other words, instead of solving
a VDISJ-PATH instance, we solve a LAB-VDISJ-PATH instance. If all arcs can
be replaced by labelled vertex-disjoint paths, we test whether the extended
skeleton is a reduced tree: in such a case, we stop the enumeration, since we
know from Claim 7.4 that I has a feasible solution. Otherwise, we conclude
that I has no solution.

Let us show that the whole process takes a polynomial time. Λ being
a constant, this means that, from Cayley’s formula and from the number
of ways for choosing at most 2Λ vertices among n, there is a polynomial
number of labelled trees to enumerate. Besides, since the number of arcs
that must be replaced by vertex-disjoint paths is at most 2Λ−1 in each tree,
this means, from Theorem 6.2, that the associated LAB-VDISJ-PATH instance
can be solved in polynomial time.

Consider now a ML-CAP-STEINER-TREE instance I ′. We proceed in a
similar way as in Theorem 7.1. More precisely, instead of choosing arbitrary
vertex-disjoint paths, we solve an ML-LAB-VDISJ-PATH instance with a fixed
number of vertex pairs, which takes a polynomial time in DAGs according to
Theorem 6.2. However, instead of stopping the enumeration when a reduced
tree is found, we enumerate all of them and store the best one, that we
denote by S1. The total length of S1 is a lower bound on the total length of
an optimal solution to I ′, since such an optimal solution contains a reduced
tree. We then use a ρ-approximation algorithm to determine a minimum-
length Steiner tree S2 spanning all the terminals not already spanned by S1.
The total length of S2 is at most ρ times larger than the total length of an
optimal solution to I ′. We finally build a solution S to I ′ by removing from
S1∪S2 all arcs of S2 entering a vertex with in-degree 2 in S1∪S2. This yields
a (1 + ρ)-approximation algorithm for ML-CAP-STEINER-TREE in DAGs.

7.2 ML-CAP-STEINER-TREE with cmin ≥ K − 1

The results given in this section generalize the main results known about the
complexity and approximation of STEINER-TREE.

If cmin ≥ K, then any Steiner tree is a feasible solution to CAP-STEINER-TREE,
and thus ML-CAP-STEINER-TREE is equivalent to STEINER-TREE, which can
be solved in polynomial time when K is fixed [11, 17, 39]. So consider the
case where cmin = K − 1. In what follows, we denote by EK the subset
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of arcs/edges with capacity at least K. Let I be an ML-CAP-STEINER-TREE

instance and let S be an optimal solution to I. Let w be the closest vertex
to r in S having out-degree at least 2 (with possibly r = w). All arcs on the
path linking r to w are in EK , while those in S(w) can have any capacity
since r is e-linked to at most K − 1 terminals for all e in S(w). Moreover,
S(w) spans all terminals and, since we can assume that all vertices without
outgoing arcs in S are terminals, we know that S contains at most K − 1
vertices of degree at least 3 (see the proof of Property 3.1).

Assume we can find in G a vertex w and two terminals ti and tj such
that there are three internally vertex-disjoint paths: µrw from r to w (with
possibly r = w) with all its arcs in EK , µwti from w to ti, and µwtj from w to
tj. We can then build a feasible solution to I by extending µrw ∪ µwti ∪ µwtj
arbitrarily to obtain a Steiner tree spanning all terminals. Indeed, any arc
in µrw ∪ µwti ∪ µwtj has a residual capacity ≥ K − 2, and there are K − 2
other terminals to span in order to get a Steiner tree. Conversely, if there is
a feasible solution to I, then there is such a triple (w, ti, tj).

Claim 7.7. Let S be an optimal solution to an instance I of ML-CAP-STEINER-TREE
in a graph G = (V,E) with cmin = K−1 and `(e) > 0 for all e ∈ E. Let w be
the vertex with out-degree at least 2 the closest to r in S, and let µrw be the
path from r to w in S. Then all shortest paths from r to w in G′ = (V,EK)
intersect S(w) only at w, and µrw is one of them.

Proof. First notice that S = µrw∪S(w) and all arcs of µrw belong to EK . Let
µ′rw be any shortest path from r to w in G′, and let W be the set of vertices
that belong to both µ′rw and S(w). If W = {w} then S ′ = µ′rw ∪ S(w) is a
feasible solution to I, which means that `(µrw) = `(µ′rw), otherwise S would
not be optimal.

So assume W 6= {w} and let S ′ be the tree obtained from S by replacing
µrw by µ′rw, and by removing all arcs (u, v) /∈ µ′rw with v ∈ W , to ensure
that each vertex (except r) still has in-degree 1. Notice that `(S ′) < `(S),
since µ′rw ≤ µrw and at least one arc (of length > 0) is removed from S(w)
to obtain S ′. Then, we remove all arcs (u, v) such that S ′(v) contains no
terminal (since they are useless in a solution to I). This way, we obtain a
new tree S ′′ rooted at r, spanning all terminals, and such that `(S ′′) < `(S)
and S ′′(v) ∩ T 6= ∅ ∀v ∈ S ′′. This is illustrated on Figure 8.

Let w′ be a vertex in W \ {w}, and let t be any terminal in S(w′). In S ′′,
there is a path from r to t, while there is no path from w to t. So w′′, which
is the closest vertex to w on µ′rw verifying t ∈ S ′′(w′′), has outdegree at least
2 in S ′′.

Let ŵ be the vertex with outdegree at least 2 which is the closest to r
in S ′′ (ŵ belongs to µ′rw \ {w}, from the previous paragraph), and let µ′′rŵ
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Figure 8: Illustration of the proof of Claim 7.7.

be the path from r to ŵ in S ′′. Note that the only vertices v in S ′′ with
S ′′(v) ∩ T = T are those on µ′′rŵ, and that all arcs on µ′′rŵ have capacity at
least K since they also belong to µ′rw. Moreover, since S ′′(v) ∩ T 6= ∅ for
every child v of ŵ in S ′′, all arcs in S ′′(ŵ) only need to have capacity K − 1.
Hence, S ′′ is a feasible solution to I with `(S ′′) < `(S), a contradiction.

We now consider ML-CAP-STEINER-TREE with cmin ≥ K − 1 and show
that, when K is fixed, it is solvable in polynomial time.

Theorem 7.3. If K is fixed and cmin ≥ K−1, ML-CAP-STEINER-TREE can be
solved by an algorithm whose running time is polynomial, and whose only non
FPT factor with respect to K is O(nO(log(K))). In particular, ML-CAP-STEINER-TREE
is solvable in polynomial time if K = 2.

Proof. The case cmin ≥ K has already been settled at the beginning of this
section. So, assume cmin = K−1. Given an instance I of ML-CAP-STEINER-TREE,
we solve I as follows. We consider all vertices w such that w is either the
root r or a vertex of degree at least 3 in G. For each such vertex w:

• We determine a shortest path µrw from r to w in G′ = (V,EK), and
we denote by Gw the subgraph of G obtained by removing all vertices
of µrw, except w;

• We consider all pairs (ti, tj) of distinct terminals and all subsets W of
at most 2 log2(K)− 2 vertices v 6= w of degree at least 3 in Gw.

So, let (w, ti, tj,W ) be such a quadruple. We first determine two internally
vertex-disjoint paths µwti and µwtj linking w to ti and to tj in Gw, and such
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that µwti ∪ µwtj contains all vertices of W and has minimum total length.
As in the proof of Theorem 4.1, this can be done in polynomial time: we
add a sink s and two arcs (ti, s) and (tj, s), and we determine two internally
vertex-disjoint paths of minimum total length from w to s by using a min-
cost flow algorithm; in addition, we impose a flow equal to 1 on each arc
(v′, v′′) corresponding to a vertex v of W in the graph H obtained from Gw

(as in the proof of Theorem 4.1), to ensure that the paths contain W .
Assume we are able to find the two internally vertex-disjoint paths µwti

and µwtj in Gw. We then consider the graph G′w obtained from Gw by
assigning a length 0 to all arcs on µwti ∪ µwtj , and we determine a directed
tree Swtitj of minimum total length in G′w, rooted at w, and spanning all
terminals in T \ {ti, tj}. Let Rwtitj denote the set of arcs (u, v) in Swtitj with
v not belonging to µwti ∪ µwtj . We finally build a solution to I by taking all
arcs of µrw ∪ µwti ∪ µwtj ∪Rwtitj .

Among all built solutions, we keep the best one, which we denote by Sbest.
We now prove that Sbest is an optimal solution to I. Let S∗ be an optimal
solution to I, and let w be the vertex in S∗ the closest to r with out-degree
at least 2. Let v1 and v2 be two children of w in the skeleton of S∗, and let
ti (resp. tj) be a terminal in S∗(v1) (resp. S∗(v2)) closest to v1 (resp. v2)
in terms of the number of vertices on the path linking them in the skeleton
of S∗(v1) (resp. S∗(v2)). We denote by µ∗rw, µ

∗
wti

and µ∗wtj the paths in S∗

linking r to w, w to ti, and w to tj, respectively. Finally, let W be the set
of vertices v 6= w on µ∗wti ∪ µ

∗
wtj

having degree at least 3 in S∗, and let R∗

denote the set of arcs in S∗ that do not belong to µ∗rw ∪ µ∗wti ∪ µ
∗
wtj

.
We first prove that the proposed algorithm considers the quadruple (w, ti, tj,W ).

Since w has out-degree at least 2, it is either the root r or a vertex of degree
at least 3 in G. It follows from Claim 7.7 that Gw contains all vertices of W .
Hence, we only have to prove that |W | ≤ 2 log2(K) − 2. Let n1 (resp. n2)
be the number of vertices in the skeleton of S∗(v1) (resp. S∗(v2)). If n1 = 1,
the path from v1 to ti in the skeleton of S∗ is reduced to 1 = log2(n1 + 1)
vertex v1 = ti; otherwise, v1 has out-degree at least 2 in S∗, and we know
from the proof of Property 3.2 that the path from v1 to ti in the skeleton of
S∗ has at most log2(n1 + 1) vertices. Similarly, the path from v2 to tj in the
skeleton of S∗ has at most log2(n2 + 1) vertices. Hence W contains at most
log2(n1 + 1) + log2(n2 + 1)− 2 vertices. Since w has out-degree at least 2, it
follows from Property 3.1 that the skeleton of S∗(w) contains at most 2K−1
vertices, which implies n1+n2 ≤ 2K−2. The sum log2(n1+1)+log2(n2+1)−2
is therefore maximized for n1 = n2 = K − 1, which implies that W contains
at most 2 log2(K)− 2 vertices.

We now prove that `(Sbest) ≤ `(S∗). Let µrw ∪ µwti ∪ µwtj ∪Rwtitj be the
solution returned by the proposed algorithm for the quadruple (w, ti, tj,W ).
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It follows from Claim 7.7 that `(µrw) = `(µ∗rw), and that Gw contains all
vertices of S∗(w). Since µ∗wti and µ∗wtj are two internally vertex-disjoint paths
linking w to ti and to tj in Gw, we have `(µwti) + `(µwtj) ≤ `(µ∗wti) + `(µ∗wtj).
Consider now the set R′∗ of arcs (u, v) in R∗ with v not belonging to µwti ∪
µwtj , and let S be the tree obtained from S∗(w) by replacing µ∗wti and µ∗wtj
by µwti and µwtj , and by removing the arcs in R∗ \ R′∗. Note that S is a
tree rooted at w, spanning all terminals in T ⊃ T \ {ti, tj}, and with total
length at most equal to `(R∗) in G′w (since all arcs in µwti ∪µwtj have length
0 in G′w). Hence, `(Rwtitj) ≤ `(Swtitj) ≤ `(S) ≤ `(R∗) in G′w, which implies
`(Rwtitj) ≤ `(R∗) in G. In summary,

`(Sbest)=`(µrw) + `(µwti) + `(µwtj) + `(Rwtitj)

≤ `(µ∗rw) + `(µ∗wti) + `(µ∗wtj) + `(R∗)

= `(S∗).

The total number of possible quadruples is O(K2nO(log(K))). For each of
them, we have to compute a shortest path, a minimum-cost flow, and an
optimal Steiner tree spanning K − 2 terminals. The latter problem can be
solved in time FPT with respect to the number of terminals [11, 17, 39], and
the other two problems can be solved in polynomial time [1].

Together with Theorem 6.1, the previous theorem shows, in particular,
that Theorems 5.1 and 5.3 are best possible. It also implies, together with
Theorem 4.1, that ML-CAP-STEINER-TREE is polynomial-time solvable if K =
3 and all capacities are equal. When K is part of the input (i.e., not fixed),
we have the following result, which complements Theorem 3.1.

Theorem 7.4. If cmin ≥ K−1, CAP-STEINER-TREE is solvable in polynomial
time and ML-CAP-STEINER-TREE can be approximated within a ratio of 1+ρ.

Proof. We use the same ideas as those used in the proof of the previous
theorem. More precisely, for solving an instance I of CAP-STEINER-TREE,
we enumerate all triples (w, ti, tj), where w is either the root r or a vertex
of degree at least 3 in G, and ti, tj both belong to T . For each such triple,
we determine a shortest path µrw from r to w in G′ = (V,EK), remove all
vertices of µrw, except w, to create Gw, and determine two internally vertex-
disjoint paths µwti and µwtj from w to ti and to tj in Gw. This can be done
in polynomial time using path and flow techniques similar to those used in
the previous proof (without lengths on the arcs). If we succeed in finding the
three paths µrw, µwti , µwtj for a triple (w, ti, tj), then we greedily complete
their union into a Steiner tree rooted at r and spanning all terminals, which
gives a solution to I. Otherwise, I does not have any feasible solution. All
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this can be done in polynomial time, since there are O(nK2) triples (w, ti, tj)
to enumerate.

For an instance I ′ of ML-CAP-STEINER-TREE, we again enumerate all
triples (w, ti, tj), and determine for each such triple a shortest path µrw from
r to w in G′, as well as two internally vertex-disjoint paths of shortest to-
tal length, µwti and µwtj from w to ti and to tj in Gw (as in the proof of
Theorem 7.3). If we succeed in finding the three paths µrw, µwti , µwtj for
a triple (w, ti, tj), we then use a ρ-approximation algorithm to determine a
directed tree Swtitj of minimum total length, rooted at r, and spanning all
terminals in T \ {ti, tj}. Let Rwtitj be the set of arcs (u, v) in Swtitj with v
not belonging to µrw ∪ µwti ∪ µwtj ; we build a solution to I ′ by taking all
arcs of µrw ∪ µwti ∪ µwtj ∪ Rwtitj . Among all built solutions, we keep the
best one, which we denote by Sbest. Now, let S∗ be an optimal solution to
I ′, and let w be the vertex in S∗ the closest to r with out-degree at least 2.
Let v1 and v2 be two distinct children of w in S∗, and let ti be a terminal
in S∗(v1), and tj a terminal in S∗(v2). The triple (w, ti, tj) is considered in
our enumeration, and we clearly have `(µrw) + `(µwti) + `(µwtj) ≤ `(S∗) and
`(Rwtitj) ≤ `(Swtitj) ≤ ρ`(S∗). Hence, `(Sbest) ≤ (1 + ρ)`(S∗).

Again, the whole process takes a polynomial time. Indeed, there are
O(nK2) enumerated triples, and, for each of them, we have to determine
a shortest path, a minimum-cost flow, and a ρ-approximate solution to an
instance of STEINER-TREE. All these problems can be solved in polynomial
time.

8 Concluding remarks

We have studied the complexity of ML-CAP-STEINER-TREE in digraphs, DAGs
and undirected graphs, and we have dealt with any possible case with respect
to all the parameters that we considered (minimum and maximum capacities,
lengths, and number of terminals). Moreover, whenever ML-CAP-STEINER-TREE
was intractable while CAP-STEINER-TREE, the case with lengths 0, was not,
we have provided approximation results for ML-CAP-STEINER-TREE nearly
as good as the best ones for STEINER-TREE. In other words, whenever the
problem is NP-hard, either we prove that finding a feasible solution is NP-
complete, or we provide an approximation algorithm whose ratio is almost
best possible.

While we have also obtained some results about the parameterized com-
plexity of ML-CAP-STEINER-TREE, several questions remain open in this
area:

• The results associated with leaves 11 and 13 in Figure 1 are best pos-
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sible, since the FPT-reduction from VDISJ-PATH parameterized by
p described in Theorem 4.4 shows in particular that CAP-STEINER-
TREE is W[1]-hard with respect to either K or κ in this case, even with
uniform capacities (note that, in this reduction, we have K = O(p2)
and κ = O(p2)).

• However, the result associated with leaf 9 in Figure 1 may not be the
best possible one (i.e., this case might actually be FPT with respect to
κ), since in undirected graphs VDISJ-PATH is FPT with respect to p
(so Theorem 4.4 does not provide any useful information in this case).

• Finally, we think that the main open problem is related to the result
provided in Theorem 7.3 (and associated to leaf 5 in Figure 1). We
have proved that ML-CAP-STEINER-TREE is polynomial-time solv-
able in this case, hence generalizing the same result already known for
STEINER-TREE, but it may actually be FPT with respect to K: in
particular, notice that this is indeed the case for STEINER-TREE.
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