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Abstract 

This study is focused on tritium retention and permeation through a 316L stainless steel 
diagnostic first wall during plasma operations in ITER. A set of data for migration properties 
are proposed by adjusting these values to fit a simulation with experimental results. A 
reactive-diffusion model coupled with mechanical field, solved on 3DS Abaqus finite element 
software, is applied to estimate tritium migration. The interest of 2D simulations compared to 
1D simulations are shown and the role of thermal expansion on plastic deformation and trap 
creation is discussed.  

Keywords: FEM, Abaqus, Reaction-diffusion code, Stainless steel 

 

1. Introduction 

Understanding the diffusion and trapping of hydrogen 
isotopes (HI) in plasma facing components (PFC) is an 
important issue for future fusion device operations. For such 
a purpose, specific macroscopic rate equations (MRE) codes 
[1-3]  were developed to solve both diffusion and full kinetic 
trapping of HI in metals, using the McNabb and Foster 
equation [4]. Numerical simulations based on these codes 
have shown the important role played by temperature on HI 
inventory and permeation, so that a particular attention must 
be paid to the determination of the thermal field, especially 

for 2D geometries [5]. Furthermore, the stress induced by 
spatio-temporal temperature variation could impact the HI 
inventory [6]. In order to understand the thermo-mechanical 
coupling, a special focus has to be made on the development 
of numerical models which, beside HI transport and trapping, 
include the coupled resolution of the thermal and mechanical 
problem, for 2D and 3D complex geometries.  

In this paper, a fully coupled multidimensional and 
multiphysics MRE code is proposed, based on the 
generalized transport and trapping temporal equations, the 
heat equation and the computation of the thermomechanical 
fields. This tool has been developed based using the 3DS 
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Abaqus finite element software and several User Subroutines 
[7].   

In the first section, a set of data for 316L stainless steel 
diffusion and trapping properties is proposed based on 
simulations of experimental data. The plasma-facing surface, 
called the Diagnostic First Wall (DFW) of the diagnostic port 
plugs in ITER will be made of 316L(N)-IG stainless steel. 
Several simulations are then performed, to model the tritium 
transport and trapping through the DFW Deuterium-Tritium 
(D-T) operations tritium retention and permeation predicted 
with the Abaqus code based on the 2D transient thermal field 
and trapping resolutions are compared with the 1D 
equivalent case. Last, the role of thermo mechanical effects 
will be discussed. 

2. Set of data for migration of tritium in 316L Steel 

Diffusion and recombination coefficients for the 316L 
stainless steel are determined by an inverse identification 
(based on an iterative process) between simulations and 
experimental results of tritium depth profiles and permeation 
flux for 8 specimens (N3, II, F, III, S14, S13, S15 and S16), 
obtained from [8,9] (4 are homogeneously loaded, with a 
constant concentration profile over their depth, 4 are non-
homogeneously loaded  and therefore have a concentration 
gradient across their depth).  

Fig. 1 illustrates the results obtained with this method. The 
simulation results have been obtained using the 1D TMAP 
software [1] considering a single trap with a concentration of 
0.08 at.fr. and a detrapping energy of 0.7 eV and for which 
recombination fluxes are applied on both faces of the sample 
geometry [10]. The simulated operations are loading, 
desorption and ageing. The loading consists in the exposure 
of samples to a given partial pressure of tritium. Desorption 
were performed by annealing the samples at various 
temperatures under a flow of argon or in vacuum. For the 
results presented Fig. 1 the desorption was first started at  
400°C and after 7h the temperature was increased up to 
800°C in order to remove the majority of the tritium. The 
ageing was performed by storing the samples for long 
periods of time (~years) at ambient temperature. The 
radioactive decay of tritium is taken into account with a half-
life of 12.32 years. 

The mean diffusion coefficient 𝐷 and recombination one 
𝑘! identified from all simulations are: 

𝐷 = 8.0 × 10"# exp ,− $.&'
()
. m2/s                (1) 

and 
𝑘! = 2.16	 × 10"*+ exp ,− $.&,

()
. m4/s                (2) 

with T the temperature (K) and k the Boltzmann constant 
(eV.K-1). This value of  D is consistent with the values that 
can be found in the literature (see [11], and Fig. 2), validating 
the inverse identification approach. 

 
Fig.1. Numerical/experiment confrontations on (a) depth 

profile and (b) desorption for S14 sample [10]. 
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Fig.2.Evolution with the temperature of the mean diffusivity 
values identified by inverse method (green – see equation 1) 

and the literature data. 
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3. Retention and permeation simulation through DFW  

Simulations of retention and permeation of tritium trough 
the ITER DFW are performed in 2D with Abaqus software, 
with specific developments for fusion applications, 
especially tritium  diffusion and trapping; more details on the  
underlying set of equation might be found in [5,29-31]. 
Compared to these previous works, the model includes a 
transient heat equation resolution (with an Abaqus UEL 
subroutine [32]). It is worth noting that in the present paper, 
the Ludwing-Soret [33] effect is not taken into account, for 
we mainly want to point out the effect of the mechanical 
fields on the permeation process (see bellow, section 4). 

 

 
Fig. 3. Geometry, boundary conditions and thermal field 
during a plasma pulse. For the 1D computations, only the 

segment [AB] is considered. 
 
 
The used geometry is illustrated in Fig. 3 (directly 

extracted from Catia file), the applied load being defined 
following the different phases of ITER scenario (see Fig. 4). 
The first phase corresponds to the plasmas operations: the 13 
plasmas pulses of each days are concatenated in 3 days (i.e. 
the pulse time correspond to 39 effective pulses) due to 
calculation time cost. The temperature of the cooling tube 
and the exposed surface (respectively in blue and red on 
Fig 4) are assumed homogenous on the surface. The tritium 
implantation is modeled by imposing a solute concentration 
𝐶-,$ on the exposed surface so that [34,35] 

𝐶-,$ =	
/!	1
2	3

                                  (3) 

where 𝛤 represents the tritium charge-exchange flux which 
evolves as the temperature (linear/constant/linear) during the 
plasma operation (up to 2´1019 T.m-2.s-1 during the plateau), 

𝑅4 is the mean implantation depth (13 nm) and 𝜌 is the 
tungsten density. The diffusion coefficient is assumed to be 
constant during the cycle (calculated at 503 K). A zero 
concentration is imposed at the top surface (instantaneous 
desorption). During the baking phase, the temperature is 
imposed at 513 K on the boundaries. Assuming that the 
saturation effect observed in [36] applies for bcc metal, the 
trap density is multiplied by an ad hoc factor of 2.5 in order 
to account for the neutron-induced damage. 
 

  
Fig. 4. Scenario & temperature conditions.  

 
 

 
(a) 

 
(b) 

 
Fig. 5. Tritium retrained (a) over the time for 1D (red) and 

2D (black) simulations and (b) for a plasma pulse 
(temperature in dotted line) 
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3.1 Tritium retained during plasma operations 

During the plasma pulse the temperature of the cooling 
tube surface and the exposed one are different; the maximum 
induced thermal gradient (which occurs at the middle 
duration of each pulse and reaches rapidly the equilibrium) is 
presented on Fig. 3. On Fig. 5 (a) are plotted the evolution of 
the total retained tritium for the 2D and the 1D simulations 
(see Fig. 3). Both computations are very close, because of the 
very small tritium penetration depth after the 16 months of 
plasma operations, exhibiting strong variation with time 
because of the tritium desorption during the increase of 
temperature at the pulse beginning as shown on Fig.5 (b). 
For this kind of configurations and boundary conditions, 1D 
simulations seems sufficient to model tritium behavior 
during plasma operations.  

 

 
Fig. 6. Trapped tritium after 30 days (a) and 60 days (b) of 

the baking phase. 
 

 
Fig. 7. After 25 days of baking phase: (a) Flux on geometry; 

(b) fluence and (c) permeation flux the cooling system. 
 

 

3.2 Permeation towards the cooling water during 
baking 

The trapped concentration in the geometry during the 
baking phase is plotted on Fig. 6 (after the plasma operation): 
because during this phase, the temperature is uniformly 
imposed at 513K, the tritium located close to the exposed 
surface diffuses and becomes trapped deeper in the 
geometry, leading to diffusion and permeation fluxes through 
the cooling (Fig. 7). It is worth noting that a large amount of 
tritium diffused toward the exposed surface too, being then 
outgassed.  

Permeation is significant after 12h, reaching a maximum 
for 18 days in the baking. Results of 1D/2D simulations are 
close at the middle of the circle (y=0). However the fluence 
is inhomogeneous along the radius. Due to the field 
heterogeneities (e.g., fluence –and consequently, total flux- 
on the cooling system), 2D simulations are necessary to 
correctly predict the permeation processed during the baking 
phase. 

4. Mechanical fields induced by thermal expansion 

2D plane strain simulations of mechanical fields are 
performed by Abaqus in order to evaluate the impact of 
thermal dilatation on the tritium retention. The water 
pressure is assumed to be equal to 4 MPa. Symmetry 
boundary conditions are imposed everywhere except on the 
exposed surface.  

 

 
Fig. 8. Plastic strain induced by thermal expansions and pipe 

pressure at the end of plasma operations. 
 

A temperature dependant Voce law with an isotropic 
hardening is used (derived from [37,38]) for the 
thermomecanical behavior, the expansions coefficient being 
assumed to be temperature-independent [39]. The dislocation 
trap density induced by the equivalent plastic strain might be 
estimated according to the Sofronis’s law for pure iron [40]: 

log		𝑁) = 23.26 − 2.33e"&.&5!                  (4) 
where 𝑁) is in trap/m3. 

After the first plasma cycle the plastic strain is equal to 
0.53% and next increase by around 0.3% per cycle. At the 
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end of plasma operation, the maximum is 5% close to the 
surface exposure (Fig. 8); during baking phase, a maximum 
of 5.5% is reached at the cooling pipe surface. The plastic 
strain increase, which induce a dislocation-related trap 
density up to 10-5 at. fr, according to equation (4), has no 
impact on tritium migration in the studied configuration (this 
value correspond to 0.1% of the vacancy-related trap 
density). More computations are needed for a better 
evaluation of this effect, especially by accounting for 
kinematic hardening. 

The hydrostatic pressure induces a lower T total retention 
during the plasma operations (1.33´1021 T.m-1 instead of 
2.31´1021 T.m-1): 6.35´1020 T.m-1 instead of 1.1´1021 T.m-1 
for the solute retention and 6.92´1020 T.m-1 instead of 
1.2´1021 T.m-1 for the trap one. This is due to a global 
compression near the exposed surface, which modify the 
tritium diffusion flux [41,42], and induce a lower apparent 
diffusion coefficient during the loading stage. During the 
baking one, desorption flux towards the cooling pipe is 
decreased by around 24% by this pressure effect, as 
illustrated on Fig. 9 in which dilatational pressure fields 
might be observed, consequently increasing the desorption 
towards the exposed surface (Fig. 10).  

 

 
Fig. 9. Hydrostatic pressure at the beginning of the baking 
phase. Negative values correspond to a material dilatation. 

 

 
Fig. 10. T desorbed towards the cooling pipe. 

5. Conclusion 

A new set of data for tritium migration in 316L stainless 
steel, based on the fitting experimental works, was proposed 
and it is consistent with literature. The reaction-diffusion 
model based on the Abaqus code was applied to solve tritium 
retention and permeation on Diagnostic First Wall of the 
ITER tokamak. 1D simulations seem sufficient to model 
tritium behavior during the plasma operations however 2D 
simulations seem essential to predict correct permeation 
during the baking phase. Low values of traps density induced 
by thermal dilatation are estimated by the simulations, 
expecting not significant effect on tritium migration. 
However the hydrostatic pressure has significant effect on 
tritium migration which shows the value of including 
mechanical field resolution in simulations. Next works will 
be focused on the mechanical stress impacts on diffusion of 
hydrogen isotope through the tungsten divertor. 
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