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Abstract

Personality traits (e.g., activity, exploration, boldness) are frequently correlated with each
other and with various other traits of biological importance. According to the performance,
allocation, and independent models of energy management, the relationship between
personality traits and resting metabolic rate (RMR) is predicted to be either positive,
negative, or nil. As for the relationship between personality traits and locomotor
performance, the trait compensation and co-specialisation hypotheses respectively predict a
positive and negative relationship. To test for associations between personality, metabolism,
and performance, we studied a wild population of Karoo bush rat (Myotomys unisulcatus) in
South Africa. During summer 2018 we captured 45 individuals (38 females and 7 males) a
total of 293 times and repeatedly measured docility (time spent immobile during a bag test),
exploration (distance moved in an open-field test), sprint speed, and RMR. We found a
behavioural syndrome in our population, as more docile individuals covered less distance in
the exploration test (r£SE=-0.7440.21). RMR was not correlated with any trait; therefore, the
independent energy management model applies in this population. Fast sprinters were less
explorative in the novel environment than slow sprinters (r+SE=-0.41+0.21), going against
the prediction of the phenotypic compensation hypothesis and suggesting co-specialisation
of these traits. A similar result was previously observed in two other rodent species,
suggesting that exploratory behaviour and locomotor performance may interact in an
additive instead of compensatory way. Given the apparent complexity of the links between
performance, behaviour, and metabolism, more studies are needed in order to understand

their relationships.

Keywords: Among-individual correlations, basal metabolic rate, personality, running

performance, resting metabolic rate.



55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Significance Statement

In this study, we test alternative energy management models and hypotheses predicting
different relationships between behavioural, performance, and metabolic traits. Our results
support the independent model of energy management, since resting metabolic rate was
not correlated with either docility nor exploration. The negative relationship between
exploration and sprint speed is counter to the intuitive idea that more explorative individuals
should be better equipped to deal with the increased risks of predation, but instead
supports the co-specialisation hypothesis. Finally, we emphasize the importance of
partitioning the variance in raw measurements as a way to better appreciate variability in
measurements of metabolic rate and locomotor performance. Such multilevel analyses
provide an idea of the relative variability at among-individual level vs. other levels (tests,
trials, and residuals), which might have important implications for the understanding of how
factors like stress and motivation might potentially generate or obfuscate relationships

between behavioural, performance, and metabolic traits.
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Introduction

The field of animal personality — defined as repeatable individual differences in activity,
exploration, boldness, aggressiveness, and sociability — has experienced a major surge in
interest over the last 20 years (Stamps 1991; Dingemanse and Réale 2005; Dingemanse et al.
2010; Stamps and Groothuis 2010; Carter et al. 2013). Salient features of animal personality
studies are 1) the focus on individual variation and 2) the use of standardised tests to
measure individual behavioural reactions to various situations (e.g., novel, familiar, and risky
situations). Although behavioural tests are sometimes conducted in an unnatural context
(e.g., the open-field test), individual differences captured in these tests are thought to relate
to behaviours exhibited in various natural situations such as habitat use, predation
avoidance, dispersal, or social behaviours (Dingemanse et al. 2003; Dall et al. 2004) and have
been validated in many cases (Fraser et al. 2001; Boon et al. 2008; Boyer et al. 2010; van
Overveld and Matthysen 2010; Yuen et al. 2016). As such, personality traits have been found
to affect fitness components (Dingemanse and Réale 2005; Moiron et al. 2020 but see Smith

and Blumstein 2008)

Personality traits are frequently correlated with each other, in which case they can
be referred to as behavioural syndromes (Sih et al. 2004). Behavioural syndromes imply
limited plasticity in behaviour (Sih et al. 2004). Although individuals may display different
levels of aggressiveness depending on contexts, more aggressive individuals typically remain
more aggressive in all contexts (i.e., rank order maintained) and are also generally bolder
than less aggressive individuals (Riechert and Hedrick 1993). Behavioural syndromes are
especially relevant to the field of animal behaviour as they may help us understand the

maintenance of inter-individual variation in behaviour. If personality traits are correlated
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across different contexts, personality traits may not evolve independently from each other,
but instead as a suite of correlated traits (Price and Langen 1992). Furthermore, personality
traits may not only correlate with each other, but also with other traits of biological
importance such as circulating hormones levels (Chang et al. 2012), aspects of the immune
system (Butler et al. 2012; Monceau et al. 2017), locomotor performance (Careau and

Garland 2012) and metabolic rate (Careau et al. 2008).

All biological processes in an organism require energy, for which individuals must
match metabolic fuel supply (lipids, carbohydrates, and protein) to ever-changing energy
demands (Weber 2011). The rate at which an individual oxidizes substrates to produce
energy has been defined as the metabolic rate. Due to the highly variable nature of
metabolic rate in response to various factors (e.g., temperature, biosynthesis, activity), a
certain degree of standardisation is required to compare metabolic rate among individuals.
Basal metabolic rate (BMR) — the lowest rate at which substrates are oxidized by an
endotherm to stay alive — is often measured as the O, consumption of an animal that is alert
but resting, fasting (i.e., post-absorptive), not reproducing or growing, within its thermal
neutral zone, and is measured during the inactive part of the animal’s daily cycle (Speakman
2013). Despite the highly standardised nature of BMR measurements, there usually remains
a large degree of inter-individual variation within populations (Speakman et al. 2004). In
many circumstances, especially in field studies, it is not possible to meet all of the criteria to
measure BMR, in which case measurements are referred to as resting metabolic rate (RMR).

BMR and RMR are nevertheless considered analogous traits (hereafter referred to as RMR).

The links between RMR and animal personality have been intensely explored over

the last decade (Careau et al. 2011; Killen et al. 2011; Le Galliard et al. 2013; Bouwhuis et al.
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2014; Gifford et al. 2014; Krams et al. 2017; Chen et al. 2019; Cornwell et al. 2020).
According to the allocation model, which assumes that there is a finite amount of energy
that an animal can spend on competing processes, behaviours such as activity should be
negatively correlated with RMR, as a higher RMR will result in less energy available to spend
on activity, and vice versa (Speakman 1997; Careau et al. 2008). Alternatively, according to
the performance model, RMR and activity should be positively correlated because more
active individuals sustaining higher levels of energy expenditure should require a larger
“machinery” (larger organs) which, at rest, leads to a higher RMR (Daan et al. 1990; Careau
et al. 2008). Finally, the independent model recognizes that physical activity has a direct
impact on daily energy expenditure, but assumes that RMR and physical activity are

independent (Careau and Garland 2012).

The behavioural repertoire of an animal is, by definition, confined within a space set
by its performance abilities (Bennett 1989). Performance — the ability of an individual to
perform a task when maximally motivated — includes repeatable traits such as speed,
strength, and endurance (Garland and Losos 1994). Intuitively, an individual that can run fast
or has a strong bite could behave more boldly and aggressively than an individual that run
slow or has a weak bite (Herrel et al. 2009). This intuitive idea corresponds to the “trait
compensation” hypothesis developed in the context of co-adaptations between anti-
predator behaviour and morphological defence (Dewitt et al. 1999). With respect to
locomotor performance, the trait compensation hypothesis received some empirical
support. In zebrafish (Danio rerio), artificial selection for boldness resulted in the bold line
having higher locomotor performance than the shy line (Kern et al. 2016). In the delicate
skink (Lampropholis delicata), bolder individuals with a “hot thermal type” had faster sprint

speeds than shyer individuals with a “cold thermal type” (Michelangeli et al. 2018). In the
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Asian agamid lizard (Phrynocephalus vlangalii), time spent moving during a novel

environment test was positively correlated with endurance (Chen et al. 2019).

According to the trait compensation hypothesis, a fast sprinter can take more risks
(e.g., forage farther from refuge) because it could potentially escape a predator more easily
than a slow sprinter. An alternative possibility is that both behaviour and performance
enhance overall protection from predation, which corresponds to the “trait co-
specialisation” hypothesis that predicts a negative relationship between boldness and
locomotor performance (Dewitt et al. 1999). We are aware of three studies that support the
trait co-specialisation hypothesis, all on rodents. In Barbary ground squirrels (Atlantoxerus
getulus), escape speed was negatively correlated with time of entrance into the open field
(i.e., faster sprinters were shyer; Piquet et al. 2018). Similarly, sprint speed was negatively
correlated with distance moved during a novel environment test in Eastern chipmunks
(Tamias striatus) (Newar and Careau 2018). In Yellow bellied marmots (Marmota
flaviventris), sprint speed was positively correlated with vigilance while foraging (i.e., faster
sprinters were more vigilant; Blumstein et al. 2004). Given the contrasting results supporting
both the trait compensation and co-specialisation hypotheses, further research is needed on
the links between personality and performance, and how these two aspects of the

phenotype covary with metabolic rate.

Here, we test for associations between behaviour, metabolism, and performance in a
wild population of Karoo bush rats (Myotomys unisulcatus) in South Africa. Karoo bush rats
are diurnal (crepuscular) central-place foragers for which locomotor performance abilities
such as sprint speed are important to rapidly travel across open spaces between bushes and

therefore play a functional role in survival. At our field site (see below), Karoo bush rats are
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solitary living (JT and CS, unpublished data), which prevents an influence of social status on
personality. We repeatedly captured marked individuals and measured different aspects of
their personality (exploration and docility), energy metabolism (RMR), and locomotor
performance (sprint speed). Such repeated sets of measures of these traits also allowed us
to partition phenotypic correlations into the among-individual correlations (ring; correlation
between individual means) and within-individual correlations (re; correlation between
deviations from the individual means). Although we found no relationship between
personality and RMR (supporting the independent model), we found a negative ring between

exploration and sprint speed, thus supporting the trait co-specialisation hypothesis.

Methods

Study site

Karoo bush rats were monitored from February to April 2018 in an area surrounding the
Succulent Karoo Research Station in the Goegap Nature Reserve, Northern Cape Province,
South Africa (29°41'56"S, 18°1'60”E, altitude 912m). The Succulent Karoo is an arid
biodiversity hotspot with a mean annual rainfall of 160mm, our study took place during a
drought with ~76mm of rainfall for 2018. At our field site, the minimum night-time and
maximum daytime temperatures are respectively -1.5 and 24°C during winter and 4 and

42°C during summer (CS, unpublished data).
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Captures

Sherman-like traps baited with a mix of bran flakes, oil, raisins, salt, and freshly cut apples
were used to trap individuals around their nests. Traps were set before the sun was
illuminating the valley (6:00-7:00) and checked at first after 45min and again after 90min.
For every capture done by one of two observers (PA or JT), individuals were removed from
the trap and a bag test was performed before any other handling occurred. The bag test
consisted of transferring the individual from the trap into a plastic handling bag, where it
was suspended at an arm’s length for 1 min while the number of seconds spent immobile
was measured using two stopwatches (one for the duration of the test and another for the
time spent immobile). This test was previously used to capture aspects of docility and
freezing behaviour in the presence of humans (Martin and Réale 2008; Newar and Careau
2018). The bag test was not done when individuals were accidently captured by members of
another research team working on striped mice (47 out of 292 captures), in which case the

individuals were identified and directly brought to the laboratory without bag test.

After the bag test, individuals were identified (or tagged if this was the first capture
of an individual, see below), sexed, and weighed using a digital scale (KERN EMB 500, 0.1g
precision). Upon first capture, individuals were permanently marked using ear-tags (National
Band and Tag Co., Newport, KY, USA) for individual recognition, and immediately released.
Ear tagging is a technique considered relatively harmless and more efficient than
alternatives techniques of marking, but that can increase tick load (Wood and Slade 1990;
Kuenzi et al. 2005; Ostfeld et al. 2017). After the bag test and standard manipulations were

done, individuals were either released because they were brought to the lab on the previous
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day (107 out of 245 captures) or placed back into their traps and transported to an adjacent
on-site laboratory where aspects of their behaviour, performance, and metabolism were
measured. Up to 9 individuals per day were transported to the laboratory, but not all tests
were conducted on all individuals on a given day to avoid rapid habituation to the novel
environment and because our respirometry system allowed for measuring only 3 individuals
per day. Individuals were released at their nest of capture after completing, one, two or the
three tests, depending on their last capture date, and were never kept longer than 7 hours in
the laboratory. It was not possible to record data blind because our study involved focal

animals in the field.

Behavioural test

Once in the laboratory, the first test conducted was an open-field test (Archer 1973). All
open-field tests were done between 9:00 to 10:30. Karoo bush rats were released in a white-
painted rectangle test arena (80x95cm), where their behaviour was recorded with a camera
(Microsoft LifeCam Cinema H5D-00018) for 5 min. Black curtains were placed around the
arena to ensure that the individuals could not see the surroundings and were not disturbed.
The software EthoVision XT (Noldus Information Technology, Wagenigen) was used to track

the individual and extract the total distance moved.

Performance test

The second laboratory test, usually conducted between 10:30 to 11:30, was designed to
measure sprint speed on a 6m long by 12cm wide plastic racetrack with marks at 1, 2, 3, 4,

and 5m allowing to measure the sprint speed over 4m (starting at 1 and ending at 5).

10



229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Individuals were released at the beginning of the racetrack and allowed to explore shelters
(square metal box) at both ends of the racetrack where they could rest/hide in between
trials. The individual was then chased by an observer who ran and screamed behind the rat
using a piece of cardboard to scratch the surface of the racetrack behind the rat. Videos
were recorded using a wide-angle camera at 30 frame per second (DanCoTech A9-DCH-BA).
Trials in which the individuals did not run, stopped, or jumped out of the racetrack were
discarded. A total of three trials per test were conducted on each rat on a given day. The
status of the individual was closely monitored throughout the test to make sure the
procedures did not induce any adverse effects (such as injuries or complete exhaustion that
could lead to lasting effects after the test ended, which never occurred). Running speed was
determined by using the Tracker software (Open Source Physics) by counting frames in
between marks. For each test, we extracted the trial that yielded the fastest speed over one

meter, this value was retained as the maximum sprint speed for that individual on that day.

Respirometry

Respirometry tests were conducted after open-field and sprint speed tests, between 13:00
and 16:00. This period corresponds to the non-active phase of the diurnal cycle in Karoo
bush rats (they are considered crepuscular and therefore lower their activity in the
afternoon to avoid heat; du Plessis et al. 1991). Metabolic rate was measured using a flow-
through respirometry system with three chambers and one baseline channel. Ambient air
was pumped and directed into a manifold where it was split into 4 different streams. Each
individual air stream was directed through a mass-flow meter (FB8, Sables Systems) and sent

into one of the 4 chambers (three chambers containing individuals and one empty chamber

11
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as baseline) at a flow rate of ~700mL-mint. Outcoming air was directed through 0,, CO,, and
water vapor sensors (FoxBox, RH-300; Sable systems). After monitoring the baseline channel
for 5 min, the system sequentially sampled the 3 chambers for 10 min each, after which
another baseline measurement was taken. This process was repeated 3 more times, yielding
a total of four 10 min samples for each individual on a given day. For each 10 min sample, we
extracted the lowest mean O, consumption over a period of 4:30 min. The lowest of these
four estimates was retained as the RMR of that individual on that day. While in the
chambers, individuals were monitored using a webcam (Microsoft Livecam HD-3000) to
ensure that they were resting (i.e., not moving). We did not discard any estimates as
individuals were always immobile for the timestamps corresponding to the lowest O3

consumptions.

Statistical analyses

Statistical analyses were done using ASReml-R version 3 (Gilmour et al. 2009). All traits were
standardised to a mean of 0 and a variance of 1. Before analysing sprint speed and RMR, we
wanted to gain a better understanding of the variability in the raw measurements at various
levels. Indeed, variation in running speed occurs at four different levels; among individuals,
among tests within individuals, among trials within tests, and among successive meters
within trials. To capture variance at each of these levels, we used a multilevel approach,
where random effects of 1) individual identity (ID) captured among-individual variance (Ving),
2) ID combined with test captured variance among tests within individuals (Viest), and 3) ID
combined with test and trial number captured variance among trials within tests (Virial). After

accounting for these levels of variance, the residual variance (Ve) represented the variance in

12
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running speed between successive meters within trials and measurement error. For
metabolic rate, we took 4 repeated measurements per respirometry test; therefore variation
in metabolic rate occurs at three different levels; among individuals (Ving), among tests

within individuals (Vkest), and among successive measurements within tests (Ve).

In a second step, we extracted daily maximum running speed (hereafter called sprint
speed) and the daily minimum metabolic rate (hereafter called RMR) that we used to
calculate repeatability and estimate among- and within-individual correlations. We first ran
univariate mixed models to assess the effects of Julian day, sex, and test sequence (i.e., the
number of times the individual passed the test) on body mass, docility, distance moved in
the open field, sprint speed, and RMR. All univariate mixed models included body mass as a
fixed effect (except the one in which body mass was the response variable) and included
individual identity as a random effect to partition the phenotypic variance (after
conditioning on the fixed effects above) into an among-individual variance (Vin4) and within-
individual variance (Ve; residuals). Adjusted repeatability of sprint speed, RMR, time spent
immobile in the bag test, and distance moved in the open field were calculated as the ratio R
= Vind/(Vina+Ve). The approximate standard errors (se) for R were calculated using the delta

method using the pin function in nadiv (Wolak 2012).

We then used a multivariate mixed model to assess the among-individual
correlations (rind) and the within-individual correlations (r.) between docility, exploration,
sprint speed, and RMR. The multivariate model included the same fixed effects as above
(body mass, sex, test sequence, and Julian day) fitted to all traits. A 4 x 4 correlation matrix
(‘corgh’ structure in ASReml-R) was fitted at the among-individual level (ID) to estimate Ving

and ring between traits. A 4 x 4 correlation matrix was also fitted at the residual level to

13
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estimate Ve and r. between traits. The 95% confidence intervals for ring and re were
calculated using profile likelihoods with the prolLik function in nadiv (Wolak 2012). Best
linear unbiased predictors (BLUPs) were extracted from the multivariate mixed model to

obtain a graphic representation of ring and re.

ASReml-R uses a model-based missing data augmentation method (more specifically,
“full information maximum likelihood”) for the estimation of missing values in the response
variables of a multivariate mixed model, which allowed us to fully consider all observations
made on all individuals throughout the study in our multivariate mixed model. The missing
data procedures in ASReml-R can improve the estimation of among-individual correlations
and are preferable over “complete cases analyses” (Noble and Nakagawa 2018). Note that
although traits were not always all measured on a given day, there was enough overlap
between measurements to estimate r. (e.g., sprint speed and RMR were measured 113
times on the same day, sprint speed and exploration were measured 110 times on the same
day, and RMR and exploration were measured 87 times on the same day). Our protocol also
means that individuals experienced different combinations of testing in the laboratory. We
tested the possibility of carry-over effects by creating a dummy variable indicating if the
individual was tested in the open field prior to the other measurements, but this variable
was not significant for sprint speed and RMR (P > 0.05 in both cases). Similarly, a dummy
variable indicating if the individual was tested in the race track prior to respirometry did not
have a significant effect on RMR (P > 0.05). Therefore, we are confident that carry-over

effects of sequential testing did not influence the results.

Finally, the multilevel analysis above revealed substantial variance in running speed

from one meter to the next within performance trials (see below). Therefore, we wanted to

14
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explore if behaviour and running speed covary differently at different points along the race
track. We fitted a second multivariate model using the same fixed and random effects as
above (body mass, sex, test sequence, and Julian day, ID) in which the response variables
were the two behavioural traits and running speeds at each meter (speed 1, speed 2, speed
3 and speed 4) of the race track. A 6 x 6 correlation matrix was fitted at the among-
individual and residual levels to provide the ring and r. between behavioural traits and

running speed at each meter of the race track.

Results

Descriptive statistics

We captured and tested a total of 45 individuals (38 females, 7 males), of which 37 were
repeatedly tested (8 individuals were only tested once). A total of 244 bag tests, 119 open-
field tests, 123 respirometry tests, and 177 sprint speed tests were performed with repeated

measures varying between 1 to 14 for each individual (see Table 1).

Time spent immobile during the bag test averaged 53.7 seconds (see Table 1 for
descriptive statistics). While many individuals remained “frozen” (immobile) for the whole
test, a few individuals were more active with the shortest time spent immobile being 5.8
seconds. During the open-field test, most rats moved around the walls of the arena, avoiding
the centre and moved over relatively short distances (13m) with some individuals showing
higher levels of exploration than others (range: 1-40 m). Sprint speed ranged between 1.5 to
4.3 m-s’! for an average of 3.2 m-s’* which is within the range of the sprint speed recorded

on similar sized rodents (Djawdan and Garland 1988). RMR ranged from 0.62 to 2 mlOy-min‘!

15
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with an overall mean of 1.2 mlO,-mint, which is in accordance with values measured for

similar-sized grazing rodents (Bozinovic 1992).

Variance in running speed and metabolic rate

Considering all running speed tests and trials, we found that 35.1% of the variance was due
to differences between individuals (as estimated by the Ving random effect), while 11.4% was
due to differences between days within individuals (as estimated by the Viest component)
(Table S1). Additionally, only 6.2% of the variance was due to differences between trials
within days (as estimated by Viial). Finally, 52% of the variance in running speed occurred
among meters within trials (as estimated by V.). The analysis of sprint speed below is based

on the fastest speed recorded over one meter on a given test (day).

Considering all respirometry tests, 31.7% of the variance in metabolic rate was due to
differences between individuals (Ving), whereas 36.2% was due to differences between days
within individuals (Vtest) (Table S1). Finally, 31.9% of the variance occurred among successive
measurements within trials, representing measurement error and variation in metabolic rate
(probably due to activity and stress) when rats were restrained within metabolic chambers.
The lowest metabolic rate value recorded over the four sampling periods on a given test

(day) was extracted as RMR, and which always corresponded periods of inactivity.

Effect of mass, sex and test sequence

Males were heavier than females (Table 2A; Fig. 1A). Sex also had a significant effect on

sprint speed with males showing slower sprint speed than females (Table 2D; Fig. 1B). Body
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mass did not affect docility, exploration, and sprint speed (Table 2), but as expected there
was a positive effect on RMR (Table 2E; Fig. 1C). Test sequence had a negative effect on
distance moved in the open field (Table 2C), especially between the first and second
measurements (Fig. 1D), suggesting an habituation effect. Test sequence also had a positive
effect on sprint speed (Table 2D; Fig. 1E), suggesting that individuals would perform better
as they repeated the sprint speed test. Finally, Julian day had a positive effect on RMR (Table

2E).

Among- and within-individual correlations

After taking the above-mentioned fixed effects into account, all traits were significantly
repeatable, with estimates ranging from R + SE = 0.903+0.021 for body mass to R + SE =
0.203+0.115 for RMR (Fig. 2). None of the within-individual correlations were significant
(Table 3). At the among-individual level, however, there were two significant correlations
(Table 3). There was a strong negative correlation between docility and exploration (ring *
SE=-0.740 + 0.216) indicating that individuals who spent more time immobile during the bag
test moved over shorter distances during the open-field test (Fig. 3A). There was also a
negative correlation between sprint speed and exploration (ring * SE=-0.399 + 0.213),
indicating that the fastest sprinters moved over shorter distances during the open-field test

(Fig. 3B).

Behaviour vs running speed

Here, we consider all speed measurements from the trial for which sprint speed was

extracted and look at the covariance with behaviour. As can be expected, consecutive
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speeds at each meters were correlated with each other with estimates ranging from 0.999 to
0.854 at the among-individual level and 0.563 to 0.230 at the within-individual level (Table
S2). At the among-individual level, exploration was negatively correlated with running speed
at all positions of the race track, with significant relationships at 3 of the 4 positions (first,
second and fourth meter; Table S2; Fig. 4). None of the within-individual correlations were
significant between exploration and running speed (Table S2; Fig. 4). By contrast, docility
was not correlated with running speed at the among-individual level, but the within-
individual correlations changed as function of the position of the race track; the only
significant within-individual correlation was with running speed recorded over the first

meter of the race track (Table S2; Fig. 4).

Discussion

Our objective was to test for correlations between personality, performance, and metabolic
rate at the among- and within-individual levels. As previously found in many studies on
rodents, we found a behavioural syndrome in our population in which docility and
exploration were negatively correlated at the among-individual level. We did not find
correlations between RMR and any other traits, including docility and exploration.
Therefore, our results support the independent model (Careau and Garland 2012). We found
a negative correlation between exploration and sprint speed at the among-individual level.
Altogether, our results and those from three other studies on rodents (Blumstein et al. 2004,
Newar and Careau 2018; Piquet et al. 2018) provide empirical support for the idea that

personality and performance traits are co-specialised.
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The fast and the curious

If performance determines what individuals can do behaviourally, higher sprinting abilities
should allow individuals to take more risks, because those individuals are better equipped to
escape potentially dangerous situations (Careau and Garland 2012). Interestingly, however,
we found that the individuals with the highest locomotor performance (fastest sprinters)
were also less explorative in the open-field test. This is the opposite result to what is
predicted from the trait compensation hypothesis (Dewitt et al. 1999). Instead, the negative
correlation between sprint speed and exploratory behaviour lends support to the trait co-
specialisation hypothesis (see Dewitt et al. 1999), where both traits additively reinforce
protection from predators. Although trait compensation seems to be one of the most
commonly observed pattern among species between behavioural and morphological
defenses, whereby species with larger defenses (e.g., shells) are bolder and/or more
explorative (Mikolajewski and Johansson 2004; but see Hossie et al. 2017), studies
conducted so far on the functional relationship between behaviour and performance at the
individual level suggest that the prevailing pattern is trait co-specialisation in mammals (this
study; Blumstein et al. 2004; Newar and Careau 2018; Piquet et al. 2018). In other words,
shy or less explorative individuals are less prone to encounter a predator, and in the event of
an encounter, their higher sprinting abilities further increase chance of successful escape,

and therefore survival.

An alternative explanation for the negative relationship between sprint speed and
exploratory behaviour could be that the stress response of the individuals covary with
individual variation in motivation during the performance tests. For example, if shy

individuals are more fearful and anxious than bold individuals, they might be less motivated
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to explore the arena during the novel environment test, but more motivated to run down
the race track at their fastest when being chased. For that scenario to be true, however,
there has to be individual variation in motivation, while performance protocols are typically
designed to eliminate such variation. Nevertheless, Losos et al. (2002) identified motivation
as “the major problem bedevilling studies of performance”, as previous studies showed that
some individuals do not use their maximal capacities during the tests (Pough 1989; Garland
and Losos 1994). Sub-maximal trials — when animals are judged as not having performed to
their maximum — are usually excluded from performance studies, but deciding which trials to
exclude may vary across studies. Losos et al. (2002) pointed out that 49% of the 65 studies
published between 1979 and 1999 on lizard sprinting abilities did not mention sub-maximal
trials, and that only a few studies clearly stated that they excluded these trials. Although we
excluded all sub-maximal trials, no individual was excluded from our study. Nevertheless,
some variation in motivation must remain among and within retained trials, and, because of
the potential covariance it can induce between performance and behaviour, a better
appreciation of variation in raw performance measures is warranted (Berberi and Careau

2019).

Variation in running speed across levels

To our knowledge, only two studies so far have followed a multilevel approach (Araya-Ajoy
et al. 2018) and used extra random effects to partition variance in running speed across
different temporal scales (Berberi and Careau 2019; Lailvaux et al. 2019). In these studies,
17-19% of the variance in running speed occurred at the among-individual level, whereas

35% of the variance occurred at that level in our dataset. These relatively low estimates of
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long-term repeatability imply that many repeated tests per individual are required to
properly quantify individual differences in locomotor performance. In contrast to Berberi
and Careau (2019) and Lailvaux et al. (2019), we retained running speed measures taken at
each meter of the racetrack. Interestingly, the levels with the lowest amount of variance
were Viest and Virial. Therefore, running speed did not vary much between tests conducted on
a given individual throughout the season and between trials conducted on a given day,
which is quite encouraging because it suggests that variation in motivation was low at these

levels.

About half of the variance in running speed resided in the V. component, which
consists of variation in motivation and measurement error. To reduce measurement error in
our running speed measurements, we should have used a high speed camera that records at
a faster rate than 30 frames per sec. Still, variation in motivation from meter to meter within
trials was evident (PA, pers. obs.), which gave us the idea of exploring how behaviour
covaries with running speeds recorded at different positions of the race track. We found that
docility was correlated with running speed recorded over the first meter of the race track at
the within-individual level. Therefore, on a given test day, an individual who remained more
immobile during the bag test than its own average ran faster than usual on the first meter of
the racetrack. This suggests that individuals who were, for unknown reasons, more fearful of
humans on a given day, froze for a longer period during the bag test and displayed a higher
acceleration when running away from the chaser. Given that docility and speed were
measured in different locations and using different tools, correlated measurement error is
unlikely to have caused the r. between the two traits. Therefore, the re must have been
caused by correlated phenotypic plasticity with respect to factors that were unaccounted for

in our experiment (Brommer and Kluen 2012; Careau and Wilson 2017a, b). Note that the
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relationship between docility and speed was not apparent in the analyses of sprint speed
(Table 3) because the fastest running speed is usually reached in the second and third
meters of the race track. Hence, our results show the insights that can be gained from
analysing raw running performance measurements, especially when trying to relate

performance to behaviours that involve reactions to human presence.

Repeatability and behavioural syndrome

Repeatability of behavioural traits is generally higher in the field than in the laboratory,
presumably because individuals live in heterogenous environments that permanently
influence their behaviour, increasing among-individual differences and therefore
repeatability (Bell et al. 2009). In our case, however, adjusted repeatability was R=0.319 for
docility and R=0.30 for exploration, respectively, which is slightly under the reported average
repeatability of behaviours (R=0.37) (Bell et al. 2009). We also found that the more
explorative individuals were less docile. Similar behavioural syndromes have been previously
observed in a number of other populations of mammals between docility and exploration
(Montiglio et al. 2012; Careau et al. 2015) and between docility, exploration, and activity
(Petelle et al. 2015). A similar behavioural syndrome is also exhibited in birds, between
docility (assessed with a “back test”) and exploration (Hall et al. 2015) and between docility,
aggressivity, and breathing rate (Brommer and Kluen 2012). Thus, the behavioural syndrome
we found in bush Karoo rats is very similar to what has been reported for many other

species.

These behavioural syndromes appears to be reflective of the “flight or fight”

response, and have been associated with the proactive-reactive continuum of coping style
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strategies (Koolhaas et al. 1999). According to the literature on coping styles, individuals
consistently differ in their physiological and behavioural response towards stressful
situations. Proactive individuals tend to interact with the stressor, while reactive individuals
tend to avoid it. Applying this idea to our species, proactive individuals were likely those who
moved more in the handling bag trying to escape (therefore being less docile), and who also
travelled longer distances in the open-field test (being more explorative). By contrast,
reactive individuals were likely those who froze during the bag test and did not travel long
distances in the open-field test. More stress-related measures are needed to confirm the

associations between docility and exploration behaviour with coping styles in our species.

Lack of relationship with RMR

RMR has been previously found to be a repeatable trait in many taxa, with an average
estimate of R = 0.39 in mammals (White et al. 2013). In this study, the repeatability of RMR
was R=0.203 after controlling for date, body mass, sex, and test sequence. In other words,
only =20% of the total variance in RMR was attributed to differences among individuals and
=80% of the variance was due to within-individual variation (plasticity) and measurement
error. Generally, the repeatability of metabolic rate declines with increasing time between
measurement (White et al. 2013), but we think this is an unlikely explanation for the
relatively low R observed in our study considering the number of repeated measures we
took over a relatively short field season (February 2" to May 21%!). The relatively low
repeatability of RMR might be explained by the fact that this study was conducted on wild-
caught animals where natural conditions (i.e., food availability and predation risk) varying

within individuals affect differently the expression of the metabolism, compared to more
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stable laboratory conditions (Dingemanse et al. 2009; Kontiainen et al. 2009; Auer et al.
2016). The field conditions also forced us to use relatively short respirometry tests (i.e.,
animals were only kept 4h in the metabolic chambers), which might have amplified the

influence of stress in our RMR measures.

We did not find correlations between RMR and any of the other traits we measured

(docility, exploration, or sprint speed). Given the relatively low repeatability of RMR and
number of individuals sampled, it is possible that we had low power to detect any

relationship with RMR. Nevertheless, our results support neither the allocation nor the

performance model; instead, it appears the independent model applies in our population,

which RMR and behaviours are not correlated but where non-resting measurements of
metabolism (such as the daily energy expenditure) are expected to be correlated to
behaviour (Careau and Garland 2012). A recent meta-analysis on the covariance between
RMR and behaviour pointed out that RMR was positively correlated with behaviours that
likely have consequences for energy gain (e.g., foraging), or expenditure (e.g., sustained
running speed), but was not correlated with behaviours that have uncertain energetic
outcomes such as the two behavioural traits used in this study (Mathot et al. 2019).

Although RMR and behaviours are not correlated in the independent model, behavioural

in

traits still have an influence on the non-resting part of the energy budget (e.g., (Careau et al.

2015). In such cases where the independent model applies, the energetic impacts of

personality would only be detectable through the measurement of daily energy expenditure,

which includes the energetic costs of activity in addition to basal costs of living (and other

costs, e.g., thermoregulation).
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Conclusions

Although it is intuitive to think that bolder and more explorative individuals should be better
equipped to deal with the increased risks resulting from those behaviours (trait
compensation), empirical evidence in rodents show this is not the case. Instead, it appears
that sprint speed is co-specialised with vigilance and exploratory behaviour in rodents (this
study; Blumstein et al. 2004; Newar and Careau 2018; Piquet et al. 2018). Future research
should tackle the implications of trait co-specialisation for the pace of life, especially survival
in prey species. It will also be important to evaluate the contribution of motivation
underlying individual co-variation in personality and performance. Doing so might involve
using methods for measuring performance with different levels of stress, for exemple tests
that rely on individual’s survival instincts (i.e., forced swimming), tests with human-induced
stress, and tests where individuals perform without being forced. Finally, it will be important
to continue partitioning variance in raw performance measurements to get a better sense of

where most of the variation occurs.
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Table 1 Descriptive statistics for body mass (measured in the field), docility (time spent

immobile during a 1-min bag test), exploration (distance moved in a 5 min open-field test),

sprint speed (fastest speed reached over 1 meter on a given day), and resting metabolic rate

(RMR; lowest Oz consumption over 4.5 min) in Karoo bush rats in the Goegap Nature

Reserve (South Africa, 2018), including the number of individuals sampled (Nip), total

number of observations (nobs), units, mean, standard deviation (sd), and range (minimum to

maximum)

Body mass Docility

Exploration Sprint speed

RMR

Nio 45 44
Nobs 285 244
Units g sec
Mean 90.60 53.67
sd 15.15 11.89
Min 50.20 5.80
Max 127.60 60.00

45

119

cm
1309.65
8.89
1.00
4008.02

44

177
m-s!
3.22
0.53
1.54
4.29

44

123
mlOz-mint
1.20

0.30

0.62

2.03
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Table 2 Effects of sex, test sequence, and Julian day on A) body mass, B) docility (time spent

immobile during bag test), C) exploration (distance moved in a 5min open-field test), D)
sprint speed (fastest speed reached over 1 meter on a given day), and E) resting metabolic
rate (RMR) in 45 Karoo bush rats, as estimated in separate univariate mixed models. Body
mass was also included as a covariate in B-E. Shown are the estimates (+SE), denominator
degrees of freedom (dfqen), Wald F-statistic, and P values. Bold values are significant
estimates (see Table 1 for sample size, Fig. 2 for variance estimates, and Table 3 for

correlations obtained from the multivariate model)

Trait Source Estimate + SE dfden F P
A) body mass

Intercept 0.199 = 0.190

SeXim) 0.958 + 0.395 42.5 5.9 0.0196

Test sequence 0.000 = 0.011 255.8 0.0 0.9895

Julian day -0.002 = 0.002 259.2 1.5 0.2164
B) docility

Intercept 0.314 + 0.635

SeXim] 0.034 + 0.303 35.7 0.0 0.9118

Body mass -0.005 * 0.007 73.1 0.7 0.4214

Test sequence -0.005 *= 0.033 100.3 0.0 0.8811

Julian day 0.002 + 0.005 90.6 0.2 0.6752
C) exploration

Intercept 1.111 + 0.622

SexXim] -0.033 t+ 0.313 40.5 0.0 0.9171

Body mass -0.003 * 0.006 101.3 0.3 0.6021

Test sequence -0.361 * 0.094 100.2 14.6 0.0002

Julian day -0.001 = 0.005 72.8 0.1 0.7951
D) sprint speed

Intercept -0.185 * 0.346

SeXim) -1.043 * 0.339 40.3 9.5 0.0037

Body mass 0.003 = 0.002 147.1 1.6 0.2148

Test sequence 0.041 + 0.016 170.8 6.4 0.0120

Julian day -0.003 + 0.005 1674 0.3 0.5696
E) RMR

Intercept -4.685 t 0.499

SeXim] 0.144 + 0.217 36.3 0.4 0.5129

Body mass 0.036 * 0.005 444 48.2 <0.0001

Test sequence -0.053 = 0.078 114.3 0.5 0.4957

Julian day 0.021 + 0.004 71.5 30.2 <0.0001
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772  Table 3 Among-individual correlations (ring) and within-individual correlations (r.) between

773  docility (time spent immobile during bag test), exploration (distance moved in a 5min open-

774  field test), sprint speed (fastest speed reached over 1 meter on a given day), and resting

775 metabolic rate (RMR) in 45 Karoo bush rats. All estimates were extracted from a single

776  multivariate mixed model (see Table 1 for sample size and Fig. 2 for variance estimates).

777  Profile likelihoods were used to calculate the 95% confidence interval (Cl) of ring and re

Among-individual correlations Residual correlations
95% CI 95% CI

Trait 1 Trait 2 rind £ SE lower upper re + SE lower upper
Exploration  Docility -0.740 * 0.216 -0.968 -0.382 0.078 + 0.104 -0.060 0.211
Sprint speed Docility 0.280 + 0.198 -0.009 0.531 0.096 = 0.090 -0.028 0.217
Sprint speed Exploration -0.399 * 0.213 -0.659 -0.076 -0.151 + 0.111 -0.296 0.002
RMR Docility -0.050 £ 0.309 -0.485 0.363 0.108 = 0.106 -0.035 0.246
RMR Exploration -0.247 t 0.337 -0.666 0.254 -0.085 * 0.126 -0.250 0.087
RMR Sprint speed 0.088 = 0.263 -0.278 0.443 0.140 = 0.111 -0.016 0.288
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Figure captions

Fig. 1 A) Body mass (g) and B) sprint speed (cm - sec’?) as function of sex, C) resting metabolic
rate (RMR; mlO; - min') as function of body mass, and D) distance (m) moved during an
open-field test and E) sprint speed as function of test sequence in 7 males (blue dots) and 38
females (red triangles) Karoo bush rats. Shown are partial residuals (accounting for other

effects in the models, see Table 2)

Fig. 2 Among- and within-individual variation in A) body mass, B) time spent immobile during
bag test, C) distance moved in the open-field test, D) sprint speed, and E) resting metabolic
rate (RMR) in 7 males (blue dots) and 38 females (red triangles) Karoo bush rats. Shown are
residuals from a linear model on the raw scale that included body mass (except in A), sex,
test sequence, and Julian day. In each panel, individuals are ordered along the x-axis
according to their mean trait values. Among-individual variance (Ving), residual variance (Ve),
and repeatability (R) estimates with standard errors (SE) were extracted from linear mixed

models on z-standardised traits (mean = 0, total variance = 1)

Fig. 3 Representation of the among-individual correlations (ring) between (A) time spent
immobile in the bag test and distance moved in the open field and (B) sprint speed and
distance moved in the open field in 7 males (blue dots) and 38 females (red triangles) Karoo
bush rats. Displayed are the best linear unbiased predictors (BLUPstSE) extracted from the
multivariate model (see Table 3 for correlation estimates) with z-standardised traits (mean =

0, variance = 1)
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Fig. 4 Representation of the among-individual correlations (ring £ SE, blue dots) and within
individual correlations (re + SE, red triangles) between distance moved in the open field
(Exploration), time spent immobile in the bag test (Docility) and running speeds at each
meters during the performance test for 7 male and 38 female Karoo bush rats. Correlation
estimates were extracted from the second linear mixed models on z-standardised traits

(total variance = 1). Asterisks denote estimates that are significantly different from 0
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Table S1 Variance in running speed and metabolic rate across four distinct levels; Ving:
variance among individuals as estimated by individual identity fitted as random effect, Viest:
variance among tests (on separate days) within individuals as estimated by the combination
of individual identity and date as a random effect, Virial: variance among trials within tests as
estimated by the combination of individual identity, date, and trial as a random effect, and
Ve: residual variance among successive measurements within in a given trial (for running
speed) or test (for metabolic rate; there is no Viial component for metabolic rate because

only a single trial was conducted per respirometry test).

Running speed Metabolic rate
Variance component  estimate * SE estimate + SE
Vind 0351 * 0.098 0325 * 0.112
Viest 0.115 * 0.026 0371 * 0.073
Virial 0.062 * 0.017
Ve 0.523 * 0.021 0327 * 0.024
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Table S2 Among-individual correlations (ring) and within-individual correlations (r.) between

docility (time spent immobile during bag test), and exploration (distance moved in a 5 min

open-field test) and running speed at each meter during the performance trial (speed-1 =

first meter; speed-2 = second meter, speed-3 = third meter, and speed-4 = fourth meter) in

45 Karoo bush rats. All estimates were extracted from a single multivariate mixed model.

Among-individual correlations

Residual correlations

Trait 1 Trait 2 rind + SE re + SE

Speed-2 Speed-1 0.993 * 0.033 0.368 + 0.075
Speed-3 Speed-1 0.897 + 0.063 0.230 * 0.082
Speed-4 Speed-1 0.854 + 0.080 0.087 + 0.086
Speed-3 Speed-2 0.970 + 0.031 0.502 + 0.064
Speed-4 Speed-2 0.970 * 0.038 0.375 * 0.074
Speed-4 Speed-3 0.999 * NA 0.563 * 0.056
Docility Speed-1 0.180 * 0.210 0.236 * 0.085
Docility Speed-2 0.332 + 0.202 0.036 + 0.088
Docility Speed-3 0.366 + 0.195 -0.042 + 0.088
Docility Speed-4 0.372 £+ 0.195 -0.066 + 0.089
Exploration  Speed-1 -0.517 + 0.190 -0.096 + 0.116
Exploration  Speed-2 -0.622 + 0.185 0.044 + 0.115
Exploration  Speed-3 -0.380 + 0.212 -0.055 + 0.111
Exploration  Speed-4 -0.441 + 0.208 -0.034 *+ 0.113
Docility Exploration -0.822 + 0.187 0.136 + 0.102
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