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The boundary conditions at a liquid-gas interface can be modified by the presence of pol-
lutants. This can in turn affect the stability of the associated flow. We consider this issue
in the case of a simple open cylindrical cavity flow where a liquid is set in motion by the
rotation of the bottom. The problem is addressed using an experimental set-up, a linear
stability code and direct numerical simulation. A robust mismatch between numerical
and experimental predictions of the onset of instability is found. We model the possible
effect of unidentified pollutants at the interface using an advection-diffusion equation
and a closure equation linking the surface tension to their concentration. The chosen
closure is inspired by studies of free surface flows with surfactants. Numerical stability
analysis reveals that the base flow and its linear stability threshold are strongly affected
by the addition of pollutants. Pollutants tend to decrease the critical Reynolds number,
however the nonlinear dynamics is less rich than without pollutant. For sufficiently high
pollution levels, the most unstable mode belongs to a different family, in agreement with
experimental findings.
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1. Introduction
Fluid flow simulations rely on a mathematical formulation associating given governing

equations to specific boundary conditions. The choice for the boundary conditions is
sometimes not trivial, in particular in the presence of a liquid-gas interface. Beyond
the difficulties stemming from a deformable interface, it appears that in practice the
correct boundary conditions are not well known even for a perfectly flat interface. The
classical boundary condition considered in textbooks is commonly deduced from the
balance of tangential stresses at the interface. For a gas-liquid interface, where the
dynamic viscosity of the gas is negligible with respect to that of the liquid, this leads to
a "free slip" condition, which is simple to implement in simulation codes. Unfortunately
this ideal boundary condition is not necessarily representative of realistic experiments,
even for liquids as common as plain water. Contamination by pollutants present in the
ambiant air can influence the rheology of the interface and drastically impact the effective
boundary conditions. Such modifications can deeply alter the flow, as a consequence
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the numerical predictions with a free surface condition are no longer representative of
the true physical flow. Considering how difficult it is to experimentally ensure that a
gas-liquid interface is free from any chemical pollution, it is crucial to know how to model
the interface, without necessarily knowing all the physical properties in detail. Such
issues arise for instance in flow where Marangoni effects (modifications of the surface
tension due to e.g. temperature effects) may interfere and impact the flow dynamics.
The simplified phenomenology of surface pollutants assumes that, although the precise
chemical composition of the pollutants is by essence unknown, their qualitative effect is
to reduce the effective surface tension. This suggests an effect akin to that of surfactants
added on the free surface. As in studies of free-surface flow with controlled amounts of
surfactants, we assume for simplicity that the amount of pollutants is small enough so
that they are confined to a Langmuir monolayer located directly at the interface, and
do not penetrate the bulk. Advected by the local velocity field tangent to the interface,
the pollutants cluster at some given locations, their accumulation being only resisted
by weak diffusion. The resulting inhomogeneity of the concentration field at the surface
induces a local change in the surface tension. The gradients of effective surface tension
lead to additional stresses that modify the global stress balance.

In this investigation we choose a flow case feasible in the laboratory as well as in
numerical simulations, where such ideas can be tested. In particular, we focus on simple
flow likely to develop instability modes via a classical Hopf bifurcation scenario. The
selected most unstable mode, its growth rate and the associated onset Reynolds number
serve as quantitative indicators of how reliable a given set of boundary conditions are. The
flow consists of a cylindrical cavity partially filled with liquid, in most cases water. The
top of the cavity is open while its bottom rotates with a constant angular velocity. The
side walls do not rotate and are fixed in the laboratory frame. For simplicity, we restrain
ourselves to the parameter regime where the fluid interface remains approximately flat
even as the instability develops and saturates. A sketch of the experimental set-up can
be found in Fig. 1. The two main parameters for this flow are the geometric aspect ratio
G = H/R, where H is the undisturbed liquid height and the inner cylinder radius R, and
the Reynolds number Re = ΩR2/ν where Ω is the rotation rate and ν is the kinematic
viscosity. This flow has been previously studied both numerically and experimentally.
The earliest publication we found about this configuration is a numerical investigation
of the base flow for an aspect ratio G between 0.1 and 1 (Hyun 1985). Under the
assumption that the flow remains axisymmetric, the transition to unsteadiness has been
studied numerically for G=2 by Daube (1991). The transition point was found near
Re=2975. Evidence for an instability breaking the axisymmetry of the base flow was
given only later. In Young et al. (1995), no visualisation of the pattern was shown,
however laser Doppler velocity measurements revealed the growth of an instability near
Re = 2000 for a G=2 geometry. The first experimental visualisations of non-axisymmetry
were performed by Hirsa et al. (2002b); Lopez et al. (2004) in the same geometry, and
compared with numerical results for G=2 and G=1/4 in Lopez et al. (2004). For
the larger aspect ratio (G=2), numerical predictions and experimental results tend to
agree, yet for the shallower configuration, mismatches in critical Reynolds number and
azimuthal wavenumber m were reported. In particular, the wavenumber selection was
described in these works as sensitive to the presence of surface contaminants. Among
recent publications, the experimental work by Poncet & Chauve (2007) surveys many
aspect ratios ranging from G=0.0179 to 0.107. Larger aspect ratios G from 0.3 to 4
have been studied numerically as well (Cogan et al. 2011; Iwatsu 2004; Serre et al.
2004). For higher rotation rates, a different regime takes over, with strong deformations
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of the interface and sometimes mode switching (Suzuki et al. 2006; Tasaka & Iima
2009). Polygonal patterns at the deformed interface have been reported by Vatistas
et al. (1992); Jansson et al. (2006); Iga et al. (2014) and modelled by Tophøj et al. (2013).

In the present investigation, we revisit the primary instability mechanism using a
joint experimental and numerical approach. We focus on the primary instability in
the case of an approximately flat interface. For small enough angular velocities the
centrifugal acceleration remains much smaller than gravity and the curvature of the
fluid interface can be indeed neglected in the small Froude number hypothesis. The
main aspect ratio under scrutiny corresponds to G=1/14. As shown in Table 1, the
experimentally determined thresholds are lower by least 75% than those of Poncet &
Chauve (2007). The various possible reasons for this discrepancy have been reviewed
in our experimental set-up with great care, among them residual vibrations, lack of
axisymmetry of the cavity, finite curvature of the free surface, presence of a meniscus,
ionisation of the water. In all cases these hypotheses were ruled out as quantitatively
insignificant. Note that quantitative discrepancies with experimental measurements have
been also already reported earlier for this flow for low G. In Kahouadji et al. (2010), the
stability thresholds in Re determined by LSA were compared with Poncet and Chauve’s
experimental estimates for varying values of G. In both studies the threshold value Rec
increases with decreasing G. While the agreement between numerics and experiments is
very satisfying, it suddenly deteriorates for G 6 0.07-0.08 (see fig. 3 in Kahouadji et al.
(2010)), with a mismatch on Rec of 100% for G ≈0.04. Following Lopez and co-authors,
we assign such a mismatch between experiments and linear stability analysis to the
unavoidable presence of pollutants at the interface, and hence to the simplistic free slip
model for the boundary conditions at the liquid interface. The present investigation
is devoted to a quantitative analysis of the influence of these pollutants, via a simple
phenomenological model, on the linear stability threshold of this flow.

The outline of the paper is as follows. In Section 2, we give a brief description of
the flow and its primary instability. We detail the experimental methods as well as the
numerical methods for the linear and nonlinear stability. Section 3 is devoted to a critical
comparison between experimental and numerical results. In Section 4, we introduce a
new model for the free surface where surface pollution is taken into account. Section 5
discusses the possible simplification of the model in the limit of high surface pollution.
The final Section 6 contains a summary of the present investigation together with open
questions and perspectives for future work.

2. Flow set-up and related investigation techniques
2.1. Base flow description

We briefly recall the main features of the base flow as described by Iwatsu (2004)
and Yang et al. (2019). It is axisymmetric with three non-zero velocity components. Its
structure for small aspect ratio G is sketched in fig. 1. We use a classical direct cylindrical
coordinate system (r, θ, z), where r is the radial distance, θ the azimuthal angle and
z the distance from the rotating bottom. In the vicinity of the instability threshold,
the azimuthal velocity profile possesses a simple radial structure almost independent
of z except in the boundary layers. In the regimes we focus on, the azimuthal velocity
increases with the radial distance from r = 0 to r ≈ 0.67 − 0.68R, where R is the
radius of the set-up, and decreases to zero as the wall is approached. The latter zone is
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Figure 1: Sketch of the axisymmetric base flow for small aspect ratio G = H/R

labelled ’outer region’. This azimuthal velocity is driven by the steady rotation of the
disc at angular velocity Ω at the bottom of the cavity. Just above this rotating disc, the
fluid is pushed radially outwards towards the fixed cylindrical end wall in a boundary
layer assimilable to a von Kármán boundary layer. This generates a recirculation in the
meridional plane, confined approximately to the outer region. For r 6 0.5R the flow is
in perfect solid body rotation.

Above a given rotation rate, this base flow is known to support an instability breaking
its axisymmetry. Ignoring in a first stage the geometrical and rheological parameters,
a simplistic explanation for this symmetry breaking is as follows : a shear instability,
akin to a Kelvin-Helmhotz instability along a curved streamline, develops where
the azimuthal velocity profile displays the strongest curvature. Given the cylindrical
geometry, a direct analogy with the instability of Stewartson layers in the split disk
configuration (Stewartson 1957) case has been suggested in order to justify the relative
size of the instability region (Poncet & Chauve 2007). Beyond this naive picture, the
bifurcation scenarios leading to the presence of different non-axisymmetric patterns
with a dominating wavenumber m 6= 0 as in fig. 2, are not entirely clear from the
literature. Lopez et al. (2004) describe the bifurcation as a standard Hopf bifurcation.
Experiments in Poncet & Chauve (2007) reveal the existence of hysteresis, suggesting
a possibility for subcritical bifurcation. In the present work, we focus on the emergence
of a m=5 mode, the most unstable one as predicted by linear instability theory for the
aspect ratio G considered. A competing unstable mode with m=4, though theoretically
expected to appear for parameters where the mode m=5 is already unstable, has also
been investigated.
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(a) m = 3, G = 3.5/14,
Re = 2160

(b) m = 4, G = 1.5/14,
Re = 5623

(c) m = 5, G = 1/14,
Re = 4714

Figure 2: Instability patterns breaking the axisymmetry of the flow. Photograph taken
from above (ink visualisation) in our experimental set-up. From left to right : modes
m = 3, 4 and 5 obtained for different aspect ratios and different values of Re above the

effective Rec.

2.2. Experimental technique
The main element of the experimental set-up is a cylindrical shaped plexiglas cavity.

Its internal radius is R = 140.3 ± 0.05 mm, and the thickness of the plexiglas is 6.8
mm. The value of R is used to define the Reynolds number Re = ΩR2/ν. The cavity
was engineered from a single block, so that the cylinder and the bottom are monolithic,
avoiding any risk of leak. Its bottom is drilled along its axis in order to mount a brass
foot, that will host the shaft of the rotating disc, itself also made of brass. The radius
of the disc is Rd = 139.6 mm, its thickness 8.5 mm and its mass 5 kg. The shaft is
held in place with two ball bearings, and the sealing is insured by a spring-loaded
double-lip seal. An aluminium rigid sleeve coupling, relying on a thrust ball bearing,
is used to connect the disc shaft and the motor reducer unit. The motor used is a
direct current motor (Parvex RX320E-R1100) with a 1:12 reducer. The rotation speed is
controlled using a tachometer closed-loop. Special attention was paid to minimising the
gap between the disc edge and the vertical wall of the cavity. The liquids used in this
experimental investigation are tap water, de-ionised water, and a water-glycerol mixture.
As the cavity is not thermo-regulated, fluid temperature is monitored continuously,
with a digital thermometer that allows it to be known with an accuracy of 0.1K. The
corresponding kinematic viscosity is then evaluated using an empirical formula (Cheng
2008). The experimental Reynolds number, based on the angular velocity Ω, the radius
and the kinematic viscosity, is hence known within a given accuracy of the order of
a percent for the range of parameters investigated. The relative error is expected to
increase as the rotation rate decreases.

Flow measurements are made using an LDV device, composed of a Dantec Laser linked
to a BSAFlow processor. The liquid is seeded with Dantec 10 micrometers diameter silver
coated hollow glass spheres. Because of the cylindrical geometry, as the laser beams are
placed for the acquisition of uθ they undergo a deviation that both shifts the location of
the focus and impacts the quantitative measurements. This is fixed at the post-processing
stage using the technical corrections suggested in Huisman et al. (2012). For visualisations
such as in fig. 2, the flow patterns were highlighted by injecting either Kalliroscope or
ink into the fluid. The experimental protocol is based on a waiting time of five to ten
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(a) (b) (c) (d)

Figure 3: Instability growth for a m = 5 mode for a water + Kalliroscope mixture
initially at rest. G=1/14, Reynolds number Re=16 550. 3a) t = 52s, 3b) t = 60s, 3c)

t = 71s, 3d) t = 99s.

minutes after each increase of the rotation speed, followed by LDV acquisition performed
over another five minutes duration.

2.3. Experimental evidence for m=5 instability
We describe the experimental instability leading to a steadily rotating m=5

mode, using Kalliroscope visualisations or pointwise LDV measurements. The initial
configuration of the flow is rest. The angular velocity is directly set to a finite value
defining the target Reynolds number Re, the value used in Fig. 3 being Re=16 650. For
low enough Reynolds numbers, the flow remains axisymmetric as in figure 3a. With the
increase in Re, an annulus characterised by stronger shear appears around r = 0.7R
(fig. 3b). An m=5 mode emerges (fig. 3c) and evolves towards a steadily rotating
configuration with 5 co-rotating vortices (figure 3d). A similar scenario occurs for other
values of m, in particular m = 4 which has been observed for other nearby values of
Re. The vortex pattern rotates with a constant angular velocity smaller than Ω. The
angular frequency f of the pattern can be deduced using f=2πfd/(mΩ), where fd is the
dimensional frequency obtained experimentally using pointwise LDV measurements at
a location fixed in the laboratory frame. The main frequency f varies moderately over
the range Re=[4230,16300]. A Fourier transform of the time series is shown in fig. 4 in
the case m=5 for Re=4230 and Re=16300. The main frequency and related harmonics
dominate the spectrum.

2.4. Numerical methodology for free slip interfaces
As a complementary part of this investigation, we have used numerical tools based

on the incompressible Navier-Stokes in order to investigate both linear and nonlinear
aspects of the symmetry-breaking instability. The present section first introduces the
numerical methods used. It also features a comparison with the experimental results of
Subsection 2.3.

2.4.1. Mathematical model
We adopt the point of view of a single-phase flow. The velocity field u(r, θ, z, t) inside

the liquid is governed by the incompressible Navier–Stokes equations in the (non-rotating)
laboratory frame :

∇ · u = 0, (2.1)
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Figure 4: Experimental frequency amplitude spectrum of azimuthal velocity component
measured at r=0.76, z=0.9G, for the saturated m=5 regime at Re=4230 and Re=16300.
The maximum peak amplitudes correspond to f=0.76 and f=0.73 respectively.

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u. (2.2)

Equations (2.1)-(2.2) have been non-dimensionalised using the length scale R and the
time scale Ω−1, and the dimensionless fluid density is taken as unity.

The flow obeys no-slip at all solid boundaries. This implies

ur = uθ = uz = 0 (2.3)

at the fixed vertical boundary at r = 1, whereas

ur = uz = 0, uθ = r (2.4)

on the rotating disk at z = 0.

The boundary condition at the liquid-gas interface at z = G is classically derived from
the stress balance at the interface. As the viscosity of the air is much smaller than the
water one, we can neglect the gas phase altogether. We first consider the generic free-slip
boundary conditions :

∂ur
∂z

= 0,
∂uθ
∂z

= 0, uz = 0 at z = G. (2.5)

As in all mesh-based numerical methods, the singularities of the velocity field occurring
at both corners (r = 1, z = 0) and (r = 1, z = G) are smoothed out in practice by the
finite mesh without the need, as for spectral methods, for regularising functions (Serre
& Bontoux 2007) or singular splitting (Duguet et al. 2005). This is consistent with the
"natural" regularisation occurring in the experiment in the presence of a very thin gap.

2.4.2. Linear stability analysis

In order to determine the critical Reynolds number Rec for the onset of instability, we
use an in-house linear stability solver named ROSE, based on a finite difference method
in r and z. The technique as well as the equations written in cylindrical coordinates are
found in Kahouadji et al. (2011). The steady axisymmetric base flow is first determined
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by solving Eqs. 2.1, 2.2 with the associated boundary conditions using a Newton-Raphson
solver. The steady solution is solved for in an (ω, ψ, uθ, c) formulation, where

ω =
∂ur
∂z
− ∂uz

∂r
, ur =

1

r

∂ψ

∂z
, uz = −1

r

∂ψ

∂r
. (2.6)

The Newton-Raphson solver allows for additionnal scalar fields c(r, z) such as
temperature or concentration further discussed in section 4.

Let (U, P ) represent the velocity-pressured field for such a steady axisymmetric so-
lution of Eqs. 2.2, and let (u∗, p∗) be a small-amplitude perturbation to (U, P ). The
dynamics of the perturbation is governed by the linearised stability equations

∇ · u∗ = 0, (2.7)

∂u∗

∂t
+ (U · ∇)u∗ + (u∗ · ∇)U = −∇p∗ +

1

Re
∇2u∗. (2.8)

It is associated with Dirichlet boundary conditions u∗ = 0 on all solid boundaries together
with a boundary condition on u∗ at the interface similar to that for u in Eq. 2.5. All
meshes used are Cartesian in the meridional plane (O, r, z). ForG=1/14 the mesh consists
of 701 × 101 grid points. Numerical comparison with Kahouadji et al. (2010) confirms
that this resolution is sufficient for an estimation of Rec with an accuracy below one
percent.

2.4.3. Direct numerical simulation
For the nonlinear validation of stability thresholds we have used the direct numerical

simulation (DNS) code Sunfluidh developed at LIMSI for incompressible flows. It is based
on a projection method to ensure a divergence-free velocity field. The equations are dis-
cretized on a staggered structured non-uniform grid using a finite volume approach with
a second-order centered scheme in space. A second-order Backward Euler Differentiation
is used for time discretization. Details can be found in Yang et al. (2020). The interface
condition is as in Eqs. 2.3 and 2.4. The code offers the possibility to enforce a given
rotational symmetry Rm characterised by a fundamental azimuthal wavenumber m > 0,
such that every velocity field verifies

(Rmu)(r, θ, z) = u(r, θ +
2π

m
, z) = u(r, θ, z) (m 6= 0), (2.9)

or axisymmetry for m=0. In that case the simulation only needs to be carried out over
an angular sector 06 θ 6 2π/m with azimuthal periodicity. For the simulations without
symmetry imposed, we have used a mesh consisting of 180× 180× 64 cells in r, θ and z.

3. Critical comparison of the different approaches
3.1. Comparison between the numerical methods

For identical parameters, we report excellent agreement between the base flows
computed by the two methods for all Re. Whereas the base flow can be converged for
all Re using the Newton method, it is only accessible for Re < Rec using time-stepping.
However since the base flow is apparently the only axisymmetric solution of the system,
it is also found using DNS for all Re by simply imposing m=0 (2D axisymmetric case)
and stepping forward in time. The value of Rec for m=5 is first identified by LSA using a
secant method. In the DNS code, the procedure used to identify Rec is different : above
and below Rec, an arbitrary perturbation of finite but small amplitude is applied to the
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Experiment (LDV) Poncet ROSE Sunfluidh
Rec [3160− 4230] [14367− 16420] 17006 [17000− 17100]
fm=5 [Noise − 0.764] - 0.709 [0.707− 0.699]

Table 1: Critical Reynolds number and angular frequency of the pattern for the m=5
instability for G=1/14. For Sunfluidh, linear interpolation leads to Rec = 17010. When
relevant, a lower and an upper bound are given for Rec, with the corresponding values
for the frequency. Experimental results by Poncet & Chauve (2007) are included for
comparison.

system after an initial transient, with the R5 symmetry imposed or not. This impulse
response leads to either exponential decay towards the base flow, or exponential growth
towards a nonlinear regime at large times. A linear interpolation of these rates leads to
an evaluation of the critical threshold Rec. Both approaches agree quantitatively very
well regarding the prediction of Rec form = 5 since the relative error is close to 0.3% (see
Table 1). Interestingly, this comparison, as well as the lack of unstable impulse response
for Re < Rec (even for larger amplitude impulses), both suggest that the instability is
not subcritical, at least for a clean interface obeying the boundary condition (2.5).

3.2. Mean flow structure
Since both numerical approaches yield a truly similar base flow solution, comparison

with the experimental base flow measured using LDV would be relevant at this point. As
we shall see, measurements below Rec turn out to be experimentally difficult. Another
comparison, easier to perform, concerns the mean velocity profiles obtained for Re > Rec
by either temporal or spatial average. Such a comparison is displayed in Figure 5. For the
eigenmodes computed using ROSE, their average is by construction zero. Hence only the
base flow obtained by LSA is included in Figure 5, whereas the spatial average is taken for
the DNS data and the time average for experimental LDV data. A common value of Re =
18620 is chosen for the comparison. Although the agreement is by and large satisfying, a
noticeable overshoot appears around r ≈ 0.67 in all numerical azimuthal velocity profiles,
with no equivalent in LDV measurements despite sufficient measurement accuracy. The
same absence of overshoot area was also reported for comparable parameters in Yang
et al. (2019).

3.3. Threshold detection
The most dramatic mismatch between numerics and experiments concerns the critical

Reynolds number. While both numerical simulations agree on a critical Reynolds number
around 17000 (see Table 1), LDV measurements display persistant oscillations in the
azimuthal velocity field for Re as low as 4200, with a normalised frequency f5 = 0.76,
indicative of the presence of the m=5 mode. This upper bound on the value of Rec
is smaller by a factor of 4 than the previous experimental estimates by Poncet &
Chauve (2007). These values can be found in Table 1. These discrepancies are robust
: although the exact same spin-up protocol as Poncet & Chauve (2007) was observed,
the respective ranges of Rec differ. We note that the threshold detection by Poncet
& Chauve (2007) is based on Kalliroscope visualisations. Kalliroscope appears in our
set-up as a poor diagnostic for Rec for this flow case : the threshold detection is erratic
and protocol-dependent. Indeed the estimation of Rec fluctuates between 6200 to 9300.
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Figure 5: Velocity profiles of uθ(r) below the free surface (z = 0.8G) for G=1/14 and
Re = 18620. Comparison between the base flow, spatially averaged DNS and the

temporal average for LDV (experiment). LDV acquisition timespan is much larger than
the instability period.

At times, Kalliroscope is even unable to detect the instability, even well above the value
of Rec predicted numerically. The use of ink for visualisation, and LDV for quantitative
measurements, both confirm that the thresholds detected with Kalliroscope are over-
evaluated. The saturated mode is displayed in fig. 2c at a value of Re approximately
4 times lower than the theoretical threshold Re

(LSA)
c . Its spatial structure is directly

comparable to that of the saturated flow above Re(LSA)
c displayed in fig. 3d.

On one hand there is perfect numerical agreement between LSA and DNS about the
estimation of Rec , on the other hand there is a troubling match with Poncet & Chauve
(2007) at odds with the experimental/numerical discrepancy we report. We have hence
carried out an exhaustive investigation of the possible reasons for such a discrepancy by
focusing on experimental imperfections. A classical reason for discrepancies in rotating
machines is the presence of mechanical noise that could force an instability by direct or
parametric resonance. The experimental displacement of the disc surface was measured
using a pair of LK-G10 sensors, and their associated LK-GD500 controller. Displacements
were evaluated to approximately 10−4 m, with a mean frequency corresponding to the
disc rotation, yet no link with the pattern frequency was found. This does not suggest
any obvious experimental flaw in our experimental methodology.

Eventually, in order to confirm our experimental approach, we switch temporarily to
a different geometry with G=1/4 where a direct and favourable comparison with the
experimental results of Lopez et al. (2004) can be made. For these parameters there
is also a robust mismatch between experiments and numerics : LSA predicts the most
unstable mode m = 2 with Rec = 3500, whereas Lopez’s experiments at Re = 2000 show
a mode m = 3, which is predicted using LSA to be unstable only for Re > 4600. We
have then conducted our own experiments with two different mixtures of water with 20%
and 55% glycerol. The motivation for these two different mixtures is to allow for a wider
span of rotation speeds : using water the instability would have occurred for rotation
speed below 1 rpm where the signal-to-noise ratio in the LDV degrades. In both cases
the mode m=3 is detected, either using ink or LDV, for Re = 2160 in the 55% glycerol
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(a) Re=17100 (b) Re=18620

Figure 6: DNS axial vorticity fluctuation for the free surface condition, Re=17100
(sligthly above Rec (6a), and Re=18620 (6b). With the increase of Re, the mode m=5

selected at Rec evolves into a modulated m=7 pattern.

fluid (see Fig. 2a) and Re = 2520 in the 20% glycerol fluid. All the results are gathered
in table 2. This side study confirms, in good agreement with Lopez et al. (2004) that
numerics overestimate the experimental thresholds in Re. The discrepancy reported here
for G=1/14 has hence a robust physical origin, which the rest of this paper is devoted
to.

3.4. Nonlinear dynamics
The mismatch between numerics and experiments for G=1/14 is even more dramatic

further above Rec. Although DNS initially displays an azimuthal wavenumber m=5 close
to Rec (see fig.6a at Re=17100), the instability pattern evolves towards m=7 as Re is
pushed to 18620, less than 9% above Rec. Poncet & Chauve (2007) have also reported
an evolution of the modal content of the flow with Re, yet with m decreasing as Re
is increased. A similar decrease of m with Re was also observed qualitatively in our
experiment for Re sufficiently higher than Rec. However, the wavenumber m=5 remains
experimentally stable from Re=4200 to at least Re=18620. The frequency spectrum
is shown in fig. 7a for Re=18620. Given such a mismatch, larger values of Re were
not investigated neither experimentally nor numerically. Differences in the nonlinear
dynamics for Re=18620 also emerge in velocity measurements : while experimental
time series display a single frequency, the signals from DNS display a broader spectrum
and richer dynamics, see fig. 7. In addition to the mismatch in the modal behaviour
between experiments and DNS, the vorticity patterns (figs 6a and 6b) do not match the
experimental figures (2c and 3d) very convincingly. This raises doubts about whether
the mode predicted in the numerics does indeed correspond to the structure observed
experimentally.

3.5. Limitations of the clean interface hypothesis
Lopez et al. (2004) have suggested that mismatches in critical Reynolds numbers

between theoretical and experimental predictions arise due to the presence of pollutants
at the interface. The main idea is that the pollutants change the boundary condition
at the interface. One can draw a parallel with the evolution from free-slip to no-slip
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Figure 7: Comparison of frequency amplitude spectra for uθ(t) measured at r = 0.76,
z = 0.8G, for the saturated m=5 regime at Re = 18620. Left: experimental, maximum

peak at f = 4.15. Right: DNS with free surface condition, same parameters. The
frequencies are not normalized by the azimuthal wavenumber.

Lopez et al. Experiment Experiment ROSE ROSE
water 55% glycerol 20% glycerol

m 3 3 3 3 2
Rec 2000 [1850− 2160] [1875− 2520] 4690 3480

Table 2: Critical Reynolds number for G=1/4. Comparison between experiments by
Lopez et al. (2004), present experiments and LSA. The percentage of glycerol indicated
is a weight percentage.

examined by Peaudecerf et al. (2017) in a channel flow with superhydrophobic surfaces,
in presence of carefully added surfactants. As it is nearly impossible, in standard
laboratory conditions, to achieve an experiment with a perfectly clean interface at all
times, it is necessary to take additional effects into account in order to properly model
the behaviour of the fluid at a realistic liquid-gas interface. Previous publications with
a similar experimental set-up, in which the adsorption of pollutants at the interface
was carefully controlled, already demonstrated the crucial influence of pollution of the
base flow (Hirsa et al. 2001, 2002a). There, pollutants were assimilated to a vitamin K1

monolayer, considered as a surfactant.

In the next section, we model explicitely the presence of pollutants at the interface
in the Navier-Stokes equations and investigate its qualitative as well as quantitative
influence on the linear stability of the flow.

4. Modelling of interface pollution
4.1. Modification of the effective surface tension

The present modelling of the pollution at the interface is directly inspired by the
modelling in Hirsa et al. (2001) and Kwan et al. (2010). Let cd(r, θ, t) be the instantaneous
concentration of the pollutants at the interface. We assume that pollutants are advected
by the velocity field of the fluid while diffusing with a simple nondimensional diffusion
coefficient Ds. Moreover, we assume that no transport occurs from the surface to the bulk
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of the flow, so that the bulk concentration can be neglected (Bandi et al. 2017). Starting
from the Boussinesq-Scriven surface fluid model for a Newtonian fluid-gas interface
(Scriven 1960), and under the hypothesis of negligible surface dilatational viscosity and
surface shear viscosity (Hirsa et al. 2001), the boundary conditions can be written as

∂ur
∂z

=
1

Ca

∂σ̄

∂r
,
∂uθ
∂z

=
1

Ca

1

r

∂σ̄

∂θ
, uz = 0, (4.1)

where Ca = µΩR/σ0, σ̄ = σ/σ0, with σ0 the reference surface tension of the solvant
(for water, σ0 = 72.8 mN.m−1) and µ the dynamic viscosity.

Eq. (4.1) is not closed until the effective surface tension σ is linked to the surface
concentration cd. Several closures have been suggested in the literature, all characterised
by a decrease of σ with increasing concentration. Some models display a plateau for low
concentrations, while some display a monotonic decay. Since our focus is on the strictly
monotonic relationship between σ and c, models with plateaus are not considered. The
model chosen here reads

σ = σ0(1− α

2σ0
c2d), (4.2)

which is non-dimensionalized as

σ̄ = 1− αC2
0

2σ0
c2. (4.3)

Here C0 represents the average mass concentration of pollutant at the surface.

C0 =
1

πR2

∫ 2π

0

∫ R

0

cd(r, θ, t)rdrdθ, (4.4)

c is non-dimensionalized as c = cd/C0. α is a constant coming from the Taylor
expansion around c=0 of the model in Kwan et al. (2010). Eqs 4.1 can hence be rewritten
as :

∂ur
∂z

= −βc∂c
∂r
,

∂uθ
∂z

= −βc1

r

∂c

∂θ
, uz = 0, (4.5)

where β is a new non-dimensional control parameter defined by

β =
αC2

0

µΩR
. (4.6)

Note that β can be linked to a Marangoni number, based on C0 and the diffusion Ds

such that Ma = (αC2
0R)/(DSµ), and to the Péclet number Pes = ΩR2/Ds so that

β = Ma/PeS . In practice, the input parameter for the LSA is β.

4.2. Modelling of pollutant concentration
When all pollutants stay at the interface z = G, their concentration c(r, θ, t) obeys a

superficial advection-diffusion equation of the form

∂c

∂t
+∇s · (cus) + c(∇s · n)(u · n) =

1

Pes
∆sc, (4.7)

where ∇s represents the gradient operator in the directions tangent to the interface, ∇s
represents the gradient operator in the directions tangent to the interface and ∆s is the
associated Laplacian (Stone 1990). In Eq. (4.7), the original velocity field u is split into
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a normal component (u · n)n and the resulting tangential component us = u− (u · n)n.
In the simple case where n = ez Eq. (4.7) reduces to

∂c

∂t
+∇s · (cus) =

1

Pes
∆sc. (4.8)

We consider a decomposition into base flow and perturbation, where the perturbation
is written using a complex ansatz of the form eλt+imθ, such that ur = Ur + u∗re

λt+imθ,
uθ = Uθ + iu∗θe

λt+imθ, and c = C + c∗eλt+imθ. For the steady axisymmetric base flow
characterised by the velocity field U and the concentration field C, Eq. (4.8) becomes

1

r

∂rCUsr
∂r

− 1

Pes
(
∂2C

∂r2
+

1

r

∂C

∂r
) = 0. (4.9)

By substracting Eq. (4.9) from Eq. (4.8), the equation for the fluctuation concentration
(u, c) reads

−λc∗ =
1

r
(
∂rCu∗r
∂r

+
∂rUrc

∗

∂r
) +

imUθc
∗

r
− mCu∗θ

r
− 1

Pes
(
∂2c∗

∂r2
+

1

r

∂c∗

∂r
− m2c∗

r2
). (4.10)

The diffusion coefficient for pollutant Ds is usually one or two order of magnitude
smaller than that of kinematic viscosity and thus in the present case, superficial diffusion
effects remain small with respect to advection effects.

The constraint (4.4) in non-dimensional form reads :

1

π

∫ 2π

0

∫ 1

0

c(r, θ, t)rdrdθ = 1, (4.11)

and reduces for the steady axisymmetric base flow to

2

∫ 1

0

C(r)rdr = 1. (4.12)

For the base flow, axisymmetry implies ∂C
∂r = 0 at the axis. The constraint 4.12 also

imposes a zero mass flux at r = 1. For the perturbation field c∗, the boundary conditions
depend on the value of the azimuthal wavenumber m (Kahouadji et al. 2011). For m > 1
(the case of interest), c∗ = 0 is imposed at the axis and ∂c∗

∂r = 0 at the outer wall. All
superscripts ∗ are from here on dropped for simplicity.

4.3. Structure of the modified base flow
As demonstrated in Lopez & Chen (1998), the presence of a surfactant layer at the

interface modifies the structure of the base flow. However the potential influence on its
linear stability has not been investigated yet. In this subsection, we study the influence
of the pollution concentration β, modelled using the surfactant law (4.2), on the base
flow for G=1/14 and Re=18620. Increasing β causes a small but monotonous decrease
of the length of the meridional recirculation, see figure 8. This is accompanied by the
progressive disappearance of the overshoot in Uθ, evident in fig. 9. This observation is
directly consistent with the experimental measurements, in which no overshoot has been
found for z=0.8G.

4.4. Linear instability thresholds for G=1/14.
The present model is based on four independent non-dimensional parameters G, Re,

Pes and β. We have investigated quantitatively the influence of β on the instability
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Figure 8: Evolution of the stream function ψ for the base flow with increasing
concentration β, Re = 18620 and G=1/14. The same contour values are chosen for all

cases. Negatives and positives contours use different scales to highlight the weak
recirculation bubble. Negatives contour values (dashed): 4 equispaced levels in [ψmin -
ψmin/5]. Positives contour values : (solid lines): 9 values equispaced levels in [ψmax/10 -
ψmax]. Zero contour level (solid black lines). ψmin = -8.1.10−5 and ψmax = 2.3.10−3.
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Figure 9: Evolution of the azimuthal velocity Uθ for the base flow for increasing β,
Re = 18620 and G=1/14. 21 equispaced levels in [0 - 1]. Translucent red patches

represent overshoot areas, i.e locations where Uθ > 1.01 r.
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Figure 10: Neutral curve Rec(β) estimated from LSA for G=1/14 and for the modes
m=4 (squares) and m=5 (stars). The blue strip corresponds to the experimental value of
Rec, independent of the model based on β. The thickness of the strip is based on lower
and upper bounds for Rec from Table 1.

thresholds Rec for m=4 and 5, with G fixed to 1/14 except when noted. The numerical
resolution is unchanged compared to the pollution-free case. The Péclet number, though
in principle larger, is hence limited to Pe = 103 in order to prevent steeper gradients
and numerical issues. The focus on m=4 and 5 mirrors the modal selection predicted for
the reference case β=0, and is also consistent with experimental findings at onset.

The neutral curves Rec(β) obtained as β is varied are shown in figure 10, where
neutral modes m=4 and 5 appear as squares and five-pointed stars, respectively. The
most striking result in fig. 10 is the dramatic drop in Rec occurring at β ≈ 0.48 for m=4
and β ≈ 0.14 form=5. The asymptotic value of Rec predicted for large β and approached
for β as small as 0.2, is also below 3000 in much closer agreement with experimental
estimations (shown as the blue strip in fig. 10) than the numerical prediction with β=0.
These results suggest that a minute amount of surfactants can dramatically impact the
flow stability, while additional pollution does not worsen the phenomenon further. In
other words the effect of pollution is almost binary : either the interface is perfectly clean
and the stability of the flow obeys the classical prediction from Section 3, or it is not
and the stability characteristics of the flow are of a fully different kind. This scenario is
so far consistent with the experimental reproducibility of Rec.

For the mode m=5, a sharp change of slope is evident for Rec=17259, β = 0.14. This
marks the presence of a codimension two point where two different marginal curves
for two different modes m=5 intersect in a double Hopf bifurcation : on each side of
the corresponding value of β, these are not the same family of eigenmodes that go
unstable first, despite a common azimuthal wavenumber m. The crossing of eigenvalues
is confirmed in fig. 11 where the pair of eigenvalues is displayed on each side of the
crossing. In each case, the branch taking over for larger β does apparently not extend
down to β=0 : it corresponds to a new instability not found in the clean interface case.
The evolution of the two leading eigenvalues as functions of both β and Re is detailed
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Figure 11: Zoom on codimension two points of Fig. 10 in the (β,Rec) plane, for G=1/14,
m=4 and m=5.

in fig. 12(a). The least stable eigenvalue for the ’clean’ case β=0 is labelled ’Cm’, where
m=5, whereas the least stable eigenvalues for the ’dirty’ case β � 1 is simply labelled
’Dm’. From fig. 12(a) it appears that the trajectories of the eigenvalues C5 and D5

in the complex plane, for variations of Re and β, obey different trajectories : C5 gets
destabilised by increasing Re but stabilised by increasing β, whereas D5 is destabilised
by both increasing β and increasing Re.

In the case m = 4, an equivalent codimension two point can be identified in figures 10
and 11, at Rec = 18869, β = 0.17. For this mode the drop in Rec is more dramatic than
for m=5, and does not occur immediately after the codimension two point. Instead, the
new branch (in green in fig. 10) continues to increase until at Rec = 20951, β = 0.48
where it turns back. Again the trajectory of the corresponding eigenvalues C4 and D4 is
documented fig. 12(b). The trajectories of C4 in the complex plane are similar to those
of C5. However the scenario for D4 differs from that for D5 : an increase in Re stabilises
the corresponding eigenmode whereas an increase in β destabilises it. Interestingly, the
asymptotic value of Rec for m = 4 as well as the corresponding value of β at which the
lowest values of Rec(β) are reached, seem to match that for m=5. This suggests that the
value of Rec does not, for large β, depend on the value of m, at least for this value of G.
Preliminary computations for G=1/4 have not confirmed this observation. A parametric
study of Rec as a function of both G and m would shed light on this question, but this
lies outside the present scope.

The evolution of the angular frequency of the pattern at Re = Rec is displayed in
figure 13 for both m=4 and 5 as β is varied. Direct comparison of this figure with
fig. 10 shows that each jump to a new branch corresponds to a discontinuity in angular
frequency. Again the quantitative match with the experimental angular frequency is
much more satisfying at finite β than around β=0. For large β, the data approaches the
blue strip in fig. 13 within 1% or less.

Visualisations in physical space of the different modal families for a common
wavenumber m are again consistent with experimental findings. The superficial axial
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Figure 13: Angular frequency of the pattern −Im(λ)/m at Re = Rec(β) for G=1/14,
obtained using LSA for the modes m=4 (squares) and m=5 (stars). The blue strip

corresponds to the experimental value obtained using LDV (cf Table 1).

vorticity ωz(r, θ, z = G) for the first marginal eigenmode m=5 is displayed for two values
of β=0 and 5 in figures 14a and 14b. From figs. 10 and 13 it is now clear that these two
eigenmodes correspond to two different modal families. For the β=0 case the marginal
eigenmode corresponds to the one found in Kahouadji et al. (2011), it features sharp
gradients close to r ≈ 0.67R and thin counter-vorticity tongues on each side of this
layer of strong shear. The structure of the marginal eigenmode for β=5, in turn, does
not feature such sharp gradients, and displays much more regular cellular structures
in a zone closer to the outer wall (see fig. 14b). This is consistent with the different
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(a) Free surface (b) β=5

Figure 14: Vorticity ωz(r, θ) at the fluid interface (normalised by its maximum) for the
least stable eigenmode m=5 at Re=18620. a) β=0, b) β=5.

structure of the base flow shown in figs 8 and 9, where the meridional recirculation is
shorter and the overshoot in Uθ is absent for larger β. As far as the eigenfrequencies
are concerned, the variations in angular frequency are less dramatic than those in Rec,
nevertheless angular frequencies predicted for large β are in much better agreement with
experimental values than the ones predicted for β=0.

All the results above support that the numerical prediction for finite β (non-
clean interface) is consistent, both regarding the base flow and its marginally unstable
eigenmodes, with the experimental findings, whereas the clean interface (β=0) hypothesis
is not.

5. Frozen interface condition
5.1. Search for a simpler parameter-free interface condition

The results from the previous section have shown that a simple surface pollution model
can capture qualitatively and quantitatively well the main features of the instability under
investigation without any description of the physical processes related to the surface
contamination. While it is possible to make the model quantitatively closer to the real
case by adding more parameters, we search in this section for an even simpler model
for the interfacial conditions. In particular, we would ideally like to have an analytically
simple boundary condition for the velocity at the liquid/gas interface that is parameter-
free and does not request simulating additional concentration fields. This would make the
implementation of such a model easy to achieve in practice in existing numerical codes,
without depending on the precise (and usually unknown) details on the adsorption at the
interface. The results of Section 4 suggest the presence of a well-established asymptotic
regime for large β, and the synthetic interfacial condition sought for is requested to match
the large β limit. Several authors have already reported that the presence of pollutants
in two-dimensional geometries removes slip at the interface, in condtradiction with the
traditional hypothesis of free slip. In particular, whereas in our flow case the larger
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Figure 15: Comparison of several fields of the base flow at the surface, for few values of
β, at Re=18620. 15a) radial velocity Ur, 15b) azimuthal velocity Uθ, 15c) pollutant
concentration C, 15d) azimuthal vorticity ωs. The results for the frozen surface

condition are also included in the figures.

azimuthal velocity remains weakly affected by pollutants, the radial component of the
velocity is severely diminished, making the hypothesis of vanishing ur at the interface
plausible (Spohn & Daube 1991; Lopez & Hirsa 2000). This is achieved in the numerical
codes by changing the free-slip boundary conditions at the interface from (2.5) into :

ur = 0,
∂uθ
∂z

= 0, uz = 0 at z = G. (5.1)

The prime advantage of such an interfacial condition is its simplicity : as requested it
is parameter-free, chemistry-free, it does not request coupling with an equation for the
concentration, and it does not rely on any closure for the effective surface tension. In
the following, we assess numerically whether imposing this interfacial condition Ur = 0
for the base flow is a satisfying hypothesis.

5.2. Base Flow
We estimate first how much the ’frozen’ condition (5.1) is consistent with large values

of β by assessing the spatial structure of the base flow. Figure 15 contains various radial
profiles at the interface for the base flow, as β is increased beyond the values shown
previously. Values of β up to 102 or 104 have been considered in order to monitor the
dependence of the base flow on β. Fig. 15a and 15b display the radial and the azimuthal
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Figure 16: Comparison of ψ, between β=5 and the frozen surface condition, at
Re = 18620 (computed with ROSE). Iso-contour levels as in fig. 8.
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Figure 17: Meridian (r, z) cut for β=5 and the frozen surface condition for Re = 18620
(computed with ROSE). Iso-contour levels as in fig. 9.

velocity components, respectively Ur(r) and Uθ(r) evaluated at z = G. The length of
the radial interval where the radial velocity Ur is non-zero decreases with increasing β,
and the minimum value of Ur also approaches zero, suggesting absolute convergence to
a homogeneous Ur=0 profile. This justifies, for β large enough, Ur = 0 as an interfacial
boundary condition, in agreement with previous experimental observations.

The major difference in the concentration curves (15c) is the non-zero concentration of
pollutants for every radial position when β & 5. For smaller values of β, the concentration
is advected towards the axis by the meridional recirculation, allowing for a small clean
area to remain close to the outer wall. This leads to completely different vorticity profiles
at the surface : for smaller values of β the vorticity is gathered around the radial
position where the drop of concentration occurs. However for β ≈ 5 and above, the
vorticity is stretched over a larger radial range, and converges to the frozen interface
case. Interestingly, despite the fact that Ur is not exactly zero at the interface, all base
flow profiles between β = 5 and the frozen surface condition appear identical, as is
visually clear from Figs 16 and 17. In practice β is limited by chemistry considerations
: high values of β correspond to a highly polluted surface, and we may, under these
conditions, exceed the critical micellar concentration (CMC) above which the validity of
the superficial model breaks down entirely.

5.3. Nonlinear dynamics
The condition (5.1) is here explicitly imposed in the nonlinear DNS calculations too.

The simulation has been conducted with the same spatial resolution as for in Section 2.
The newly computed instability pattern is shown in figure 18 past the initial transient.
Without imposing any rotational symmetry, we see that above Rec the most unstable
mode emerges with an azimuthal wavenumber m=5. Compared with simulations based
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Figure 18: Axial vorticity of the fluctuations at the interface, DNS with frozen
condition ur = 0 at the interface for Re = 18620.

β m=4 m=5
5 3139 2934
100 3632 3330

Table 3: Critical Reynolds number estimated by LSA for G = 1/14.

on free slip (see fig. 7b), the present nonlinear regime is much more predictable : this
m=5 mode persists for the whole observation time of up to t=1400 time units) and
the frequency spectrum remains limited to multiples of the fundamental frequency. The
comparison between the numerical and experimental pointwise spectra is displayed in
fig. 19 for the same value of Re, and deserves to be compared with fig. 7. From such
a cross-comparison, it is a non-ambiguous fact here that the frozen condition leads to
a much better spectral reproduction of the experimental flow. Besides, although such
comments are subjective, we report that the aspect of the pattern in fig. 18 is visually
closer to the experimental one than those of figure 6b for the free surface condition. More
quantitatively, the approximate radius range where the axial vorticity fluctuations are
concentrated in figure 18 is [0.59-0.91], while in figure 6a they are limited to [0.64-0.72].
From figure 3d we can estimate the width of this annular stripe in the experiment to
[0.62-0.92]. This rapid quantitative comparison confirms that the instability pattern with
a frozen surface is much closer to the experimental pattern than the pattern from the
free surface simulation.

5.4. Critical Reynolds number and least stable mode
We observe in figure 10 that Rec(β) hardly evolves once β is large enough (larger

than e.g. 5). This behaviour is confirmed for larger β, where the increase in Rec remains
limited. The instability pattern appears similar to those shown in figure 14, which
suggests that the most unstable mode of the frozen condition again belongs to an
unstable branch different from the ’clean’ unstable mode identified with the free slip
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Figure 19: Comparison of amplitude spectra of uθ measured at (r=0.76, z=0.8G) :
experimental data (blue) versus DNS for the frozen surface condition (orange),

Re=18620.

(a) Frozen surface (b) Mixed condition

Figure 20: Vorticity ωz(r, θ) at the fluid interface (normalised by its maximum) for the
least stable eigenmode m=5 at Re=18620. a) frozen surface, b) mixed condition. The
mixed condition corresponds to a frozen surface condition for the base flow, and free

surface condition for the perturbation field.

condition. Since the base flow for either large β or for the frozen interface condition have
a very similar structure, we expect, for the frozen surface condition, a critical Reynolds
number quantitatively comparable to those reported in Table 3. However, it appears
that for this new condition, LSA predicts Rec = Rec5=10555 for m = 5, confirming DNS
(Rec = 10584). While this represents a drop of 39% compared to the original critical
Reynolds number for the free surface condition (Rec=17006), it is still well above the
experimental value by a factor of about 3. Similarly, using the same frozen condition,
the threshold for the mode m=4 at Rec4=11152 and remains very close to Rec5.
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u∗ free u∗ frozen
U free 17006 18959
U frozen 2776 10555

Table 4: Rec for m=5 and four sets of boundary conditions for the couple (U ,u∗).

5.5. Conclusions on the frozen surface condition
The nonlinear dynamics captured in DNS using the frozen surface condition is in

excellent qualitative match with experimental measurements both from the point of view
of the dynamics and the modal content of the saturated flow. This is again confirmed
by the good agreement between the amplitude spectra shown in 19. The base flow with
the frozen surface condition is hardly distinguishable from the base flow obtained using
the pollutant model for β >5. Nevertheless, once again the comparison of the values
of Rec is not favourable, as for the frozen surface Rec is 260% (10555 vs 2934) higher
than for β=5, which discredits the frozen condition as a direct substitute to the free-slip
condition. This negative conclusion is further confirmed for G=1/4 (the value considered
by Lopez et al. (2004)), where the most unstable mode remains poorly representative of
experimental visualisations and Rec is pushed even further up. These quick tests reveal
how sensitive the instability threshold is to the choice of boundary conditions.

The quantitative discrepancy in Rec can eventually be resolved by introducing a new
boundary condition of a mixed type. Whereas the hypothesis of vanishing Ur is very
satisfying for the base flow and large enough values of β, the above argument suggests
that in terms of time-dependent perturbations, vanishing ur is inconsistent with the
temporal oscillations of the concentration field. We suggest to separate the velocity field
u into its base flow component U and its perturbations u∗ and to apply a different set
of boundary conditions to U and u∗. The situation is summed up in Table 4, where
the four possible combinaisons of boundary conditions are considered and Rec has been
re-computed using ROSE for each case. Consistently with the previous arguments, we
focus on the mixed type boundary condition where the base flow obeys a frozen condition
whereas the perturbation obeys the free slip condition. The value of Rec is now 2776,
much lower than the fully frozen threshold value of 10555. The quantitative mismatch
is now reduced down to 6% (2779 vs 2934) and 31% (2779 vs 4230) compared to β=5
and experimental Rec, respectively, while the spatial structure (see figs. 14 and 20 for
the eigenmodes) is compatible with the frozen case.

6. Discussions and perspectives
The hydrodynamic instability occuring inside a fixed, cylindrical cavity with a rotating

bottom has been investigated for a small form factor depth/radius G=1/14. The selection
of a least stable mode with azimuthal wavenumber m=5, predicted by linear instability
analysis, is verified experimentally, as well as numerically using DNS assuming no stress
at the liquid interface. Using water - the most widespread liquid - as the experimental
fluid, a robust quantitative and qualitative mismatch is however evidenced between our
experiments and our numerics. The mismatch concerns the presence of an overshoot in
the azimuthal velocity profile and, crucially, Rec for the development of the instability
is overestimated in the numerics by a factor of more than 4. Regarding the mismatch
between our experimental estimation of Rec and the literature, the use of Kalliroscope
as a marker, used precisely for the identification of instability thresholds, is our best
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suspect to explain the discrepancy. The results obtained here using LDV, quantitatively
safer, demonstrate that thresholds formerly deduced from visualisation using markers,
are over-evaluated. The linear and nonlinear numerical approaches, on their side, report
a robust threshold Rec, that still differs strongly from the experimental one. After a
cautious search for possible experimental flaws, the standard free slip interface condition
(σ=cst, h=cst, free slip interface) used in the simulations emerged as the most credible
source of mismatch, in line with former investigations by Spohn & Daube (1991) and
Hirsa et al. (2002a) : in experiments, such an ideal interfacial condition cannot be
matched due to residual ambient air pollution. The inevitable presence of pollutants at
the interface modifies the surface tension of the flow and, as a consequence, impacts the
velocity field of the base flow and shifts the instability threshold. A pollution model has
been implemented into the linear stability solver, based on a modification of the effective
surface tension by the presence of a superficial concentration of unknown pollutants.
Using a quadratic closure between the tension surface and the surperficial pollutant
concentration inspired by surfactant studies, yields results quantitatively consistent with
experiments : for sufficiently large value of β (the parameter that pilots the surface
contamination), Rec drops by more than 80% and the mismatch on Rec goes down
roughly from 400% down to 30%. Interestingly, the instability mode selected for finite
pollutant concentrations does not belong to the same modal families as predicted by
linear stability theory in the clean interface case : new branches of "dirty" modes
destabilize for small yet finite concentration levels and take over as least stable modes.
The corresponding eigenmodes are very stable for clean interface conditions and have
not been identified before. In terms of bifurcations, the robust mismatch in Rec, angular
frequency and flow structure between numerics and experiments can hence be explained,
at least for the case of the modes m=4 and 5 investigated here, as a jump from one
modal family to another one as the contamination of the surface increases. The spatial
structure of the base flow is also more consistent with LDV measurements : the meridional
recirculation length is reduced and the overshoot in azimuthal velocity vanishes. For
β & 5, the flow at the interface verifies an approximate no-slip condition for the radial
velocity component. As a consequence, in an effort to deliver a simpler parameter-free
model boundary condition for unclean liquid/gas interfaces, the "frozen condition" ur=0
was also simulated. Whereas it displays better qualitative agreement as well as simpler
nonlinear dynamics consistent now with experiments, at least for low G, the threshold
value Rec remains too high compared to experiments. This new quantitative mismatch
is eventually resolve once and for all by considering an interfacial boundary condition of
mixed type : frozen for the base flow and free-slip for the perturbation.

Interfacial experiments involving water have long had the reputation of being ’difficult’
in the sense that Marangoni effects linked with variations of the surface tension are hard
to tame. The present hypothesis of a modification of the surface tension by pollution
effects is one such illustration. The surprising effect of this pollution is, despite relatively
small modifications of the structure of the base flow, an important quantitative impact
on the stability thresholds. Besides, not only does the instability mode change its growth
rate, it also belongs to another family of destabilised modes compared to the clean
interface case. From such a simple conclusion it is tempting to critically revisit the
discrepancies between experimental studies and to deduce that higher values of Rec (as
reported in Poncet & Chauve (2007)) are linked to a cleaner interface due to different
experimental conditions. While this is a priori possible (and very difficult to assess
rigorously), it does not remove the caveat that Kalliroscope visualisations are poorly
reliable in terms of measurements. Besides an interaction of the marker itself with the
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solvent cannot be excluded for high Kalliroscope concentrations. We are hence not in a
position to conclude about the values reported by various teams using Kalliroscope or
other markers, and encourage instead the use of non-intrusive techniques such as LDV for
more reliable estimations. Other experimental improvements could here be useful, such
as measuring simultaneously several velocity components, including smaller components
such as the axial one and the radial component near the interface. This could allow for
a critical evaluation of the model interfacial condition suggested in Section 5.

While the present study is essentially a proof of concept that the stability
characteristics of a given flow case depend heavily on the surface pollution, the
simplicity of the analytical model in Section 4 must be kept in mind. The advantage
of such a simple model is a straightforward identification of the mechanisms altering
the spatial structure of the base flow. The main difficulty lies in the mathematical
parametrisation of a chemically complex phenomenon. Adsorption of pollutants by
the interface is an unsteady process that depends on the precise chemical composition
of the ambient particles in the air and of the exact properties of the liquid. None of
these hypotheses have been included in the present model, resulting in a simple law
parametrised by one unique real parameter β and unable to cope with different chemical
compositions. Besides, as is made clear in Hirsa et al. (2002a), the rheology of the
interface does not even need to be considered Newtonian, which implies the arduous
determination of further rheology constants. Further chemical complications can occur
for increased concentration levels, notably bulk diffusion (necessitating a volumetric
model rather than a superficial one) and later the formation of micelles inside the
bulk of the fluid. Ideally, the modelling of pollution effects should be compared with
an experimental set-up where the surperficial concentration of each pollutant can be
quantitatively controlled and properly modelled. It is not excluded that each different
pollutants contribute differently to the final surface tension rather than all obeying the
quadratic law of Eq. (4.2).

Finally, the present set-up is still academically simple in the sense that no deformation
of the interface needs to be considered at such low rotation rates. While this is technically
much more involved, especially on the numerical side (see e.g. Yang et al. (2020)), it is
suspected that pollution effects can also affect the thresholds in the large deformation
regime investigated by many others (Vatistas et al. 2008; Tophøj et al. 2013). These
regime involve not only finite deformations of the fluid interface but also partial dewetting
which makes the dynamics of the concentration field more complex by involving moving
triple contact lines. Eventually, it will be interesting to see how the trend evidenced in
the present study (the decrease of Rec by ambient pollution despite a calmer nonlinear
regime) can be extended to other unstable flow configurations.
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