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A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF

APPLICATIVE BISIMILARITY IN HIGHER-ORDER LANGUAGES

TOM HIRSCHOWITZ AND AMBROISE LAFONT

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry, France

UNSW, Sydney, Australia

Abstract. Applicative bisimilarity is a coinductive characterisation of observational equiv-
alence in call-by-name lambda-calculus, introduced by Abramsky in 1990. Howe (1989)
gave a direct proof that it is a congruence. We propose a categorical framework for
specifying operational semantics, in which we prove that (an abstract analogue of) ap-
plicative bisimilarity is automatically a congruence. Example instances include standard
applicative bisimilarity in call-by-name and call-by-value _-calculus, as well as in a simple
non-deterministic variant.

1. Introduction

This paper is a contribution to the search for efficient and high-level mathematical tools to
specify and reason about programming languages. This search arguably goes back at least
to Turi and Plotkin [44], who coined the name “Mathematical Operational Semantics”,
and proved a general congruence theorem for bisimilarity. This approach has been deeply
investigated, notably for quantitative languages [8]. However, as of today, attempts to apply
it to higher-order (e.g., functional) languages have failed.

In previous work [26, 25], the first author has proposed an alternative approach to
the problem, dropping the coalgebraic notion of bisimulation used by Turi and Plotkin in
favour of a notion based on factorisation systems, similar to Joyal et al.’s [28]. Furthermore,
congruence of bisimilarity is notably obtained by assuming that syntax induces a familial
monad, in the sense of Diers [15, 13, 46].

However, the new approach has only been applied to simple, first-order languages like
the c-calculus [34, 41], and Positive GSOS specifications [10]. In this paper, we extend it to
functional languages, notably covering the paradigmatic case of applicative bisimilarity [1]
in call-by-name and call-by-value _-calculus, as well as in a simple, non-deterministic _-
calculus [39, §7]. We thus, obtain for the first time a generic, categorical congruence result
for applicative bisimilarity in functional languages.

A bit more precisely:

• We propose a simple notion of signature for programming languages.

Key words and phrases: Programming languages; categorical semantics; operational semantics; Howe’s
method.
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2 T. HIRSCHOWITZ AND A. LAFONT

• Each signature has a category of models, including an initial one, intuitively its
operational semantics.
• An abstract analogue of applicative bisimilarity, called substitution-closed bisimilar-
ity, may be defined in any model, and in particular in the initial one.
• Under suitable hypotheses, we show that substitution-closed bisimilarity is a con-
gruence.

Categorically, this unfolds as follows.

(i) We define an abstract notion of (labelled) transition systems, as objects of a category
C, in such a way that
• there is a forgetful functor C → C0, intuitively returning the (potentially structured)
set of states of a transition system;
• bisimulation and bisimilarity may be defined for any transition system.

(ii) Following Fiore, Plotkin, and Turi’s seminal framework [20], we then assume that C0 is
monoidal, and define models of the syntax to be monoid algebras for a given pointed strong
endofunctor Σ0 on C0. Monoid algebras, a.k.a. Σ0-monoids, are Σ0-algebras equipped with
compatible monoid structure – this models capture-avoiding substitution. The category
Σ0 -mon of models has an initial object Z0, as we prove in Coq [29]. In the case of call-by-
name _-calculus, Z0 is precisely the syntax.
(iii) This category Σ0 -mon induces by pullback a category Σ0 -Mon (capital ‘M’!) of transi-
tion systems whose states are equipped with Σ0-monoid structure. We call these transition
monoid algebras, or transition Σ0-monoids. The relevant notions of bisimulation and bisim-
ilarity for such objects are defined as in (i), but for substitution-closed relations.
(iv) We then define models of the dynamics to be certain algebras, called vertical, for an end-
ofunctor on Σ0 -Mon. There is an initial vertical algebra Z, which in examples is the syntactic
transition system (and standard applicative bisimilarity coincides with substitution-closed
bisimilarity).
(v) Finally, following an abstract analogue of Howe’s method, we show that, under suitable
hypotheses, substitution-closed bisimilarity on Z is a congruence. One crucial hypothesis is
cellularity, in a sense closely related to [21].

Related work. Plotkin and Turi’s bialgebraic semantics [44] and its few variants [14, 42]
prove abstract congruence theorems for bisimilarity. However, they do not cover higher-
order languages like the _-calculus, let alone applicative bisimilarity. This was one of the
main motivations for our work. Among more recent work, quite some inspiration was drawn
from Ahrens et al. [5, 24], notably in the use of vertical algebras. However, a difference
is that we do not insist that transitions be stable under substitution. Links with other
relevant work by, e.g., Bodin et al. [11] or Dal Lago et al. [30], though desirable, remain
unclear, perhaps because of the very different methods used. Furthermore, the cellularity
used here is close to but different from the T∨B -familiality of [26]. It would be instructive
to better understand potential links between the two. Finally, let us mention recent work
which, just like ours, establishes abstract versions of standard constructions and theorems
in programming language theory like type soundness [6] or gluing [18, 19].

Relation to conference version. This paper is a bit more than a journal version of our
previous work [12]. Here is a brief summary of changes.
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(a) In [12], we work with a significant generalisation of monoid algebras to skew monoidal
categories [43] and structurally strong functors. Here, by giving a better type to Σ1, the
endofunctor for specifying the dynamics, we manage to work with standard monoid algebras.
This has the additional advantages of
• avoiding a slightly ad hoc compositionality assumption of [12],
• and relaxing the hypothesis that the tensor product be familial.

(b) In [12], because Howe’s closure operates only at the level of states, we work mostly
with prebisimulations, in the sense of [26, §5.1]. This notion is designed to detect when the
state part of a relation underlies a bisimulation, regardless of what it does on transitions.
However, it feels more ad hoc than the standard definition of bisimulation by lifting [28]. In
this paper, we extend Howe’s closure to transitions, thus avoiding prebisimulations entirely.
(c) In [12], we rely on directed unions of relations, which leads to quite a few, rather
painful proofs by induction. Here, we use higher-level methods to construct Howe’s closure,
essentially through categorification and algebraicisation. Namely:
(1) We define bisimilarity as the final object not in some partially-ordered set of relations

as usual, but in some category of spans (see also [9]).
(2) Furthermore, we define Howe’s closure directly as a free monoid algebra for a suitable

pointed strong endofunctor on spans.
(3) More generally, we systematically rely on universal properties, which simplifies a sig-

nificant number of proofs.
(d) We put less emphasis on cellularity, viewing it only as a sufficient condition for a perhaps
more natural hypothesis which already appeared in a slightly different form in [42], namely
the fact that Σ1 preserves functional bisimulations.
(e) We obtain a congruence theorem of similar scope (Theorem 6.15), and cover two new,
detailed examples (§8): call-by-value, big-step _-calculus (which was covered but too naively
in [12], as we explain) and a call-by-name _-calculus with unary, erratic choice from [39,
§7].

Plan. In §2, we start by briefly recalling call-by-name _-calculus and applicative bisimilar-
ity. We then explain how to view the latter as substitution-closed bisimilarity, and sketch
Howe’s method. In §3, we then give a brief overview of the new framework by example,
including a recap on monoid algebras and a statement of the main theorem. We then dive
into the technical core of the paper by presenting our framework for transition systems and
bisimilarity (§4), operational semantics (§5), and then substitution-closed bisimilarity and
the main result (Theorem 6.15), together with a high-level proof sketch (§6). In §7, we
reformulate the main hypothesis of Theorem 6.15 using cellularity, which allows us to use
well-known results from weak factorisation systems as sufficient conditions. We then apply
our results to examples in §8. The full proof of Theorem 6.15 is given in §9. Finally, we
conclude and give some perspectives on future work in §10.

Notation. We often conflate natural numbers = ∈ N with corresponding sets {1, . . . , =}.
For all sets - and objects � of a given category, we denote by - · � the --fold coproduct
of � with itself, i.e.,

∑
G∈- �. Let Gph denote the category of (directed, multi) graphs,

Cat the category of small categories, and CAT the category of locally small categories.

Let Ĉ denote the category of (contravariant) presheaves on C, and y : C → Ĉ the Yoneda

embedding, mapping 2 to C(−, 2). Given a presheaf � ∈ Ĉ, an element G ∈ � (2), and a
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morphism 2
5
−→ 2′, we sometimes denote � ( 5 ) (G) by G · 5 . Given two categories �1 and �2,

we denote by [�1, �2] the functor category between them. In a category with products, we
interchangeably use spans - ← ' → . and their pairings '→ - ×. , sometimes also calling
the latter spans.

Any finitary endofunctor � on any cocomplete category admits by [38, Theorem 2.1]
an initial algebra, which we denote by Z� . Although this is detailed below, we prefer to
avoid confusion and warn the reader that we also use Z� for the initial �-monoid, for any
pointed strong endofunctor � on any nice monoidal category. Throughout the paper, when
not explicitly attached to some �, Z is shorthand for ZΣ̌1

(see, e.g., Proposition 3.21 or
Theorem 5.18).

� �

� �

D

5

E

: 6

Finally, let us fix some notation about weak factorisation systems. In any
category �, we say that a morphism 5 : � → � has the (weak) left lifting
property w.r.t. 6 : � → � when for all commuting squares as on the right
there is a lifting : as shown that makes both triangles commute. Equivalently,
we say that 6 has the right lifting property w.r.t. 5 , and write 5 ⋔ 6. Given a fixed set J of
morphisms, the set of morphisms 6 such that 9 ⋔ 6 for all 9 ∈ J is denoted by J⋔. Similarly,
the set of morphisms 5 such that 5 ⋔ 9 for all 9 ∈ J is denoted by ⋔J. In particular, if
5 ∈ ⋔ (J⋔) and 6 ∈ J⋔, then 5 ⋔ 6. If � is locally presentable [2], then (⋔ (J⋔), J⋔) forms a
weak factorisation system, in the sense that additionally any morphism 5 : - → . factors

as -
;
−→ /

A
−→ . with ; ∈ ⋔ (J⋔) and A ∈ J⋔ (see [27, Theorem 2.1.14]). Morphisms in J⋔ are

generically called fibrations, while morphisms in ⋔ (J⋔) are called cofibrations.
Let us conclude with the following easy, yet helpful result.

Lemma 1.1. For any locally finitely presentable category and set J of maps therein, if the
domains and codomains of maps in J are finitely presentable, then fibrations are closed under
filtered colimits in the arrow category.

Proof. Let us consider any given filtered diagram ( 58 : �8 → �8)8∈D of fibrations, and a
colimit 5 : � → � in the arrow category, say C→. We must show that 9 ⋔ 5 for all 9 ∈ J.
Let us thus further consider any given commuting square

- �

. �

D

9

E

5

with 9 ∈ J. Colimits in the arrow category are pointwise, so � = colim8 �8 and � = colim8 �8,
so, by finite presentability of - and . , and by filteredness of the diagram D → C, D and E
factor through some �80 and �81 , respectively. By filteredness of the diagram again, w.l.o.g.,
we may take 80 = 81, so that (D, E) : 9 → 5 factors through 580 . But because 580 is a fibration,
we find a lifting as in

- �80 �

. �80 �,

D′

9

D

E′

E

580 5

which provides the desired lifting for the original square.
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2. A brief review of Howe’s method

2.1. Applicative bisimilarity. Let us consider the standard, big-step presentation of call-
by-name _-calculus:

_G.4 ⇓ _G.4

41 ⇓ _G.4
′
1 4′1 [G ↦→ 42] ⇓ 43

41 42 ⇓ 43

Standardly, the evaluation relation ⇓ is considered between closed terms only.
Applicative bisimilarity is standardly introduced in two stages, which we now recall. In

a first stage, one defines applicative bisimulation on closed terms.

Definition 2.1. A relation ' over closed _-terms is an applicative bisimulation iff 41 ' 42
and 41 ⇓ _G.4

′
1 entail the existence of 4′2 such that 42 ⇓ _G.4

′
2 and, for all terms 4, 4′1 [G ↦→

4] ' 4′2 [G ↦→ 4], and symmetrically.

Applicative bisimulations are closed under unions, and so there is a largest applicative
bisimulation, called applicative bisimilarity and denoted by ∼.

Then comes the second stage:

Definition 2.2. The open extension of a relation ' on closed terms is the relation '⊗

on potentially open terms such that 4 '⊗ 4′ iff for all closed substitutions f covering all
involved free variables we have 4[f] ' 4′[f].

Let us readily notice the following alternative characterisation of open extension.

Definition 2.3. A relation ( on open terms is substitution-closed iff for all 4 ( 4′ and
(potentially open) substitutions f, we have 4[f] ( 4′[f].

Lemma 2.4. The open extension of any relation ' is the greatest substitution-closed rela-
tion contained in ' on closed terms.

Proof. Let us first show that '⊗ is substitution-closed. For any 41 '
⊗ 42 and f, we want

to show 41 [f] '
⊗ 42 [f]. For this, we in turn need to show that for all closing substitutions

W, we have 41 [f] [W] ' 42 [f] [W]. But 48 [f] [W] = 48 [W ◦ f] and W ◦ f is closing, so because
41 '

⊗ 42, by definition of open extension, we get 41 [f] [W] ' 42 [f] [W] as desired.
Let us now show that '⊗ is the greatest substitution-closed relation containing ' on

closed terms. For this, consider any substitution-closed '′ contained in ' on closed terms:
for all 4 '′ 4′, by substitution-closedness, we have 4[f] '′ 4′[f] for all closing f. So
because '′ is contained in ' on closed terms, we further have 4[f] ' 4′[f]. This proves
4 '⊗ 4′, and so thus '′ ⊆ '⊗ as desired.

The result we wish to prove in the abstract setting is the following (see [37] for a
historical account).

Theorem 2.5. The open extension ∼⊗ of applicative bisimilarity is a congruence: it is an
equivalence relation, and furthermore it is context-closed, i.e.,

• 41 ∼
⊗ 42 entails _G.41 ∼

⊗ _G.42 for all G;
• 41 ∼

⊗ 42 and 4′1 ∼
⊗ 4′2 entail 41 4

′
1 ∼
⊗ 42 4

′
2.

Proving that ∼⊗ is an equivalence relation is in fact straightforward. In the following,
we focus on the context-closedness property.



6 T. HIRSCHOWITZ AND A. LAFONT

2.2. Howe’s method. Howe’s method for proving Theorem 2.5 consists in considering a
suitable relation ∼•, closed under substitution and context, and containing ∼⊗ by construc-
tion. He then (roughly) shows that this relation ∼• is a bisimulation. By maximality of
∼⊗, we then also have ∼• ⊆ ∼⊗ hence both relations coincide and ∼⊗ is context-closed as
desired. However, as explained in [12, §5.1], the presence of a substitution in the premises
of a transition rule seems to require ∼• to be closed under heterogeneous substitution, in the
sense that, e.g., if 41 ∼

• 4′1 and 42 ∼
• 4′2 (for open terms), then 41 [G ↦→ 42] ∼

• 4′1 [G ↦→ 4′2].
The problem is that building this into the definition of ∼• leads to difficulties in the proof
that it is a bisimulation. Howe’s workaround consists in requiring ∼• to be closed under
sequential composition with ∼⊗ from the outset. Coupling this right action with context
closedness, he thus defines ∼• as the smallest context-closed relation satisfying the rules

G ∼• G

4 ∼• 4′ 4′ ∼⊗ 4′′

4 ∼• 4′′
·

By construction, ∼• is reflexive and context-closed. By a simple induction, it also substitution-
closed. Furthermore, by reflexivity and the second rule, it also contains ∼⊗, and finally the
second rule clearly entails ∼•;∼⊗ ⊆ ∼•. It takes an induction to prove stability under
heterogeneous substitution, but to give a feel for it, in the base case where 41 ∼

⊗ 4′1, we
have

41 [G ↦→ 42] ∼
• 41 [G ↦→ 4′2] ∼

⊗ 4′1 [G ↦→ 4′2]

by context closedness of ∼• and substitution closedness of ∼⊗, so we conclude by ∼•;∼⊗ ⊆ ∼•.
The initial plan was to show that ∼• is a bisimulation and deduce that it coincides with

∼⊗. It can in fact be slightly optimised by first showing that ∼• is a simulation, and then
that its transitive closure (∼•)+ is symmetric. The relation (∼•)+ is also a substitution-
closed simulation, hence by symmetry a substitution-closed bisimulation. This entails the
last inclusion in the chain ∼⊗ ⊆ ∼• ⊆ (∼•)+ ⊆ ∼⊗, showing that all relations coincide.
Finally, because ∼• is context-closed, so is ∼⊗, as desired.

2.3. Non-standard presentation. For technical convenience, we adopt a slightly different
presentation of the transition rules, where the evaluation relation relates closed terms to
terms with just one potential free variable. The new transition rules are as follows.

_G.4 ⇓ 4

41 ⇓ 4
′
1 4′1 [42] ⇓ 43

41 42 ⇓ 43

Here 4′1 [42] denotes substitution of the unique potential free variable in 4′1 by 42. We will
see below that, with this transition system, the essentially standard notion of bisimulation
coupled with the substitution-closedness requirement yields applicative bisimilarity.

3. Overview by example

In this section, we describe one particular instance of our framework, which models call-by-
name _-calculus.
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3.1. Syntax. Let us first define the syntax of _-calculus, following [20], as an initial1 object
in a suitable category of models. Very roughly, a model of _-calculus syntax should be
something equipped with operations modelling abstraction and application, but also with
substitution. Furthermore, certain natural compatibility axioms should be satisfied, e.g.,

(41 42) [f] = 41 [f] 42 [f]. (3.1)

A natural setting for specifying such operations is the functor category C0 := [F, Set],
where F ↩→ Set denotes the full subcategory spanning all sets of the form = (i.e., {1, . . . , =},
recalling notation from §1). For any - ∈ [F, Set] and = ∈ F, we think of - (=) as a set of
‘terms’ with potential free variables in {1, . . . , =}. The action of - on morphisms =→ =′ is
thought of as variable renaming. Returning to operations, being equipped with abstraction
is the same as being a Σ_-algebra, where Σ_ : C0 → C0 is defined by Σ_(-) (=) = - (= + 1).
An algebra structure on any - thus consists of a family of maps - (= + 1) → - (=), natural
in =. Similarly, for specifying both application and abstraction, we consider

Σ0(-) (=) = - (= + 1) + - (=)
2. (3.2)

Let us now consider substitution. The idea here is to equip C0 with monoidal structure
(⊗, �), such that

• elements of (- ⊗ . ) (=) are like explicit substitutions G(f), where G ∈ - (?) and
f : ? → . (=) for some ?, considered equivalent up to some standard equations2;
• elements of � (=) := {1, . . . , =} are merely variables.

Being equipped with substitution (and variables) is thus the same as being a monoid for
this tensor product:

• the multiplication <- : - ⊗ - → - maps any formal, explicit substitution G(f) to
an actual substitution G [f], and
• the unit 4- : � → - injects variables into terms.

Finally, how do we enforce equations such as (3.1)? This goes in two stages:

• we first collect the way substitution is supposed to commute with each operation,
by providing a pointed strength, i.e., a natural transformation with components
BC-,. : Σ0(-) ⊗ . → Σ0(- ⊗ . ), where - ∈ C0 and . ∈ �/C0,
• we then use the pointed strength to enforce all equations in one go, by requiring
models to have compatible Σ0-algebra and substitution structure, in a suitable sense.

Let us first explain the notion of pointed strength.

Application: For modelling Equation (3.1) for application, we would in particular define
BC-,. to map any (8=2 (G1, G2))(f) to 8=2 (G1(f), G2(f)), for all G1, G2 ∈ - (?) and
f : ? → . (=).

Abstraction: For abstraction, let us start by first stating the corresponding equation. We
will then define the pointed strength accordingly. Supposing that . is equipped with
a point 4. : � → . , we define f↑ : ? + 1→ . (= + 1) by copairing

?
f
−→ . (=)

. (8=1)
−−−−−→ . (= + 1) and 1 = � (1)

(4. )1
−−−−→ . (1)

. (8=2)
−−−−−→ . (= + 1).

1This pattern is advocated by the approach of Initial Semantics, where initiality provides a recursion
principle.

2In [12], we instead considered a skew-monoidal variant where the tensor product does not enforce any
standard equation.
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The equation is then
_(4) [f] = _(4[f↑]). (3.3)

Accordingly, we define the pointed strength to map any 8=1 (G)(f), where G ∈ - (?+1)
and f : ? → . (=), to 8=1 (G(f

↑)).

Let us now go through the second stage of how we impose the desired equations: a model of
syntax will be a monoid - equipped with Σ0-algebra structure a- : Σ0(-) → -, such that
the following diagram commutes.

Σ0(-) ⊗ - Σ0(- ⊗ -) Σ0(-)

- ⊗ - -

BC-,-

a- ⊗-

Σ0 (<- )

<-

a- (3.4)

Indeed, suppose given, e.g., 8=1 (4)(f) ∈ Σ0 (-) ⊗ -, by applying the left then bottom mor-
phisms we obtain _(4) [f], while applying the top then right morphisms we obtain _(4[f↑]),
as desired.

All in all, we have:

Definition 3.1. For any finitary, pointed strong endofunctor Σ0, a monoid algebra for
Σ0, or a Σ0-monoid, is a Σ0-algebra (-, a- : Σ0(-) → -), equipped with monoid structure
(<- : - ⊗ - → -, 4- : � → -), such that (3.4) commutes. A Σ0-monoid morphism is a
morphism in C0 which is both a monoid morphism and a Σ0-algebra morphism.

Let Σ0 -mon denote the category of Σ0-monoids and morphisms between them.

Let us conclude by (slightly informally) stating the result exhibiting standard syntax as
the initial model [20, 17, 12]. See Proposition 5.1 below for a general and rigorous statement.

Proposition 3.2. For any finitary, pointed strong endofunctor Σ0, under mild hypotheses,
the forgetful functor Σ0 -mon→ C0 is monadic, and the free Σ0-algebra over � (equivalently
the initial (� + Σ0)-algebra) is an initial Σ0-monoid.

Example 3.3. In the case of _-calculus, the initial Σ0-monoid is thus the least fixed point
Z0 := `�.(� +Σ0(�)), which is isomorphic to the standard, low-level construction of syntax.

From this, one may deduce a characterisation of not only the initial Σ0-monoid, but all
free Σ0-monoids, or in other words an explicit formula for the left adjoint to the forgetful
functor. Namely:

Proposition 3.4. The free Σ0-monoid, say ℒ0 ( ), over any  ∈ C0 is

`�.(� + Σ0(�) +  ⊗ �).

Syntactically, letting = ⊢ 4 mean that 4 ∈ ℒ0 ( ) (=), ℒ0 ( ) is inductively generated
by the following rules [22, §3.1],

= ⊢ G
(G ∈ =)

= ⊢ 41 . . . = ⊢ 4?

= ⊢ :(41, . . . , 4?)
(: ∈  (?))

= ⊢ 41 = ⊢ 42

= ⊢ 41 42

= + 1 ⊢ 4

= ⊢ _(4)

modulo the equivalence

( 5 · :)(41, . . . , 4@) ∼ :(4f (1) , . . . , 4f (?) ),
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for all 5 : ? → @, : ∈  (?), and = ⊢ 41, . . . , 4@ , or perhaps more synthetically

( 5 · :)(f) ∼ :(f ◦ 5 ),

where f : @ → ℒ0( ) (=) denotes the cotupling of 41, . . . , 4@ viewed as maps 1→ ℒ0( ) (=).
The first rule is the standard rule for variables, while the second one is for “constants”,

i.e., elements of  . It corresponds to the term  ⊗ � in the above fixed point formula.
When ? = 0, we sometimes shorten the notation from :() to :. The last two rules are the
standard rules for application and abstraction, and they correspond to the term Σ0 (�) in
the formula. The Σ0-monoid structure is syntactically straightforward; notably substitution
satisfies :(41, . . . , 4?)[f] = :(41 [f], . . . , 4? [f]).

3.2. Transition systems and bisimilarity. The appropriate notion of transition system
- for _-calculus is as follows.

Definition 3.5. A transition system - consists of

• a state object -0 ∈ C0 = [F, Set],
• a set -1 of transitions, and

• maps -0(0)
B-
←−− -1

C-
−−→ -0(1) giving the source and target of transitions (cf. §2.3).

Transition systems form a category C, whose morphisms - → . consist of compatible
morphisms 50 : -0 → .0 and 51 : -1 → .1, in the sense that both of the following squares
commute.

-1 .1

-0 .0

51

B-

50

B.

-1 .1

-0 .0

51

C-

50

C.

Notation 3.6. We write A : 4 ⇓ 5 for A ∈ -1 such that B- (A) = 4 and C- (A) = 5 .

Example 3.7. Another example is the syntactic transition system has Z0 ∈ C0 from Ex-
ample 3.3 as state object, and as transitions all derivations following the transition rules.
We will come back to this case in Proposition 3.21.

Our next goal is to introduce bisimulation, for which it is convenient to characterise C

as a presheaf category. This characterisation may be established by abstract means, but
let us describe it concretely first. It is clear from the definition that transitions systems
are glorified graphs. And they form a presheaf category for essentially the same reason as
graphs do. Here is the base category:

Definition 3.8. Let F[⇓] denote the category obtained by augmenting F with an object

⇓, together with morphisms 0
B⇓
←− ⇓

C⇓
−→ 1, and their formal composites with non-identity

morphisms from F.

More concretely:

• There is exactly one morphism 0 → = in F for all =, which is an identity when
= = 0, so for all = ≠ 0 we have a morphism B⇓,= : ⇓ → = making the following triangle
commute.

⇓

0 =

B⇓ B⇓,=

!
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• There are exactly = morphisms 1 → = in F for all = ∉ {0, 1} (and no morphisms
1 → 0), so for all such = and 8 ∈ = we have a morphism C⇓,=,8 : ⇓ → = making the
following triangle commute.

⇓

1 =

C⇓ C⇓,=,8

8

Proposition 3.9. Transition systems are isomorphic to covariant presheaves on F[⇓].

Notation 3.10. We often implicitly convert from transition systems to covariant presheaves,
and conversely.

Proof sketch. This will be proved below by abstract means, but for intuition let us sketch
the correspondence. Given a transition system 〈B- , C- 〉 : -1 → -0(0) × -0(1), we construct
a presheaf - ′ by setting

• - ′(=) = -0(=) for all = ∈ F,
• - ′(⇓) = -1,
• with the action of B⇓, C⇓ ∈ F given by B- and C- ,
• inducing the action of all B⇓,= and C⇓,=,8 by composition.

Conversely, for any presheaf . , we construct a transition system . ′ defined as follows:

• the state object . ′0 ∈ [F, Set] is given by restriction of . ;
• the set . ′1 of transitions is . (⇓);
• and B. ′ and C. ′ are . (B⇓) and . (C⇓), respectively.

The correspondence yields basic, graph-like examples of transition systems.

Example 3.11.

(a) The representable presheaf y0 associated to 0 ∈ F has a single closed state :0 and its
renamings (i.e., (y0)0 (=) = 1 for all = and for transitions (y0)1 = ∅).
(b) The representable presheaf y⇓ consists of a closed state :0, a state :1 with one free
variable, their renamings, and a transition 4 : :0 ⇓ :1.
(c) Let yB⇓ : y0 → y⇓ denote the morphism mapping :0 to :0.

Using these basic examples, we may define bisimulation and bisimilarity by lifting
following [28]:

Definition 3.12. A morphism - → . in C is a functional bisimulation when it has the
right lifting property w.r.t. the source map yB⇓ : y0 → y1. A span - ← '→ . is a simulation
when its left leg '→ - is a functional bisimulation, and a bisimulation when both legs are.

Remark 3.13. In this case, the Yoneda lemma says that C(y0, -) � -0(0) and C(y⇓, . ) �

.1. The right lifting property for a morphism 5 : - → . thus says that given any 4 ∈ .1
whose source 4 · B⇓ is 5 (G) for some G ∈ -0(0), there exists 4′ ∈ -1 such that 5 (4′) = 4 and
4′ · B⇓ = G, which matches the usual definition of functional bisimulation.

Definition 3.14. Let Bisim(-,. ) denote the category of bisimulations, with span mor-
phisms between them.

Proposition 3.15. Bisim(-,. ) has a terminal object, called bisimilarity and denoted by
∼-,. .
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Example 3.16. Bisimilarity on the syntactic transition system merely amounts to simul-
taneous convergence, because evaluation returns an open term, which does not have any
further transition. In this case, a more relevant behavioural equivalence is substitution-
closed bisimilarity, which we will define below.

3.3. Operational semantics. Just as we have defined the syntax as an initial Σ0-monoid
(Example 3.3), let us now define the dynamics by initiality, again starting by finding the
right notion of model. First of all, models will be found among transition systems - whose
underlying presheaf -0 ∈ [F, Set] is a Σ0-monoid. Let us give these a name.

Definition 3.17. A transition Σ0-monoid is a transition system -, together with Σ0-monoid
structure on its state object -0. Transition Σ0-monoids form a category Σ0 -Mon.

The idea is to model the transition rules as an endofunctor on transition Σ0-monoids,
leaving the underlying Σ0-monoid untouched, i.e., a functor making the triangle

Σ0 -Mon Σ0 -Mon

Σ0 -mon

Σ1

� �

commute, where � denotes the forgetful functor (i.e., �(-) = -0).
For call-by-name _-calculus, the functor Σ1 : Σ0 -Mon → Σ0 -Mon modelling the non-

standard rules at the end of §2 is defined as follows.

• On states, commutation of the above triangle imposes Σ1(-)0 = -0.
• On transitions, let

Σ1(-)1 = - (1) + �V (-),

where �V (-) denotes the set of valid premises for the second rule in §2.3, i.e., triples
(A1, 42, A2) such that
– A1, A2 ∈ -1 are transitions,
– 42 ∈ -0(0) is a state, and
– A2 · B⇓ = (A1 · C⇓) [42], i.e., the source A2 · B⇓ of A2 is obtained by substituting 42

for the unique free variable in the target of A1.
Let us notice that substitution here follows from the monoid structure of -.
• We then define the source and target maps:

– for the first term - (1),
∗ the source of any 8=1 (4) is _1 (4), where _= : -0(= + 1) → -0(=) follows
from the Σ0-algebra structure of -0;
∗ the target is 4 itself;

– for the second term �V (-),
∗ the source of any 8=2 (A1, 42, A2) is (A1 · B⇓) 42, i.e., the application of the
source of A1 to 42 (again using the Σ0-algebra structure of -0);
∗ the target is A2 · C⇓.

Accordingly, our notion of model is the following.
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Definition 3.18. A vertical Σ1-algebra is a transition Σ0-monoid - equipped with a mor-
phism a- : Σ1(-) → - such that �(a- ) = id-0

, or equivalently a map (a- )1 making the

triangle Σ1(-)1 -1

-0(0) × -0(1)

commute.

In the case of call-by-name _-calculus, it should be clear that such a vertical algebra is
indeed a model of the rules.

However, in order to ensure that the rules are syntax-directed, we want to distinguish,
for each rule, the head operator of the source of the conclusion (abstraction for the first rule;
application for the second one). Instead of demanding that Σ1(-) have the form Σ1(-)1 →

-0(0) × -0(1), we thus rather require something of the form Σ1(-)1 → Σ0(-0) (0) × -0(1):

Definition 3.19.

• A dynamic signature consists of
– a finitary functor Σ�1 : Σ0 -Mon→ Set, and

– a natural transformation (Σm
1
)- : Σ

�
1 (-) → Σ0 (-0) (0) × -0(1).

• The endofunctor Σ̌1 induced by a dynamic signature maps any - to the composite

Σ�1 (-)
(Σm

1
)-

−−−−−→ Σ0(-0) (0) × -0(1) → -0(0) × -0(1).
• A vertical algebra of a dynamic signature is a vertical algebra of the induced endo-
functor, in the sense of Definition 3.18.

Concretely, a vertical algebra is a dashed map making the following diagram commute.

Σ�1 (-) -1

Σ0(-0) (0) × -0(1) -0(0) × -0(1)

Example 3.20. For call-by-name _-calculus, we only need to modify the source components
of the above definition of Σ1, replacing actual operations by formal ones, like so:

• the source of any 8=1 (4) ∈ - (1) + �V (-) is 8=1 (4) ∈ Σ0(-) (0) = - (1) + - (0)
2;

• the source of any 8=2 (A1, 42, A2) is 8=2 ((A1 · B⇓), 42) ∈ Σ0(-) (0).

This successfully captures the syntactic transition system:

Proposition 3.21. The initial Σ̌1-algebra ZΣ̌1
, or Z for short, is an initial vertical algebra,

and is isomorphic to the transition system of Example 3.7.

3.4. Substitution-closed bisimilarity. There is an obvious notion of bisimulation for
transition Σ0-monoids:

Definition 3.22. A morphism is Σ0 -Mon is a functional bisimulation iff its underlying
morphism in C is.

However, as foreshadowed by Example 3.16, the relevant notion in this case combines
bisimulation with substitution-closedness, in the following sense.

Definition 3.23. For any monoid " in C0, an "-module is an object - equipped with
algebra structure - ⊗ " → - for the monad − ⊗ ". A module morphism is an algebra
morphism.
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Example 3.24. The monoid " is itself an "-module by multiplication, and "-modules
are closed under limits in C0, so in particular "2 is an "-module, with action given by the

composite "2 ⊗ "
〈c1⊗",c2⊗" 〉
−−−−−−−−−−−−−→ (" ⊗ ")2

<2

"
−−−→ "2.

Definition 3.25. For any transition monoid ", a span of the form ' → "2 in C is
substitution-closed iff '0 is an "0-module and the morphism '0 → "2

0 is an "0-module
morphism.

Example 3.26. To see what this definition has to do with substitution-closedness, let us
observe that if ' is a relation in [F, Set], an element of ('⊗") (=) is an explicit substitution
A(f) with A ∈ '(?) for some ?, and f : ? → " (=). Now, substitution-closedness amounts
to a morphism ' ⊗ " → ' commuting with projections, so if ' is a relation, we indeed get
that 4 ' 4′ entails 4[f] ' 4′[f].

Proposition 3.27. For any transition Σ0-monoid ", there is a terminal substitution-closed
bisimulation ∼⊗

"
, called substitution-closed bisimilarity.

Remark 3.28. One may prove that substitution-closed bisimilarity is a relation.

Proposition 3.29. Substitution-closed bisimilarity ∼⊗
Z

on the syntactic transition system
Z coincides with applicative bisimilarity.

Proof. Let us denote the open extension of applicative bisimilarity by ∼⊗
std

, and recall

that applicative bisimilarity is denoted by ∼. The relation ∼⊗
std

is straightforwardly a

substitution-closed bisimulation, so we have ∼⊗
std
⊆ ∼⊗

Z
. But conversely any substitution-

closed bisimulation relation ' (hence ∼⊗
Z
) is in particular a substitution-closed relation

contained in ∼ on closed terms. It is thus globally contained in ∼⊗
std

by Lemma 2.4.

Our main result instantiates to the following.

Theorem 3.30. Substitution-closed bisimilarity is context-closed. More precisely, it is a
transition Σ0-monoid, and ∼⊗

Z
→ Z2 is a transition Σ0-monoid morphism.

In particular, there exists a span morphism Σ0((∼
⊗
Z
)0) → (∼

⊗
Z
)0.

4. Transition systems and bisimilarity

In this section, we start to abstract over the situation of §3, by introducing a general
framework for transition systems and bisimilarity.

4.1. Pre-Howe contexts and transition systems.

Definition 4.1. A pre-Howe context3 consists of

• a small category C0 of state types,
• a small category C1 of transition types,
• and two source and target functors s, t : C1 → C0.

3The Howe contexts of [12] may be defined similarly. The difference is that for them, s and t are not
necessarily functorial, but 21 ↦→ (s(21), t(21)) defines a functor C1 → C0×C0, where C0×C0 denotes the
category whose objects are pairs of elements of C0, and morphisms between (01, 02) and (11, 12) consists of
pairs of morphisms 01 → 18 and 02 → 1 9 for some 8, 9 ∈ {1, 2}.
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Precomposition by s and t yields functors Δs,Δt : Ĉ0 → Ĉ1 mapping any - ∈ Ĉ0 to - ◦ s
and - ◦ t, respectively. Let Δ denote the pointwise product Δs × Δt.

We use these functors to define transition systems.

Definition 4.2. Given any pre-Howe context, a transition system - consists of

• a state presheaf -0 ∈ Ĉ0,

• a transition presheaf -1 ∈ Ĉ1,
• and two source and target natural transformations -0 ◦ s← -1 → -0 ◦ t, or equiva-
lently a natural transformation -1 → Δ(-0).

Proposition 4.3. In any pre-Howe context, transition systems are precisely the objects of

the lax limit category Ĉ1/Δ of the functor Ĉ0
Δ
−→ Ĉ1 in CAT, or equivalently the comma

category id
Ĉ1
↓ Δ.

Proof. An object of the lax limit is by construction a triple (-1, -0, m), where m : -1 →
Δ(-0) = -0s × -0t.

Notation 4.4. In any pre-Howe context, we let C0 := Ĉ0 and C := Ĉ1/Δ.

Proposition 4.5. The projection functor −0 : C→ C0 has a left adjoint mapping any object
-0 to ∅ → -0s × -0t, which we call the discrete transition system on -0.

Example 4.6. We can get C→ C0 to be the forgetful functor Gph→ Set by taking

• C0 = 1, so that C0 = Ĉ0 = 1̂ � Set,
• C1 = 1, so that C = Set, and
• s, t : 1→ 1 to be the unique such functor, i.e., the identity.

A transition system thus consists of sets + and � together with a map � → +2, i.e., a
graph.

Example 4.7. A (harmless) proof-relevant variant of standard labelled transition systems
(over any set A of labels) may be obtained as follows. We take

• C0 = 1 again,
• C1 = A viewed as a discrete category, and
• s, t : C1 → C0 the unique such functor.

Thus, a transition system - consists of a set -0 and sets -0 for all 0 ∈ A, together with
maps -0 → -2

0
returning the source and target of each 0-labelled edge.

More generally, given any graph L, taking s, t : C1 → C0 to be the source and target
maps L1 → L0 viewed as functors between discrete categories, we obtain for C → C0 a
functor equivalent to Gph/L→ Set/L0.

Example 4.8. Let C0 = Fop and C1 = 1, with s and t picking respectively 0 and 1. In

particular, Ĉ1 � Set. Then, Δ(-0) = -0(0) × -0(1) and we recover the category C of §3.2,
and its forgetful functor to C0 = [F, Set].

4.2. Transition systems as presheaves. Before introducing bisimulation, let us establish
an alternative characterisation of the category C of transition systems.

Proposition 4.9. The lax limit category Ĉ1/Δ of transition systems is isomorphic to a

presheaf category Ĉs,t.
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Proof. Let Cs,t denote the lax colimit in Cat of the parallel pair s, t. By definition, it is the
universal category with natural transformations

C1 C0

Cs,t.

s

t
B

C

It thus consists of the coproduct C1 + C0, augmented with arrows B! : s(!) → ! and

C! : t(!) → ! for all ! ∈ C1, naturally in !. Presheaves on Cs,t coincide with Ĉ1/Δ be-
cause the presheaf construction turns lax colimits into lax limits.

Notation 4.10. We often omit the isomorphism Ĉ1/Δ � Ĉs,t, considering it as an implicit
coercion. E.g., y% may be used to denote the transition system % with %1 = ∅ and %0 = y%.

Similarly, y! may be used to denote the ‘minimal’ transition system with one transition
over !, say !, i.e., !1 = y!, !0 = ys(!) + yt(!) , and the map !1 → !0s × !0t uniquely
determined by the element (8=1 (ids(!) ), 8=2 (idt(!) )) ∈ !0 (s(!)) × !0(t(!)).

Finally, yB! : ys(!) → y! and yC! : yt(!) → y! denote the Yoneda embedding of the
canonical morphisms B! and C! from the proof of Proposition 4.9.

By Yoneda, we thus have:

Corollary 4.11. For all -, we have C(y!, -) � -1(!) and C(y%, -) � -0(%).

Notation 4.12. In the case of call-by-name _-calculus, we call ⇓ the unique object coming
from C1 = 1.

Remark 4.13. Presheaves on Cs,t are intuitively 2-dimensional; the projection functor
forgets dimension 1, while the left adjoint (Proposition 4.5) adds an empty dimension 1,
thus lifting its 0-dimensional argument to a 1-dimensional object.

This 2-dimensional intuition leads to the following useful observation on the forgetful
functor.

Proposition 4.14. The forgetful functor C → C0 preserves all colimits, as well as image
(in the sense of strong epi, mono) factorisations.

Proof. The forgetful functor C → C0 is equivalent to the restriction functor Ĉs,t → Ĉ0,
which is both a left and right adjoint, hence preserves all limits and colimits. Finally,
image factorisations are computed pointwise in presheaf categories, hence are preserved by
restriction functors.

4.3. Bisimulation and bisimilarity. Morphisms in C are a generalisation of graph mor-
phisms, which are a proof-relevant version of functional simulations. The analogue of func-
tional bisimulations is as follows.

Definition 4.15. A morphism 5 : - → . in Ĉs,t is a functional bisimulation, or a fibration,
iff it enjoys the (weak) right lifting property w.r.t. yB! : ys(!) → y! , for all ! ∈ C1.

Here is a characterisation of fibrations which will be important. Let us recall that a
weak pullback satisfies the same universal property as a pullback, albeit without uniqueness.
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Proposition 4.16. A morphism 5 : - → . is a functional bisimulation iff the following
diagram is a pointwise weak pullback.

-1 .1

-0s .0s

51

50s

Proof. By Yoneda, a lifting problem in C as on the left below is the same as a cone in Ĉ1
as on the right, and a lifting is the same as a mediating morphism to -1.

s(!) -

! .

y!

-1 .1

-0s .0s50s

We use this to define general bisimulations. Usually, one considers bisimulation rela-
tions. Here, we generalise this a bit and consider arbitrary spans:

Definition 4.17. A simulation is a span - ← ' → . whose left leg is a fibration. A
bisimulation is a span of fibrations (equivalently, a simulation whose converse span is also
a simulation).

Remark 4.18. Of course, the relevant notion in our applications is substitution-closed
bisimulation, to which we will come below.

Lemma 4.19. Simulation relations and bisimulation relations are stable under unions.

Proof. By symmetry, it is enough to deal with the case of simulation relations. Consider any
family ('8 ↩→ - ×. )8∈� of simulation relations. Their union is the image of their copairing.
But because the domain ys(!) of B! is representable for all ! ∈ C1, any lifting problem
B! →

⋃
8 '8 lifts to a lifting problem B! →

∑
8 '8, which in turn lifts to a lifting problem to

some B! → '80 with 80 ∈ �. We then find a lifting for the latter, which yields a lifting for
the original.

Proposition 4.20. For all -,. ∈ C, the full subcategory Bisim(-,. ) of spans between -

and . which are bisimulations admits a terminal object ∼-,. , called bisimilarity.

Proof. As a presheaf category by Proposition 4.9, C is well-powered, so we may consider
the union ∼-,. of all bisimulation relations, which is again a bisimulation by Lemma 4.19.
Finally, ∼-,. is terminal, because any bisimulation ' factors through its image 8< ('), which
is again a bisimulation; as a bisimulation relation, 8< (') thus embeds into ∼-,. , hence we
obtain a morphism ' ։ 8< (') ↩→ ∼-,. , which is unique by monicity of ∼-,. ↩→ - × . .

5. Howe contexts for operational semantics

Operational semantics is the combination of syntax and transition systems, in the sense
that it is about transition systems whose states form a model of a certain syntax. Our
framework for operational semantics thus combines the frameworks of Fiore et al. [20] for
syntax with variable binding, and of §4 for transition systems.
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The former is merely an abstract version of §3.1. Here is the important result, which
echoes Proposition 3.2.

Proposition 5.1 (see [20, 17, 12]). For any finitary, pointed strong endofunctor Σ0 on a
monoidal, cocomplete category �0 such that the tensor preserves all colimits on the left and
filtered colimits on the right, the forgetful functor Σ0 -mon → �0 is monadic, and the free
Σ0-algebra over � (equivalently the initial (� + Σ0)-algebra) is an initial Σ0-monoid.

Proof. This has been proved in Coq [12].

Notation 5.2. We denote the initial Σ0-monoid by ZΣ0
, or Z0 for short.

Definition 5.3. A Howe context consists of a pre-Howe context s, t : C1 → C0, together

with a monoidal structure on Ĉ0, such that the tensor preserves all colimits on the left and
filtered colimits on the right.

Notation 5.4. As for pre-Howe contexts, we let C0 = Ĉ0 and C := Ĉ1/Δ.

Let us assume that some syntax has been specified by a finitary, pointed strong endo-
functor Σ0 on C0. We then define transition Σ0-monoids just as in §3.

Definition 5.5. The category Σ0 -Mon of transition Σ0-monoids is the following pullback

in CAT. Σ0 -Mon Σ0 -mon

C C0

�

�

When Σ0 is the constantly empty endofunctor, we speak of transition monoids: they
consist of objects - equipped with monoid structure on -0.

Proposition 5.6. The adjunction between C and C0 (Proposition 4.5) lifts to an adjunction

Σ0 -mon ⊥ Σ0 -Mon

ℳ

�

with �(ℳ(-0)) = -0 and ℳ(-0)1 = ∅.

Proof. The left adjoint ℳ maps any Σ0-monoid " to the discrete transition system on ",
say Δ", equipped with the original Σ0-monoid structure on " – which makes sense because
(Δ")0 = ".

Remark 5.7. The names, ℳ and �, stand for “monter” and “descendre”, “go up” and
“go down” in French.

Proposition 5.8. The forgetful functor � : Σ0 -Mon→ C is monadic.

Proof. Transition Σ0-monoids are the algebras of an equational system over C in the sense
of Fiore and Hur, to which [16, Theorem 6.1] applies.

Notation 5.9. We denote by ℒ the left adjoint to �.

Similarly, we define abstract dynamic signatures, which abstract over those of Defini-
tion 3.19:

Definition 5.10. Given a Howe context s, t : C1 → C0 and a pointed strong Σ0 : C0 → C0,

a dynamic signature Σ1 = (Σ
�
1 ,Σ

m
1
) over Σ0 consists of a finitary functor Σ�1 : Σ0 -Mon→ Ĉ1,

together with a natural transformation Σm
1
with components Σ�1 (-) → Σ0(-0)s × -0t.
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Let us pack up the static and dynamic notions of signature.

Definition 5.11. An operational semantics signature (Σ0,Σ1) on a given Howe context
s, t : C1 → C0 consists of a pointed strong endofunctor Σ0 preserving sifted colimits, together
with a dynamic signature Σ1 over it.

In the following, we fix an operational semantics signature (Σ0,Σ1) on a Howe context
s, t : C1 → C0.

Remark 5.12. Preservation of sifted colimits [3] is stronger than finitarity for Σ0. We
need it for Lemma 9.41 below. In a presheaf category like C0, if Σ0 preserves pullbacks (for
example, by familiality), it is equivalent to being finitary and preserving all epis, as seen
from the proof of [4, Theorem 18.1].

Remark 5.13. In [12], we mistakenly only require Σ0 to be finitary, which yields a gap in
the proof of [12, Lemma 5.13].

Example 5.14. The endofunctor Σ0(-) (=) = - (= + 1) + - (=)2 on [F, Set] preserves sifted
colimits. It is easily deduced from the fact that sifted colimits are the ones commuting with
products in sets.

Let us now define the category of models of a dynamic signature Σ1.

Definition 5.15. Let Σ̌1 : Σ0 -Mon → Σ0 -Mon map any transition Σ0-monoid - to the
composite

Σ
�
1 (-) → Σ0(-0)s × -0t

a-0
s×-0t

−−−−−−−−→ -0s × -0t,

where a-0
denotes the Σ0-algebra structure of -0.

Proposition 5.16. The endofunctor Σ̌1 is finitary and makes the following triangle com-

mute. Σ0 -Mon Σ0 -Mon

Σ0 -mon

Σ̌1

Proof. Commutativity of the triangle holds by construction, and finitarity follows from
finitarity of Σ�1 .

Definition 5.17. A Σ̌1-algebra Σ̌1(-) → - is vertical when its image under the forgetful
functor Σ0 -Mon → Σ0 -mon is the identity. Let Σ1 -algE denote the full subcategory of
Σ̌1 -alg spanning all vertical algebras.

Theorem 5.18. The forgetful functor Σ1 -algE → Σ0 -Mon is monadic, and furthermore the
initial Σ̌1-algebra ZΣ̌1

, or Z for short, may be chosen to be vertical, hence is also initial in
Σ1 -algE .

Proof. For the first statement, vertical algebras may be specified as an equational system,
in the sense of [16]. For the second statement, Z is the colimit of the initial chain

Z0 → Σ̌1(Z0) → . . .→ Σ̌
=
1 (Z0) → . . .

(where Z0 is shorthand for ℳ(Z0), for readability, recalling Proposition 5.6). The image of
this chain in Σ0 -mon is the everywhere-identity chain on Z0.
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By construction, we have:

Proposition 5.19. We have �(Z) = Z0.

Let us readily annihilate any hope that vertical Σ1-algebras are monadic over C.

Lemma 5.20. Consider the operational semantics signature of _-calculus with Σ0 from (3.2)
and Σ1 from Example 3.20. Then, the composite forgetful functor Σ1 -algE → Σ0 -Mon→ C

is not monadic.

Proof. Let us draw inspiration from the classical example of a non-monadic composite of
monadic functors, namely the composite Cat → RGph → Set, where RGph denotes the
category of reflexive graphs, and the forgetful functor to sets returns the set of arrows.
One may show that both functors are monadic, but that their composite is not. By Beck’s
monadicity theorem, it suffices to find a parallel pair - ⇒ . in Cat whose image in sets
admits an absolute coequaliser, and show that this coequaliser is not created by the com-
posite forgetful functor. Let us describe a classical example, slightly informally. The idea
is to take . to consist of two arrows

1
0
−→ 2 3

1
−→ 4,

and - = 1 + . to have an additional object, say 0. We then define D, E : - → . to be the
identity on . , and respectively map 0 to 2 and 3. The coequalisers in Cat (top) and Set

(bottom) look as follows, abbreviating each id� to just � for readability.

0 1 2 3 4 1 2 3 4 1 {2, 3} 4

0 1 0 2 3 1 4 1 0 2 3 1 4 1 0 {2, 3} 0 4

0 1 0 1 0

1◦0

1

D

E /

One easily proves that the one in sets is split, hence absolute. Briefly, because of the
composite arrow 1 ◦ 0 that the coequaliser in Cat must have but the one in sets does not,
the coequaliser is not created by the forgetful functor, thus contradicting monadicity.

For proving the lemma, we rely on the V-rule to mimick composition in constructing
the following parallel pair - ⇒ . in Σ1 -algE .

• . is the vertical Σ1-algebra defined as the _-calculus extended with two constants 0
and 1, unary operations : and ;, and an axiom 1 ⇓ ;(G);
• - is the vertical Σ1-algebra extending . with a constant 2;
• the Σ1-algebra morphisms D, E : - → . respectively replace 2 with 1 and :(0).

The coequaliser � of these two morphisms computed in the presheaf category C is a quotient
of . by the equation 1 = :(0). It thus has as reductions [4] ⇓ [ 5 ] between equivalence
classes all reductions 4′ ⇓ 5 ′ between representatives 4′ ∈ [4] and 5 ′ ⇓ [ 5 ]. E.g., it has
a reduction [:(0)] ⇓ [;(G)], since 1 ∈ [:(0)] and 1 ⇓ ;(G). However, � lacks a reduction
[(_G.:(G)) 0] ⇓ [;(G)]. Indeed, [(_G.:(G)) 0] has a unique representative, namely (_G.:(G)) 0,
whose evaluation in . gets stuck at :(0). However, the coequaliser in Σ1 -algE has such a
reduction by applying the V-rule:

[_G.:(G)] ⇓ [:(G)] [:(0)] = [1] ⇓ [;(G)]

[(_G.:(G)) 0] ⇓ [;(G)]
·
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Thus, the coequaliser is not created by the forgetful functor.
Finally, this coequaliser is split (hence absolute): the morphism E : - → . replacing 2

with :(0) has a section 5 : . → - replacing :(0) with 2, and the coequaliser arrow 4 : . → /

has a section 6 : / → . replacing :(0) with 1. It is straightforward to check that this indeed
defines a split coequaliser, i.e., that 6 ◦ 4 = D ◦ 5 .

6. Substitution-closed bisimilarity

We have now defined bisimilarity (Proposition 4.20) for our generalised transition systems,
and also introduced operational semantics signatures, which allow us to efficiently spec-
ify relevant syntactic transition systems. In this section, we introduce substitution-closed
bisimilarity in the general setting, and state our main theorem, for which we include a
high-level proof sketch.

In order to introduce substitution-closed bisimilarity, we first lift the notion of bisimu-
lation to Σ0-monoids, following §3.4:

Definition 6.1. A morphism in Σ0 -Mon is a functional bisimulation iff its underlying
morphism in C is. A span is a simulation iff its left leg is a functional bisimulation, and a
bisimulation iff both of its legs are functional bisimulations.

Let us readily prove the following characterisation by lifting, recalling from Notation 5.9
that ℒ : C→ Σ0 -Mon is left adjoint to the forgetful functor.

Proposition 6.2. A morphism in Σ0 -Mon is a functional bisimulation iff it has the right
lifting property w.r.t. all ℒ(yB! ) : ℒ(ys(!) ) →ℒ(y!), for ! ∈ C1.

Proof. By adjunction.

As seen in Example 3.16, we now want to go beyond bisimilarity, and introduce abstract
versions of substitution-closed bisimulation and bisimilarity. For this, let us give the general
definition of modules over a monoid.

Definition 6.3. For any monoid " in a monoidal category �, let " -Mod denote the
category of algebras for the monad − ⊗ ".

An "-module thus consists of an object - equipped with an action - ⊗ " → - of "
satisfying straightforward coherence conditions.

Example 6.4. " itself is an "-module, with action given by multiplication.

Before going into substitution-closed bisimulation, let us record the following useful
properties of modules in a Howe context.

Proposition 6.5. In any Howe context,

• for all monoids " in C0, the forgetful functor " -Mod→ C0 creates all limits and
colimits, and furthermore
• for all monoids " in C0, the category " -Mod is regular and the forgetful functor
" -Mod→ C0 creates image factorisations.

Proof. For creation of limits and colimits:

• As algebras for the monad − ⊗ ", "-modules are closed under limits.
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• They are also closed under all types of colimits preserved by − ⊗ ", i.e., all of them
by definition of Howe contexts.

Thus, " -Mod is complete and cocomplete, hence regularity reduces to showing that the
pullback of any regular epi is again a regular epi. So let us consider any pullback square

� �

� �

D

E

6

5

in " -Mod, with 5 a regular epi, and show that E must also be a regular epi. By creation,
hence preservation, of limits and colimits, the given pullback square is also a pullback in
C0 and 5 is a regular epi there too. So by regularity of the presheaf category C0, E is a
regular epi in C0. Equivalently, it is a coequaliser of its kernel pair. But by creation of
limits the kernel pair uniquely lifts to a kernel pair in " -Mod, and by creation of colimits
E is a coequaliser there too. This shows that " -Mod is regular.

Finally, given -, / ∈ " -Mod, let us consider any image factorisation -
4

.
<

/ in
C0 of a morphism 5 : - → / in " -Mod, i.e., 4 is a regular epi and < is a mono in C0. In
this situation, 4 is the coequaliser of its kernel pair in C0, but, as we just saw, this kernel
pair lifts to a kernel pair in " -Mod, whose coequaliser is created by the forgetful functor,
hence 4 is a coequaliser, hence a regular epi in " -Mod. Finally, 5 also coequalises the
kernel pair, hence the existence of a unique mediating morphism . → / in " -Mod, which
must be < by uniqueness upon projection in C0. Thus, < is also a morphism in " -Mod.
Finally, its monicity follows from the fact that the forgetful functor creates pullbacks.

Let us now introduce substitution-closed spans, first in an arbitrary monoidal category,
and then in a Howe context. This then leads us to substitution-closed bisimulations.

Definition 6.6. In a monoidal category � with binary products, given a monoid " and "-
modules - and . , a substitution-closed span is a span '→ - ×. equipped with "-module
structure on ', such that '→ - × . is an "-module morphism.

The last condition is equivalent to commutation of the following diagram.

' ⊗ " '

(- × . ) ⊗ " (- ⊗ ") × (. ⊗ ") - × .
〈c1⊗",c2⊗" 〉 0-×0.

Definition 6.7. Consider any Howe context s, t : C1 → C0 and transition monoid " ∈ C.
Let -,. ∈ C be equipped with "0-module structure on -0 and .0. A substitution-closed
span is a span ' → - × . equipped with substitution-closed structure on '0 → -0 × .0.

Definition 6.8. For any Howe context s, t : C1 → C0 and transition monoid " ∈ C, a
substitution-closed bisimulation is a substitution-closed span '→ "2 (viewing "0 itself as
an "0-module) which is a bisimulation.

Let Bisim⊗ (") denote the full subcategory of C/"2 spanning substitution-closed bisim-
ulations.

Let us now prove the existence of substitution-closed bisimilarity.

Lemma 6.9. Substitution-closed simulation and bisimulation relations are stable under
unions.
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Proof. By Lemma 4.19, the union of a family of substitution-closed simulation (resp. bisim-
ulation) relations is again a simulation (resp. bisimulation) relation. But by Proposition 6.5,
the union in C is again substitution-closed, which concludes the proof.

Proposition 6.10. For any Howe context s, t : C1 → C0 and monoid " ∈ C, the category
Bisim⊗ (") of substitution-closed bisimulations over " admits a terminal object ∼⊗

"
, called

substitution-closed bisimilarity.

Proof. Straightforward generalisation of the proof of Proposition 4.20 using the lemma.

Notation 6.11. When " = Z, we abbreviate ∼⊗
Z
to just ∼⊗.

We now want to state the abstract version of our main theorem, but we need an addi-
tional hypothesis, which we now introduce. The idea is essentially that Σ1 should preserve
functional bisimulations, which does not quite make sense, because the codomain of Σ�1 is

Ĉ1, where no notion of functional bisimulation has been defined yet. Recalling Proposi-
tion 4.16, we work around this as follows.

Definition 6.12. A dynamic signature Σ1 = (Σ
�
1
,Σm

1
) preserves functional bisimulations iff

for any functional bisimulation '→ - in Σ0 -Mon, the following square is a pointwise weak
pullback.

Σ1(') Σ1(-)

Σ0('0)s Σ0(-0)s

c1◦(Σ
m
1
)' c1◦(Σ

m
1
)- (6.1)

Remark 6.13. It may not be obvious that the dynamic signature for call-by-name _-
calculus preserves functional bisimulations. We will come back to this in §7 by showing
that it satisfies a sufficient condition, cellularity.

Remark 6.14. It may seem linguistically inappropriate to say that Σ1 preserves functional

bisimulations, since we have not even defined fibrations in the codomain category Ĉ1. We
will justify this in Proposition 7.7, but for now let us move on directly to the main result.

Theorem 6.15. If Σ1 preserves functional bisimulations, then substitution-closed bisimi-
larity is context-closed. More precisely, it is a transition Σ0-monoid, and ∼⊗ → Z2 is a
transition Σ0-monoid morphism.

Proof sketch (see §9 for the full proof).

1. We first define the Howe closure �0 of applicative bisimilarity ∼⊗
0

on states as the

initial Σ�0 -monoid for the pointed strong endofunctor Σ�0 on C0/Z
2 defined by Σ�0 (') =

Σ0(') + (';∼
⊗
0
). By construction, �0 is a Σ0-monoid and both projections are Σ0-monoid

morphisms.

2. We then define the transition Howe closure � of (the full) applicative bisimilarity ∼⊗,
as an initial algebra for an endofunctor Σ�1 on a suitable category C�

Z
. Very roughly, C�

Z

is the category of spans ' → Z2 whose projection is precisely �0 → Z2
0, and Σ�1 (') =

Σ̌1(') + (';∼
⊗). We show:

Lemma 6.16. There exists a span morphism ∼⊗ → �.

3. Next comes the key lemma:
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Lemma 6.17. If Σ1 preserves functional bisimulations, then the transition Howe closure
� is a substitution-closed simulation.

Remark 6.18. Since �0 is a Σ0-monoid by construction, � is easily seen to be substitution-
closed, so the lemma really is about it being a simulation.

The key lemma is proved by characterising � as an initial algebra for a different end-
ofunctor on a different category, whose initial chain involves iterated applications of Σ1

(preserving simulations by hypothesis) to c1 : ℳ(�0) →ℳ(Z0), which is trivially a simu-
lation.

4. In the standard proof method, the next step is to prove that the transitive closure of �0

is symmetric. But in our case �0 is a general span, not a relation. In order to avoid some
coherence issues, we introduce a suitable notion of relational transitive closure for general
spans, denoted by −+, for which we show:

Lemma 6.19. The relational transitive closure �0
+ of the Howe closure �0 on states is

symmetric.

As substitution-closed simulations are closed under transitive closure, we obtain

Corollary 6.20. �+ is a substitution-closed simulation which is symmetric on states.

We then use the following lemma (proved in §9.7).

Lemma 6.21. For any substitution-closed simulation ' such that '0 is symmetric, there
exists a span morphism '→ '′ such that '′ is a substitution-closed bisimulation.

By terminality of ∼⊗, we thus get a unique morphism �+′→ ∼⊗ over Z2.

5. From the chain
∼⊗ → � → �+ → �+′→ ∼⊗

we get by terminality that ∼⊗ is a retract of a transition Σ0-monoid, namely �. The result
then readily follows from monadicity of transition Σ0-monoids (Proposition 5.8) and the
following result, taking - = �, . = ∼⊗, and / = Z2.

Lemma 6.22. Consider a monad ) : � → � on any category �, )-algebras - and /, and

morphisms -
4

.
<

/ in � such that the composite is a )-algebra morphism, 4 is a
split epi, and < is monic. Then there is a unique )-algebra structure on . such that 4 and
< both are )-algebra morphisms.

Proof. Let B : . → - denote any section of 4. The desired structure is given by

) (. )
) (B)
−−−−→ ) (-) → -

4
. ,

and the rest follows by monicity of <.
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7. Preservation of functional bisimulations, and cellularity

Let us now consider the main hypothesis of Theorem 6.15, preservation of functional bisim-
ulations. In §7.1, we rephrase the condition in a way that makes more sense linguistically,
i.e., by an actual preservation condition. We then work towards a characterisation in terms
of cellularity. In §7.2, we first briefly recall familial functors [15, 13], and show that the
dynamic signature for call-by-name _-calculus induces familial functors. In §7.3, we re-
strict attention to the case where both components of the dynamic signature are familial,
and show that preservation of functional bisimulations is then equivalent to a cellularity
condition [21, 12], which itself comes with a useful sufficient condition.

7.1. An alternative characterisation. Let us first give an alternative definition of dy-
namic signatures.

Definition 7.1. Let Ĉ1/Δs denote the following lax limit category.

Ĉ1/Δs

Ĉ0 Ĉ1
Δs

Concretely, an object consists of presheaves -1 and -0, together with a morphism

-1 → -0s. Just as C, Ĉ1/Δs is in fact a presheaf category:

Proposition 7.2. Ĉ1/Δs is isomorphic to the presheaf category over the lax colimit Cs of
the functor s : C1 → C0.

Remark 7.3. Concretely, Cs is the coproduct of C0 and C1, augmented with morphisms
B! : s(!) → ! for all ! ∈ C1, naturally in !.

Notation 7.4. In the case of call-by-name _-calculus, as in C (Notation 4.12), we call ⇓
the unique object coming from C1 = 1.

Proposition 7.5. Any operational semantics signature (Σ0,Σ1) induces a finitary functor

Σs
1 : Σ0 -Mon→ Ĉs making the following square commute.

Σ0 -Mon Ĉs

Ĉ0 Ĉ0

Σs
1

Σ0

(7.1)

In Ĉs, we may define functional bisimulations by analogy with Definition 4.15.

Definition 7.6. A morphism 5 : - → . in Ĉs is a functional bisimulation, or a fibration,
iff it enjoys the (weak) right lifting property w.r.t. yB! : ys(!) → y! , for all ! ∈ C1.

Proposition 7.7 (Price for our linguistic mischief). A dynamic signature preserves func-

tional bisimulations (Definition 6.12) iff the induced functor Σ0 -Mon→ Ĉs does.

Proof. The functor Σs
1 maps any functional bisimulation 5 : ' → . to the square (6.1),

and just as in Proposition 4.16 a morphism in Ĉ1/Δs is a functional bisimulation iff the
corresponding square is a pointwise weak pullback.
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7.2. Familiality. In the previous section, we have shown that functional bisimulation may

be defined by lifting both in Σ0 -Mon and Ĉ1/Δs. We now want to exploit this to obtain
a characterisation of preservation of functional bisimulations, which will then lead us to
useful sufficient conditions.

For this, let us briefly recall familial functors, and show that the functors Σ0 and

Σs
1 : Σ0 -Mon → Ĉ1/Δs induced by the dynamic signature for call-by-name _-calculus are

familial.
Familial functors are a generalisation of polynomial functors on sets, i.e., functors of

the form � (-) =
∑
>∈$ -

=> , where $ is a set of ‘operations’, and => ∈ N is the ‘arity’ of any
> ∈ $. We want to generalise this to presheaf categories.

Example 7.8. Consider for example the ‘free category’ monad ) on Gph. Analysing and
abstracting over the definition of ) , we will arrive at the notion of familial functor. Let us

first recall that graphs are presheaves over the category [0] [1]
B

C
. ) does not change

the vertex set, and an edge of ) (�) is merely a path in �. Indexing this by the length of
the path, we obtain

) (�) [0] = Gph(y[0] , �) and ) (�) [1] =
∑
=Gph([=], �),

where [=] denotes the filiform graph • → • . . . → • with = edges (which is consistent with
[0] and [1] through the Yoneda embedding). Furthermore, the source of a path [=] → �

in ) (�) is obtained as the composite

[0]
B=
−−→ [=] → �,

where the first morphism selects the first vertex of the path. Similarly the target is obtained
by precomposition with the morphism, say C=, selecting the last vertex.

From these observations, we may deduce that the whole of ) may be derived from

• the graph ) (1), which generalises the set of operations, and
• a functor el() (1)) → Gph, morally describing the arity of each operation,

where we recall from MacLane and Moerdijk [33]:

Definition 7.9. The category of elements el(-) of a presheaf - over any category C has
pairs (2, G) with G ∈ - (2) as objects, and a morphism 5 ↾ G ′ : (2, G) → (2′, G ′) for all
5 : 2→ 2′ such that - ( 5 ) (G ′) = G.

The graph ) (1) has a single vertex, and as many paths as we can derive from a single
endo-edge on this vertex: N, because there is one for each length. The category of elements
of ) (1) thus looks like the following,

([1], 0) ([1], 1) ... ([1], =) ...

([0], ★)B
C B

C
B

C

and the assignments

([0], ★) ↦→ [0] ([1], =) ↦→ [=]

extend to a functor � : el() (1)) → Gph by mapping each source or target map ([0], ★) →
([1], =) to the corresponding map [0] → [=]. This functor may be visualised as
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[0] [1] ... [=] ...

[0].
B0
C0 B1

C1
B=

C=

The promised expression of ) in terms of ) (1) and � is:

) (�) (2) �
∑

>∈) (1) (2)

Gph(� (2, >), �).

Definition 7.10. A functor � : � → Ĉ to some presheaf category is familial iff we have a
natural isomorphism

� (-) (2) �
∑

>∈$ (2)

� (� (2, >), -),

for some presheaf $ ∈ Ĉ and functor � : el($) → �. The presheaf $ is called the presheaf
of operations, or the spectrum [15] of �, while � is called the exponent.

Remark 7.11. If � has a terminal object, we always have $ � � (1).

Example 7.12. Let us show that the endofunctor Σ0 : Ĉ0 → Ĉ0 for _-calculus is familial.
We have

Σ0 (-) (=) = - (= + 1) + - (=)2

� Ĉ0(y=+1, -) + Ĉ0 (2 · y=, -)

Thus, we choose:

$ (=) = {abs, app} � (=, abs) = y=+1
� (=, app) = 2 · y=.

These definitions can be straightforwardly upgraded to functors $ ∈ Ĉ0 and � : el($) → Ĉ0,
and we get the desired isomorphism.

Example 7.13. Let us now show that the functor Σs
1 : Σ0 -Mon→ Ĉ1/Δs for call-by-name _-

calculus is familial. By definition, it maps any - to the set-map -0(1) + �V (-) → Σ0(-0) (0)

defined in Example 3.20. Let us transfer this across the isomorphism Ĉ1/Δs � Ĉs (recalling
Remark 7.3). On states, we almost may proceed as for Σ0, except that the domain category

has changed (from Ĉ0 to Σ0 -Mon). But recalling that ℒ : C → Σ0 -Mon denotes the left
adjoint to the forgetful functor �, we have

Σs
1
(-) (=) = Σ0((�(-))0) (=)

� C(y=+1,�(-)) + C(2 · y=,�(-))
� Σ0 -Mon(ℒ(y=+1), -) + Σ0 -Mon(ℒ(2 · y=), -),

so we may (partially) define

$ (=) = {abs, app} � (=, abs) = ℒ(y=+1)

� (=, app) = ℒ(2 · y=).
(7.2)

Now, remembering from Notation 7.4 that we call ⇓ ∈ Cs the unique object of Cs coming
from C1 = 1, on transitions, we have:

Σ
s
1(-) (⇓) = -0(1) + �V (-)

� C(y1,�(-)) + �V (-)

� Σ0 -Mon(ℒ(y1), -) + �V (-).
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We thus need to find �V such that �V (-) � Σ0 -Mon(�V, -), and then we would complete
equations (7.2) with: $ (⇓) = {_-val, V-red} � (⇓, _-val) = ℒ(y1)

� (⇓, V-red) = �V.
And indeed, let �V denote the following pushout.

ℒ(y0) ℒ(y0 + y1) ℒ(y0 + y⇓)

ℒ(y⇓) �V

j̄

ℒ (yB⇓ )

ℒ (y0+yC⇓ )

8=1

8=2

The morphism j̄ is defined to be the mate of some morphism y0 → �(ℒ(y0 + y1)), itself
corresponding by Yoneda to some element of �(ℒ(y0+y1)) (0). The presheaf �(ℒ(y0+y1))
has as states _-terms over a closed constant :0, and a unary constant :1. We pick the element
:1(:0).

Let us now show that �V (-) � Σ0 -Mon(�V, -) for any -: as Σ0 -Mon(−, -) turns
colimits into limits, we have the pullback

[�V, -] [ℒ(y⇓), -]

[ℒ(y0 + y⇓), -] [ℒ(y0 + y1), -] [ℒ(y0), -][j̄,- ]

[ℒ (yB⇓ ) ,- ]

(where we abbreviate Σ0 -Mon(−1,−2) to [−1,−2] for readability). By Yoneda, this reduces
to

[�V, -] - (⇓)

- (0) × - (⇓) - (0) × - (1) - (0),
- (0)×- (C⇓ )

- (B⇓)

(C ,D) ↦→D [C ]

which shows that we have �V (-) � [�V, -] as desired.

We have thus defined the actions of the functors $ ∈ Ĉs and � : el($) → Σ0 -Mon on
objects. On morphisms, the only non-obvious point is the image of B⇓ ↾ _-val and B⇓ ↾ V-red.
The former morphism is mapped to the identity on � (0, abs) = ℒ(y1) = � (⇓, _-val). The
latter is mapped to the composite

ℒ(2 · y0)
ℒ (y0+yB⇓ )

−−−−−−−−→ℒ(y0 + y⇓)
8=2
−−→ �V. (7.3)

This achieves the desired isomorphism Σs
1(-) (2) �

∑
>∈$ (2) Σ0 -Mon(� (2, >), -).

7.3. Cellularity. We now want to exploit familiality to obtain an alternative characterisa-
tion of preservation of functional bisimulations. The starting point is the observation that

when a functor � : � → Ĉ is familial, say as � (�) (2) =
∑
>∈$ (2) � (� (2, >), �), then any

morphism of the form 5 : y2 → � (�), corresponding by Yoneda and familiality to some pair
(>, q) with q : � (2, >) → �, factors as

y2
(>,id� (2,>) )
−−−−−−−−−→ � (� (2, >))

� (q)
−−−−→ � (�).

Furthermore, the first component (>, id� (2,>) ) is easily seen to be generic, in the following
sense.
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Definition 7.14. Given any functor � : � → ℬ, a morphism b : � → � (�) is �-generic
(or generic for short) whenever any square of the form below (solid) admits a unique lifting
: (dashed) such that � (:) ◦ b = j and 6 ◦ : = 5 .

� � (�)

� (�) � (�)

j

b

� ( 5 )

� (:)
� (6)

In fact, we have the following important alternative characterisation of familial functors
to presheaf categories.

Theorem 7.15. For any functor � : � → Ĉ such that � has a terminal object, � is familial
iff all morphisms 5 : - → � (�) factor as

-
b
−→ � (*)

� (q)
−−−−→ � (�),

with b generic.

Proof. See [45, Theorem 8.1] and [21, §3].

Remark 7.16. The factorisation is essentially unique.

Now, recalling Proposition 6.2, let us consider a situation in which both categories �

and Ĉ are equipped with notions of functional bisimulation defined by lifting: we are given

sets J and K of morphisms in � and Ĉ, respectively. Now for any familial functor � : � → Ĉ
and commuting square

� � (�)

� � (�)

D

:

E

� ( 5 ) (7.4)

with : ∈ K and 5 ∈ J⋔, we may take generic factorisations of both horizontal morphisms
and use genericness to factor the original square as the solid part of

� � (-) � (�)

� � (. ) � (�).

b

:

j

� (X)

� (q)

� (k)

� (;) � ( 5 )

Clearly, if X ∈ ⋔ (J⋔), then we find a lifting ; as shown, which makes � (;) ◦ j into a lifting
for the original square. We have shown the ‘if’ part of

Definition 7.17. Given categories � and Ĉ respectively equipped with sets of morphisms

J and K, such that � has a terminal object, then a familial functor � : � → Ĉ is cellular
iff for all commuting squares

� �

� (-) � (. )

:

b

� (X)

j (7.5)

with : ∈ K and b and j generic, we have X ∈ ⋔ (J⋔).



A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 29

Lemma 7.18. Given categories � and Ĉ respectively equipped with sets of morphisms J

and K, such that � has a terminal object, then a familial functor � : � → Ĉ preserves
fibrations iff it is cellular.

Proof. Conversely, let us assume that � preserves fibrations, and consider any square of the
form (7.5). We need to show X ∈ ⋔ (J⋔). But for any commuting square as below left

- �

. �

q

X

k

5

� � (-) � (�)

� � (. ) � (�)

b

:

j

� (X)

� (q)

� (k)

� (;) � ( 5 )
W

with 5 ∈ J⋔, by pasting this square with our generic square (7.5), we obtain the solid part
above right. But because � preserves fibrations, we find a lifting W as shown, which by
genericness of j (and then b) yields the desired lifting ;.

This yields the announced characterisation of preservation of functional bisimulations:

Corollary 7.19. In any Howe context, for any operational semantics signature (Σ0,Σ1),
if Σs

1 is familial with exponent � : el(Σs
1(1)) → Σ0 -Mon, then it preserves functional bisim-

ulations iff for all ! ∈ C1 and > ∈ Σs
1(1) (!), � (B! ↾ >) : � (s(!), > · B!) → � (!, >) is a

cofibration.

Proof. We apply Lemma 7.18 with

• J the set of morphisms ℒ(yB! ) in Σ0 -Mon, for ! ∈ C1, and

• K the set of morphisms yB! in Ĉs, for ! ∈ C1.

The only difficulty lies in realising that in a Howe context the statement unfolds to the

same as that of Lemma 7.18. Indeed, for any familial � : � → Ĉ (with � having a terminal
object) and generic morphism y2 → � (�) from a representable, we have � � � (2, >),
where > ∈ � (1) (2) denotes the operation corresponding to y2 → � (�) → � (1) by Yoneda.
Furthermore, in a commuting square

ys(!) y!

� (-) � (. )

yB!

b

� (X)

j

with b and j generic, the operation > associated to the composite ys(!)
b
−→ � (-) → � (1)

is >′ · yB! , where >
′ denotes the one associated to y!

j
−→ � (. ) → � (1). Finally, in such a

situation, X is � (yB! ↾ >
′), or, omitting the Yoneda embedding, � (B! ↾ >

′).

This characterisation of preservation of functional bisimulations in terms of cofibrations
is easier to prove in practice, since cofibrations in turn admit the following well-known
characterisation.

Definition 7.20. Consider any set J of maps in a given category.

• A basic relative J-cell complex is any morphism 5 obtained by pushing out some
morphism from J along any morphism, as in
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� �

� �.

9∈J

5

• A relative J-cell complex is a (potentially transfinite) composite of basic relative
J-cell complexes.

Proposition 7.21 ([27, Lemma 2.1.10]). For any set J of maps in a locally presentable
category, all relative J-cell complexes are cofibrations in the generated weak factorisation
system.

8. Applications

In this section, we apply our results to show that substitution-closed bisimilarity is a con-
gruence in concrete examples.

8.1. Call-by-name. We have already specified the syntax (§3.1) and transitions (§3.3) of
call-by-name _-calculus. By Theorem 6.15, Corollary 7.19, and Proposition 7.21, congruence
of substitution-closed bisimilarity will follow if we prove that the morphisms � (B⇓ ↾ >)
corresponding to both transition rules are relative cell complexes.

The morphism � (B⇓ ↾ _-val) is an identity, hence trivially a relative cell complex.
For the V-rule, it is not entirely trivial that the map � (B⇓ ↾ V-red) corresponding to the

second transition rule, defined as the composite (7.3), is a cofibration. But, as (essentially)
noted in [12, Example 5.21], it is a relative cell complex by construction as both components
are pushouts of ℒ(yB⇓ ), as should be clear from the following diagram.

ℒ(y0) ℒ(y⇓)

ℒ(y0 + y0) ℒ(y⇓ + y0) �V

8.2. Call-by-value. Let us now treat the call-by-value variant of untyped _-calculus, essen-
tially as in [36, 37]. In this setting, it is important to distinguish substitution by values and
by terms. Indeed, letting � denote the identity _G.G, the terms 4 = _G.� and 4′ = _G.((_H.�) G)
are contextually equivalent, since during evaluation in any context, the bound variable will
only be replaced with a value. However, if one defines applicative bisimulation naively, i.e.,
requiring it to be closed under arbitrary substitution, then 4 and 4′ are not bisimilar, as �
is not bisimilar to (_H.�) Ω – which diverges. We thus want to restrict to value substitution
– which our treatment in [12] overlooks!

Here is one of several ways of doing this. The idea is to have two sorts, one for values

and the other for general terms. We thus would like Ĉ0 = C0 ≃ [Set
2, Set2] 5 to be equivalent

to finitary endofunctors on Set2. But

[Set2, Set2] 5 ≃ [2 · Set
2
5 , Set] ≃ [2 · F

2, Set],

so we take C0 to be the opposite of 2 · F2. By the equivalence, composition of finitary
endofunctors equips C0 with monoidal structure, and we denote the two sorts by p and
v, respectively for “programs” and “values”. In the presheaf point of view, we denote by
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(<, =)p and (<, =)v, respectively, objects in the first and second term of 2 · F2 = F2 + F2, so
that - (<, =) (2) in the finitary endofunctor world corresponds to - (<, =)2 in the presheaf
world, for 2 ∈ {p, v}.

Since abstraction should bind a value variable, the syntax is thus specified by

Σ0(-) (<,=) (p) = - (<, =) (p)
2 + - (<, =) (v) and Σ0(-) (<,=) (v) = - (<, = + 1) (p).

A model - of the syntax should thus in particular feature operations

abs<,= : - (<, = + 1) (p) → - (<, =) (v) app<,= : - (<, =) (p)
2 → - (<, =) (p)

val<,= : - (<, =) (v) → - (<, =) (p),

where the last operation requires that values should map to programs.
It is important to understand that the notation - (<, =) may be extended to - ( ), for

any  ∈ Set2, (<, =) being only our notation for finitely presentable objects of the skeleton
F2. Thus, e.g., (<, =) is isomorphic to (<, =)+yv, where yv denotes the Yoneda embedding of
v along 2→ F2 ↩→ Set2. So the arity for abstraction in fact yields an operation - ( +yv) (p).

Denoting composition of finitary endofunctors by ⊗, we define a pointed strength for
Σ0 as follows, for any - ∈ C0, . ∈ �/C0, and  ∈ F

2:

• at p, we have

(Σ0(-) ⊗ . ) ( ) (p) = - (. ( )) (p)
2 + - (. ( )) (v) = Σ0(- ⊗ . ) ( ) (p),

so we take BC-,. , ,p to be the identity;
• at v, we have

(Σ0(-) ⊗ . ) ( ) (v) = - (. ( ) + yv) (p) and Σ0(- ⊗ . ) ( ) (v) = - (. ( + yv)) (p),

so we define BC-,. , ,p by applying - (−)(p) to the copairing of . ( ) → . ( + yv)

and
yv → � ( + yv) → . ( + yv).

We then specify transitions, which we first recall:

_G.4 ⇓ 4

41 ⇓ 4
′
1 42 ⇓ 4

′
2 4′1 [_(4

′
2)] ⇓ 43

41 42 ⇓ 43
·

In order to specify such transitions, we take C1 = 1, as in the call-by-name case, with s

and t mapping the unique object to (0, 0)p and (0, 1)p, respectively: transitions will relate
a closed program to a program with one value variable (morally the body of the obtained

abstraction). For any - ∈ C = Ĉ1/Δ � Set/Δ, We take Σ�
1
(-) to be the coproduct

Σ
�
1 (-) = -0(0, 1) + �VE (-),

where �VE (-) denotes the set of valid premises for the second rule in §2.3, i.e., triples
(A1, A2, A3) ∈ -1 such that

A3 · B⇓ = (A1 · C⇓) [_(A2 · C⇓)].

By Theorem 6.15, Corollary 7.19, and Proposition 7.21, congruence of substitution-
closed bisimilarity will follow if we can prove that the morphisms � (B! ↾ >) corresponding
to both transition rules are relative cell complexes. This is again trivial for the first rule,
while for the second one we obtain the following morphism, which is a relative cell complex
(almost) by construction.

ℒ(y0) ℒ(y⇓)

ℒ(y0 + y0) ℒ(y⇓ + y⇓) �VE

b
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Here, b corresponds by adjunction and Yoneda to the closed term

(A1 · C⇓) [_(A2 · C⇓)] ∈ �(ℒ(y⇓ + y⇓)) (0),

where A1 and A2 denote the two transition constants generating y⇓ + y⇓.

8.3. Erratic non-determinism. The non-deterministic _-calculus investigated in [39, §7],
may be presented by adding a unary operation ⊎ to the syntax of pure _-calculus, using
two labels for transitions, i.e., having two transtion relations ⇓_ (between a closed term
and a term with one free variable, as before) and ⇓g (between closed terms), and using the
following rules, where Ω denotes any diverging term.

⊎4 ⇓g 4 ⊎4 ⇓g Ω _G.4 ⇓_ 4

41 ⇓_ 4
′
1 4′1 [42] ⇓_ 43

41 42 ⇓_ 43

41 ⇓_ 43 43 [42] ⇓g 44

41 42 ⇓g 44

41 ⇓g 43

41 42 ⇓g 43 42 4 ⇓g 4

41 ⇓g 42 42 ⇓g 43

41 ⇓g 43
·

Clearly, ⇓g includes V-reduction; the last two rules ensure that it is reflexive and transitive;
and the previous one that it applies to the function part of an application. It thus coincides
with Sangiorgi’s relation ⇒ (albeit with redundant rules). The syntax is easily modelled by
taking Σ0(-) (=) = - (= + 1) + - (=)

2 + - (=), and the rules are easily seen to fit into a Σ1 such
that Σs

1
preserves functional bisimulations by Corollary 7.19 and Proposition 7.21. Finally,

substitution-closed bisimilarity in the initial model coincides with Sangiorgi’s applicative
bisimilarity, so we again deduce congruence of applicative bisimilarity by Theorem 6.15.

9. Congruence of substitution-closed bisimilarity

In this section, we elaborate on the proof sketch of Theorem 6.15 given in §6. The overall
structure remains the same, and the final part of the proof sketch is complete, so we mainly
elaborate on items (1)–(4).

9.1. Preliminaries on spans. In this section, we fix a bicomplete category �, and develop
some tools about spans, including categorified notions of reflexivity, transitivity, symmetry,
and transitive closure. We switch freely from spans - ← ( → . to their pairings ( → - ×.

in �/-×. . Furthermore, we denote sequential composition of any ' → -×. and ( → . ×/

(constructed by pullback) by '; (→ - × /.

Definition 9.1. A span - ← ( → - (a.k.a. a graph ( ⇒ -) is reflexive if there is a
morphism from the diagonal to ( in �/-2. It is transitive if there is a morphism (; ( → (

over -2. Finally, it is symmetric if there is a morphism († → (, where (−)† denotes the
functor swapping projections.

For potentially non-reflexive spans, we will use the following reflexive transitive closure.

Definition 9.2. The reflexive transitive closure (∗ of any span - ← ( → - is the coproduct∑
=∈N (

;=, or for short
∑
=∈N (

= when the context is clear, where (;= denotes iterated span
composition of ( with itself, with (;0 = -.

At some point, we will also use the following relational notion of transitive closure.
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Notation 9.3. Given a span ( on -, we denote by ( the induced relation on - by the
image factorisation of (→ - × -.

Definition 9.4. The relational transitive closure (+ of a span ( on - is the union
⋃
=>0 (

;=.

We note that the relational transitive closure commutes with symmetry.

Lemma 9.5. For all spans ( → -2, we have (†+ � (+†.

The following lemma will later be used to exploit preservation of sifted colimits by Σ0.

Lemma 9.6. If ( is a reflexive span on -, then (+ is the (filtered) colimit of the chain

- → ( � (; - → (; ( � (; (; - → (; (; ( → . . .

The next result will be useful to show that the relational transitive closure of the Howe
closure of substitution-closed bisimilarity is symmetric on states.

Lemma 9.7. For any reflexive span ' → -2, '+ is symmetric if there exists a span
morphism '→ '+†.

Proof. Given a morphism 9 : ' → '+†, we consider the composite

'+ �
⋃
=>0

';= →
⋃
=>0

('+†);= �
⋃
=>0

(('+);=)† →
⋃
=>0

'+† �
⋃
=>0

'+† � '+†,

where the first morphism is obtained from 9 , and the second one is obtained from morphisms
('+);= → '+.

9.2. Howe closure on states. We fix an operational semantics signature (Σ0,Σ1) on a
Howe context s, t : C1 → C0.

Definition 9.8. Let Σ�0 : C0/Z
2
0 → C0/Z

2
0 map any span - → Z2

0 to

Σ0 (-) + (-;∼
⊗
0 ) → Σ0 (Z0)

2 + Z2
0 → Z2

0.

This functor Σ�0 is clearly inspired from the standard Howe closure. We now want to

prove that it is pointed strong, which requires us to equip C0/Z
2
0 with monoidal structure.

But Z2
0 is a monoid, and it is well-known [45, §2] that any slice of a monoidal category

over any monoid " is again monoidal. The tensor of - → " and . → " is simply
- ⊗ . → " ⊗ " → ", and the unit is � → ". We may thus state the following result.

Proposition 9.9. The functor Σ�0 is pointed strong.

For proving this, we first need the following.

Lemma 9.10. For any monoid - in any monoidal category � with finite limits, there is a
natural transformation with components X*,+ ,, : (*;+) ⊗, → * ⊗, ;+ ⊗ - in �/-2.

Proof. Let < : - ⊗ - → - denote the multiplication. By tensoring the defining pullback of
*;+ with , we obtain the back face below.
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(*;+) ⊗, + ⊗,

(* ⊗,); (+ ⊗ -) + ⊗ -

* ⊗, - ⊗,

* ⊗, -

+ ⊗c2

c2⊗,

<◦(c2⊗c2)

<◦(-⊗c2)

c1⊗,

<◦(c1⊗- )

X*,+ ,,

By universal property of pullback, we then get the dashed arrow making all faces commute,
which gives our candidate X*,+ ,, . Naturality follows by universal property of pullback.

Proof of Proposition 9.9. Pointed strong endofunctors are closed under coproducts, so it
suffices to show that both terms of the sum are pointed strong. The first one inherits the
pointed strength of Σ0, while the pointed strength of −;∼⊗

0
follows from Lemma 9.10 and

substitution-closedness of ∼⊗
0
: (*;∼⊗

0
) ⊗ + → (* ⊗ +); (∼⊗

0
⊗ Z0) → (* ⊗ +);∼

⊗
0
.

Presheaf categories being well-known to be closed under the slice construction, we have
the following.

Lemma 9.11. The category C0/Z
2
0 is a presheaf category.

This allows us to deduce the following.

Proposition 9.12. The endofunctor Σ�
0

is finitary.

Proof. By commutation of filtered colimits with finite limits in presheaf categories.

By Proposition 9.9, 9.9, and 9.12, the following is legitimate.

Definition 9.13. Let �0 = ZΣ�
0

denote the initial Σ�0 -monoid.

By Proposition 5.1, we also get the following for free.

Proposition 9.14. The object �0 → Z2
0 is an initial algebra for the endofunctor C0/Z

2
0 →

C0/Z
2
0 mapping any - → Z2

0 to � + Σ�0 (-) → Z2
0.

Proposition 9.15. The underlying object �0 is a Σ0-monoid.

Proof. Directly follows from the Σ�0 -monoid structure.

Next, we exhibit an alternative characterisation of �0, which relies on the following
result.

Lemma 9.16 (Packing lemma). Consider finitary endofunctors � and � on a cocomplete
category C, and let �★(�) � `(.(� + � (()) denote the ‘free �-algebra’ monad [38, Theo-
rem 2.1]. Then we have `(.(� (() + � (()) � `(.�★(� (()).

Proof. Indeed, we have

`(.�★(� (()) � `(.`*.(� (() + � (*))

� `(.(� (() + � (()) (by the Diagonal rule [7, Theorem 16]).
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Proposition 9.17. The object �0 → Z2
0 is an initial algebra for the endofunctor Σ�0

′ : C0/Z
2
0 →

C0/Z
2
0 mapping any - → Z2

0 to �;∼⊗∗
0
+ Σ0(-);∼

⊗∗
0
→ Z2

0.

Proof. Taking � (() = � + Σ0(() and � (() = (;∼⊗
0

in Lemma 9.16, and observing that �
preserves coproducts (because pullback along the first projection ∼⊗

0
→ Z0, as a left adjoint,

preserves colimits), so that �★(*) �
∑
= �

= (*), we have (by commutation of coproducts
with *;−)

�★(*) �
∑
=

�= (*) �
∑
=

*; (∼⊗0 )
=
� *;

∑
=

(∼⊗0 )
=
= *;∼⊗∗0 .

Thus, �★(� (()) � (� + Σ0(());∼
⊗∗
0
� (�;∼⊗∗

0
) + (Σ0(();∼

⊗∗
0
), as desired.

9.3. Double categorical notation. Our next goal is to define the Howe closure on tran-
sitions. For this, we appeal to Morton’s double bicategories [35]. They are a refinement of
double categories, in which both the horizontal and vertical categories are bicategories. We
rely in particular on his Theorem 4.1.3, which (when dualised) states that for any category
� with pullbacks, there is a double bicategory 2(?(�):

• objects are objects of �,
• both the vertical and horizontal bicategories are (?0=(�),
• cells, called double spans, are precisely commuting diagrams of the following form.

� � �

�′ �′ � ′

�′′ �′′ � ′′

(9.1)

We will not need the rest of the structure. All we need to know is that cells compose
horizontally and vertically just as in a double category. We will use the double bicategories

2(?(C0) and 2(?(Ĉ1).

Notation 9.18. We use the following notational conventions.

• We denote cells 2(?(C0) such as (9.1) above by

� �

�′′ � ′′.

�

�′

�′′

�′�′

• Furthermore, cells in Ĉ1 of the form below left will be denoted as below right.

-0s (0s .0s

-1 (1 .1

- ′
0
t (′

0
t . ′

0
t

-0 .0

- ′0 . ′0

(0

-1

(′
0

.1(1 (9.2)
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Explicitly, spans of the form -0s ← -1 → - ′0t are denoted by -0
-1

- ′0, while

spans of the form -0 ← (0 → .0 are still denoted by -0
(0

.0, but silently coerced
by Δs or Δt depending on context.
• For both types of cells, we collapse identity borders, as usual.
• When a span is trivial on one side, we use standard arrows for its borders, and a
double arrow for its middle arrow, all in the relevant direction. E.g., the diagram
below left may be depicted as below right.

� � �

�′ �′ � ′
0 1 2

� �

�′ � ′

�

0

�′′

21

Cells of the form (9.2) live in 2(?(Ĉ1), hence may be composed horizontally. Relevant
examples of vertical composition will be obtained by embedding cells of the form (9.1) along

Δs (resp. Δt), and vertically composing with cells of the form (9.2) in 2(?(Ĉ1). This yields
a top (resp. bottom) action of 2(?(C0), which we both denote by mere pasting.

Lemma 9.19. Given a composable pasting diagram made of cells of both types, any two
parsings agree up to isomorphism.

Proof. By interchange of limits.

9.4. Howe closure on transitions. Let us now define the Howe closure on transitions.
First, we delineate an ambient category C�

Z
. The idea is that objects of this category should

be transition systems ( → Z2 over Z2 whose image under the projection C/Z2 → C0/Z
2
0 is

precisely �0 → Z2
0
. Thus, an object of C�

Z
consists of an object (1 ∈ C1, equipped with a

dashed cone to the outer part of the diagram below.

Z0s �0s Z0s

Z1 (1 Z1

Z0t �0t Z0t

(9.3)

Equivalently, they are morphisms over the limit, so that we may define C�
Z
as a slice category

by merely stating the following.

Definition 9.20. Let 'm� denote the limit of the outer part of (9.3).

Definition 9.21. C�
Z

is the category of cones over the outer part of (9.3), or equivalently,

it is the slice category C1/'
m� .

Proposition 9.22. The initial object in C�
Z

is the span Z ← �0 → Z, i.e., the one with
(1 = 0.
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Definition 9.23. Let Σ�1 : C�
Z
→ C�

Z
map any object Z← ( → Z to the coproduct of the

following two pastings.

Z0 Z0

Σ0 (Z0) Σ0(Z0)

Z0 Z0

�0

Σ0 (�0)

Σ�
1
(Z)

�0

Σ�
1
(Z)Σ�

1
(()

Z1 Z1

Z0 Z0 Z0

Z0 Z0 Z0

�0

Z1

�0

Z1

∼⊗
0

∼⊗
0

Z1(1 ∼⊗
1

�0

�0

(9.4)

Proposition 9.24. The functor Σ�1 : C�
Z
→ C�

Z
is finitary.

Proof. The forgetful functor C�
Z
� C1/'

m� → C1 creates colimits, so it suffices to show that

the composite C�
Z

Σ�
1

−−→ C�
Z
→ C1 is finitary. This functor maps any ( to Σ�

1
(() + (1;∼1

⊗,

hence is finitary because Σ�1 is and −;∼⊗
1
is cocontinuous.

The last result legitimates the following definition.

Definition 9.25. Let � denote the initial (vertical) Σ�1 -algebra.

We readily can prove the following.

Lemma 6.16. There exists a span morphism ∼⊗ → �.

Proof. By construction, the underlying object of � is in particular a Σ̌1-algebra, so by
initiality we obtain a unique span morphism Z → � – in other words � is reflexive. Fur-
thermore, again by construction, � is an algebra for the endofunctor −;∼⊗ on C/Z2. We
thus may form the composite ∼⊗ � Z;∼⊗ → �;∼⊗ → �.

9.5. Alternative characterisations of the Howe closure. In this section, we exhibit a
few alternative characterisations of the Howe closure on transitions. The definition in the
previous section is convenient for proving that the transitive closure is symmetric, while our
final alternative characterisation will enable a conceptual proof of the simulation property.

First of all, by the packing Lemma 9.16, we have:

Lemma 9.27. The Howe closure � is (isomorphic to) the initial algebra of the endofunctor
Σ�
1,pack

: C�
Z
→ C�

Z
mapping any Z← (→ Z to the following pasting.

Z0 Z0 Z0 Z0

Σ0(Z0) Σ0(Z0)

Z0 Z0 Z0 Z0

�0
∼⊗∗
0

Z1

Σ0 (�0)

Σ�
1
(Z)

�0

Σ�
1
(Z)

∼⊗∗
0

Z1

Σ�
1
(()

∼⊗∗
1

Z1

�0

�0

(9.5)
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For the proof, we need an intermediate result, Corollary 9.29 below, which relies on the
following lemma.

Lemma 9.28. Consider the following diagram of functors and natural transformations

� �

ℬ ℬ

�

 

�

 ⇓U

such that � and � are finitary endofunctors on cocomplete categories � and ℬ. Let " be

the endofunctor on the comma category �/ mapping 0
5
−→  1 to �0

� 5
−−−→ � 1

U1
−−→  �1.

Then, given an object 5 : 0 → �1 of �/ , there is a unique morphism 5 ∗ : �★0 →  �★1

such that

• (��★0 → �★0, ��★1 → �★1) is a morphism from " 5★ to 5★;
• (0→ �★0, 1 → �★1) is a morphism from 5 to 5★.

Furthermore, "★ 5 = 5★.

Proof. The first thing to note is that  lifts to a functor  : � -alg → � -alg, mapping

�G → G to � G
UG
−−→  �G →  G, so that " -alg is isomorphic (in the obvious way) to the

comma category � -alg/ .
Through this isomorphism, we want to show that (�★0 →  �★1) is the free "-algebra

on 0 → 1. Here, existence and the claimed uniqueness property of the morphism �★0 →

 �★1 follows from the universal property of �★0 as a free algebra on 0.
We now check the universal property of (�★0 →  �★1). A "-algebra morphism from

it to a "-algebra 0′ →  1′ consists of

• a �-algebra morphism �★0 → 0′;
• a �-algebra morphism �★1 → 1′;
• such that the following diagram commutes.

�★0 0′

 �★1  1′

By universal properties of �★0 and �★1 as free algebras, the first two items amount to
morphisms 0 → 0′ and 1 → 1′ in � and ℬ, respectively. As for the required commuting
diagram, note that it can be lifted in the category of �-algebras. Then, it can be shown to
be equivalent to the commutation of the following diagram, exploiting again the universal
property of �★0.

0 0′

 1  1′

Finally, "-algebra morphisms from �★0 →  �★1 to 0′ →  1′ are in one to one correspon-
dence to morphisms from 0 →  1 to 0′ →  1′. It is straightforward to check that the first
direction correspond to precomposition with (0 → 0′, 1 → 1′), as expected.
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Corollary 9.29. Consider the following diagram of functors and natural transformations

� �

ℬ ℬ

� �

*

�

+

�⇓U

,

  ⇓V

Let " be the endofunctor on the comma category �/ mapping �0
5
−→  2 to (�*0

U0
−−→

+�0
+ 5
−−−→ + 2

V2
−−→  ,2).

Suppose that � has a right adjoint, that � and � are cocomplete and * and , are
finitary. Then, given an objet 5 : �0 →  1 of �/ , there is a unique morphism 5★ :
�*★0 →  ,★1 such that

• (**★0 → *★0,,,★1 → ,★1) is a morphism from " 5★ to 5★;
• (0→ *★0, 1 → ,★1) is a morphism from 5 to 5★.

Furthermore, "★ 5 = 5★.

Proof. This follows from Lemma 9.28 with � = *, � = , ,  as ' where ' is the right

adjoint of �, by considering the mate U′ : *' → '+ of U : �* → +�, defined as *'
[*'
−−−−→

'�*'
'U'
−−−−→ '+�'

'+ Y
−−−−→ '+ , (where [ and Y denote the unit and the counit of the adjunction

� ⊣ ') and composing it with V to get a natural transformation *' → ' , .

Proof of Lemma 9.27. Let us denote by " the endofunctor on C�
Z

mapping an object Z←
( → Z to the the right pasting of Diagram 9.4:

"

©«
Z0 Z0

Z0 Z0

�0

Z1

�0

Z1(1

ª®®®®¬
=

Z0 Z0 Z0

Z0 Z0 Z0

�0

Z1

�0

Z1

∼⊗
0

∼⊗
0

Z1(1 ∼⊗
1

�0

�0

Now, by the packing lemma, it is enough to show that

"★

©«
Z0 Z0

Z0 Z0

�0

Z1

�0

Z1(1

ª®®®®¬
=

Z0 Z0 Z0

Z0 Z0 Z0

�0

Z1

�0

Z1

∼⊗∗
0

∼⊗∗
0

Z1(1 ∼⊗∗
1

�0

�0
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To this end, we are going to organise C�
Z

as a comma category on which " acts, so as
to apply Corollary 9.29. Let � denote the category of objects (1 equipped with a span
Z1 ← (1 → Z1 and ℬ denote the product category ℬs ×ℬt, where ℬf is the category of
objects (1 equipped with a span Z0f ← (1 → Z0f.

Let � : � → ℬ denote the functor mapping Z1 ← (1 → Z1 to (Z0s← (1 → Z0s,Z0t←

(1 → Z0t), by postcomposing with the relevant morphisms. As the forgetful functor from
a category of spans creates colimits, � is cocontinuous and thus has a right adjoint, since
its domain is a locally presentable category. Let  : 1 → ℬ be the functor selecting the
pair (Z0s ← �0 → Z0s,Z0t ← �0 → Z0t). Now, it is straightforward to check that C�

Z
is

isomorphic to the comma category �/ .
Next, we reconstruct " as acting on �/ through this isomorphism in order to fit the

setting of Corollary 9.29.
Let

• * : � → � denote the functor mapping Z1 ← (1 → Z1 to Z1 ← (1 ← (1;∼
⊗
1
→∼⊗

1
→

Z1;
• + : ℬ→ℬ denote the functor+s×+t, where+f : ℬf → ℬf maps Z0f ← (1 → Z0f

to Z0f ← (1;∼
⊗
0
f → Z0f;

• , : 1→ 1 denote the identity endofunctor.

Now we apply Corollary 9.29 with suitable U : �* → +� and V : , →  , so that "
corresponds to our endofunctor through the isomorphism C�

Z
� �/ . Since *★(Z1← (1 →

Z1) = Z1 ← (1;∼
⊗∗
1
→ Z1, the only thing to check is that the proposed definition for "★((1)

indeed defines a "-algebra, and that (1 → *★((1) induces a morphism (1 → "★((1), which
is straightforward.

Let us now turn to our final characterisation of �, which relies on the following category,
which is a relaxation of C�

Z
, in which the left-hand object in (9.3) is only forced to coincide

with Z on Ĉ0.

Definition 9.30. Let C� denote the category whose objects consist of objects -1 and (1
in C1, equipped with dashed arrows making the following diagram commute.

Z0s �0s Z0s

-1 (1 Z1

Z0t �0t Z0t

(9.6)

Remark 9.31. Using the notation of §9.3, an object of C� is a cell of the form

Z0 Z0

Z0 Z0.

�0

-1

�0

Z1(1

Proposition 9.32. The initial object in C� is the span Z0 ← �0 → Z, i.e., the one with
-1 = (1 = 0.

Let us now introduce the endofunctor of which our characterisation of � will be an
initia algebra.
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Definition 9.33. Let Σ�
1,lax

: C� → C� map any object - ← ( → Z to the following
pasting.

Z0 Z0 Z0 Z0

Σ0(Z0) Σ0(Z0)

Z0 Z0 Z0 Z0

�0
∼⊗∗
0

Z1

Σ0 (�0)

Σ�
1
(- )

�0

Σ�
1
(Z)

∼⊗∗
0

Z1

Σ�
1
(()

∼⊗∗
1

Σ̌1 (- )1

�0

�0

(9.7)

Remark 9.34. The difference with Σ�
1,pack

is that, - being different from Z in general, we

cannot use any Σ̌1-algebra structure on the left.

Proposition 9.35. The functor Σ�
1,lax

: C� → C� is finitary.

Proof. Just as Proposition 9.24.

Here is our final characterisation.

Lemma 9.36. The Howe closure is isomorphic to the initial algebra for the functor Σ�
1,lax

.

Proof. In order to apply Corollary 9.29, we organise C� as a comma category �/C�
;
, de-

composing its left and middle/right parts, with � : C�A → C�
;

defined as follows:

• C�
;

= Ĉ1/Δ(Z0);

• C�A is the category whose objects consist of a presheaf (1 ∈ Ĉ1, together with dashed
maps making the following diagram commute;

�0s Z0s

(1 Z1

�0t Z0t

• � : C�A → C�
;

maps any such object to the following diagram.

Z0s �0s

(1

Z0t �0t

We note that � is cocontinuous since colimits are computed pointwise in C�
;

and C�A , and

thus has a right adjoint ', since its domain is locally presentable. Furthermore, C�
Z

is

isomorphic to the comma category �/Z. 4

We then define functors Σ�1,A and (Σ̌1) |Z0
and a natural transformation ℎ as in

4Note that this decomposition in a comma category differs from the one in the proof of Lemma 9.27.
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C�A C�A

C�
;

C�
;
,

Σ�
1,A

�

(Σ̌1) |Z0

�⇓ℎ

as follows:

• (Σ̌1) |Z0
is Σ̌1 restricted to the fibre of Ĉ1/Δ→ Ĉ0 over Z0, as in the left part of (9.7);

• Σ�
1,A

acts as the right part of (9.7);
• ℎ connects both parts using the left projection.

Now, we apply twice Corollary 9.29 with * = Σ�
1,A

, + = (Σ̌1) |Z0
and U = ℎ:

(1) for , = + ,  the identity endofunctor and V the identity natural transformation,
the induced endofunctor " is precisely Σ�

1,lax
;

(2) for  : 1→ C�
;

selecting Z0s← Z1 → Z0t and V induced by the +-algebra structure

on it, the induced endofunctor " is precisely Σ�
1,pack

.

The proof concludes by looking at the initial "-algebra as the image by "★ of the initial
object, in both cases, according to Corollary 9.29.

9.6. Simulation property. Our next goal is to prove the following.

Lemma 6.17. If Σ1 preserves functional bisimulations, then the transition Howe closure
� is a substitution-closed simulation.

For substitution-closedness, ∼⊗
0
is reflexive and by Lemma 6.16 we have a span morphism

∼⊗
0
→ �0, so we may form the composite

�0 ⊗ Z→ �0 ⊗ ∼
⊗
0 → �0 ⊗ �0 → �0,

where the last morphism is the monoid multiplication of �0, as established in Proposi-
tion 9.15.

For the simulation property, we will use the characterisation of � as ZΣ�
1,lax

.

Let us start with the following few results.

Lemma 9.38. Simulations are stable under vertical and horizontal composition in 2(?(Ĉ1).

Proof. Follows from Proposition 4.16 and easy pointwise, weak analogues of the pullback
lemma.

Lemma 9.39. If Σ1 preserves functional bisimulations and ( ∈ C� underlies a simulation,
then so does Σ�

1,lax
(().

Proof. The pasting (9.7) is isomorphic to the following.

Z0 Z0

Σ0(Z0) Σ0(Z0) Z0 Z0

Z0 Z0 Z0 Z0

�0

Σ0 (�0)

Σ�
1
(- )

�0

Σ�
1
(Z)

Z1

∼⊗∗
0

∼⊗∗
0

Z1Σ�
1
(() ∼⊗∗

1

Σ̌1 (- )1

�0

(9.8)
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By Lemma 9.38, it suffices to show that all non-identity cells in (9.8) are simulations if (
is. Let us run through them, left-to-right, top-to-bottom:

• The top cell is a simulation because
– Z0 is the initial (� + Σ0)-algebra, so � → Z0 ← Σ0(Z0) is a coproduct diagram;
– similarly, by Proposition 9.17, �0 is the initial algebra for the endofunctor
- ↦→ (�;∼⊗∗

0
+ Σ0 (-);∼

⊗∗
0
), so �;∼⊗∗

0
→ �0 ← Σ0(�0);∼

⊗∗
0

is a coproduct
diagram;

– so, by extensivity of C0, both squares in

�;∼⊗∗
0

�0 Σ0(�0);∼
⊗∗
0

� Z0 Σ0(Z0)

are pullbacks. The right-hand one is mapped by Δs (which, as a right adjoint,
preserves pullbacks) precisely to the top left square of the top cell.

• The first little cell Σ�1 (() is a simulation by hypothesis.
• The middle little cell is trivially a simulation.
• The third little cell ∼⊗∗

1
is a simulation because simulations are closed under tran-

sitive closure.
• Finally, the bottom cell is trivially a simulation.

Finally:

Proof of Lemma 6.17. Because the domains and codomains of all B! are representable,
hence finitely presentable, functional bisimulations are closed under filtered colimits in the
arrow category by Lemma 1.1. But � is the initial chain of Σ�

1,lax
, so by Lemma 9.39 it

suffices to show that the initial object of C� underlies a simulation. By Proposition 9.32,
this amounts to showing that the first projection �0 → Z0 is a functional simulation, which
is trivially the case as there are no transitions.

9.7. Symmetry of transitive closure. In this section, we prove the remaining Lem-
mas 6.19 and 6.21. Let us first recall the former:

Lemma 6.19. The relational transitive closure �0
+ of the Howe closure �0 on states is

symmetric.

By Lemma 9.7, Lemma 6.19 will follow if we construct a span morphism �0 → �
+†
0
.

As �0 is an initial algebra for � + Σ�
0

(Proposition 9.14), it suffices to prove the following
lemma.

Lemma 9.41. The span (�+†)0 = �
+†
0

has an algebra structure for (� + Σ�0 ).

This relies on the following lemmas, used in particular with � = Σ0. The first one is
well known:

Lemma 9.42. Given an endofunctor � on some category �, the forgetful functor � -alg→
� creates limits, and all colimits that � preserves.

Lemma 9.43. Given an endofunctor � on some category � with pullbacks and coequalisers,
if � preserves reflexive coequalisers, then the forgetful functor from the category of �-algebras
creates image factorisations.
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Proof. Suppose given an algebra morphism �
5
−→ �. The image factorisation is obtained

as the (reflexive) coequaliser of the kernel pair � × 5 � ⇒ �. The diagram of this reflexive
coequaliser lifts to � -alg, hence so does the coequaliser, by the previous lemma.

Proof of Lemma 9.41. We need to find algebra structures on �+†
0

for �, Σ0, and −;∼
⊗
0
. For

�, we have the morphism � → Z0 → �
†
0
→ �

+†
0
.

For Σ0, note that by Lemmas 9.6 and 9.5, �+†
0

is the colimit of the chain

Z0 → �
†
0
� �

†
0
;Z0 → �

†
0
;�†

0
� �

†
0
;�†

0
;Z0 → �

†
0
;�†

0
;�†

0
→ . . .

As it is filtered and thus sifted, and Σ0 preserves sifted colimits by hypothesis, by Lemma 9.42,

it is enough to show that each �†
0
; . . . ;�†

0
has a structure of Σ0-algebra (morphisms in the

above chain are then automatically algebra morphisms because the involved spans are re-
lations). But, Σ0 also preserves reflexive coequalisers (which are sifted colimits), so, by
Lemma 9.43, the forgetful functor from Σ0-algebras creates image factorisations. It is thus
enough to equip �†

0
; . . . ;�†

0
with Σ0-algebra structure, which is straightforward because �0

is already an algebra and algebras are stable under pullbacks (Lemma 9.42).

It remains to find a suitable morphism �
+†
0
;∼⊗

0
→ �

+†
0
, or equivalently, by applying −†,

a morphism ∼⊗†
0
;�+

0
→ �+

0
. But by symmetry of ∼⊗

0
, we have the composite

∼
⊗†
0
;�+0 → ∼

⊗
0
;�+0 → �0;�

+
0 → �+0 .

Finally, it remains to prove:

Lemma 6.21. For any substitution-closed simulation ' such that '0 is symmetric, there
exists a span morphism '→ '′ such that '′ is a substitution-closed bisimulation.

Proof. First, consider the relation ' induced by ' by the image factorisation ' ։ ' ↩→ Z×Z.
' is still a substitution-closed simulation and '0 is symmetric. Now, we define '′ as follows:

• '′0 = '0

• '′1 is the limit of the following diagram:

Z0s '′0s Z0s

Z1 '′1 Z1

Z0t '′0t Z0t.

More concretely, an element of '′
1
(21) is a pair of transitions at 21 with related sources and

targets. The morphism ' → '′ is obtained by the composite ' → ' → '′, where the last
morphism exploits the definition of '′1 as a limit. It is straightforward to check that '′ is a
substitution-closed simulation. Moreover, it is symmetric (even at the level of transitions),
so it is a bisimulation.
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10. Conclusion

We have introduced the notion of Howe context, in which we have defined transition
monoids, an abstract notion of labelled transition system whose states feature some sort of
substitution. For them, we have introduced an abstract variant of applicative bisimilarity
called substitution-closed bisimilarity.

Furthermore, we have introduced dynamic signatures as a device for specifying syntax
with variable binding and operational semantics. We have finally shown that if a dynamic
signature preserves functional bisimulations, then substitution-closed bisimilarity on the
generated transition monoid is a congruence.

This all follows the pattern of our previous work [12], but simplifying the framework
and relaxing some hypotheses, as explained in the introduction.

We hope these simplifications pave the way for more abstract results in the same vein.
E.g., congruence for other forms of bisimilarity like normal-form [31], environmental [40],
or contextual [32] bisimilarity. We also consider investigating abstract type soundness or
compiler correctness results.
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