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Abstract. Applicative bisimilarity is a coinductive characterisation of
observational equivalence in call-by-name lambda-calculus, introduced
by Abramsky in 1990. Howe (1989) gave a direct proof that it is a con-
gruence. In previous work with Borthelle (2020), we abstract over this
result by proposing a categorical framework for specifying operational
semantics, in which we prove that (an abstract analogue of) applica-
tive bisimilarity is automatically a congruence. However, the framework
presents a few infelicities: (1) it requires a non-trivial refinement of the
standard approach of Fiore, Plotkin, and Turi (1999) based on monoid
algebras for specifying syntax with variable binding; (2) it relies on so-
called prebisimulations instead of the more standard notion of bisimula-
tion by lifting; (3) one of the axioms, called weak compositionality, feels
ad hoc; (4) the proofs roughly follow Howe’s original pattern, in par-
ticular going through quite a few painful inductions. In this paper, we
rectify all of these deficiencies. In particular, a notable novelty is that
the so-called Howe closure is defined as an initial monoid algebra in a
category of spans. Finally, the familiality/cellularity axiom of the previ-
ous framework is now viewed as a mere sufficient condition for the main
hypothesis, preservation of functional bisimulations.

Keywords: operational semantics · category theory · bisimilarity · con-
gruence · Howe’s method.

1 Introduction

This paper is a contribution to the search for efficient and high-level mathe-
matical tools to specify and reason about programming languages. The first
such tool arguably goes back at least to Turi and Plotkin [35], who coined the
name “Mathematical Operational Semantics”, and proved a general congruence
theorem for bisimilarity.

In previous work [10], we proved a similar abstract congruence theorem for
applicative bisimilarity, a behavioural/observational equivalence introduced by
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Abramsky [1] for big-step, call-by-name 𝜆-calculus. Let us briefly summarise the
approach.

(i) We first axiomatise (labelled) transition systems as objects of a category C,
in such a way that
– there is a forgetful functor C→ C0, intuitively returning the (potentially

structured) set of states of a transition system;
– bisimulation and bisimilarity may be defined for any transition system.

(ii) We then assume that C0 is skew monoidal [34], and define models of the
syntax to be monoid algebras for a given structurally strong endofunctor Σ0

on C0. This is a generalisation of Fiore, Plotkin, and Turi’s framework, which
involves a pointed strong endofunctor on a monoidal category. Monoid alge-
bras, a.k.a. Σ0-monoids, are Σ0-algebras equipped with compatible monoid
structure – which models capture-avoiding substitution. This yields a cate-
gory Σ0 -mon of models, which has an initial object Z0. In the case of call-
by-name 𝜆-calculus, Z0 is precisely the syntax.

(iii) This category Σ0 -mon induces by pullback a category Σ0 -Mon (capital ‘M’ !)
of transition systems whose states are equipped with Σ0-monoid structure.
We call these transition monoid algebras, or transition Σ0-monoids. The rel-
evant notions of bisimulation and bisimilarity for such objects are defined as
in (i), but for substitution-closed relations.

(iv) We then define models of the dynamics to be certain algebras, called ver-
tical, for an endofunctor Σ1 on Σ0 -Mon. There is an initial vertical algebra
Z, which in the case of call-by-name 𝜆-calculus is the syntactic transition
system. Standard applicative bisimilarity coincides with substitution-closed
bisimilarity for this initial vertical algebra.

(v) Finally, following an abstract analogue of Howe’s method, we show that, un-
der suitable hypotheses called weak compositionality and cellularity, substitution-
closed bisimilarity on Z is a congruence.

According to one of the referees:

[S]ome ingredients feel ad hoc in the current formulation (e.g., the defi-
nition of structural strength, weak compositionality [...]). I expect that
[...] some suitable adjustment of the perspective allows for a simpler
framework.

In this paper, we rectify these deficiencies, and more.

– The starting point is to give a better type to Σ1, the endofunctor for specify-
ing the dynamics. This small change allows us to work with standard monoid
algebras, and even build weak compositionality directly into the framework.
We thus solve both problems at once. As a bonus, this allows us to relax the
hypothesis that the tensor product is familial.

– In [10], because Howe’s closure operates only at the level of states, we work
mostly with prebisimulations, in the sense of [22, §5.1]. This notion is de-
signed to detect when the state part of a relation underlies a bisimulation,
regardless of what it does on transitions. However, it feels more ad hoc than
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the standard definition of bisimulation by lifting [24]. In this paper, we ex-
tend Howe’s closure to transitions, thus avoiding prebisimulations entirely.

– In [10], we rely on directed unions of relations, which leads to quite a few,
rather painful proofs by induction. Here, we use higher-level methods to con-
struct Howe’s closure, essentially through categorification and algebraicisa-
tion. Namely:

1. We define bisimilarity as the final object not in some partially-ordered
set of relations as usual, but in some category of spans (see also [8]).

2. Furthermore, we define Howe’s closure directly as a free monoid algebra
for a suitable pointed strong endofunctor on spans.

3. More generally, we systimatically rely on universal properties, which sim-
plifies a significant number of proofs.

– Finally, we put less emphasis on cellularity, viewing it only as a sufficient
condition for a perhaps more natural hypothesis which already appeared in
a slightly different form in [33], namely the fact that Σ1 preserves functional
bisimulations.

1.1 Related work

Plotkin and Turi’s bialgebraic semantics [35] and its few variants [12,33] prove
abstract congruence theorems for bisimilarity. However, they do not cover higher-
order languages like the 𝜆-calculus, let alone applicative bisimilarity. This was
one of the main motivations for our work. Among more recent work, quite some
inspiration was drawn from Ahrens et al. [5,21], notably in the use of vertical
algebras. However, a difference is that we do not insist that transitions be sta-
ble under substitution. Links with other relevant work by, e.g., Bodin et al. [9]
or Dal Lago et al. [25], though desirable, remain unclear, perhaps because of
the very different methods used. Furthermore, the cellularity used here is close
to but different from the T∨𝑠 -familiality of [22]. It would be instructive to bet-
ter understand potential links between the two. Finally, recent, loosely related
work establishes abstract versions of standard constructions and theorems in
programming language theory like type soundness [6] or gluing [16,17].

Plan In §2, we start by briefly recalling call-by-name 𝜆-calculus and applicative
bisimilarity. We then explain how to view the latter as substitution-closed bisim-
ilarity, and sketch Howe’s method. In §3, we then give a brief overview of the
new framework by example, including a recap on monoid algebras and a state-
ment of the main theorem. We then dive into the technical core of the paper
by presenting our framework for transition systems and bisimilarity (§4), oper-
ational semantics (§5), and then substitution-closed bisimilarity and the main
result (Theorem 6.13), together with a high-level proof sketch (§6). In §7, we
reformulate the main hypothesis of Theorem 6.13 using cellularity, which allows
us to use well-known results from weak factorisation systems as sufficient condi-
tions. The full proof of Theorem 6.13 is given in §8. We then conclude and give
some perspectives on future work in §9.
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Notation We often conflate natural numbers 𝑛 ∈ N with corresponding sets
{1, . . . , 𝑛}. For all sets 𝑋 and objects 𝐶 of a given category, we denote by 𝑋 · 𝐶
the 𝑋-fold coproduct of 𝐶 with itself, i.e.,

∑
𝑥∈𝑋 𝐶. Let Cat denote the category of

small categories, and CAT the category of locally small categories. Let Ĉ denote
the category of (contravariant) presheaves on C, and y : C → Ĉ the Yoneda

embedding, mapping 𝑐 to C(−, 𝑐). Given a presheaf 𝐹 ∈ Ĉ, an element 𝑥 ∈ 𝐹 (𝑐),
and a morphism 𝑐

𝑓
−→ 𝑐′, we sometimes denote 𝐹 ( 𝑓 ) (𝑥) by 𝑥 · 𝑓 . Given two

categories 𝐶1 and 𝐶2, we denote by [𝐶1, 𝐶2] the functor category between them.
In a category with products, we interchangeably use spans 𝑋 ← 𝑅 → 𝑌 and

their pairings 𝑅 → 𝑋 × 𝑌 , sometimes also calling the latter spans.
Any finitary endofunctor 𝐹 on any cocomplete category admits by [31, The-

orem 2.1] an initial algebra, which we denote by Z𝐹 . Although this is detailed
below, we prefer to avoid confusion and warn the reader that we also use Z𝐹 for
the initial 𝐹-monoid, for any pointed strong endofunctor 𝐹 on any nice monoidal
category. Throughout the paper, when not explicitly attached to some 𝐹, Z is
shorthand for ZΣ̌1

(see, e.g., Proposition 3.16 or Theorem 5.17).

𝐴 𝐶

𝐵 𝐷

𝑢

𝑓

𝑣

𝑘 𝑔

Finally, let us fix some notation about weak factorisation sys-
tems. In any category C , we say that a morphism 𝑓 : 𝐴 → 𝐵

has the (weak) left lifting property w.r.t. 𝑔 : 𝐶 → 𝐷 when for all
commuting squares as on the right there is a lifting 𝑘 as shown
that makes both triangles commute. Equivalently, we say that 𝑔 has the right
lifting property w.r.t. 𝑓 , and write 𝑓 t 𝑔. Given a fixed set J of morphisms, the
set of morphisms 𝑔 such that 𝑗 t 𝑔 for all 𝑗 ∈ J is denoted by Jt. Similarly, the
set of morphisms 𝑓 such that 𝑓 t 𝑗 for all 𝑗 ∈ J is denoted by tJ. In partic-
ular, if 𝑓 ∈ t (Jt) and 𝑔 ∈ Jt, then 𝑓 t 𝑔. If C is locally presentable [2], then
(t (Jt),Jt) forms a weak factorisation system, in the sense that additionally any

morphism 𝑓 : 𝑋 → 𝑌 factors as 𝑋
𝑙−→ 𝑍

𝑟−→ 𝑌 with 𝑙 ∈ t (Jt) and 𝑟 ∈ Jt (see [23,
Theorem 2.1.14]). Morphisms in Jt are generically called fibrations, while mor-
phisms in t (Jt) are called cofibrations. Let us conclude with the following easy,
yet helpful result.

Lemma 1.1. If the domains and codomains of maps in J are finitely pre-
sentable, then fibrations are stable under filtered colimits in the arrow category.

2 A brief review of Howe’s method

2.1 Applicative bisimilarity

Consider the standard, big-step presentation of call-by-name 𝜆-calculus:

𝜆𝑥.𝑒 ⇓ 𝜆𝑥.𝑒
𝑒1 ⇓ 𝜆𝑥.𝑒′1 𝑒′1 [𝑥 ↦→ 𝑒2] ⇓ 𝑒3

𝑒1 𝑒2 ⇓ 𝑒3

Applicative bisimilarity is standardly introduced in two stages. First, one defines
applicative bisimulation on closed terms.
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Definition 2.1. A relation 𝑅 over closed 𝜆-terms is an applicative bisimulation
iff 𝑒1 𝑅 𝑒2 and 𝑒1 ⇓ 𝜆𝑥.𝑒′1 entail the existence of 𝑒′2 such that 𝑒2 ⇓ 𝜆𝑥.𝑒′2 and, for
all terms 𝑒, 𝑒′1 [𝑥 ↦→ 𝑒] 𝑅 𝑒′2 [𝑥 ↦→ 𝑒], and symmetrically.

Applicative bisimulations are closed under unions, and so there is a largest
applicative bisimulation called applicative bisimilarity and denoted by ∼. Then
comes the second stage:

Definition 2.2. The open extension of a relation 𝑅 on closed terms is the rela-
tion 𝑅⊗ on potentially open terms such that 𝑒 𝑅⊗ 𝑒′ iff for all closed substitutions
𝜎 covering all involved free variables we have 𝑒[𝜎] 𝑅 𝑒′[𝜎].

Let us readily notice the following alternative characterisation of open ex-
tension.

Definition 2.3. A relation 𝑆 on open terms is substitution-closed iff for all
𝑒 𝑆 𝑒′ and (potentially open) substitutions 𝜎, we have 𝑒[𝜎] 𝑆 𝑒′[𝜎].

Lemma 2.4. The open extension of any relation 𝑅 is the greatest substitution-
closed relation contained in 𝑅 on closed terms.

Proof. Let us first show that 𝑅⊗ is substitution-closed. For any 𝑒1 𝑅⊗ 𝑒2 and 𝜎,
we want to show 𝑒1 [𝜎] 𝑅⊗ 𝑒2 [𝜎]. For this, we in turn need to show that for all
closing substitutions 𝛾, we have 𝑒1 [𝜎] [𝛾] 𝑅 𝑒2 [𝜎] [𝛾]. But 𝑒𝑖 [𝜎] [𝛾] = 𝑒𝑖 [𝛾 ◦ 𝜎]
and 𝛾 ◦𝜎 is closing, so because 𝑒1 𝑅⊗ 𝑒2, by definition of open extension, we get
𝑒1 [𝜎] [𝛾] 𝑅 𝑒2 [𝜎] [𝛾] as desired.

Let us now show that 𝑅⊗ is the greatest substitution-closed relation contain-
ing 𝑅 on closed terms. For this, consider any substitution-closed 𝑅′ contained in 𝑅

on closed terms: for all 𝑒 𝑅′ 𝑒′, by substitution-closedness, we have 𝑒[𝜎] 𝑅′ 𝑒′[𝜎]
for all closing 𝜎. So because 𝑅′ is contained in 𝑅 on closed terms, we further
have 𝑒[𝜎] 𝑅 𝑒′[𝜎]. This proves 𝑒 𝑅⊗ 𝑒′, and so thus 𝑅′ ⊆ 𝑅⊗ as desired.

The result we wish to prove in the abstract setting is the following (see [30]
for a historical account).

Theorem 2.5. The open extension ∼⊗ of applicative bisimilarity is a congru-
ence, i.e., it is an equivalence relation, and furthermore

– 𝑒1 ∼⊗ 𝑒2 entails 𝜆𝑥.𝑒1 ∼⊗ 𝜆𝑥.𝑒2 for all 𝑥;
– 𝑒1 ∼⊗ 𝑒2 and 𝑒′1 ∼⊗ 𝑒′2 entail 𝑒1 𝑒′1 ∼⊗ 𝑒2 𝑒′2.

2.2 Howe’s method

Howe’s method for proving this consists in considering a suitable context-closed
relation ∼•, containing ∼⊗ by construction, and then to show that it is a bisim-
ulation. By maximality of ∼⊗, we then also have ∼• ⊆ ∼⊗ hence both relations
coincide and ∼⊗ is context-closed as desired. However, as explained in [10, §5.1],
the presence of a substitution in the premises of a transition rule seems to re-
quire ∼• to be closed under heterogeneous substitution, in the sense that, e.g.,
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if 𝑒1 ∼• 𝑒′1 and 𝑒2 ∼• 𝑒′2 (for open terms), then 𝑒1 [𝑥 ↦→ 𝑒2] ∼• 𝑒′1 [𝑥 ↦→ 𝑒′2]. The
problem is that building this into the definition of ∼• leads to difficulties in the
proof that it is a bisimulation. Howe’s workaround consists in requiring ∼• to be
closed under sequential composition with ∼⊗ from the outset. Coupling this right
action with context closedness, we thus define ∼• as the smallest context-closed
relation satisfying the rules

𝑥 ∼• 𝑥
𝑒 ∼• 𝑒′ 𝑒′ ∼⊗ 𝑒′′

𝑒 ∼• 𝑒′′
·

By construction, ∼• is reflexive and context-closed. By reflexivity and the second
rule, it also contains ∼⊗. Finally, we clearly have

∼•;∼⊗ ⊆ ∼•. (1)

It takes an induction to prove stability under heterogeneous substitution, but to
give a feel for it, in the base case where 𝑒1 ∼⊗ 𝑒′1, we have

𝑒1 [𝑥 ↦→ 𝑒2] ∼• 𝑒1 [𝑥 ↦→ 𝑒′2] ∼⊗ 𝑒′1 [𝑥 ↦→ 𝑒′2]

by context closedness of ∼• and substitution closedness of ∼⊗, so we conclude
by (1).

The initial plan was to show that ∼• is a bisimulation and deduce that it
coincides with ∼⊗. It can in fact be slightly optimised by first showing that ∼• is
a simulation, and then that its transitive closure (∼•)+ is symmetric. The relation
(∼•)+ is also a substitution-closed simulation, hence by symmetry a substitution-
closed bisimulation. This entails the last inclusion in the chain ∼⊗ ⊆ ∼• ⊆ (∼•)+ ⊆
∼⊗, showing that all relations coincide. Finally, because ∼• is context-closed, so
is ∼⊗, as desired.

2.3 Non-standard presentation

For technical convenience, we adopt a slightly different presentation of the tran-
sition rules, where the evaluation relation relates closed terms to terms with just
one potential free variable.

𝜆𝑥.𝑒 ⇓ 𝑒
𝑒1 ⇓ 𝑒′1 𝑒′1 [𝑒2] ⇓ 𝑒3

𝑒1 𝑒2 ⇓ 𝑒3

Here 𝑒′1 [𝑒2] denotes substitution of the unique potential free variable in 𝑒′1 by 𝑒2.
We will see below that, with this transition system, the essentially standard no-
tion of bisimulation coupled with the substitution-closedness requirement yields
applicative bisimilarity.

3 Overview by example

In this section, we describe one particular instance of our framework, which
models call-by-name 𝜆-calculus.
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3.1 Syntax

Let us first define the syntax of 𝜆-calculus, following [18], as an initial3 object in
a suitable category of models. Very roughly, a model of 𝜆-calculus syntax should
be something equipped with operations modelling abstraction and application,
but also with substitution. Furthermore, certain natural compatibility axioms
should be satisfied, e.g.,

(𝑒1 𝑒2) [𝜎] = 𝑒1 [𝜎] 𝑒2 [𝜎]. (2)

A natural setting for specifying such operations is the functor category C0 :=
[F, Set], where F ↩→ Set denotes the full subcategory spanning all sets of the form
𝑛 (i.e., {1, . . . , 𝑛}, recalling notation from §1). For any 𝑋 ∈ [F, Set] and 𝑛 ∈ F, we
think of 𝑋 (𝑛) as a set of ‘terms’ with potential free variables in {1, . . . , 𝑛}. The
action of 𝑋 on morphisms 𝑛→ 𝑛′ is thought of as variable renaming. Returning
to operations, being equipped with abstraction is the same as being a Σ𝜆-algebra,
where Σ𝜆 : C0 → C0 is defined by Σ𝜆 (𝑋) (𝑛) = 𝑋 (𝑛 + 1). Similarly, for specifying
both application and abstraction, we consider Σ0 (𝑋) (𝑛) = 𝑋 (𝑛 + 1) + 𝑋 (𝑛)2.

Let us now consider substitution. The idea here is to equip C0 with monoidal
structure (⊗, 𝐼), such that

– elements of (𝑋 ⊗ 𝑌 ) (𝑛) are like explicit substitutions 𝑥L𝜎M, where 𝑥 ∈ 𝑋 (𝑝)
and 𝜎 : 𝑝 → 𝑌 (𝑛) for some 𝑝, considered equivalent up to some standard
equations;

– elements of 𝐼 (𝑛) := {1, . . . , 𝑛} are merely variables.

Being equipped with substitution (and variables) is thus the same as being a
monoid for this tensor product:

– the multiplication 𝑚𝑋 : 𝑋 ⊗ 𝑋 → 𝑋 maps any formal, explicit substitution
𝑥L𝜎M to an actual substitution 𝑥 [𝜎], and

– the unit 𝑒𝑋 : 𝐼 → 𝑋 injects variables into terms.

Finally, how do we enforce equations such as (2)? Well, we first describe how
substitution is supposed to commute with operations by providing a pointed
strength, i.e., a natural transformation with components 𝑠𝑡𝑋,𝑌 : Σ0 (𝑋) ⊗ 𝑌 →
Σ0 (𝑋 ⊗𝑌 ), where 𝑋 ∈ C0 and 𝑌 ∈ 𝐼/C0. For modelling (2), we would in particular
define 𝑠𝑡𝑋,𝑌 to map any (𝑖𝑛2 (𝑥1, 𝑥2))L𝜎M to 𝑖𝑛2 (𝑥1L𝜎M, 𝑥2L𝜎M), for all 𝑥1, 𝑥2 ∈ 𝑋 (𝑝)
and 𝜎 : 𝑝 → 𝑌 (𝑛).

Why do we need to take 𝑌 ∈ 𝐼/C0 instead of C0, you’ll ask. Because of
abstraction: supposing that 𝑌 is equipped with a point 𝑒𝑌 : 𝐼 → 𝑌 , we may
define 𝜎↑ : 𝑝 + 1→ 𝑌 (𝑛 + 1) by copairing

𝑝
𝜎−→ 𝑌 (𝑛)

𝑌 (𝑖𝑛1)−−−−−→ 𝑌 (𝑛 + 1) and 1 = 𝐼 (1)
(𝑒𝑌 )1−−−−→ 𝑌 (1)

𝑌 (𝑖𝑛2)−−−−−→ 𝑌 (𝑛 + 1).
3 This pattern is advocated by the approach of Initial Semantics, where initiality
provides a recursion principle.
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We use this in defining the strength to map any 𝑖𝑛1 (𝑥)L𝜎M, where 𝑥 ∈ 𝑋 (𝑝 + 1)
and 𝜎 : 𝑝 → 𝑌 (𝑛), to 𝑖𝑛1 (𝑥L𝜎↑M).

When we already have monoid and Σ0-algebra structure, the desired equa-
tions such as (2) are then imposed by requiring the following diagram to com-
mute.

Σ0 (𝑋) ⊗ 𝑋 Σ0 (𝑋 ⊗ 𝑋) Σ0 (𝑋)

𝑋 ⊗ 𝑋 𝑋

𝑠𝑡𝑋,𝑋

𝜈𝑋 ⊗𝑋

Σ0 (𝑚𝑋 )

𝑚𝑋

𝜈𝑋 (3)

Definition 3.1. For any finitary, pointed strong endofunctor Σ0, a monoid al-
gebra for Σ0, or a Σ0-monoid, is a Σ0-algebra (𝑋, 𝜈𝑋 : Σ0 (𝑋) → 𝑋), equipped
with monoid structure (𝑚𝑋 : 𝑋 ⊗ 𝑋 → 𝑋, 𝑒𝑋 : 𝐼 → 𝑋), such that (3) commutes.
A Σ0-monoid morphism is a morphism in C0 which is both a monoid morphism
and a Σ0-algebra morphism.

Let Σ0 -mon denote the category of Σ0-monoids and morphisms between them.

The following result is established in [18,15,10] in slightly different settings.
See Proposition 5.1 below for a general and rigorous statement.

Proposition 3.2. For any finitary, pointed strong endofunctor Σ0, under mild
hypotheses, the forgetful functor Σ0 -mon → C0 is monadic, and the free Σ0-
algebra over 𝐼 (equivalently the initial (𝐼 + Σ0)-algebra) is an initial Σ0-monoid.

Example 3.3. In the case of 𝜆-calculus, the initial Σ0-monoid is thus the least
fixed point Z0 := 𝜇𝐴.(𝐼 + Σ0 (𝐴)), which is isomorphic to the standard, low-level
construction of syntax.

3.2 Transition systems and bisimilarity

The appropriate notion of transition system 𝑋 for 𝜆-calculus is as follows.

Definition 3.4. A transition system 𝑋 consists of

– a state object 𝑋0 ∈ C0 = [F, Set],
– a set 𝑋1 of transitions, and
– maps 𝑋0 (0) ← 𝑋1 → 𝑋0 (1) giving the source and target of transitions

(cf. §2.3).

Transition systems form a category C, whose morphisms 𝑋 → 𝑌 consist of com-
patible morphisms 𝑋0 → 𝑌0 and 𝑋1 → 𝑌1.

Remark 3.5. Morphisms in C may be thought of as graph morphisms, or alter-
natively functional simulations.

Example 3.6. – Let y0 consist of a single closed state and its renamings (i.e.,
(y0)0 (𝑛) = 1 for all 𝑛 and for transitions (y0)1 = ∅).

– Let y⇓ consist of a closed state 𝑘0, a state 𝑘1 with one free variable, their
renamings, and a transition 𝑒 : 𝑘0 ⇓ 𝑘1.
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– Let y𝑠⇓ : y0 → y⇓ denote the morphism mapping the closed state of y0 to 𝑘0.
– The syntactic transition system has Z0 ∈ C0 from Example 3.3 as state

object, and as transitions all derivations following the transition rules. We
will come back to this case in Example 3.16.

We may define bisimulation and bisimilarity following [24]:

Definition 3.7. A morphism 𝑋 → 𝑌 in C is a functional bisimulation when
it has the right lifting property w.r.t. the source map y𝑠⇓ : y0 → y1. A span
𝑋 ← 𝑅 → 𝑌 is a simulation when its left leg 𝑅 → 𝑋 is a functional bisimulation,
and a bisimulation when both legs are.

Remark 3.8. C is in fact isomorphic to a presheaf category, and we have a Yoneda
lemma: C(y0, 𝑋) � 𝑋0 (0) and C(y⇓, 𝑋) � 𝑋1. The right lifting property for a
morphism 𝑓 : 𝑋 → 𝑌 thus says that given any 𝑒 ∈ 𝑌1 whose source 𝑒 · s is 𝑓 (𝑥)
for some 𝑥 ∈ 𝑋0 (0), there exists 𝑒′ ∈ 𝑋1 such that 𝑓 (𝑒′) = 𝑒 and 𝑒′ · s = 𝑥, as
desired.

Definition 3.9. Let Bisim(𝑋,𝑌 ) denote the category of bisimulations, with span
morphisms between them.

Proposition 3.10. Bisim(𝑋,𝑌 ) has a terminal object, called bisimilarity and
denoted by ∼𝑋,𝑌 .

Example 3.11. Bisimilarity on the syntactic transition system merely amounts
to simultaneous convergence, because evaluation returns an open term, which
does not have any further transition. In this case, a more relevant behavioural
equivalence is substitution-closed bisimilarity, which we will define below.

3.3 Operational semantics

Just as we have defined the syntax as an initial Σ0-monoid (Example 3.3), let
us now define the dynamics by initiality, again starting by wondering about the
right notion of model. First of all, models will be found among transition systems
𝑋 whose underlying presheaf 𝑋0 ∈ [F, Set] is a Σ0-monoid. Let us give these a
name.

Definition 3.12. A transition Σ0-monoid is a transition system 𝑋, together
with Σ0-monoid structure on its state object 𝑋0. Transition Σ0-monoids form a
category Σ0 -Mon.

The idea is to model the transition rules as an endofunctor on transition
Σ0-monoids, leaving the underlying Σ0-monoid untouched, i.e., a functor making
the following triangle commute,

Σ0 -Mon Σ0 -Mon

Σ0 -mon

Σ1

D D
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where D denotes the forgetful functor (i.e., D (𝑋) = 𝑋0).
For call-by-name 𝜆-calculus, the functor Σ1 : Σ0 -Mon→ Σ0 -Mon modelling

the non-standard rules at the end of §2 is defined as follows.

– On states, commutation of the above triangle imposes Σ1 (𝑋)0 = 𝑋0.
– On transitions, let Σ1 (𝑋)1 = 𝑋 (1) + 𝐴𝛽 (𝑋),

where 𝐴𝛽 (𝑋) denotes the set of valid premises for the second rule in §2.3,
i.e., triples (𝑟1, 𝑒2, 𝑟2) such that
• 𝑟1, 𝑟2 ∈ 𝑋1 are transitions,
• 𝑒2 ∈ 𝑋0 (0) is a state, and
• 𝑟2 · s = (𝑟1 · t) [𝑒2], i.e., the source 𝑟2 · s of 𝑟2 is obtained by substituting

𝑒2 for the unique free variable in the target of 𝑟1.
Let us notice that substitution here follows from the monoid structure of 𝑋.

– We then define the source and target maps:
• for the first term 𝑋 (1),

∗ the source of any 𝑖𝑛1 (𝑒) is 𝜆1 (𝑒), where 𝜆𝑛 : 𝑋0 (𝑛+1) → 𝑋0 (𝑛) follows
from the Σ0-algebra structure of 𝑋0;

∗ the target is 𝑒 itself;
• for the second term 𝐴𝛽 (𝑋),

∗ the source of any 𝑖𝑛2 (𝑟1, 𝑒2, 𝑟2) is (𝑟1 · s) 𝑒2, i.e., the application of
the source of 𝑟1 to 𝑒2 (again using the Σ0-algebra structure of 𝑋0);

∗ the target is 𝑟2 · t.

Accordingly, our notion of model is the following.

Definition 3.13. A vertical Σ1-algebra is a transition Σ0-monoid 𝑋 equipped
with a morphism 𝜈𝑋 : Σ1 (𝑋) → 𝑋 such that D (𝜈𝑋 ) = id𝑋0

, or equivalently a map
(𝜈𝑋 )1 making the following triangle commute.

Σ1 (𝑋)1 𝑋1

𝑋0 (0) × 𝑋0 (1)
(4)

In the case of call-by-name 𝜆-calculus, it should be clear that such a vertical
algebra is indeed a model of the rules.

However, in order to ensure that the rules are syntax-directed, we want to
distinguish, for each rule, the head operator of the source of the conclusion (ab-
straction for the first rule; application for the second one). Instead of demanding
that Σ1 (𝑋) have the form Σ1 (𝑋)1 → 𝑋0 (0) × 𝑋0 (1), we thus rather require some-
thing of the form Σ1 (𝑋)1 → Σ0 (𝑋0) (0) × 𝑋0 (1):

Definition 3.14.

– A dynamic signature consists of
• a finitary functor Σ𝐹

1 : Σ0 -Mon→ Set, and
• a natural transformation (Σ𝜕

1 )𝑋 : Σ𝐹
1 (𝑋) → Σ0 (𝑋0) (0) × 𝑋0 (1).
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– The endofunctor Σ̌1 induced by a dynamic signature maps any 𝑋 to the

composite Σ𝐹
1 (𝑋)

(Σ𝜕
1 )𝑋−−−−−→ Σ0 (𝑋0) (0) × 𝑋0 (1) → 𝑋0 (0) × 𝑋0 (1).

– A vertical algebra of a dynamic signature is a vertical algebra of the induced
endofunctor, in the sense of Definition 3.13.

Concretely, a vertical algebra is a dashed map making the following diagram
commute.

Σ1 (𝑋)1 𝑋1

Σ0 (𝑋0) (0) × 𝑋0 (1) 𝑋0 (0) × 𝑋0 (1)

Example 3.15. For call-by-name 𝜆-calculus, we only need to modify the source
components of the above definition of Σ1, replacing actual operations by formal
ones, like so:

– the source of any 𝑖𝑛1 (𝑒) ∈ 𝑋 (1) + 𝐴𝛽 (𝑋) is 𝑖𝑛1 (𝑒) ∈ Σ0 (𝑋) (0) = 𝑋 (1) + 𝑋 (0)2;
– the source of any 𝑖𝑛2 (𝑟1, 𝑒2, 𝑟2) is 𝑖𝑛2 ((𝑟1 · 𝑠), 𝑒2) ∈ Σ0 (𝑋) (0).

This successfully captures the syntactic transition system:

Proposition 3.16. The initial Σ̌1-algebra ZΣ̌1
, or Z for short, is an initial verti-

cal algebra, and is isomorphic to the (proof-relevant) syntactic transition system.

3.4 Substitution-closed bisimilarity

There is an obvious notion of bisimulation for transition Σ0-monoids:

Definition 3.17. A morphism is Σ0 -Mon is a functional bisimulation iff its
underlying morphism in C is.

However, as foreshadowed by Example 3.11, the relevant notion in this case
combines bisimulation with substitution-closedness, in the following sense.

Definition 3.18. For any monoid 𝑀 in C0, an 𝑀-module is an object 𝑋 equipped
with algebra structure 𝑋 ⊗ 𝑀 → 𝑋 for the monad − ⊗ 𝑀. A module morphism is
an algebra morphism.

Example 3.19. The monoid 𝑀 is itself an 𝑀-module by multiplication, and 𝑀-
modules are closed under limits in C0, so in particular 𝑀2 is an 𝑀-module, with

action given by the composite 𝑀2 ⊗ 𝑀
〈𝜋1⊗𝑀,𝜋2⊗𝑀 〉−−−−−−−−−−−−−→ (𝑀 ⊗ 𝑀)2

𝑚2
𝑀−−−→ 𝑀2.

Definition 3.20. For any transition monoid 𝑀, a span of the form 𝑅 → 𝑀2 in
C is substitution-closed iff 𝑅0 is an 𝑀0-module and the morphism 𝑅0 → 𝑀2

0 is
an 𝑀0-module morphism.
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Example 3.21. To see what this definition has to do with substitution-closedness,
let us observe that if 𝑅 is a relation in [F, Set], an element of (𝑅 ⊗ 𝑀) (𝑛) is an
explicit substitution 𝑟L𝜎M with 𝑟 ∈ 𝑅(𝑝) for some 𝑝, and 𝜎 : 𝑝 → 𝑀 (𝑛). Now,
substitution-closedness amounts to a morphism 𝑅 ⊗ 𝑀 → 𝑅 commuting with
projections, so if 𝑅 is a relation, we indeed get that 𝑒 𝑅 𝑒′ entails 𝑒[𝜎] 𝑅 𝑒[𝜎].

Proposition 3.22. For any transition Σ0-monoid 𝑀, there is a terminal subs-
titution-closed bisimulation, called substitution-closed bisimilarity and denoted
by ∼⊗

𝑀
.

Remark 3.23. Substitution-closed bisimilarity is a relation.

Proposition 3.24. Substitution-closed bisimilarity ∼⊗
Z
on the syntactic transi-

tion system Z coincides with applicative bisimilarity.

Proof. Let us denote the open extension of applicative bisimilarity by ∼⊗
std

, and
recall that applicative bisimilarity is denoted by ∼. The relation ∼⊗

std
is straight-

forwardly a substitution-closed bisimulation, so we have ∼⊗
std
⊆ ∼⊗

Z
. But con-

versely any substitution-closed bisimulation relation 𝑅 (hence ∼⊗
Z
) is in particular

a substitution-closed relation contained in ∼ on closed terms. It is thus globally
contained in ∼⊗

std
by Lemma 2.4.

Our main result instantiates to the following.

Theorem 3.25. Substitution-closed bisimilarity is a congruence. More precisely,
it is a transition Σ0-monoid, and ∼⊗

Z
→ Z2 is a transition Σ0-monoid morphism.

In particular, there exists a morphism Σ0 ((∼⊗Z )0) → (∼
⊗
Z
)0 commuting with

projections, i.e., (∼⊗
Z
)0 is closed under context.

4 Transition systems and bisimilarity

In this section, we start to abstract over the situation of §3, by introducing a
general framework for transition systems and bisimilarity.

4.1 Pre-Howe contexts and transition systems

Definition 4.1. A pre-Howe context4 consists of

– a small category C0 of state types,
– a small category C1 of transition types,
– and two source and target functors s, t : C1 → C0.

4 The Howe contexts of [10] may be defined similarly. The difference is that for them,
s and t are not necessarily functorial, but 𝑐1 ↦→ (s(𝑐1), t(𝑐1)) defines a functor C1 →
C0×C0, where C0×C0 denotes the category whose objects are pairs of elements of C0,
and morphisms between (𝑎1, 𝑎2) and (𝑏1, 𝑏2) consists of pairs of morphisms 𝑎1 → 𝑏𝑖
and 𝑎2 → 𝑏 𝑗 for some 𝑖, 𝑗 ∈ {1, 2}.
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Precomposition by s and t yields functors Δs,Δt : Ĉ0 → Ĉ1 mapping any 𝑋 ∈ Ĉ0

to 𝑋 ◦ s and 𝑋 ◦ t, respectively. Let Δ denote the pointwise product Δs × Δt.

We use these functors to define transition systems.

Definition 4.2. Given any pre-Howe context, a transition system 𝑋 consists of

– a state presheaf 𝑋0 ∈ Ĉ0,
– a transition presheaf 𝑋1 ∈ Ĉ1,
– and two source and target natural transformations 𝑋0 ◦ s← 𝑋1 → 𝑋0 ◦ t, or

equivalently a natural transformation 𝑋1 → Δ(𝑋0).

Proposition 4.3. In any pre-Howe context, transition systems are precisely the

objects of the lax limit category Ĉ1/Δ of the functor Ĉ0
Δ−→ Ĉ1 in CAT, or equiv-

alently the comma category of this functor with idĈ1
.

Proof. An object of the lax limit is by construction a triple (𝑋1, 𝑋0, 𝜕), where
𝜕 : 𝑋1 → Δ(𝑋0) = 𝑋0s × 𝑋0t.

Notation 4.4. In any pre-Howe context, we let C0 := Ĉ0 and C := Ĉ1/Δ.

Lemma 4.5. The projection functor −0 : C → C0 has a left adjoint mapping
any object 𝑋0 to ∅ → 𝑋0s × 𝑋0t.

Example 4.6. We can get C → C0 to be the forgetful functor Gph → Set by
taking

– C0 = 1, so that C0 = Ĉ0 = 1̂ � Set,
– C1 = 1, so that C = Set, and
– s, t : 1→ 1 to be the unique such functor, i.e., the identity.

A transition system thus consists of sets 𝑉 and 𝐸 together with a map 𝐸 → 𝑉2,
i.e., a graph.

Example 4.7. A (harmless) proof-relevant variant of standard labelled transition
systems may be obtained as follows. Letting A denote any given set of labels, we
take

– C0 = 1 again,
– C1 = A viewed as a discrete category, and
– s, t : C1 → C0 the unique such functor.

Thus, a transition system 𝑋 consists of a set 𝑋0 and sets 𝑋𝑎 for all 𝑎 ∈ A, together
with maps 𝑋𝑎 → 𝑋2

0 returning the source and target of each 𝑎-labelled edge.
More generally, given any graph L, taking s, t : C1 → C0 to be the source and

target maps L1 → L0 viewed as functors between discrete categories, we obtain
for C→ C0 a functor isomorphic to Gph/L→ Set/L0.

Example 4.8. Let C0 = Fop and C1 = 1, with s and t picking respectively 0 and
1. In particular, Ĉ1 � Set. Then, Δ(𝑋0) = 𝑋0 (0) × 𝑋0 (1) and we recover the
category C of §3.2, and its forgetful functor to C0 = [F, Set].
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4.2 Transition systems as presheaves

Before introducing bisimulation, let us establish an alternative characterisation
of the category C of transition systems.

Proposition 4.9. The lax limit category Ĉ1/Δ of transition systems is isomor-
phic to a presheaf category Ĉs,t.

Proof. Let Cs,t denote the lax colimit in Cat of the parallel pair s, t. By definition,
it is the universal category with natural transformations

C1 C0

Cs,t.

s

t
𝑠

𝑡

It thus consists of the coproduct C1 + C0, augmented with arrows 𝑠𝐿 : s(𝐿) → 𝐿

and 𝑡𝐿 : t(𝐿) → 𝐿 for all 𝐿 ∈ C1, naturally in 𝐿. Presheaves on Cs,t coincide with

Ĉ1/Δ because the presheaf construction turns lax colimits into lax limits.

Notation 4.10. We often omit the isomorphism Ĉ1/Δ � Ĉs,t, considering it as
an implicit coercion. E.g., y𝑃 may be used to denote the transition system 𝑃 with
𝑃1 = ∅ and 𝑃0 = y𝑃.

Similarly, y𝐿 may be used to denote the ‘minimal’ transition system with
one transition over 𝐿, say 𝐿, i.e., 𝐿1 = y𝐿, 𝐿0 = ys(𝐿) + yt(𝐿) , and the map
𝐿1 → 𝐿0s × 𝐿0t uniquely determined by the element (𝑖𝑛1 (ids(𝐿) ), 𝑖𝑛2 (idt(𝐿) )) ∈
𝐿0 (s(𝐿)) × 𝐿0 (t(𝐿)).

Finally, y𝑠𝐿 : ys(𝐿) → y𝐿 and y𝑡𝐿 : yt(𝐿) → y𝐿 denote the Yoneda embedding
of the canonical morphisms 𝑠𝐿 and 𝑡𝐿 from the proof of Proposition 4.9.

By Yoneda, we thus have:

Corollary 4.11. For all 𝑋, we have C(y𝐿 , 𝑋) � 𝑋1 (𝐿) and C(y𝑃 , 𝑋) � 𝑋0 (𝑃).

Notation 4.12. In the case of call-by-name 𝜆-calculus, we call ⇓ the unique
object coming from C1 = 1.

Remark 4.13. Presheaves on Cs,t are intuitively 2-dimensional; the projection
functor forgets dimension 1, while the left adjoint (Lemma 4.5) adds an empty
dimension 1, thus lifting its 0-dimensional argument to a 1-dimensional object.

4.3 Bisimulation and bisimilarity

Morphisms in C are a generalisation of graph morphisms, which are a proof-
relevant version of functional simulations. The analogue of functional bisimula-
tions is as follows.
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Definition 4.14. A morphism 𝑓 : 𝑋 → 𝑌 in Ĉs,t is a functional bisimulation, or
a fibration, iff it enjoys the (weak) right lifting property w.r.t. y𝑠𝐿 : ys(𝐿) → y𝐿,
for all 𝐿 ∈ C1.

Here is a characterisation of fibrations which will be important. Let us recall
that a weak pullback satisfies the same universal property as a pullback, albeit
without uniqueness.

Proposition 4.15. A morphism 𝑓 : 𝑋 → 𝑌 is a functional bisimulation iff the
following diagram is a pointwise weak pullback.

𝑋1 𝑌1

𝑋0s 𝑌0s

𝑓1

𝑓0s

Proof. By Yoneda, a lifting problem in C as on the left below is the same as a
cone in Ĉ1 as on the right, and a lifting is the same as a mediating morphism to
𝑋1.

s(𝐿) 𝑋

𝐿 𝑌

y𝐿

𝑋1 𝑌1

𝑋0s 𝑌0s
𝑓0s

We use this to define general bisimulations. Usually, one considers bisimula-
tion relations. Here, we generalise this a bit and consider arbitrary spans:

Definition 4.16. A simulation is a span 𝑋 ← 𝑅 → 𝑌 whose left leg is a fi-
bration. A bisimulation is a span of fibrations (equivalently, a simulation whose
converse span is also a simulation).

Remark 4.17. Of course, the relevant notion in our applications is substitution-
closed bisimulation, to which we will come below.

Lemma 4.18. Simulation relations and bisimulation relations are stable under
unions.

Proof. As symmetry commutes with union, it is enough to prove the case of
simulation relations. Consider any family (𝑅𝑖 ↩→ 𝑋×𝑌 )𝑖∈𝐼 of simulation relations.
Their union is the image of their copairing. But because the domain ys(𝐿) of 𝑠𝐿
is representable for all 𝐿 ∈ C1, any lifting problem 𝑠𝐿 →

⋃
𝑖 𝑅𝑖 lifts to a lifting

problem 𝑠𝐿 →
∑

𝑖 𝑅𝑖, which in turn lifts to a lifting problem so some 𝑠𝐿 → 𝑅𝑖0

with 𝑖0 ∈ 𝐼. We then find a lifting for the latter, which yields a lifting for the
original.

Proposition 4.19. For all 𝑋,𝑌 ∈ C, the full subcategory Bisim(𝑋,𝑌 ) of spans
between 𝑋 and 𝑌 which are bisimulations admits a terminal object ∼𝑋,𝑌 , called
bisimilarity.
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Proof. As a presheaf category by Proposition 4.9, C is well-powered, so we may
consider the union ∼𝑋,𝑌 of all bisimulation relations, which is again a bisimula-
tion by Lemma 4.18. Finally, ∼𝑋,𝑌 is terminal, because any bisimulation 𝑅 factors
through its image 𝑖𝑚(𝑅), which is again a bisimulation; as a bisimulation relation,
𝑖𝑚(𝑅) thus embeds into ∼𝑋,𝑌 , hence we obtain a morphism 𝑅 � 𝑖𝑚(𝑅) ↩→ ∼𝑋,𝑌 ,
which is unique by monicity of ∼𝑋,𝑌 ↩→ 𝑋 × 𝑌 .

5 Howe contexts for operational semantics

Operational semantics is the combination of syntax and transition systems, in
the sense that it is about transition systems whose states are models of a certain
syntax. Our framework for operational semantics thus combines the frameworks
of [18] and §4.

The former is merely an abstract version of §3.1. Here is the important result,
which echoes Proposition 3.2.

Proposition 5.1 (see [18,15,10]). For any finitary, pointed strong endofunc-
tor Σ0 on a monoidal, cocomplete category C0 such that the tensor preserves
all colimits on the left and filtered colimits on the right, the forgetful functor
Σ0 -mon → C0 is monadic, and the free Σ0-algebra over 𝐼 (equivalently the ini-
tial (𝐼 + Σ0)-algebra) is an initial Σ0-monoid.

Notation 5.2. We denote the initial Σ0-monoid by ZΣ0
, or Z0 for short.

Definition 5.3. A Howe context consists of a pre-Howe context s, t : C1 → C0,
together with a monoidal structure on Ĉ0, such that the tensor preserves all
colimits on the left and filtered colimits on the right.

Notation 5.4. As for pre-Howe contexts, we let C0 = Ĉ0 and C := Ĉ1/Δ.

Let us assume that some syntax has been specified by a pointed strong end-
ofunctor Σ0 on C0. We then define transition Σ0-monoids just as in §3.

Definition 5.5. In a Howe context s, t : C1 → C0, given a pointed strong Σ0 :
C0 → C0, the category Σ0 -Mon of transition Σ0-monoids is the following pull-

back in CAT. Σ0 -Mon Σ0 -mon

C C0

D

Lemma 5.6. The adjonction between C and C0 (Lemma 4.5) lifts to an adjunc-
tion D `M : Σ0 -mon→ Σ0 -Mon with D (M (𝑋0)) = 𝑋0 and M (𝑋0)1 = ∅.

Proposition 5.7. The forgetful functor U : Σ0 -Mon→ C is monadic.

Proof. Transition Σ0-monoids are the algebras of an equational system over C
in the sense of Fiore and Hur, to which [14, Theorem 6.1] applies.

Notation 5.8. We denote the left adjoint to U by L .
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Similarly, we define abstract dynamic signatures:

Definition 5.9. Given a Howe context s, t : C1 → C0 and a pointed strong Σ0 :
C0 → C0, a dynamic signature Σ1 = (Σ𝐹

1 ,Σ
𝜕
1 ) over Σ0 consists of a finitary

functor Σ𝐹
1 : Σ0 -Mon → Ĉ1, together with a natural transformation Σ𝜕

1 with
components Σ𝐹

1 (𝑋) → Σ0 (𝑋0)s × 𝑋0t.

Let us pack up the static and dynamic notions of signature.

Definition 5.10. An operational semantics signature on a given Howe context
s, t : C1 → C0 consists of a pointed strong endofunctor preserving sifted colimits,
together with a dynamic signature over it.

Remark 5.11. Preservation of sifted colimits [3] is stronger than finitarity for Σ0.
We need it for Lemma 8.42 below. In a presheaf category like C0, if Σ0 preserves
pullbacks (for example, by familiality), it is equivalent to being finitary and
preserving all epis, as seen from the proof of [4, Theorem 18.1].

Remark 5.12. In [10], we mistakenly only require Σ0 to be finitary, which yields
a gap in the proof of [10, Lemma 5.13].

Example 5.13. The endofunctor Σ0 (𝑋) (𝑛) = 𝑋 (𝑛+1)+𝑋 (𝑛)2 on [F, Set] preserves
sifted colimits. It is easily deduced from the fact that sifted colimits are the
colimits commuting with all products in sets.

Let us now define the category of models of a dynamic signature Σ1.

Definition 5.14. For any dynamic signature Σ1 over Σ0, let Σ̌1 : Σ0 -Mon →
Σ0 -Mon map any transition Σ0-monoid 𝑋 to the composite

Σ𝐹
1 (𝑋) → Σ0 (𝑋0)s × 𝑋0t

𝜈𝑋0 s×𝑋0t−−−−−−−→ 𝑋0s × 𝑋0t,

where 𝜈𝑋0
denotes the Σ0-algebra structure of 𝑋0.

Proposition 5.15. For any dynamic signature Σ1 over Σ0, Σ̌1 is finitary and
makes the following triangle commute.

Σ0 -Mon Σ0 -Mon

Σ0 -mon

Σ̌1

Definition 5.16. A Σ̌1-algebra Σ̌1 (𝑋) → 𝑋 is vertical when its image under the
forgetful functor Σ0 -Mon→ Σ0 -mon is the identity. Let Σ1 -alg𝑣 denote the full
subcategory of Σ̌1 -alg spanning all vertical algebras.

Theorem 5.17. The forgetful functor Σ1 -alg𝑣 → Σ0 -Mon is monadic, and fur-
thermore the initial Σ̌1-algebra ZΣ̌1

, or Z for short, may be chosen to be vertical,
hence is also initial in Σ1 -alg𝑣 .
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Proof. For the first statement, vertical algebras may be specified as an equational
system, in the sense of [14]. For the second statement, Z is the colimit of the
initial chain Z0 → Σ̌1 (Z0) → . . .→ Σ̌𝑛

1 (Z0) → . . .

(where Z0 is shorthand for M (Z0), for readability, recalling Lemma 5.6). The
image of this chain in Σ0 -mon is the everywhere-identity chain on Z0.

Proposition 5.18. We have D (Z) = Z0.

Remark 5.19. The composite forgetful functor Σ1 -alg𝑣 → Σ0 -Mon→ C appears
not to be monadic in general.

6 Substitution-closed bisimilarity

We have now defined bisimilarity (Proposition 4.19) for our generalised transition
systems, and also introduced operational semantics signatures, which allow us
to efficiently specify relevant syntactic transition systems. As in §3.4, Σ0 -Mon
inherits the notion of bisimulation from C:

Definition 6.1. A morphism is Σ0 -Mon is a functional bisimulation iff its un-
derlying morphism in C is.

However, we have seen in Example 3.11 that bisimilarity is irrelevant for such
syntactic transition systems. We thus introduce abstract versions of substitution-
closed bisimulation and bisimilarity. For this, let us give the general definition
of modules over a monoid.

Definition 6.2. For any monoid 𝑀 in a monoidal category C , let 𝑀 -Mod de-
note the category of algebras for the monad − ⊗ 𝑀.

Example 6.3. 𝑀 itself is an 𝑀-module, with action given by multiplication.

As algebras for the monad − ⊗ 𝑀, 𝑀-modules are closed under all limits in
C , as well as under all types colimits preserved by − ⊗ 𝑀.

Definition 6.4. In a monoidal category C with binary products, given a monoid
𝑀 and 𝑀-modules 𝑋 and 𝑌 , a span 𝑅 → 𝑋 ×𝑌 is substitution-closed iff 𝑅 is an
𝑀 module and 𝑅 → 𝑋 × 𝑌 is an 𝑀-module morphism.

When C has binary products, this is equivalent to commutation of the fol-

lowing diagram. 𝑅 ⊗ 𝑀 𝑅

(𝑋 × 𝑌 ) ⊗ 𝑀 (𝑋 ⊗ 𝑀) × (𝑌 ⊗ 𝑀) 𝑋 × 𝑌〈𝜋1⊗𝑀,𝜋2⊗𝑀 〉 𝑎𝑋×𝑎𝑌

Definition 6.5. Consider any Howe context s, t : C1 → C0 and transition monoid
𝑀 ∈ C. Let 𝑋,𝑌 ∈ C be equipped with 𝑀0-module structure on 𝑋0 and 𝑌0. A span
𝑅 → 𝑋 × 𝑌 is substitution-closed iff 𝑅0 → 𝑋0 × 𝑌0 is.
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Definition 6.6. For any Howe context s, t : C1 → C0 and monoid 𝑀 ∈ C, a
substitution-closed bisimulation is a substitution-closed span 𝑅 → 𝑀2 (viewing
𝑀 itself as an 𝑀-module) which is a bisimulation.

Let Bisim⊗ (𝑀) denote the full subcategory of C/𝑀2 spanning substitution-
closed bisimulations.

It may not be entirely clear that substitution-closed bisimilarity exists. Just
as in the particular case of §4.3, we have:

Lemma 6.7. Simulation relations and bisimulations relations are stable under
unions.

Proposition 6.8. For any Howe context s, t : C1 → C0 and monoid 𝑀 ∈ C,
the category Bisim⊗ (𝑀) of substitution-closed bisimulations over 𝑀 admits a
terminal object ∼⊗

𝑀
, called substitution-closed bisimilarity.

Notation 6.9. When 𝑀 = Z, we abbreviate ∼⊗
Z
to just ∼⊗.

We now want to state the abstract version of our main theorem, but we need
an additional hypothesis, which we now introduce. The idea is essentially that
Σ1 should preserve functional bisimulations, which does not quite make sense,
because its codomain is Ĉ1, where no notion of functional bisimulation has been
defined yet. Recalling Proposition 4.15, we rectify this as follows.

Definition 6.10. We say that a dynamic signature Σ1 preserves functional bisim-
ulations iff for any functional bisimulation 𝑅 → 𝑋 in Σ0 -Mon, the following
square is a pointwise weak pullback.

Σ1 (𝑅) Σ1 (𝑋)

Σ0 (𝑅0)s Σ0 (𝑋0)s
𝜋1◦(Σ𝜕

1 )𝑅 𝜋1◦(Σ𝜕
1 )𝑋 (5)

Remark 6.11. It may not be obvious that the dynamic signature for call-by-name
𝜆-calculus preserves functional bisimulations. We will come back to this in §7 by
showing that it satisfies a sufficient condition, cellularity.

Remark 6.12. It may seem linguistically inappropriate to say that Σ1 preserves
functional bisimulations, since we have not even defined fibrations in the codomain
category Ĉ1. We will justify this in §7, but for now let us move on directly to
the main result.

Theorem 6.13. If Σ1 preserves functional bisimulations, then substitution-closed
bisimilarity is a congruence. More precisely, it is a transition Σ0-monoid, and
∼⊗→ Z2 is a transition Σ0-monoid morphism.

The rest of this section is devoted to a proof sketch for Theorem 6.13, which
will be elaborated in §8.
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1. We first define the Howe closure 𝐻0 of applicative bisimilarity ∼⊗0 on states
as the initial Σ𝐻

0 -monoid for a suitable pointed strong endofunctor Σ𝐻
0 on

C0/Z2 defined by Σ𝐻
0 (𝑅) = Σ0 (𝑅) + (𝑅;∼⊗0 ). By construction, 𝐻0 is a Σ0-

monoid and both projections are Σ0-monoid morphisms.
2. We then define the transition Howe closure 𝐻 of (the full) applicative bisim-

ilarity ∼⊗, as an initial algebra for an endofunctor Σ𝐻
1 on a suitable category

C𝐻
Z . Very roughly, C𝐻

Z is the category of spans 𝑅 → Z2 whose projection is
precisely 𝐻0 → Z2

0, and Σ𝐻
1 (𝑅) = Σ̌1 (𝑅) + (𝑅;∼⊗). We show:

Lemma 6.14. There exists a span morphism ∼⊗→ 𝐻.

3. Next comes the key lemma:

Lemma 6.15. If Σ1 preserves functional bisimulations, then the transition
Howe closure 𝐻 is a substitution-closed simulation.

Remark 6.16. Since 𝐻0 is a Σ0-monoid by construction, 𝐻 is easily seen to
be substitution-closed, so the lemma really is about it being a simulation.

The key lemma is proved by characterising 𝐻 as an initial algebra for a
different endofunctor on a different category, whose initial chain involves
iterated applications of Σ1 to 𝜋1 : M (𝐻0) → M (Z0), which is trivially a
bisimulation.

4. For an appropriate notion of relational transitive closure denoted by −+, we
show:

Lemma 6.17. The relational transitive closure 𝐻0
+ of the Howe closure 𝐻0

on states is symmetric.

As substitution-closed simulations are closed under transitive closure, we
obtain

Corollary 6.18. 𝐻+ is a substitution-closed simulation which is symmetric
on states.

We then use the following lemma (proved in §8.7).
Lemma 6.19. For any substitution-closed simulation 𝑅 such that 𝑅0 is sym-
metric, there exists a span morphism 𝑅 → 𝑅′ such that 𝑅′ is a substitution-
closed bisimulation.

By terminality of ∼⊗, we thus get a unique morphism 𝐻+′→ ∼⊗ over Z2.
5. From the chain ∼⊗ → 𝐻 → 𝐻+ → 𝐻+′→ ∼⊗

we get by terminality that ∼⊗ is a retract of a transition Σ0-monoid, namely
𝐻. The result then readily follows from monadicity of Σ0-monoids and the
following result, taking 𝑋 = 𝐻, 𝑌 = ∼⊗, and 𝑍 = Z2.

Lemma 6.20. Consider a monad 𝑇 : C → C on any category C , 𝑇-algebras

𝑋 and 𝑍, and morphisms 𝑋
𝑒

𝑌
𝑚

𝑍 in C such that the composite is a
𝑇-algebra morphism, 𝑒 is split epi, and 𝑚 is monic. Then there is a unique
𝑇-algebra structure on 𝑌 such that 𝑒 and 𝑚 both are 𝑇-algebra morphisms.

Proof. Let 𝑠 : 𝑌 → 𝑋 denote any section of 𝑒. The desired structure is

given by the composite 𝑇 (𝑌 )
𝑇 (𝑠)
−−−−→ 𝑇 (𝑋) → 𝑋

𝑒
𝑌 , and the rest follows by

monicity of 𝑚.
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7 Preservation of functional bisimulations, and cellularity

Let us now consider the main hypothesis of Theorem 6.13, preservation of func-
tional bisimulations. In §7.1, we rephrase the condition in a way that make more
sense linguistically, i.e., by an actual preservation condition. In §7.2, we then
briefly recall familial functors [13,11], and show that the dynamic signature for
call-by-name 𝜆-calculus induces a familial functor. In §7.3, we restrict atten-
tion to the case where both components of the dynamic signature are familial,
and show that preservation of functional bisimulations is then equivalent to a
cellularity condition [19,10], which itself comes with a useful sufficient condition.

7.1 An alternative characterisation

Let us first give an alternative definition of dynamic signatures.

Definition 7.1. Let Ĉ1/Δs denote the following lax limit category.

Ĉ1/Δs

Ĉ0 Ĉ1
Δs

Concretely, an object consists of presheaves 𝑋1 and 𝑋0, together with a mor-
phism 𝑋1 → 𝑋0s. Just as C, Ĉ1/Δs is in fact a presheaf category:

Proposition 7.2. Ĉ1/Δs is isomorphic to the presheaf category over the lax col-
imit Cs of the functor s : C1 → C0.

Remark 7.3. Concretely, Cs is the coproduct of C0 and C1, augmented with
morphisms 𝑠𝐿 : s(𝐿) → 𝐿 for all 𝐿 ∈ C1, naturally in 𝐿.

Notation 7.4. In the case of call-by-name 𝜆-calculus, as in C (Notation 4.12),
we call ⇓ the unique object coming from C1 = 1.

Proposition 7.5. Any dynamic signature (Σ0,Σ1) induces a finitary functor
Σs
1 : Σ0 -Mon→ Ĉs making the following square commute.

Σ0 -Mon Ĉs

Ĉ0 Ĉ0

Σs
1

Σ0

(6)

In Ĉs, we may define functional bisimulations by analogy with Definition 4.14.

Definition 7.6. A morphism 𝑓 : 𝑋 → 𝑌 in Ĉs is a functional bisimulation, or
a fibration, iff it enjoys the (weak) right lifting property w.r.t. y𝑠𝐿 : ys(𝐿) → y𝐿,
for all 𝐿 ∈ C1.
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Proposition 7.7 (Price for our linguistic mischief). A dynamic signature

preserves functional bisimulations iff the induced functor Σ0 -Mon→ Ĉs does.

Proof. The functor maps any functional bisimulation 𝑓 : 𝑅 → 𝑌 precisely to the
square (5), and just as in Proposition 4.15 a morphism in Ĉ1/Δs is a functional
bisimulation iff the corresponding square is a pointwise weak pullback.

Let us recall from Notation 5.8 that L : C→ Σ0 -Mon is left adjoint to the
forgetful functor. The following will be useful in §7.3.

Proposition 7.8. A morphism in Σ0 -Mon is a functional bisimulation iff it has
the right lifting property w.r.t. all L (y𝑠𝐿 ) : L (ys(𝐿) ) → L (y𝐿), for 𝐿 ∈ C1.

Proof. By Definition 6.1, a morphism 𝑓 is a functional bisimulation iff U ( 𝑓 ) is
(in Ĉ1/Δ). We conclude by adjunction.

7.2 Familiality

In the previous section, we have shown that functional bisimulations may be
defined by lifting both in Σ0 -Mon and Ĉ1/Δs. We now want to exploit this to
obtain a characterisation of preservation of functional bisimulations, which will
then lead us to useful sufficient conditions.

For this, let us briefly recall familial functors, and show that the functor
Σ0 -Mon→ Ĉ1/Δs induced by the dynamic signature for call-by-name 𝜆-calculus
is familial.

Familial functors are a generalisation of polynomial functors on sets, i.e.,
functors of the form 𝐹 (𝑋) = ∑

𝑜∈𝑂 𝑋𝑛𝑜 , where 𝑂 is a set of ‘operations’, and
𝑛𝑜 ∈ N is the ‘arity’ of any 𝑜 ∈ 𝑂.

We now want to generalise this to presheaf categories. Consider for example
the ‘free category’ monad 𝑇 on Gph. Analysing and abstracing over the definition
of 𝑇 , we will arrive at the notion of familial functor. Let us first recall that graphs

are presheaves over the category [0] [1]𝑠

𝑡
. 𝑇 does not change the vertex

set, and an edge of 𝑇 (𝐺) is merely a path in 𝐺. Indexing this by the length of
the path, we obtain

𝑇 (𝐺) [0] = Gph(y[0] , 𝐺) and 𝑇 (𝐺) [1] = ∑
𝑛 Gph( [𝑛], 𝐺),

where [𝑛] denotes the filiform graph • → • . . . → • with 𝑛 edges (which is
consistent with [0] and [1] through the Yoneda embedding). Furthermore, the
source of a path [𝑛] → 𝐺 in 𝑇 (𝐺) is obtained as the composite

[0] 𝑠𝑛−−→ [𝑛] → 𝐺,

where the first morphism selects the first vertex of the path. Similarly the target
is obtained by precomposition with the morphism, say 𝑡𝑛, selecting the last
vertex.

Familial functors abstract over this situation as follows. First, let us recall
fromMacLane and Moerdijk [28] that the category of elements el(𝑋) of a presheaf
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𝑋 over any category C has pairs (𝑐, 𝑥) with 𝑥 ∈ 𝑋 (𝑐) as objects, and a morphism
𝑓 � 𝑥 ′ : (𝑐, 𝑥) → (𝑐′, 𝑥 ′) for all 𝑓 : 𝑐 → 𝑐′ such that 𝑋 ( 𝑓 ) (𝑥 ′) = 𝑥.

The category of elements of 𝑇 (1) looks like the following,

( [1], 0) ( [1], 1) ... ( [1], 𝑛) ...

( [0], ★)𝑠

𝑡 𝑠

𝑡
𝑠

𝑡

and the collection of all source and target maps y[0] → [𝑛] forms a functor
el(𝑇 (1)) → Gph, which we may visualise as

[0] [1] ... [𝑛] ...

y[0] .
𝑠0
𝑡0 𝑠1

𝑡1
𝑠𝑛

𝑡𝑛

Definition 7.9. A functor 𝐹 : A → Ĉ to some presheaf category is familial iff
we have a natural isomorphism

𝐹 (𝑋) (𝑐) =
∑︁

𝑜∈𝑂 (𝑐)
A (𝐸 (𝑐, 𝑜), 𝑋),

for some presheaf 𝑂 ∈ Ĉ and functor 𝐸 : el(𝑂) → A . The presheaf 𝑂 is called
the presheaf of operations, or the spectrum [13] of 𝐹, while 𝐸 is called the
exponent.

Remark 7.10. If A has a terminal object, we always have 𝑂 � 𝐹 (1).

Example 7.11. Let us show that the endofunctor Σ0 : Ĉ0 → Ĉ0 for 𝜆-calculus is
familial. We have

Σ0 (𝑋) (𝑛) = 𝑋 (𝑛 + 1) + 𝑋 (𝑛)2
� Ĉ0 (y𝑛+1, 𝑋) + Ĉ0 (2 · y𝑛, 𝑋)

Thus, we choose:

𝑂 (𝑛) = {abs, app} 𝐸 (𝑛, abs) = y𝑛+1

𝐸 (𝑛, app) = 2 · y𝑛.

These definitions can be straightforwardly upgraded to functors 𝑂 ∈ Ĉ0 and
𝐸 : el(𝑂) → Ĉ0, and we get the desired isomorphism.

Example 7.12. Let us now show that the functor Σs
1 : Σ0 -Mon → Ĉ1/Δs for

call-by-name 𝜆-calculus is familial. By definition, it maps any 𝑋 to the set-map
𝑋0 (1) + 𝐴𝛽 (𝑋) → Σ0 (𝑋0) (0) defined in Example 3.15. Let us transfer this across
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the isomorphism Ĉ1/Δs � Ĉs (recalling Remark 7.3). On states, we almost may

proceed as for Σ0, except that the domain category has changed (from Ĉ0 to
Σ0 -Mon). But recalling that L : C → Σ0 -Mon denotes the left adjoint to the
forgetful functor U , we have

Σs
1 (𝑋) (𝑛) = Σ0 ((U (𝑋))0) (𝑛)

� C(y𝑛+1,U (𝑋)) + C(2 · y𝑛,U (𝑋))
� Σ0 -Mon(L (y𝑛+1), 𝑋) + Σ0 -Mon(L (2 · y𝑛), 𝑋),

so we may (partially) define

𝑂 (𝑛) = {abs, app} 𝐸 (𝑛, abs) = L (y𝑛+1)
𝐸 (𝑛, app) = L (2 · y𝑛).

(7)

Now, remembering from Notation 7.4 that we call ⇓ ∈ Cs the unique object of
Cs coming from C1 = 1, on transitions, we have:

Σs
1 (𝑋) (⇓) = 𝑋0 (1) + 𝐴𝛽 (𝑋)

� C(y1,U (𝑋)) + 𝐴𝛽 (𝑋)
� Σ0 -Mon(L (y1), 𝑋) + 𝐴𝛽 (𝑋).

We thus need to find 𝐸𝛽 such that 𝐴𝛽 (𝑋) � Σ0 -Mon(𝐸𝛽 , 𝑋), and then we would
complete equations (7) with:

𝑂 (⇓) = {𝜆-val, 𝛽-red} 𝐸 (⇓, 𝜆-val) = L (y1)
𝐸 (⇓, 𝛽-red) = 𝐸𝛽.

And indeed, let 𝐸𝛽 denote the following pushout.

L (y0) L (y0 + y1) L (y0 + y⇓)

L (y⇓) 𝐸𝛽

𝜒

L (y𝑠⇓ )

L (y0+y𝑡⇓ )

𝑖𝑛1

𝑖𝑛2

The morphism 𝜒 is defined to be the mate of some morphism y0 → U (L (y0 +
y1)), itself corresponding by Yoneda to some element of U (L (y0 + y1)) (0). The
presheaf U (L (y0 + y1)) has as states 𝜆-terms over a closed constant 𝑘0, and a
unary constant 𝑘1. We pick the element 𝑘1L𝑘0M.

Let us now show that 𝐴𝛽 (𝑋) � Σ0 -Mon(𝐸𝛽 , 𝑋) for any 𝑋: Σ0 -Mon(−, 𝑋)
turns colimits into limits, so we have the pullback

[𝐸𝛽 , 𝑋] [L (y⇓), 𝑋]

[L (y0 + y⇓), 𝑋] [L (y0 + y1), 𝑋] [L (y0), 𝑋][𝜒,𝑋 ]

[L (ys⇓ ) ,𝑋 ]

(where we abbreviate Σ0 -Mon(−1,−2) to [−1,−2] for readability). By Yoneda,
this reduces to
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[𝐸𝛽 , 𝑋] 𝑋 (⇓)

𝑋 (0) × 𝑋 (⇓) 𝑋 (0) × 𝑋 (1) 𝑋 (0),
𝑋 (0)×𝑋 (𝑡⇓)

𝑋 (𝑠⇓)

(𝑡 ,𝑢) ↦→𝑢 [𝑡 ]

which shows that we have 𝐴𝛽 (𝑋) � [𝐸𝛽 , 𝑋] as desired.
We have thus defined the actions of the functors 𝑂 ∈ Ĉs and 𝐸 : el(𝑂) →

Σ0 -Mon on objects. On morphisms, the only non-obvious point is the image of
𝑠⇓ � 𝜆-val and 𝑠⇓ � 𝜆-red. The former morphism is mapped to the identity on
𝐸 (0, abs) = L (y1) = 𝐸 (⇓, 𝜆-val). The latter is mapped to the composite

L (2 · y0)
L (y0+y𝑠⇓ )−−−−−−−−−→ L (y0 + y⇓)

𝑖𝑛2−−→ 𝐸𝛽. (8)

This achieves the desired isomorphism Σs
1 (𝑋) (𝑐) �

∑
𝑜∈𝑂 (𝑐) Σ0 -Mon(𝐸 (𝑐, 𝑜), 𝑋).

7.3 Cellularity

We now want to exploit familiality to obtain an alternative characterisation of
preservation of functional bisimulations. The starting point is the observation
that when a functor 𝐹 : A → Ĉ is familial, say as 𝐹 (𝐴) (𝑐) = ∑

𝑜∈𝑂 (𝑐) A (𝐸 (𝑐, 𝑜), 𝐴),
then any morphism of the form 𝑓 : y𝑐 → 𝐹 (𝐴), corresponding by Yoneda and
familiality to some pair (𝑜, 𝜙) with 𝜙 : 𝐸 (𝑐, 𝑜) → 𝐴, factors as

y𝑐
(𝑜,id𝐸 (𝑐,𝑜) )−−−−−−−−−→ 𝐹 (𝐸 (𝑐, 𝑜))

𝐹 (𝜙)
−−−−→ 𝐹 (𝐴).

Furthermore, the first component (𝑜, id𝐸 (𝑐,𝑜) ) is easily seen to be generic, in the
following sense.

Definition 7.13. Given any functor 𝐹 : A → B, a morphism 𝜉 : 𝐵→ 𝐹 (𝐴) is
𝐹-generic (or generic for short) whenever any square of the form below (solid)
admits a unique lifting 𝑘 (dashed) such that 𝐹 (𝑘) ◦ 𝜉 = 𝜒 and 𝑔 ◦ 𝑘 = 𝑓 .

𝐵 𝐹 (𝐶)

𝐹 (𝐴) 𝐹 (𝐷)

𝜒

𝜉

𝐹 ( 𝑓 )

𝐹 (𝑘)
𝐹 (𝑔)

In fact, we have the following important alternative characterisation of fa-
milial functors to presheaf categories.

Theorem 7.14. For any endofunctor 𝐹 : A → Ĉ such that A has a terminal

object, 𝐹 is familial iff all morphisms 𝑓 : 𝑋 → 𝐹 (𝐴) factor as 𝑋
𝜉
−→ 𝐹 (𝑈)

𝐹 (𝜙)
−−−−→

𝐹 (𝐴), with 𝜉 generic.

Proof. See [36, Theorem 8.1] and [19, §3].
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Remark 7.15. The factorisation is essentially unique. Furthermore, when 𝑋 = y𝑐

is representable, the composite y𝑐
𝑓
−→ 𝐹 (𝐴)

𝐹 (!)
−−−→ 𝐹 (1) corresponds by Yoneda to

an element 𝑜 ∈ 𝐹 (1) (𝑐), and we have 𝑈 � 𝐸 (𝑐, 𝑜).

Now, recalling Proposition 7.8, let us consider a situation in which both
categories A and Ĉ are equipped with notions of functional bisimulation defined
by lifting: we are given sets J and K of morphisms in A and Ĉ, respectively.
Now for any familial functor 𝐹 : A → Ĉ and commuting square

𝐶 𝐹 (𝐴)

𝐷 𝐹 (𝐵)

𝑢

𝑘

𝑣

𝐹 ( 𝑓 ) (9)

with 𝑘 ∈ K and 𝑓 ∈ Jt, we may take generic factorisations of both horizontal
morphisms and use genericness to factor the original square as the solid part of

𝐶 𝐹 (𝑋) 𝐹 (𝐴)

𝐷 𝐹 (𝑌 ) 𝐹 (𝐵).

𝜉

𝑘

𝜒

𝐹 (𝛿)

𝐹 (𝜙)

𝐹 (𝜓)

𝐹 (𝑙) 𝐹 ( 𝑓 )

Clearly, if 𝛿 ∈ t (Jt), then we find a lifting 𝑙 as shown, which makes 𝐹 (𝑙) ◦ 𝜒 into
a lifting for the original square. We have shown the ‘if’ part of

Lemma 7.16. Given categories A and Ĉ respectively equipped with sets of mor-
phisms J and K, then a familial functor 𝐹 : A → Ĉ preserves fibrations (i.e.,
maps Jt to Kt) iff for all commuting squares

𝐶 𝐷

𝐹 (𝑋) 𝐹 (𝑌 )

𝑘

𝜉

𝐹 (𝛿)

𝜒 (10)

with 𝑘 ∈ K and 𝜉 and 𝜒 generic, we have 𝛿 ∈ t (Jt).

Proof. Conversely, let us assume that 𝐹 preserves fibrations, and consider any
square of the form (10). We need to show 𝛿 ∈ t (Jt). But for any commuting
square as below left

𝑋 𝐴

𝑌 𝐵

𝜙

𝛿

𝜓

𝑓

𝐶 𝐹 (𝑋) 𝐹 (𝐴)

𝐷 𝐹 (𝑌 ) 𝐹 (𝐵)

𝜉

𝑘

𝜒

𝐹 (𝛿)

𝐹 (𝜙)

𝐹 (𝜓)

𝐹 (𝑙) 𝐹 ( 𝑓 )
𝛾

with 𝑓 ∈ Jt, by pasting this square with our generic square (10), we obtain the
solid part above right. But because 𝐹 preserves fibrations, we find a lifting 𝛾 as
shown, which by genericness of 𝜒 (and then 𝜉) yields the desired lifting 𝑙.
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Corollary 7.17. In any Howe context, for any operational semantics signature
(Σ0,Σ1), if Σs

1 is familial with exponent 𝐸 : el(Σs
1 (1)) → Σ0 -Mon, then it pre-

serves fibrations iff for all 𝐿 ∈ C1 and 𝑜 ∈ Σs
1 (1) (𝐿), 𝐸 (𝑠𝐿 � 𝑜) : 𝐸 (s(𝐿), 𝑜 · 𝑠𝐿) →

𝐸 (𝐿, 𝑜) is a cofibration.

This characterisation of preservation of fibrations in terms of cofibrations is
easier to prove in practice, since the latter in turn admit the following well-known
characterisation.

Definition 7.18. Given a set J of maps in a category, a relative J-cell com-
plex is a (potentially transfinite) composite of pushouts of morphisms in J, i.e.,
morphisms obtained by pushout along some map of J, as 𝑓 in

𝐴 𝐵

𝐶 𝐷.

𝑗∈J

𝑓

A relative J-cell complex is finite when it is a finite composite of pushouts of
morphisms in J.

Proposition 7.19 ([23, Lemma 2.1.10]). For any set J of maps in a locally
presentable category, all relative J-cell complexes are cofibrations.

Example 7.20. It is not entirely trivial that the map 𝐸 (𝑠⇓ � 𝑖𝑛⇓,2 (★)) correspond-
ing to the second transition rule, defined as the composite (8), is a cofibration.
But, as (essentially) noted in [10, Example 5.21], it is a relative complex by
construction as both components are pushouts of L (y𝑠⇓ ).

8 Congruence of substitution-closed bisimilarity

In this section, we elaborate on the proof sketch of Theorem 6.13 given in §6.
The overall structure remains the same, and the final part of the proof sketch is
complete, so we mainly elaborate on items 1–4.

8.1 Preliminaries on spans

In this section, we fix a bicomplete category C , and develop some tools about
spans, including the categorified notions of reflexivity, transitivity, symmetry,
and transitive closure. We switch freely from spans 𝑋 ← 𝑆 → 𝑌 to their pair-
ing 𝑆 → 𝑋 × 𝑌 in C /𝑋 × 𝑌 . Furthermore, we denote sequential composition
(constructed by pullback) by ;.

Definition 8.1. A span 𝑋 ← 𝑆 → 𝑋 is reflexive if there is a morphism from
the diagonal to 𝑆 in C /𝑋2. It is transitive if there is a morphism 𝑆; 𝑆 → 𝑆 over
𝑋2. Finally, it is symmetric if there is a morphism 𝑆† → 𝑆, where (−)† denotes
the functor swapping projections.
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For potentially non-reflexive spans, we will use the following reflexive tran-
sitive closure.

Definition 8.2. The reflexive transitive closure 𝑆∗ of any span 𝑋 ← 𝑆 → 𝑋 is
the coproduct

∑
𝑛∈N 𝑆;𝑛, or for short

∑
𝑛∈N 𝑆𝑛 when the context is clear, where 𝑆;𝑛

denotes iterated span composition of 𝑆 with itself, with 𝑆;0 = 𝑋.

At some point, we will also use the relational transitive closure.

Notation 8.3. Given a span 𝑆 on 𝑋, we denote by 𝑆 the induced relation on 𝑋

by the image factorization of 𝑆 → 𝑋 × 𝑋.

Definition 8.4. The relational transitive closure 𝑆+ of a span 𝑆 on 𝑋 is the
union

⋃
𝑛>0 𝑆

;𝑛.

Note that the relational transitive closure commutes with symmetry.

Lemma 8.5. 𝑆†+ � 𝑆+†

The following lemma will be later used to exploit preservation of sifted col-
imits by Σ0.

Lemma 8.6. If 𝑆 is a reflexive span on 𝑋, then 𝑆+ is the (filtered) colimit of
the chain

𝑋 → 𝑆 � 𝑆; 𝑋 → 𝑆; 𝑆 � 𝑆; 𝑆; 𝑋 → 𝑆; 𝑆; 𝑆 → . . .

The next result will be useful to show that the relational transitive closure of
the Howe closure of substitution-closed bisimilarity is symmetric on states. Let
us first observe that if 𝑅 is reflexive, then so is 𝑅+†.

Lemma 8.7. For any reflexive span 𝑅 → 𝑋2, 𝑅+ is symmetric if there is a span
morphism 𝑅 → 𝑅+†.

Proof. Assume given a morphism 𝑗 : 𝑅 → 𝑅+†. Consider the composite

𝑅+ �
⋃
𝑛>0

𝑅;𝑛 →
⋃
𝑛>0

𝑅+†;𝑛 �
⋃
𝑛>0

𝑅+;𝑛† →
⋃
𝑛>0

𝑅+† �
⋃
𝑛>0

𝑅+† � 𝑅+†,

where the first morphism is obtained from 𝑗 , and the second one is obtained
from morphisms 𝑅+;𝑛 → 𝑅+.

8.2 Howe closure on states

We fix an operational semantics signature (Σ0,Σ1) on a Howe context s, t : C1 →
C0.

Definition 8.8. Let Σ𝐻
0 : C0/Z2

0 → C0/Z2
0 map any span 𝑋 → Z2

0 to

Σ0 (𝑋) + (𝑋;∼⊗0 ) → Σ0 (Z0)2 + Z2
0 → Z2

0.

Proposition 8.9. The functor Σ𝐻
0 is pointed strong.
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For proving this, we first need the following result.

Lemma 8.10. For any monoid 𝑋, there is a natural transformation with com-
ponents 𝛿𝑈,𝑉 ,𝑊 : (𝑈;𝑉) ⊗𝑊 → 𝑈 ⊗𝑊 ;𝑉 ⊗ 𝑋 in C0/𝑋2.

Proof. Let 𝑚 : 𝑋 ⊗ 𝑋 → 𝑋 denote the multiplication. By tensoring the defining
pullback of 𝑈;𝑉 with 𝑊 we obtain the back face below.

(𝑈;𝑉) ⊗𝑊 𝑉 ⊗𝑊

(𝑈 ⊗𝑊); (𝑉 ⊗ 𝑋) 𝑉 ⊗ 𝑋

𝑈 ⊗𝑊 𝑋 ⊗𝑊

𝑈 ⊗𝑊 𝑋

𝑉 ⊗𝜋2

𝜋2⊗𝑊

𝑚◦(𝜋2⊗𝜋2)

𝑚◦(𝑋 ⊗𝜋2)

𝜋1⊗𝑊

𝑚◦(𝜋1⊗𝑋 )

By universal property of pullback, we then get the dashed arrow making all faces
commute, which gives our candidate 𝛿𝑈,𝑉 ,𝑊 . Naturality follows by universal
property of pullback.

Proof of Proposition 8.9. Pointed strong endofunctors are closed under coprod-
ucts, so it suffices to show that −;∼⊗0 and the lifting of Σ0 to C0/Z2

0 are both
pointed strong. The latter inherits the pointed strength of Σ0, while the pointed
strength of the former follows from Lemma 8.10 and substitution-closedness of
∼⊗0 : (𝑋;∼

⊗
0 ) ⊗ 𝑌 → (𝑋 ⊗ 𝑌 ); (∼

⊗
0 ⊗ Z0) → (𝑋 ⊗ 𝑌 );∼⊗0 .

Presheaf categories being well-known to be closed under the slice construc-
tion, we have the following.

Lemma 8.11. The category C0/Z2
0 is a presheaf category.

Lemma 8.12. The endofunctor Σ𝐻
0 is finitary.

Proof. By commutation of filtered colimits with finite limits in presheaf cate-
gories.

By Proposition 8.9 and the previous lemmas, the following is legitimate.

Definition 8.13. Let 𝐻0 = ZΣ𝐻
0

denote the initial Σ𝐻
0 -monoid.

By Proposition 5.1, we also get the following for free.

Proposition 8.14. The object 𝐻0 → Z2
0 is an initial algebra for the endofunctor

C0/Z2
0 → C0/Z2

0 mapping any 𝑋 → Z2
0 to 𝐼 + Σ𝐻

0 (𝑋) → Z2
0.

Proposition 8.15. The underlying object 𝐻0 is a Σ0-monoid.

Proof. Directly follows from the Σ𝐻
0 -monoid structure.
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Next, we exhibit an alternative characterisation of 𝐻0, which relies on the
following result.

Lemma 8.16 (Packing lemma). Consider finitary endofunctors 𝐹 and 𝐺 on
a cocomplete category C, and let 𝐹★(𝐴) � 𝜇𝑆.(𝐴 + 𝐹 (𝑆)) denote the ‘free 𝐹-
algebra’ monad [31, Theorem 2.1]. Then we have 𝜇𝑆.(𝐹𝑆 +𝐺𝑆) � 𝜇𝑆.𝐹★(𝐺 (𝑆)).

Proof. Indeed, we have

𝜇𝑆.𝐹★(𝐺 (𝑆)) � 𝜇𝑆.𝜇𝑈.(𝐺 (𝑆) + 𝐹 (𝑈))
� 𝜇𝑆.𝜇𝑈.(𝐹 (𝑈) + 𝐺 (𝑆))
� 𝜇𝑆.(𝐹 (𝑆) + 𝐺 (𝑆)) (by the Diagonal rule [7, Theorem 16]).

Proposition 8.17. The object 𝐻0 → Z2
0 is an initial algebra for the endofunctor

Σ𝐻
0
′ : C0/Z2

0 → C0/Z2
0 mapping any 𝑋 → Z2

0 to 𝐼;∼⊗∗0 + Σ0 (𝑋);∼⊗∗0 → Z2
0.

Proof. Taking 𝐹 (𝑆) = 𝑆;∼⊗0 and 𝐺 (𝑆) = Σ0 (𝑆) in Lemma 8.16, and observing that
𝐹 preserves coproducts (because pullback along the first projection ∼⊗0 → Z0,
as a left adjoint, preserves colimits), so that 𝐹★(𝑈) � ∑

𝑛 𝐹
𝑛 (𝑈), we have (by

commutation of coproducts with 𝑈;−)

𝐹★(𝑈) �
∑︁
𝑛

𝐹𝑛 (𝑈) �
∑︁
𝑛

𝑈; (∼⊗0 )
𝑛 � 𝑈;

∑︁
𝑛

(∼⊗0 )
𝑛 = 𝑈;∼⊗∗0 .

Thus, 𝐹★(𝐺 (𝑆)) � (𝐼 + Σ0 (𝑆));∼⊗∗0 � (𝐼;∼
⊗∗
0 ) + (Σ0 (𝑆);∼⊗∗0 ), as desired.

8.3 Double categorical notation

Our next goal is to define the Howe closure on transitions. For this, we appeal to
Morton’s double bicategories [29]. They are a refinement of double categories, in
which both the horizontal and vertical categories are actually bicategories. We
rely in particular on his Theorem 4.1.3, which (when dualised) states that for
any category C with pullbacks, there is a double bicategory 2𝑆𝑝(C ):

– objects are objects of C ,
– both the vertical and horizontal bicategories are 𝑆𝑝𝑎𝑛(C ),
– cells, called double spans, are precisely commuting diagrams of the following

form.

𝐴 𝐵 𝐶

𝐴′ 𝐵′ 𝐶 ′

𝐴′′ 𝐵′′ 𝐶 ′′

(11)

We will not need the rest of the structure. All we need to know is that cells
compose horizontally and vertically just as in a double category. We will use the
double bicategories 2𝑆𝑝(C0) and 2𝑆𝑝(Ĉ1).
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Notation 8.18. We use the following notational conventions.

– We denote cells 2𝑆𝑝(C0) such as (11) above by

𝐴 𝐶

𝐴′′ 𝐶 ′′.

𝐵

𝐴′

𝐵′′

𝐶′𝐵′

– Furthermore, cells in Ĉ1 of the form below left will be denoted as below right.

𝑋0s 𝑆0s 𝑌0s

𝑋1 𝑆1 𝑌1

𝑋 ′0t 𝑆′0t 𝑌 ′0t

𝑋0 𝑌0

𝑋 ′0 𝑌 ′0

𝑆0

𝑋1

𝑆′0

𝑌1𝑆1 (12)

Explicitly, spans of the form 𝑋0s ← 𝑋1 → 𝑋 ′0t are denoted by 𝑋0
𝑋1

𝑋 ′0,

while spans of the form 𝑋0 ← 𝑆0 → 𝑌0 are still denoted by 𝑋0
𝑆0

𝑌0, but
silently coerced by Δs or Δt depending on context.

– For both types of cells, we collapse identity borders, as usual.
– When a span is trivial on one side, we use standard arrows for its borders,

and a double arrow for its middle arrow, all in the relevant direction. E.g.,
the diagram below left may be depicted as below right.

𝐴 𝐵 𝐶

𝐴′ 𝐵′ 𝐶 ′
𝑎 𝑏 𝑐

𝐴 𝐶

𝐴′ 𝐶 ′

𝐵

𝑎

𝐵′′

𝑐𝑏

Cells of the form (12) live in 2𝑆𝑝(Ĉ1), hence may be composed horizontally.
Relevant examples of vertical composition will be obtained by embedding cells
of the form (11) along Δs (resp. Δt), and vertically composing with cells of the

form (12) in 2𝑆𝑝(Ĉ1). This yields a top (resp. bottom) action of 2𝑆𝑝(C0), which
we both denote by mere pasting.

Lemma 8.19. Given a composable pasting diagram made of cells of both types,
any two parsings agree up to isomorphism.

Proof. By interchange of limits.

8.4 Howe closure on transitions

Let us now define the Howe closure on transitions. First, we delineate an ambient
category C𝐻

Z . The idea is that objects of this category should be transition
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systems 𝑆 → Z2 over Z2 whose image under the projection C/Z → C0/Z0 is
precisely 𝐻0 → Z2

0. Thus, object of C
𝐻
Z consists of an object 𝑆1 ∈ C1, equipped

with a dashed cone to the outer part of the diagram below.

Z0s 𝐻0s Z0s

Z1 𝑆1 Z1

Z0t 𝐻0t Z0t

(13)

Equivalently, they are morphisms over the limit, so that we may define C𝐻
Z as a

slice category by merely stating the following.

Definition 8.20. Let 𝑅𝜕𝐻 denote the limit of the outer part of (13).

Definition 8.21. C𝐻
Z is the category of cones over the outer part of (13), or

equivalently, it is the slice category C1/𝑅𝜕𝐻 .

Proposition 8.22. The initial object in C𝐻
Z is the span Z← 𝐻0 → Z.

Definition 8.23. Let Σ𝐻
1 : C𝐻

Z → C𝐻
Z map any object Z ← 𝑆 → Z to the

coproduct of the following two pastings.

Z0 Z0

Σ0 (Z0) Σ0 (Z0)

Z0 Z0

𝐻0

Σ0 (𝐻0)

Σ1 (Z)1

𝐻0

Σ1 (Z)1Σ1 (𝑆)1

Z1 Z1

Z0 Z0 Z0

Z0 Z0 Z0

𝐻0

Z1

𝐻0

Z1

∼⊗0

∼⊗0

Z1𝑆 ∼⊗1

𝐻0

𝐻0

(14)

Proposition 8.24. The functor Σ𝐻
1 : C𝐻

Z → C𝐻
Z is finitary.

Proof. The forgetful functor C𝐻
Z � C1/𝑅𝜕𝐻 → C1 creates colimits, so it suffices

to show that the composite C𝐻
Z

Σ𝐻
1−−→ C𝐻

Z → C1 is finitary. This functor maps any
𝑆 to Σ1 (𝑆)1+𝑆1;∼⊗1 , hence is finitary because Σ1 is and −;∼⊗1 is cocontinuous.

The last result legitimates the following definition.

Definition 8.25. Let 𝐻 denote the initial (vertical) Σ𝐻
1 -algebra.

We readily can prove the following.

Lemma 6.14. There exists a span morphism ∼⊗→ 𝐻.

Proof. By construction, the underlying object of 𝐻 is in particular a Σ̌1-algebra,
so by initiality we obtain a unique span morphism Z → 𝐻. Furthermore, again
by construction, 𝐻 is an algebra for the endofunctor −;∼⊗ on C/Z2. We thus
may form the composite ∼⊗ � Z;∼⊗ → 𝐻;∼⊗ → 𝐻.
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8.5 Alternative characterisations of the Howe closure

In this section, we exhibit a few alternative characterisations of the Howe closure
on transitions. The definition in the previous section is convenient for proving
that the transitive closure is symmetric, while our final alternative characterisa-
tion will enable a conceptual proof of the simulation property.

First of all, by the packing Lemma 8.16, we readily have:

Lemma 8.27. The Howe closure 𝐻 is (isomorphic to) the initial algebra of the
endofunctor Σ𝐻

1,pack : C𝐻
Z → C𝐻

Z mapping any Z ← 𝑆 → Z to the following
pasting.

Z0 Z0 Z0 Z0

Σ0 (Z0) Σ0 (Z0)

Z0 Z0 Z0 Z0

𝐻0 ∼⊗∗0

Z1

Σ0 (𝐻0)

Σ1 (Z)1

𝐻0

Σ1 (Z)1

∼⊗∗0

Z1

Σ1 (𝑆)1

∼⊗∗1Z1

𝐻0

𝐻0

(15)

The next characterisation of 𝐻 relies on the following lemma with 𝐺 = Σ𝐻
1,pack .

Lemma 8.28. Consider any square

C D

C D

𝐽

𝐹

𝐽

𝐺�

of finitary functors between cocomplete categories, which commutes up to natural
isomorphism, and let Z𝐹 denote the initial 𝐹-algebra. If 𝐽 preserves the initial
object, then 𝐽 (Z𝐹 ) is an initial 𝐺-algebra, i.e., 𝐽 (Z𝐹 ) � Z𝐺.

Proof. Let us start from the standard construction of the initial 𝐺-algebra Z𝐺

as a colimit of the initial chain to obtain:

Z𝐺 � colim𝑖 𝐺
𝑖∅

� colim𝑖 𝐺
𝑖 (𝐽∅) (by hypothesis)

� colim𝑖 𝐽 (𝐹𝑖 (∅)) (by 𝐺𝐽 = 𝐽𝐹)
� 𝐽 (colim𝑖 (𝐹𝑖 (∅))) (by finitarity of 𝐽)
� 𝐽 (Z𝐹 ).

The category C𝐻 we will use in applying the lemma is a relaxation of C𝐻
Z ,

in which the left-hand object in (13) is only forced to coincide with Z on Ĉ0.
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Definition 8.29. Let C𝐻 denote the category whose objects are 𝑋1 and 𝑆1 in
C1 equipped with dashed arrows in the following diagram, making it commute.

Z0s 𝐻0s Z0s

𝑋1 𝑆1 Z1

Z0t 𝐻0t Z0t

(16)

Remark 8.30. Using the notation of §8.3, an object of C𝐻 is a cell of the form

Z0 Z0

Z0 Z0,

𝐻0

𝑋1

𝐻0

Z1𝑆1

Proposition 8.31. The initial object in C𝐻 is the span Z0 ← 𝐻0 → Z.

Let us now introduce the endofunctor that will play the role of 𝐹 in applying
Lemma 8.28.

Definition 8.32. Let Σ𝐻
1,lax : C𝐻 → C𝐻 map any object 𝑋 ← 𝑆 → Z to the

following pasting.

Z0 Z0 Z0 Z0

Σ0 (Z0) Σ0 (Z0)

Z0 Z0 Z0 Z0

𝐻0 ∼⊗∗0

Z1

Σ0 (𝐻0)

Σ1 (𝑋 )1

𝐻0

Σ1 (Z)1

∼⊗∗0

Z1

Σ1 (𝑆)1

∼⊗∗1Σ̌1 (𝑋 )1

𝐻0

𝐻0

(17)

Remark 8.33. The only difference with Σ𝐻
1,pack is that we refrain from using the

Σ̌1-algebra structure of Z on the left.

Proposition 8.34. The functor Σ𝐻
1,lax : C𝐻 → C𝐻 is finitary.

Proof. Just as Proposition 8.24.

Here is our final characterisation.

Lemma 8.35. The Howe closure is isomorphic to the initial algebra for the
functor Σ𝐻

1,lax .

Proof. In order to apply Lemma 8.28, let 𝐽 : C𝐻
Z → C𝐻 denote the embedding.

The square
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C𝐻
Z C𝐻

C𝐻
Z C𝐻

𝐽

Σ𝐻
1,pack

𝐽

Σ𝐻
1,lax

𝜙

commutes up to isomorphism: at any Z ← 𝑆 → Z in C𝐻
Z , the natural transfor-

mation 𝜙 should be a morphism from (17) (with 𝑋 = Z) to (15). It is merely
given by pasting on the left with the Σ̌1-algebra structure of Z. But by Lambek’s
lemma the latter is an isomorphism, and we are done.

8.6 Simulation property

Our next goal is to prove the following.

Lemma 6.15. If Σ1 preserves functional bisimulations, then the transition Howe
closure 𝐻 is a substitution-closed simulation.

For substitution-closedness, ∼⊗0 is reflexive and by Lemma 6.14 we have a
span morphism ∼⊗0 → 𝐻0, so we may form the composite

𝐻0 ⊗ Z→ 𝐻0 ⊗ ∼⊗0 → 𝐻0 ⊗ 𝐻0 → 𝐻0,

where the last morphism is the monoid multiplication of 𝐻0, as established in
Proposition 8.15.

For the simulation property, we will use the characterisation of 𝐻 as ZΣ𝐻
1,lax

.

Let us start with the following few results.

Lemma 8.37. A span 𝑋 ← 𝑆 → 𝑌 is a simulation iff the top left square in (12)
is a pointwise weak pullback.

Proof. By Proposition 4.15.

Lemma 8.38. Simulations are stable under vertical and horizontal composition
in 2𝑆𝑝(Ĉ1).

Proof. Follows from easy pointwise weak pullback lemmas.

Lemma 8.39. If Σ1 preserves simulations and 𝑆 ∈ C𝐻 underlies a simulation,
then so does Σ𝐻

1,lax (𝑆).

Proof. The pasting (17) is isomorphic to the following.

Z0 Z0

Σ0 (Z0) Σ0 (Z0) Z0 Z0

Z0 Z0 Z0 Z0

𝐻0

Σ0 (𝐻0)

Σ1 (𝑋 )1

𝐻0

Σ1 (Z)1
Z1

∼⊗∗0

∼⊗∗0

Z1Σ1 (𝑆)1 ∼⊗∗1

Σ̌1 (𝑋 )1

𝐻0

(18)
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By Lemma 8.38, it suffices to show that all cells in (18) are simulations if 𝑆 is.
Let us run through them, left-to-right, top-to-bottom:

– The top cell is a simulation because
• Z0 is the initial (𝐼 + Σ0)-algebra, so 𝐼 → Z0 ← Σ0 (Z0) is a coproduct
diagram;
• similarly, by Proposition 8.17, 𝐻0 is the initial algebra for the endo-
functor 𝑋 ↦→ (𝐼;∼⊗∗0 + Σ0 (𝑋);∼⊗∗0 ), so 𝐼;∼⊗∗0 → 𝐻0 ← Σ0 (𝐻0);∼⊗∗0 is a
coproduct diagram;
• so, by extensivity of C0, both squares in

𝐼;∼⊗∗0 𝐻0 Σ0 (𝐻0);∼⊗∗0

𝐼 Z0 Σ0 (Z0)
are pullbacks. The right-hand one is mapped by Δs (which, as a left
adjoint, preserves pullbacks) precisely to the top left square of the top
cell.

– The first little cell Σ1 (𝑆) is a simulation by hypothesis.
– The middle little cell is trivially a simulation.
– The third little cell ∼⊗∗1 is a simulation because simulations are closed under

transitive closure.
– Finally, the bottom cell is trivially a simulation.

Finally:

Proof of Lemma 6.15. Because the domains and codomains of all 𝑠𝐿 are rep-
resentable, hence finitely presentable, functional bisimulations are closed under
filtered colimits in the arrow category by Lemma 1.1. But 𝐻 is the initial chain
of Σ𝐻

1,lax , so by Lemma 8.39 it suffices to show that the initial object of C𝐻 un-
derlies a simulation. By Proposition 8.31, this amounts to showing that the first
projection 𝐻0 → Z0 is a functional simulation, which is trivially the case.

8.7 Symmetry of transitive closure

In this section, we prove the following.

Lemma 6.17. The relational transitive closure 𝐻0
+ of the Howe closure 𝐻0 on

states is symmetric.

Lemma 6.19. For any substitution-closed simulation 𝑅 such that 𝑅0 is symmet-
ric, there exists a span morphism 𝑅 → 𝑅′ such that 𝑅′ is a substitution-closed
bisimulation.

By Lemma 8.7, Lemma 6.17 will follow if we construct a span morphism

𝐻0 → 𝐻
+†
0 . As 𝐻0 is an initial algebra for 𝐼 + Σ𝐻

0 (Proposition 8.14), it suffices
to prove the following lemma.

Lemma 8.42. The span (𝐻+†)0 = 𝐻
+†
0 has an algebra structure for (𝐼 + Σ𝐻

0 ).
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This relies on the following lemmas, used in particular with 𝐹 = Σ0.

Lemma 8.43. Given an endofunctor 𝐹 on some category C , the forgetful func-
tor 𝐹 -alg→ C 𝐹-algebras

– creates all limits;
– creates colimits that 𝐹 preserves.

Lemma 8.44. Given an endofunctor 𝐹 on some category C with pullbacks and
coequalisers, if 𝐹 preserves reflexive coequalisers, then the forgetful functor from
the category of 𝐹-algebras creates image factorizations.

Proof. Suppose given an algebra morphism 𝐴
𝑓
−→ 𝐵. The image factorization

is obtained as the (reflexive) coequaliser of the kernel pair 𝐴 × 𝑓 𝐴 ⇒ 𝐴. The
diagram of this reflexive coequaliser lifts to 𝐹 -alg, hence so does the coequaliser,
by the previous lemma.

Proof of Lemma 8.42. We need to find algebra structures on 𝐻
+†
0 for 𝐼, Σ0, and

−;∼⊗0 . For 𝐼, we have the morphism 𝐼 → Z0 → 𝐻
†
0 → 𝐻

+†
0 .

For Σ0, note that by Lemmas 8.6 and 8.5, 𝐻+†0 is the colimit of the chain

Z0 → 𝐻
†
0 � 𝐻

†
0;Z0 → 𝐻

†
0;𝐻

†
0 � 𝐻

†
0;𝐻

†
0;Z0 → 𝐻

†
0;𝐻

†
0;𝐻

†
0 → . . .

As it is filtered and thus sifted, and Σ0 preserves sifted colimits by hypothe-

sis, by Lemma 8.43, it is enough to show that each 𝐻
†
0; . . . ;𝐻

†
0 has a structure

of Σ0-algebra (morphisms in the above chain are then automatically algebra
morphisms because the involved spans are relations). But, Σ0 also preserves re-
flexive coequalisers (which are sifted colimits), thus by Lemma 8.44, the forgetful
functor from Σ0-algebras creates image factorizations, so it is enough to equip
𝐻
†
0; . . . ;𝐻

†
0 with Σ0-algebra structure, which is straightforward because 𝐻0 is

already an algebra and algebras are stable under pullbacks (Lemma 8.43).

It remains to find a suitable morphism 𝐻
+†
0 ;∼⊗0 → 𝐻

+†
0 , or equivalently, by

applying −†, a morphism ∼⊗†0 ;𝐻+0 → 𝐻+0 . But by symmetry of ∼⊗0 , we have the
composite

∼⊗†0 ;𝐻+0 → ∼⊗0 ;𝐻
+
0 → 𝐻0;𝐻

+
0 → 𝐻+0 . (19)

As mentioned in the beginning of the section, we now prove the following
result.

Lemma 6.19. For any substitution-closed simulation 𝑅 such that 𝑅0 is symmet-
ric, there exists a span morphism 𝑅 → 𝑅′ such that 𝑅′ is a substitution-closed
bisimulation.

Proof. First, consider the relation 𝑅 induced by 𝑅 by the image factorization
𝑅 � 𝑅 ↩→ Z× Z. 𝑅 is still a substitution-closed simulation and 𝑅0 is symmetric.
Now, we define 𝑅′ as follows:
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– 𝑅′0 = 𝑅0

– 𝑅′1 is the limit of the following diagram:

Z0s 𝑅′0s Z0s

Z1 𝑅′1 Z1

Z0t 𝑅′0t Z0t.

More concretely, an element of 𝑅′1 (𝑐1) is a pair of transitions at 𝑐1 with related
sources and targets. The morphism 𝑅 → 𝑅′ is obtained by the composite 𝑅 →
𝑅 → 𝑅′, where the last morphism exploits the definition of 𝑅′1 as a limit. It is
straightforward to check that 𝑅′ is a substitution-closed simulation. Moreover,
it is symmetric (even at the level of transitions), so it is a bisimulation.

9 Conclusion

We have introduced the notion of Howe context, in which we defined an abstract
notion of labelled transition system whose states feature some sort of substitu-
tion, called transition monoids. For such transition monoids, we have introduced
an abstract variant of applicative bisimilarity called substitution-closed bisimi-
larity.

Furthermore, we have introduced dynamic signatures as a reasonably expres-
sive way of specifying syntax with variable binding and operational semantics.
We have finally shown that if a dynamic signature preserves fibrations, then
substitution-closed bisimilarity on the generated transition monoid is a congru-
ence.

This all follows the pattern of our previous work [10], but simplifying the
framework and relaxing some hypotheses, as explained in the introduction.

We hope these simplifications pave the way for more abstract results in the
same vein. E.g., congruence for other forms of bisimilarity like normal-form [26],
environmental [32], or contextual [27] bisimilarity. But we also consider investi-
gating abstract type soundness or compiler correctness results.
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