
HAL Id: hal-02966439
https://hal.science/hal-02966439v6

Submitted on 14 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A categorical framework for congruence of applicative
bisimilarity in higher-order languages

Tom Hirschowitz, Ambroise Lafont

To cite this version:
Tom Hirschowitz, Ambroise Lafont. A categorical framework for congruence of applicative bisimilarity
in higher-order languages. Logical Methods in Computer Science, 2022, 18 (3), pp.37. �hal-02966439v6�

https://hal.science/hal-02966439v6
https://hal.archives-ouvertes.fr

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF

APPLICATIVE BISIMILARITY IN HIGHER-ORDER LANGUAGES

TOM HIRSCHOWITZ 0 AND AMBROISE LAFONT 1

0Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry, France

1UNSW, Sydney, Australia

Abstract. Applicative bisimilarity is a coinductive characterisation of observational equiv-
alence in call-by-name lambda-calculus, introduced by Abramsky (1990). Howe (1996) gave
a direct proof that it is a congruence, and generalised the result to all languages comply-
ing with a suitable format. We propose a categorical framework for specifying operational
semantics, in which we prove that (an abstract analogue of) applicative bisimilarity is
automatically a congruence. Example instances include standard applicative bisimilarity
in call-by-name, call-by-value, and call-by-name non-deterministic _-calculus, and more
generally all languages complying with a variant of Howe’s format.

1. Introduction

1.1. Motivation. This paper is a contribution to the search for efficient and high-level
mathematical tools to specify and reason about programming languages. This search ar-
guably goes back at least to Turi and Plotkin [TP97], who coined the name “Mathematical
Operational Semantics”, and proved a general congruence theorem for bisimilarity. This ap-
proach has been deeply investigated, notably for quantitative languages [Bar04]. However,
as of today, attempts to apply it to higher-order (e.g., functional) languages have failed.

In previous work [Hir19b, Hir19a], the first author has proposed an alternative approach
to the problem, dropping the coalgebraic notion of bisimulation used by Turi and Plotkin
in favour of a notion based on factorisation systems, similar to Joyal et al.’s [JNW93].
Furthermore, congruence of bisimilarity is notably obtained by assuming that syntax induces
a familial monad [Die78, CJ95, Web07a].

However, the new approach has only been applied to simple, first-order languages like
the c-calculus [MPW92, SW01], and Positive GSOS specifications [BIM95]. In this paper,
we extend it to functional languages, notably covering the paradigmatic case of applicative
bisimilarity [Abr90] in call-by-name and call-by-value _-calculus, as well as in a simple, non-
deterministic _-calculus [San94, How96, §7]. We even show that our framework subsumes
the general, syntactic format proposed by Howe [How96, Lemma 6.1]. We thus obtain for the

Key words and phrases: Programming languages; categorical semantics; operational semantics; Howe’s
method.

Preprint submitted to
Logical Methods in Computer Science

© T. Hirschowitz and A. Lafont
CC© Creative Commons

https://orcid.org/0000-0002-7220-4067
https://orcid.org/0000-0002-9299-641X
http://creativecommons.org/about/licenses

2 T. HIRSCHOWITZ AND A. LAFONT

first time a generic, categorical congruence result for applicative bisimilarity in functional
languages.

1.2. Overview. A bit more precisely:

• We propose a simple notion of signature for programming languages.
• Each signature has a category of models, including an initial one, intuitively its opera-
tional semantics.
• An abstract analogue of applicative bisimilarity, called substitution-closed bisimilarity,
may be defined in any model, and in particular in the initial one.
• Under suitable hypotheses, we show that substitution-closed bisimilarity is a congruence
in the initial model.

Categorically, this unfolds as follows.

(i) We define an abstract notion of (labelled) transition systems, as objects of a category
C, in such a way that
• there is a forgetful functor C→ C0, intuitively returning the (potentially structured) set
of states of a transition system;
• bisimulation and bisimilarity may be defined for any transition system.
(ii) Adopting Fiore, Plotkin, and Turi’s seminal framework [FPT99, Fio08], we then assume
that C0 is monoidal, and define models of the syntax to be monoid algebras for a given
pointed strong endofunctor Σ0 on C0. Monoid algebras, a.k.a. Σ0-monoids, are Σ0-algebras
equipped with compatible monoid structure, which models capture-avoiding substitution.
The category Σ0 -Mon of Σ0-monoids has an initial object Z0, whose carrier is the free Σ0-
algebra on the monoidal unit �, as we prove in Coq [Laf22]. In all examples, Z0 is precisely
the syntax.
(iii) This category Σ0 -Mon induces by pullback a category Σ0 -Trans of transition systems
whose states are equipped with Σ0-monoid structure. We call these transition monoid
algebras, or transition Σ0-monoids, or even simply transition monoids when Σ0 is the identity.
The relevant notions of bisimulation and bisimilarity for such objects are defined as in (i),
but for substitution-closed relations.
(iv) We then define models of the dynamics to be certain algebras, called vertical, for an
endofunctor on Σ0 -Trans. There is an initial vertical algebra Z, which in examples is the
syntactic transition system. (Furthermore, standard applicative bisimilarity coincides with
substitution-closed bisimilarity.)
(v) Finally, following an abstract analogue of Howe’s method, we show that, under suitable
hypotheses, substitution-closed bisimilarity on Z is a congruence. One crucial hypothesis is
cellularity, in a sense closely related to [GH18].

1.3. Related work. Plotkin and Turi’s bialgebraic semantics [TP97] and its few vari-
ants [CHM02, Sta08] prove abstract congruence theorems for bisimilarity. However, they
do not cover higher-order languages like the _-calculus, let alone applicative bisimilarity.
This was one of the main motivations for our work. Among more recent work, quite some
inspiration was drawn from Ahrens et al. [AHLM20, HHL20], notably in the use of vertical
algebras. However, a difference is that we do not insist that transitions be stable under
substitution. In a different direction, Dal Lago et al. [LGL17] prove a general congruence
theorem for applicative bisimilarity, for a _-calculus with algebraic effects. As briefly dis-
cussed in the conclusion, our framework does not yet account for such results. However,

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 3

it places the generality in a different direction: namely, it is not tied to any particular
language (like the _-calculus in [LGL17]). It would of course be useful to find a common
generalisation.

Links with other relevant work by, e.g., Bodin et al. [BGJS19], though desirable, remain
unclear, perhaps because of the very different methods used.

Furthermore, the cellularity used here is close to but different from the T∨B -familiality
of [Hir19b]. It would be instructive to better understand potential links between the two.
Finally, let us mention recent work which, just like ours, strives to establish abstract ver-
sions of standard constructions and theorems in programming language theory like type
soundness [AF20] or gluing [Fio02, FS20a, FS20b].

1.4. Relation to conference version. This paper is a bit more than a journal version of
our previous work [BHL20]. Here is a brief summary of changes.

(a) In [BHL20], we work with a non-trivial generalisation of monoid algebras to skew mo-
noidal categories [Szl12] and structurally strong functors. Here, by giving a better type to
Σ1, the endofunctor for specifying the dynamics, we manage to work with standard monoid
algebras. This has the additional advantages of
• avoiding a slightly ad hoc compositionality assumption of [BHL20], and
• relaxing the requirement that the tensor product should be familial.
(b) In [BHL20], because Howe’s closure operates only at the level of states, we work mostly
with prebisimulations, in the sense of [Hir19b, §5.1]. This notion is designed to detect
when the state part of a relation underlies a bisimulation, regardless of what it does on
transitions. However, it feels more ad hoc than the standard definition of bisimulation
by lifting [JNW93]. In this paper, we extend Howe’s closure to transitions, thus avoiding
prebisimulations entirely.
(c) In [BHL20], we rely on directed unions of relations, which leads to quite a few, rather
painful proofs by induction. Here, we use higher-level methods to construct Howe’s closure,
essentially through categorification and algebraicisation. Namely:
(1) We define bisimilarity as the final object not in some partially-ordered set of relations

as usual, but in some category of spans (see also [BPR17]).
(2) Furthermore, we define Howe’s closure directly as a free monoid algebra for a suitable

pointed strong endofunctor on spans.
(3) More generally, we systematically rely on universal properties, which simplifies a signif-

icant number of proofs.
(d) We put less emphasis on cellularity, viewing it only as a sufficient condition for a perhaps
more natural hypothesis, which already appeared in a slightly different form in [Sta08],
namely the fact that Σ1 preserves functional bisimulations.
(e) We obtain a congruence theorem of similar scope (Theorem 6.15), and cover three new,
detailed applications (§8): call-by-value, big-step _-calculus (which was covered but too
naively in [BHL20], as we explain), a call-by-name _-calculus with unary, erratic choice
from [San94, §7], and a general format proposed by Howe [How96, Lemma 6.1].
(f) We fill a gap in the proof of [BHL20, Lemma 5.13], by requiring the endofunctor Σ0 for
specifying the dynamics to preserve sifted colimits (see Remark 5.13).

4 T. HIRSCHOWITZ AND A. LAFONT

1.5. Plan. In §2, we start by briefly recalling call-by-name _-calculus and applicative bisim-
ilarity. We then explain how to view the latter as substitution-closed bisimilarity, and sketch
Howe’s method. In §3, we then give a brief overview of the new framework by example, in-
cluding a recap on monoid algebras and a statement of the main theorem (in the considered
case). We then dive into the technical core of the paper by presenting our framework for
transition systems and bisimilarity (§4), operational semantics (§5), and then substitution-
closed bisimilarity and the main result (Theorem 6.15), together with a high-level proof
sketch (§6). In §7, we reformulate the main hypothesis of Theorem 6.15 using cellularity,
which allows us to use well-known results from weak factorisation systems as sufficient con-
ditions. We then apply our results to examples in §8. The full proof of Theorem 6.15 is
given in §9. Finally, we conclude and give some perspectives on future work in §10.

1.6. Notation and preliminaries. In this subsection, we fix some basic notation, and
review some preliminaries.

1.6.1. Basic notation. We often conflate natural numbers = ∈ N with the corresponding
sets {1, . . . , =}. For all sets - and objects � of a given category, we denote by - · � the
--fold coproduct of � with itself, i.e.,

∑
G∈- �. Let Gph denote the category of (directed,

multi) graphs, Cat the category of small categories, and CAT the category of locally small
categories.

1.6.2. Comma categories and lax limits. Given functors � : A → C and � : B → C, the
comma category �/� has

• as objects all triples (�, �, i), where � ∈ A, � ∈ B, and i : � (�) → � (�), and
• as morphisms (�, �, i) → (�′, �′, i′) all pairs of morphisms D : � → �′ and E : � → �′

making the following square commute.

� (�) � (�′)

� (�) � (�′)

� (D)

i

� (E)

i′

We have the following well-known fact:

Proposition 1.1. If A and B have, and � preserves colimits of any given shape, then the
projection functor �/� → A × B creates them.

Symmetrically, if A and B have, and � preserves limits of any given shape, then the
projection functor �/� → A × B creates them.

The comma category �/� is well-known [Kel89, Web07b] to be the universal category
equipped with projections to A and B and a natural transformation as in the following
diagram.

�/� B

A C
�

�

Kelly [Kel89] explains that the comma category is a kind of lax limit of � and �. When
� is an identity, we call the comma category a lax limit of �.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 5

1.6.3. Presheaves. Let Ĉ denote the category of (contravariant) presheaves on C, and y : C→

Ĉ the Yoneda embedding, mapping 2 to C(−, 2). Given a presheaf � ∈ Ĉ, an element

G ∈ � (2), and a morphism 2
5
−→ 2′, we sometimes denote � (5) (G) by G · 5 . Given two

categories C1 and C2, we denote by [C1,C2] the functor category between them.

1.6.4. Spans and relations. In a category C with binary products, we interchangeably use
spans - ← ' → . and their pairings ' → - × . , sometimes also calling the latter spans.
Spans from - to . are the objects of a category Span (C) (-,.), which is isomorphic to the
slice category C/- × . in the presence of binary products. When C has pullbacks, these
categories are the hom-categories of a bicategory [Bén67] Span (C), in which composition
of morphisms is given by pullback. A relation from - to . is merely a span whose pairing
'→ - × . is monic.

1.6.5. Images. Let us now recall a few elements about images.

Definition 1.2. An image of a morphism 5 : �→ � is a factorisation �
4
−→ "

<
� with

< a monomorphism, which is initial in the sense that for any factorisation �
4′

−→ " ′
<′

�

there is a (unique by monicness) morphism : : " → " ′ making both triangles commute in
the following diagram.

� " ′

" �

4′

4

<

:
<′

Definition 1.3. A strong epimorphism is a morphism with the strong left lifting property
w.r.t. all monomorphisms, i.e., a morphism 4 : � → � such that for all (solid) commuting
squares

� -

� .

4
:

<

with < monic there exists a unique lifting : making both triangles commute.

The terminology is justified by the following result.

Lemma 1.4. In a category with equalisers, any strong epimorphism is an epimorphism.

Proof. Let us assume that 4 : �→ � is a strong epi and 5 4 = 64, with 5 , 6 : �→ �. Then,
let : : �′→ � denote the equaliser of 5 and 6. Because 4 equalises 5 and 6, it factors as :ℎ,
for some unique ℎ : � → �′. But now : is monic, so by lifting there is a unique ; making
both triangles commute in the following diagram.

� �′

� �

ℎ

4 ;
:

6 T. HIRSCHOWITZ AND A. LAFONT

We thus have

5 = 5 ◦ id� = 5 ◦ : ◦ ; = 6 ◦ : ◦ ; = 6 ◦ id� = 6.

The morphism 4 is thus epi, as claimed.

Corollary 1.5. Factoring a morphism as a strong epi followed by a mono yields an image.

Proof. Initiality is directly given by the lifting property.

Proposition 1.6. In any locally finitely presentable category, images always exist, and may
be computed as (strong epi, mono)-factorisations.

Proof. This is (part of) [AR94, Proposition 1.61].

Let us finally observe:

Proposition 1.7. In locally presentable category, unions of subobjects exist, and may be
computed by taking the cotupling of all considered subobjects, and then their (strong epi,
mono)-factorisation.

Proof. Straightforward.

1.6.6. Initial algebras. Any finitary endofunctor � on any cocomplete category admits
by [Rei77, Theorem 2.1] an initial algebra, which we denote by Z� . Although this is
detailed below, we prefer to avoid confusion and warn the reader that we also use Z� for
the initial �-monoid, for any pointed strong endofunctor � on any nice monoidal category
(which is incidentally the initial (� +�)-algebra). Throughout the paper, when not explicitly
attached to any �, Z is shorthand for ZΣ̌1

(see, e.g., Proposition 3.21 or Theorem 5.18).

1.6.7. Weak factorisation systems. Finally, let us fix some notation about weak factorisation
systems. In any category �, we say that a morphism 5 : �→ � has the (weak) left lifting
property w.r.t. 6 : � → � when for all commuting squares

� �

� �,

D

5

E

: 6

there is a lifting : as shown that makes both triangles commute. Equivalently, we say that
6 has the right lifting property w.r.t. 5 , and write 5 ⋔ 6. Given a fixed set J of morphisms,
the set of morphisms 6 such that 9 ⋔ 6 for all 9 ∈ J is denoted by J⋔. Similarly, the set
of morphisms 5 such that 5 ⋔ 9 for all 9 ∈ J is denoted by ⋔J. In particular, if 5 ∈ ⋔ (J⋔)
and 6 ∈ J⋔, then 5 ⋔ 6. If � is locally presentable [AR94], then (⋔ (J⋔),J⋔) forms a
weak factorisation system, in the sense that additionally any morphism 5 : - → . factors

as -
;
−→ /

A
−→ . with ; ∈ ⋔ (J⋔) and A ∈ J⋔ (see [Hov99, Theorem 2.1.14]). Morphisms in J⋔

are generically called fibrations, while morphisms in ⋔ (J⋔) are called cofibrations.
Let us conclude with the following easy, yet helpful result.

Lemma 1.8. For any locally finitely presentable category and set J of maps therein, if
the domains and codomains of maps in J are finitely presentable, then fibrations are closed
under filtered colimits in the arrow category.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 7

Proof. Let us consider any given filtered diagram (58 : �8 → �8)8∈D of fibrations, and a
colimit 5 : � → � in the arrow category, say C→. We must show that 9 ⋔ 5 for all 9 ∈ J.
Let us thus consider any given commuting square

- �

. �

D

9

E

5

with 9 ∈ J. Colimits in the arrow category are pointwise, so � = colim8 �8 and � = colim8 �8.
Thus, by finite presentability of - and . , and by filteredness of the diagram D → C, D
and E factor through some �80 and �81 , respectively. By filteredness of the diagram again,
w.l.o.g., we may take 80 = 81, such that (D, E) : 9 → 5 factors through 580 . But because 580 is
a fibration, we find a lifting as in

- �80 �

. �80 �,

D′

9

D

E′

E

580 5

which provides the desired lifting for the original square.

2. A brief review of Howe’s method

2.1. Applicative bisimilarity. Let us consider the standard, big-step presentation of call-
by-name _-calculus:

_G.4 ⇓ _G.4

41 ⇓ _G.4
′
1 4′1 [G ↦→ 42] ⇓ 43

41 42 ⇓ 43

Standardly, the evaluation relation ⇓ is considered between closed terms only.
Applicative bisimilarity is an important notion of program equivalence in this language.

Indeed, it is coinductive, so one may prove that any two given programs are applicative
bisimilar merely by exhibiting an applicative bisimulation. Furthermore, it is sound and
complete w.r.t. (i.e., it coincides with) standard contextual equivalence.

Let us briefly recall the definition. Applicative bisimilarity is standardly introduced in
two stages, which we now recall.

Definition 2.1 [Abr90, Definition 2.3]. A relation ' over closed _-terms is an applicative
simulation iff 41 ' 42 and 41 ⇓ _G.4

′
1 entail the existence of 4′2 such that 42 ⇓ _G.4

′
2 and, for

all terms 4, 4′1 [G ↦→ 4] ' 4′2 [G ↦→ 4].

An applicative bisimulation is an applicative simulation ' whose converse, say '†, is
also an applicative simulation.

Applicative bisimulations are closed under unions, and so there is a largest applicative
bisimulation, called applicative bisimilarity and denoted by ∼.

Then comes the second stage:

8 T. HIRSCHOWITZ AND A. LAFONT

Definition 2.2. The open extension of a relation ' on closed terms is the relation '⊗

on potentially open terms such that 4 '⊗ 4′ iff for all closed substitutions f covering all
involved free variables we have 4[f] ' 4′[f].

Let us readily notice the following alternative characterisation of open extension.

Definition 2.3. A relation (on open terms is substitution-closed iff for all 4 (4′ and
(potentially open) substitutions f, we have 4[f] (4′[f].

Lemma 2.4. The open extension of any relation ' is the greatest substitution-closed rela-
tion contained in ' on closed terms.

Proof. Let us first show that '⊗ is substitution-closed. For any 41 '⊗ 42 and f, we
want to show 41 [f] '

⊗ 42 [f]. For this, we in turn need to show that for all closing
substitutions W, we have 41 [f] [W] ' 42 [f] [W]. But 48 [f] [W] = 48 [f [W]], where by definition
and f [W] (G) = f (G) [W]. Furthermore, f [W] is closing. So, because we have 41 '

⊗ 42, by
definition of open extension, we get 41 [f] [W] ' 42 [f] [W] as desired.

Let us now show that '⊗ is the greatest substitution-closed relation contained in ' on
closed terms. For this, consider any substitution-closed '′ contained in ' on closed terms:
for all 4 '′ 4′, by substitution-closedness, we have 4[f] '′ 4′[f] for all closing f. So
because '′ is contained in ' on closed terms, we further have 4[f] ' 4′[f]. This proves
4 '⊗ 4′, and thus '′ ⊆ '⊗ as desired.

The result we wish to abstract over is the following (see [Pit11] for a historical account).

Theorem 2.5. The open extension ∼⊗ of applicative bisimilarity is a congruence: it is an
equivalence relation, and furthermore it is context-closed, i.e.,

• 41 ∼
⊗ 42 entails _G.41 ∼

⊗ _G.42 for all G;
• 41 ∼

⊗ 42 and 4′1 ∼
⊗ 4′2 entail 41 4

′
1 ∼
⊗ 42 4

′
2.

Proving that ∼⊗ is an equivalence relation is in fact straightforward. In the following,
we focus on the context-closedness property.

2.2. Howe’s method. Howe’s method for proving Theorem 2.5 consists in considering a
suitable relation ∼•, closed under substitution and context, and containing ∼⊗ by construc-
tion. He then shows that this relation ∼• is an applicative bisimulation. By maximality of
∼⊗, we thus also have ∼• ⊆ ∼⊗ hence both relations coincide and ∼⊗ is context-closed as de-
sired. However, as explained in [BHL20, §5.1], the presence of a substitution in the premises
of a transition rule seems to require ∼• to be closed under heterogeneous substitution, in the
sense that, e.g., if 41 ∼

• 4′
1
and 42 ∼

• 4′
2
(for open terms), then 41 [G ↦→ 42] ∼

• 4′
1
[G ↦→ 4′

2
].

The problem is that building this into the definition of ∼• leads to difficulties in the proof
that it is an applicative bisimulation. Howe’s workaround consists in requiring ∼• to be
closed under sequential composition with ∼⊗ from the outset. Coupling this right action
with context closedness, he thus defines ∼• as the smallest context-closed relation satisfying
the rules

G ∼• G

4 ∼• 4′ 4′ ∼⊗ 4′′

4 ∼• 4′′
·

By construction, ∼• is reflexive and context-closed. By induction, it also substitution-closed.
Furthermore, by reflexivity and the second rule, it also contains ∼⊗, and finally the second

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 9

rule clearly entails ∼•;∼⊗ ⊆ ∼•, where “;” denotes relational (or sequential) composition. It
takes an induction to prove stability under heterogeneous substitution, but to give a feel
for it, in the basic case where 41 ∼

⊗ 4′
1
, we have

41 [G ↦→ 42] ∼
• 41 [G ↦→ 4′2] ∼

⊗ 4′1 [G ↦→ 4′2]

by context closedness of ∼• and substitution closedness of ∼⊗, so we conclude by ∼•;∼⊗ ⊆ ∼•.
The initial plan was to show that ∼• is an applicative bisimulation and deduce that

it coincides with ∼⊗. It can in fact be slightly optimised by first showing that ∼• is an
applicative simulation, and then that its transitive closure (∼•)+ is symmetric. The relation
(∼•)+ is also an applicative simulation, hence by symmetry an applicative bisimulation.
This entails the last inclusion in the chain ∼⊗ ⊆ ∼• ⊆ (∼•)+ ⊆ ∼⊗, showing that all relations
coincide. Finally, because ∼• is context-closed, so is ∼⊗, as desired.

2.3. Non-standard presentation. The above, standard evaluation rules for call-by-name
_-calculus are not directly compatible with our framework. We thus adopt a slightly different
presentation, where the evaluation relation relates closed terms to terms with just one
potential free variable. The problem and its solution should become clear in §8.4, where we
investigate Howe’s general format [How96, Lemma 6.1]. There, we show that any language
complying with Howe’s format may be covered by our framework, up to suitable encoding.
The present, non-standard presentation is a slight variant of this encoding, optimised for
_-calculus. The new transition rules are as follows.

_G.4 ⇓ 4

41 ⇓ 4
′
1 4′1 [42] ⇓ 43

41 42 ⇓ 43

Here 4′
1
[42] denotes substitution of the unique potential free variable in 4′

1
by 42. We will

see below that, with this transition system, the essentially standard notion of bisimulation
coupled with the substitution-closedness requirement yields applicative bisimilarity.

3. Overview by example

In this section, we describe one particular instance of our framework, which models call-by-
name _-calculus.

3.1. Syntax. Let us first define the syntax of _-calculus, following [FPT99], as an initial1

object in a suitable category of models. Very roughly, a model of _-calculus syntax should
be something equipped with operations modelling abstraction and application, but also
with substitution. Furthermore, certain natural compatibility axioms should be satisfied,
e.g.,

(41 42) [f] = 41 [f] 42 [f]. (3.1)

A natural setting for specifying such operations is the functor category C0 := [F, Set],
where F ↩→ Set denotes the full subcategory spanning all sets of the form = (i.e., {1, . . . , =},
recalling notation from §1). For any - ∈ [F, Set] and = ∈ F, we think of - (=) as a set of
‘terms’ with = potential free variables, e.g., in {1, . . . , =} or, if the reader prefers, {G1, . . . , G=}.
The action of - on morphisms = → =′ is thought of as variable renaming. Returning
to operations, being equipped with abstraction is the same as being a Σ0-algebra, where

1This pattern is advocated by the approach of initial algebra semantics [GTW78], where initiality provides
a recursion principle.

10 T. HIRSCHOWITZ AND A. LAFONT

Σ0 : C0 → C0 is defined by Σ0(-) (=) = - (=+1). An algebra structure on any - thus consists
of a family of maps - (=+1) → - (=), natural in =. Similarly, for specifying both application
and abstraction, we consider

ΣΛ (-) (=) = - (= + 1) + - (=)
2. (3.2)

Let us now consider substitution. The idea here is to equip C0 with monoidal structure
(⊗, �), such that

• elements of (-⊗.) (=) are like explicit substitutions G(f), where G ∈ - (?) and f : ? → . (=)

for some ?, considered equivalent up to some standard equations2;
• elements of � (=) := {1, . . . , =} are merely variables.

Being equipped with substitution (and variables) is thus the same as being a monoid for
this tensor product:

• the multiplication <- : - ⊗ - → - maps any formal, explicit substitution G(f) to an
actual substitution G [f], and
• the unit 4- : � → - injects variables into terms.

Finally, how do we enforce equations such as (3.1)? This goes in two stages:

• we first collect the way substitution is supposed to commute with each operation, by pro-
viding a pointed strength, i.e., a natural transformation with components BC-,. : ΣΛ (-) ⊗

. → ΣΛ(- ⊗ .), where - ∈ C0 and . ∈ �/C0, satisfying some equations [Fio08, §I.1.2];
• we then use the pointed strength to enforce all equations in one go, by requiring models
to have compatible ΣΛ-algebra and substitution structure, in a suitable sense.

Let us first explain the notion of pointed strength.

Application: For modelling Equation (3.1) for application, we would in particular de-
fine BC-,. to map any (8=2 (G1, G2))(f) to 8=2 (G1(f), G2(f)), for all G1, G2 ∈ - (?) and
f : ? → . (=). (The coproduct injection 8=2 here acts as a formal application, recalling
ΣΛ (-) (=) = - (= + 1) + - (=)

2.)
Abstraction: For abstraction, let us start by first stating the corresponding equation. We

will then define the pointed strength accordingly. Supposing that . is equipped with
a point 4. : � → . , we define f↑ : ? + 1→ . (= + 1) by copairing

?
f
−→ . (=)

. (8=1)
−−−−−→ . (= + 1) and 1 = � (1)

(4.)1
−−−−→ . (1)

. (8=2)
−−−−−→ . (= + 1).

The equation is then

_(4) [f] = _(4[f↑]). (3.3)

Accordingly, we define the pointed strength to map any 8=1 (G)(f), where G ∈ - (? + 1)
and f : ? → . (=), to 8=1 (G(f

↑)).

Let us now go through the second stage of how we impose the desired equations: a model of
syntax will be a monoid - equipped with ΣΛ-algebra structure a- : ΣΛ (-) → -, such that
the following diagram commutes.

ΣΛ (-) ⊗ - ΣΛ(- ⊗ -) ΣΛ (-)

- ⊗ - -

BC-,-

a- ⊗-

ΣΛ (<-)

<-

a- (3.4)

2In [BHL20], we instead considered a skew-monoidal variant where the tensor product does not enforce
any standard equation.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 11

Indeed, suppose given, e.g., 8=1 (4)(f) ∈ ΣΛ (-) ⊗ -, by applying the left then bottom
morphisms we obtain _(4) [f], while applying the top then right morphisms we obtain
_(4[f↑]), as desired.

All in all, we have:

Definition 3.1. For any finitary, pointed strong endofunctor Σ0, a monoid algebra for
Σ0, or a Σ0-monoid, is a Σ0-algebra (-, a- : Σ0(-) → -), equipped with monoid structure
(<- : - ⊗ - → -, 4- : � → -), such that (3.4) commutes. A Σ0-monoid morphism is a
morphism in C0 which is both a monoid morphism and a Σ0-algebra morphism.

Let Σ0 -Mon denote the category of Σ0-monoids and morphisms between them.

Let us conclude by (slightly informally) stating the result exhibiting standard syntax
as the initial model [FPT99, FS17, BHL20]. See Proposition 5.4 below for a general and
rigorous statement.

Proposition 3.2. For any finitary, pointed strong endofunctor Σ0, under mild hypotheses,
the forgetful functor Σ0 -Mon→ C0 is monadic, and the free Σ0-algebra over � (equivalently
the initial (� + Σ0)-algebra) is an initial Σ0-monoid.

Example 3.3. In the case of _-calculus, the initial ΣΛ-monoid is thus the least fixed point
Z0 := `�.(� +ΣΛ (�)), which is isomorphic to the standard, low-level construction of syntax.

From this, one may deduce a characterisation of not only the initial ΣΛ-monoid, but all
free ΣΛ-monoids, or in other words an explicit formula for the left adjoint to the forgetful
functor. Namely:

Proposition 3.4. For any finitary, pointed strong endofunctor Σ0, under the same hypothe-
ses as in Proposition 3.2, the free Σ0-monoid, say ℒ0 (), over any ∈ C0 is

`�.(� + Σ0(�) + ⊗ �).

Syntactically, when Σ0 = ΣΛ, letting = ⊢ 4 mean that 4 ∈ ℒ0 () (=), ℒ0 () is induc-
tively generated by the following rules [Ham04, §3.1],

= ⊢ G
(G ∈ =)

= ⊢ 41 . . . = ⊢ 4?

= ⊢ :(41, . . . , 4?)
(: ∈ (?))

= ⊢ 41 = ⊢ 42

= ⊢ 41 42

= + 1 ⊢ 4

= ⊢ _(4)

modulo the equivalence

(5 · :)(41, . . . , 4@) ∼ :(4 5 (1) , . . . , 4 5 (?)),

for all 5 : ? → @, : ∈ (?), and = ⊢ 41, . . . , 4@ , or perhaps more synthetically

(5 · :)(f) ∼ :(f ◦ 5),

where f : @ → ℒ0() (=) denotes the cotupling of 41, . . . , 4@ viewed as maps 1→ℒ0 () (=).
The first rule is the standard rule for variables, while the second one is for “constants”,

i.e., elements of . It corresponds to the term ⊗ � in the above fixed-point formula.
When ? = 0, we sometimes shorten the notation from :() to :. The last two rules are the
standard rules for application and abstraction, and they correspond to the term Σ0 (�) in
the formula. The ΣΛ-monoid structure is syntactically straightforward; notably substitution
satisfies :(41, . . . , 4?)[f] = :(41 [f], . . . , 4? [f]).

12 T. HIRSCHOWITZ AND A. LAFONT

3.2. Transition systems and bisimilarity. The appropriate notion of transition system
for _-calculus is as follows.

Definition 3.5. A transition system - consists of

• a state object -0 ∈ C0 = [F, Set],
• a set -1 of transitions, and

• maps -0(0)
B-
←−− -1

C-
−−→ -0(1) giving the source and target of transitions (cf. §2.3).

Transition systems form a category C, whose morphisms - → . consist of compatible
morphisms 50 : -0 → .0 and 51 : -1 → .1, in the sense that both of the following squares
commute.

-1 .1

-0(0) .0(0)

51

B-

50

B.

-1 .1

-0(1) .0(1)

51

C-

50

C.

Notation 3.6. We write A : 4 ⇓ 5 for A ∈ -1 such that B- (A) = 4 and C- (A) = 5 .

Example 3.7. The syntactic transition system has Z0 ∈ C0 from Example 3.3 as state
object, and as transitions all derivations following the transition rules. We will come back
to this case in Proposition 3.21.

Our next goal is to introduce bisimulation, for which it is convenient to characterise C

as a presheaf category. This characterisation may be established by abstract means, but
let us describe it concretely first. It is clear from the definition that transitions systems
are glorified graphs. And they form a presheaf category for essentially the same reason as
graphs do. Here is the base category:

Definition 3.8. Let F[⇓] denote the category obtained by augmenting F with an object

⇓, together with morphisms 0
B⇓
←− ⇓

C⇓
−→ 1, and their formal composites with non-identity

morphisms from F.

More concretely:

• There is exactly one morphism 0→ = in F for all =, which is an identity when = = 0, so
for all = ≠ 0 we have a morphism B⇓,= : ⇓ → = making the following triangle commute.

⇓

0 =

B⇓ B⇓,=

!

• There are exactly = morphisms 1 → = in F for all = ∉ {0, 1} (and no morphisms 1 → 0),
so for all such = and 8 ∈ = we have a morphism C⇓,=,8 : ⇓ → = making the following triangle
commute.

⇓

1 =

C⇓ C⇓,=,8

8

Proposition 3.9. Transition systems are isomorphic to covariant presheaves on F[⇓].

Notation 3.10. We often implicitly convert from transition systems to covariant presheaves,
and conversely.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 13

Proof sketch. This will be proved below by abstract means, but for intuition let us sketch
the correspondence. Given a transition system 〈B- , C- 〉 : -1 → -0(0) × -0(1), we construct
a presheaf - ′ by setting

• - ′(=) = -0(=) for all = ∈ F,
• - ′(⇓) = -1,
• with the action of B⇓, C⇓ ∈ F given by B- and C- ,
• inducing the action of all B⇓,= and C⇓,=,8 by composition.

Conversely, for any presheaf . , we construct a transition system . ′ defined as follows:

• the state object . ′0 ∈ [F, Set] is given by restriction of . ;
• the set . ′1 of transitions is . (⇓);
• and B. ′ and C. ′ are . (B⇓) and . (C⇓), respectively.

The correspondence yields basic, graph-like examples of transition systems.

Example 3.11.

(a) The representable presheaf y0 associated to 0 ∈ F has a single closed state :0 and its
renamings (i.e., (y0)0 (=) = 1 for all = and for transitions (y0)1 = ∅).
(b) The representable presheaf y⇓ consists of a closed state :0, a state :1 with one free
variable, their renamings, and a transition 4 : :0 ⇓ :1.
(c) Let yB⇓ : y0 → y⇓ denote the morphism mapping :0 to :0.

Using these basic examples, we may define bisimulation and bisimilarity by lifting
following [JNW93]:

Definition 3.12. A morphism - → . in C is a functional bisimulation when it has the
right lifting property w.r.t. the source map yB⇓ : y0 → y1. A span - ← '→ . is a simulation
when its left leg ' → - is a functional bisimulation, and a bisimulation when both legs are.

Remark 3.13. In this case, the Yoneda lemma says that C(y0, -) � -0(0) and C(y⇓, .) �

.1. The right lifting property for a morphism 5 : - → . thus says that given any 4 ∈ .1
whose source 4 · B⇓ is 5 (G) for some G ∈ -0(0), there exists 4′ ∈ -1 such that 5 (4′) = 4 and
4′ · B⇓ = G, which matches the usual definition of functional bisimulation. The following
diagram might help readability.

y0 -

y⇓ .

G

B⇓

4

4′
5

Definition 3.14. Let Bisim(-,.) denote the category of bisimulations, with span mor-
phisms between them.

Proposition 3.15. Bisim(-,.) has a terminal object, called bisimilarity and denoted by
∼-,. .

Example 3.16. Bisimilarity on the syntactic transition system merely amounts to simul-
taneous convergence, because evaluation returns an open term, which does not have any
further transition. In this case, a more relevant behavioural equivalence is substitution-
closed bisimilarity, which we will define below.

14 T. HIRSCHOWITZ AND A. LAFONT

3.3. Operational semantics. Just as we have defined the syntax as an initial Σ0-monoid
(Example 3.3), let us now define the dynamics by initiality, again starting by finding the
right notion of model. First of all, models will be found among transition systems - whose
underlying presheaf -0 ∈ [F, Set] is a Σ0-monoid. Let us give these a name.

Definition 3.17. A transition Σ0-monoid is a transition system -, together with Σ0-monoid
structure on its vertices (a.k.a. states) object -0. When Σ0 = id, we call transition Σ0-
monoids simply transition monoids. (Any transition Σ0-monoid is thus in particular a
transition monoid.)

Let Σ0 -Trans denote the category of transition Σ0-monoids, with as morphisms all
transition system morphisms which induce Σ0-monoid morphisms on vertices objects.

The idea is to model the transition rules as an endofunctor on transition Σ0-monoids,
leaving the underlying Σ0-monoid untouched, i.e., a functor making the triangle

Σ0 -Trans Σ0 -Trans

Σ0 -Mon

Σ1

� �

commute, where � denotes the forgetful functor (i.e., �(-) = -0).
For call-by-name _-calculus, the functor Σ1 : Σ0 -Trans→ Σ0 -Trans modelling the non-

standard rules at the end of §2 is defined as follows.

• On states, commutation of the above triangle imposes Σ1(-)0 = -0.
• On transitions, let

Σ1(-)1 = -0(1) + �V (-),

where �V (-) denotes the set of valid premises for the second rule in §2.3, i.e., triples
(A1, 42, A2) such that
– A1, A2 ∈ -1 are transitions,
– 42 ∈ -0(0) is a state, and
– A2 · B⇓ = (A1 · C⇓) [42], i.e., the source A2 · B⇓ of A2 is obtained by substituting 42 for the

unique free variable in the target of A1.
In other words:

A1

41 ⇓ 4
′
1

A2

4′1 [42] ⇓ 43

41 42 ⇓ 43
·

Let us notice that substitution here follows from the monoid structure of -.
• We then define the source and target maps:
– for the first term -0(1),
∗ the source of any 8=1 (4) is _1(4), where _= : -0(= + 1) → -0(=) follows from the
Σ0-algebra structure of -0;
∗ the target is 4 itself;

– for the second term �V (-),
∗ the source of any 8=2 (A1, 42, A2) is (A1 · B⇓) 42, i.e., the application of the source of A1
to 42 (again using the Σ0-algebra structure of -0);
∗ the target is A2 · C⇓.

Accordingly, our notion of model is the following.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 15

Definition 3.18. A vertical Σ1-algebra is a transition Σ0-monoid - equipped with a mor-
phism a- : Σ1(-) → - such that �(a-) = id-0

, or equivalently a map (a-)1 making the
following triangle commute.

Σ1(-)1 -1

-0(0) × -0(1)

(a-)1

〈BΣ1 (-) ,CΣ1 (-) 〉
〈B- ,C- 〉

In the case of call-by-name _-calculus, it should be clear that such a vertical algebra is
indeed a model of the rules.

However, in order to ensure that the rules are syntax-directed, we want to distinguish,
for each rule, the head operator of the source of the conclusion (abstraction for the first rule;
application for the second one). Instead of demanding that (Σm

1
)- have the form Σ1(-)1 →

-0(0) × -0(1), we thus rather require something of the form Σ1 (-)1 → Σ0(-0) (0) × -0(1):

Definition 3.19 (Dynamic signatures and vertical algebras).

• A dynamic signature Σ1 consists of
– a finitary functor Σ�1 : Σ0 -Trans→ Set, and

– a natural transformation (Σm
1
)- : Σ

�
1 (-) → Σ0(-0) (0) × -0(1).

• The endofunctor Σ̌1 induced by a dynamic signature maps any - to the composite

Σ�1 (-)
(Σm

1
)-

−−−−−→ Σ0(-0) (0) × -0(1)
a-0 ,0×-0 (1)
−−−−−−−−−−→ -0(0) × -0(1), where a-0

: Σ0(-0) → -0
denotes the Σ0-algebra structure of -0.
• A vertical algebra of a dynamic signature is a vertical algebra of the induced endofunctor,
in the sense of Definition 3.18.

Concretely, a vertical algebra is a dashed map making the following diagram commute.

Σ�1 (-) -1

Σ0(-0) (0) × -0(1) -0(0) × -0(1)

(Σm
1
)-

a-0 ,0×-0 (1)

〈B- ,C- 〉

Example 3.20. For call-by-name _-calculus, we only need to modify the source components
of the above definition of Σ1, replacing actual operations by formal ones, like so:

• the source of any 8=1 (4) ∈ -0(1) + �V (-) is 8=1 (4) ∈ Σ0 (-0) (0) = -0(1) + -0(0)
2;

• the source of any 8=2 (A1, 42, A2) is 8=2 ((A1 · B⇓), 42) ∈ Σ0(-0) (0).

This successfully captures the syntactic transition system:

Proposition 3.21. The initial Σ̌1-algebra ZΣ̌1
, or Z for short, is an initial vertical algebra,

and is isomorphic to the transition system of Example 3.7.

3.4. Substitution-closed bisimilarity. There is an obvious notion of bisimulation for
transition Σ0-monoids:

Definition 3.22. A morphism is Σ0 -Trans is a functional bisimulation iff its underlying
morphism in C is.

However, as foreshadowed by Example 3.16, the relevant notion in this case combines
bisimulation with substitution-closedness, in the following sense.

16 T. HIRSCHOWITZ AND A. LAFONT

Definition 3.23. For any monoid " in C0, an "-module is an object - equipped with
algebra structure - ⊗ " → - for the monad − ⊗ ". A module morphism is an algebra
morphism.

Example 3.24. The monoid " is itself an "-module by multiplication, and "-modules
are closed under limits in C0, so in particular "2 is an "-module, with action given by the

composite "2 ⊗ "
〈c1⊗",c2⊗" 〉
−−−−−−−−−−−−−→ (" ⊗ ")2

<2

"
−−−→ "2.

Definition 3.25. For any transition monoid ", a span of the form ' → "2 in C is
substitution-closed iff '0 may be equipped with "0-module structure making the morphism
'0 → "2

0 into an "0-module morphism.

Example 3.26. To see what this definition has to do with substitution-closedness, let us
observe that if ' is a relation in [F, Set], an element of ('⊗") (=) is an explicit substitution
A(f) with A ∈ '(?) for some ?, and f : ? → " (=). Now, substitution-closedness amounts
to a morphism < : ' ⊗ " → ' commuting with projections, so if ' is a relation, then A is
merely a pair 4 ' 4′, and the morphism < ensures that 4[f] ' 4′[f].

Proposition 3.27. For any transition Σ0-monoid ", there is a terminal substitution-closed
bisimulation ∼⊗

"
, called substitution-closed bisimilarity.

Proof. See Proposition 6.10 for a proof in the general case.

Remark 3.28. One may prove that substitution-closed bisimilarity is a relation.

Proposition 3.29. Substitution-closed bisimilarity ∼⊗
Z

on the syntactic transition system
Z coincides with applicative bisimilarity.

Proof. Let us denote the open extension of applicative bisimilarity by ∼⊗
std

, and recall that

applicative bisimilarity is denoted by ∼. Using Lemma 2.4, ∼⊗
std

is straightforwardly a

substitution-closed bisimulation, so we have ∼⊗
std
⊆ ∼⊗

Z
. But conversely any substitution-

closed bisimulation relation ' (hence ∼⊗
Z
) is in particular a substitution-closed relation

contained in ∼ on closed terms. It is thus globally contained in ∼⊗
std

by Lemma 2.4.

Finally, our main result instantiates to the following.

Theorem 3.30. Substitution-closed bisimilarity is context-closed. More precisely, it is a
transition Σ0-monoid, and ∼⊗

Z
→ Z2 is a transition Σ0-monoid morphism.

In particular, there exists a span morphism Σ0((∼
⊗
Z
)0) → (∼

⊗
Z
)0.

4. Transition systems and bisimilarity

In this section, we start to abstract over the situation of §3, by introducing a general
framework for transition systems and bisimilarity. In §4.1, we first introduce the ambient
setting for this, pre-Howe contexts, and construct a category of transition systems, for any
pre-Howe context. Then, in §4.2, we show that transition systems form a presheaf category.
We then exploit this in §4.3 to define bisimulation and bisimilarity.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 17

4.1. Pre-Howe contexts and transition systems.

Definition 4.1. A pre-Howe context3 consists of

• a small category C0 of state types,
• a small category C1 of transition types, and
• two source and target functors s, t : C1 → C0.

Precomposition by s and t yields functors Δs,Δt : Ĉ0 → Ĉ1 mapping any - ∈ Ĉ0 to - ◦ s
and - ◦ t, respectively. Let Δ denote the pointwise product Δs × Δt.

Intuitively, objects of C0 may be thought of as typings (typically sequents �1, . . . , �= ⊢ �,
or merely natural numbers, as in §3), and objects of C1 as transition types. The source and
target functors associate to every transition type the corresponding typings. We now use
these functors to define transition systems.

Definition 4.2. Given any pre-Howe context, a transition system - consists of

• a state presheaf -0 ∈ Ĉ0,

• a transition presheaf -1 ∈ Ĉ1, and
• two source and target natural transformations -0 ◦ s ← -1 → -0 ◦ t, or equivalently a
natural transformation -1 → Δ(-0).

Proposition 4.3. In any pre-Howe context, transition systems are precisely the objects of

the lax limit category Ĉ1/Δ of the functor Ĉ0
Δ
−→ Ĉ1 in CAT, or equivalently the comma

category id
Ĉ1

/Δ.

Proof. An object of the lax limit is by construction a triple (-1, -0, m), where m : -1 →
Δ(-0) = -0s × -0t.

Notation 4.4. In any pre-Howe context, we let C := Ĉ1/Δ, and denote the projections by

?A1 : C→ Ĉ1 and ?A0 : C→ Ĉ0, respectively.

Proposition 4.5. The projection functor −0 : C→ Ĉ0 has a left adjoint mapping any object
-0 to ∅ → -0s × -0t, where ∅ denotes the initial presheaf on C1. For any -0, we call this
object the discrete transition system on -0.

Proof. Straightforward.

Example 4.6. We can get C→ Ĉ0 to be the forgetful functor Gph→ Set by taking

• C0 = 1, so that Ĉ0 = 1̂ � Set,
• C1 = 1, so that C = Set, and
• s, t : 1→ 1 to be the unique such functor, i.e., the identity.

A transition system thus consists of sets + and � together with a map � → +2, i.e., a graph.

Example 4.7. A proof-relevant variant of standard labelled transition systems (over any
set A of labels) may be obtained as follows. We take

• C0 = 1 again,
• C1 = A viewed as a discrete category, and

3The Howe contexts of [BHL20] may be defined similarly. The difference is that for them, s and t are
not necessarily functorial, but 21 ↦→ (s(21), t(21)) defines a functor C1 → C0×C0, where C0×C0 denotes the
category whose objects are pairs of elements of C0, and where a morphism (01, 02) → (11, 12) consists of
some indices 8, 9 ∈ {1, 2}, together with a pair of morphisms 01 → 18 and 02 → 1 9 .

18 T. HIRSCHOWITZ AND A. LAFONT

• s, t : C1 → C0 the unique such functor.

Thus, a transition system - consists of a set -0 and sets -0 for all 0 ∈ A, together with
maps -0 → -2

0 returning the source and target of each 0-labelled edge.
More generally, given any graph L, taking s, t : C1 → C0 to be the source and target

maps L1 → L0 viewed as functors between discrete categories, we obtain for C → Ĉ0 a
functor equivalent to Gph/L→ Set/L0.

Example 4.8. Let C0 = Fop and C1 = 1, with s and t picking respectively 0 and 1. In

particular, Ĉ1 � Set. Then, Δ(-0) = -0(0) × -0(1) and we recover the category C of §3.2,

and its forgetful functor to Ĉ0 = [F, Set].

4.2. Transition systems as presheaves. Before introducing bisimulation, let us establish
an alternative characterisation of the category C of transition systems.

Proposition 4.9. The lax limit category Ĉ1/Δ of transition systems is isomorphic to a

presheaf category Ĉs,t.

Proof. Let Cs,t denote the lax colimit in Cat of the parallel pair s, t. By definition, it is the
universal category with functors and natural transformations as in

C1 C0

Cs,t.

s

t

8=1 8=0

B

C

It thus consists of the coproduct C1 + C0, augmented with arrows B! : s(!) → ! and

C! : t(!) → ! for all ! ∈ C1, naturally in !. Presheaves on Cs,t coincide with Ĉ1/Δ be-
cause the presheaf construction turns lax colimits into lax limits.

Notation 4.10. We often omit the isomorphism Ĉ1/Δ � Ĉs,t, considering it as an implicit
coercion. E.g., for any % ∈ C0, y% may be used to denote the transition system % with
%1 = ∅ and %0 = y%.

Similarly, y! may be used to denote the ‘minimal’ transition system with one transition
over !, say !, i.e., !1 = y! , !0 = ys(!) + yt(!) , and the map !1 → !0s × !0t uniquely
determined by the element (8=1 (ids(!)), 8=2 (idt(!))) ∈ !0 (s(!)) × !0(t(!)).

Finally, yB! : ys(!) → y! and yC! : yt(!) → y! denote the Yoneda embedding of the
canonical morphisms B! and C! from the proof of Proposition 4.9.

By Yoneda, we thus have:

Corollary 4.11. For all -, we have C(y!, -) � -1(!) and C(y%, -) � -0(%).

Notation 4.12. In the case of call-by-name _-calculus, we call ⇓ the unique object coming
from C1 = 1.

Remark 4.13. Presheaves on Cs,t intuitively have two dimensions, 0 and 1; the projection
functor forgets dimension 1, while the left adjoint (Proposition 4.5) adds an empty dimension
1, thus lifting its 0-dimensional argument to a 1-dimensional object.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 19

This dimensional intuition leads to the following useful observation on the forgetful
functor.

Proposition 4.14. The forgetful functor C→ Ĉ0 preserves all limits and colimits, as well
as image (in the sense of strong epi, mono) factorisations.

Proof. The forgetful functor C → Ĉ0 is equivalent to the restriction functor Ĉs,t → Ĉ0,
which is both a left and right adjoint, hence preserves all limits and colimits. Finally, image
factorisations are computed pointwise in presheaf categories (see, e.g., [AR94, §0]), hence
are preserved by restriction functors.

4.3. Bisimulation and bisimilarity. Morphisms in C are a generalisation of graph mor-
phisms, which are a proof-relevant version of functional simulations. The analogue of func-
tional bisimulations is as follows.

Definition 4.15. A morphism 5 : - → . in Ĉs,t is a functional bisimulation, or a fibration,
iff it enjoys the (weak) right lifting property w.r.t. yB! : ys(!) → y! , for all ! ∈ C1.

Remark 4.16. This definition is strongly inspired by Joyal et al.’s [JNW93].

Here is a characterisation of fibrations which will be important. Let us recall that a
weak pullback satisfies the same universal property as a pullback, albeit without uniqueness.

Proposition 4.17. A morphism 5 : - → . is a functional bisimulation iff the following
diagram is a pointwise weak pullback.

-1 .1

-0s .0s

51

B- B.

50s

Remark 4.18. Being a pointwise weak pullback means that all squares

-1(!) .1(!)

-0(s(!)) .0(s(!))

(51)!

(B-)! (B.)!

(50)s(!)

should be weak pullbacks, for ! ∈ ob(C1). This is weaker than being a weak pullback.

Proof of Proposition 4.17. By Yoneda, a lifting problem in C as below left is the same as a

cone in Ĉ1 as below right, and a lifting is the same as a mediating morphism to -1.

ys(!) -

y! .

G

yB!

4

5

y!

-1 .1

-0s .0s

G

4

51

B-

50s

B.

(On the left ! and s(!) are viewed as objects of Cs,t, hence should technically by written
8=1 (!) and 8=0 (s(!)), respectively.)

20 T. HIRSCHOWITZ AND A. LAFONT

We now define general bisimulations, based on functional bisimulations. Usually, one
considers bisimulation relations. Here, we generalise this a bit and consider arbitrary spans:

Definition 4.19. A simulation is a span - ← ' → . whose left leg is a fibration. A
bisimulation is a span of fibrations (equivalently, a simulation whose converse span is also
a simulation).

A simulation (resp. bisimulation) relation is a relation which is a simulation (resp.
bisimulation).

Remark 4.20. Of course, the relevant notion in our applications is substitution-closed
bisimulation, to which we will come below.

Lemma 4.21. Simulation relations and bisimulation relations are stable under unions.

Proof. By symmetry, it is enough to deal with the case of simulation relations. Consider
any family ('8 ↩→ - × .)8∈� of simulation relations. By Proposition 1.7, their union is the
image of their cotupling. But because the domain ys(!) of yB! is representable for all ! ∈ C1,
any lifting problem yB! →

⋃
8 '8 lifts to a lifting problem yB! →

∑
8 '8, which in turn lifts

to a lifting problem yB! → '80 , for some 80 ∈ �. We then find a lifting for the latter because
'80 is a simulation by hypothesis, which yields a lifting for the original.

Proposition 4.22. For all -,. ∈ C, the full subcategory Bisim(-,.) of spans between -

and . which are bisimulations admits a terminal object ∼-,. , called bisimilarity.

Proof. As a presheaf category by Proposition 4.9, C is well-powered, so we may consider
the union ∼-,. of all bisimulation relations, which is again a bisimulation by Lemma 4.21.
Finally, ∼-,. is terminal, because any bisimulation ' factors through its image 8< ('), which
is again a bisimulation; as a bisimulation relation, 8< (') thus embeds into ∼-,. , hence we
obtain a morphism ' ։ 8< (') ↩→ ∼-,. , which is unique by monicity of ∼-,. ↩→ - ×. .

5. Howe contexts for operational semantics

Operational semantics is a combination of syntax and transition systems, in the sense that
it is about transition systems whose states form a model of a certain syntax. Our framework
for operational semantics thus combines the frameworks of Fiore et al. [FPT99] for syntax
with variable binding, and of §4 for transition systems.

In §5.1, we introduce the ambient setting for our framework, Howe contexts, which are
pre-Howe contexts equipped with structure modelling substitution. Furthermore, for any

Howe context and pointed strong endofunctor Σ0 on Ĉ0, we introduce the category Σ0 -Trans
of transition Σ0-monoids, which are transition systems whose states form a Σ0-monoid. We
prove that the forgetful functor Σ0 -Trans→ C is monadic.

In §5.2, we then introduce dynamic signatures over Σ0, which specify the dynamics of
a transition system. The (dependent) pair (Σ0,Σ1) then forms what we call an operational
semantics signature. We then define the models of any such signature, called vertical Σ1-
algebras. They form a category Σ1 -algv, and we prove that the forgetful functor Σ1 -algv →
Σ0 -Trans is monadic. We also prove that a suitably constrained construction of the initial
Σ1-algebra is in fact vertical, yielding an initial vertical Σ1-algebra. Finally, we prove that,
although both components are monadic, the composite functor Σ1 -algv → Σ0 -Trans → C

is not.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 21

5.1. Transition monoid algebras. In this section, we introduce Howe contexts, and in-
troduce transition Σ0-monoids, for any suitable endofunctor Σ0.

Definition 5.1. A Howe context consists of a pre-Howe context s, t : C1 → C0, together

with a monoidal structure on Ĉ0, such that the tensor preserves all colimits on the left and
filtered colimits on the right.

Notation 5.2. As for pre-Howe contexts, we let C := Ĉ1/Δ.

Let us assume that some syntax has been specified by a finitary, pointed strong endo-

functor Σ0 on Ĉ0. We then define transition Σ0-monoids just as in §3.

Definition 5.3. The category Σ0 -Trans of transition Σ0-monoids is the following pullback

in CAT. Σ0 -Trans Σ0 -Mon

C Ĉ0

�

�

(−)0

�0

When Σ0 is the constantly empty endofunctor, we speak of transition monoids: they
consist of objects - equipped with monoid structure on -0.

We are now interested in computing initial Σ0-monoids. For this, we abstract over the
concrete Proposition 3.2, as follows, replacing [F, Set] with any suitable category �0.

Proposition 5.4 [FPT99, FS17, BHL20]. For any finitary, pointed strong endofunctor Σ0

on a monoidal, cocomplete category �0 such that the tensor preserves all colimits on the left
and filtered colimits on the right, the forgetful functor �0 : Σ0 -Mon → �0 is monadic, and
the free Σ0-algebra over � (equivalently the initial (� + Σ0)-algebra) is an initial Σ0-monoid.

Proof. This has been proved in Coq [BHL20].

Notation 5.5. We denote the initial Σ0-monoid by ZΣ0
, or Z0 for short.

Using this, we obtain the following.

Proposition 5.6. The adjunction between C and Ĉ0 (Proposition 4.5) lifts to an adjunction

Σ0 -Mon ⊥ Σ0 -Trans

ℳ

�

with

• �(ℳ(-0)) = -0 and
• the left adjoint ℳ maps any Σ0-monoid " to the discrete transition system on ", equipped
with the original Σ0-monoid structure on ". (In particular, we have ℳ(-0)1 = ∅.)

Proof. This directly follows from the next lemma.

Lemma 5.7. Let us consider any pullback

A C

B D

(

+

'

*

in CAT such that * is monadic, say with left adjoint � : D→ C, and ' has a left adjoint !
with identity unit ['

�
= id� : � → '!�.

Then, (admits a left adjoint with identity unit, such that the canonical natural
transformation !* → + is an identity.

22 T. HIRSCHOWITZ AND A. LAFONT

Proof. First of all by the triangle identities

'� '!'�

'�,

['
'�

' (Y'
�
)

!� !'!�

!�

!['
�

Y'
!�

we have
'(Y'�) = id'� and Y'!� = id!� (5.1)

for all � and �.
Similarly, we have

'! = idD (5.2)

not only on objects but also on morphisms, since by naturality of [we have for any 5 : � →
� ′:

'! 5 = '! 5 ◦ [� = [�′ ◦ 5 = 5 .

Let us furthermore assume w.l.o.g. that the pullback is constructed in the standard way,
using compatible pairs.

We then define (�) = (!* (�), �), which is legitimate since '!* (�) = * (�) by
hypothesis. To prove the universal property, assume given (�′, � ′) such that '(�′) = * (� ′),

and a morphism 5 : � → ((�′, � ′) = � ′ in C. Then, letting �* (5) : !* (�) → �′ denote the

transpose of * (�)
* (5)
−−−−→ * (� ′) = '(�′), we have by (5.1) and (5.2)

'(�* (5)) = '(Y'�′ ◦ !* 5) = '!* 5 = * 5 ,
so (�* (5), 5) : (!*�,�) → (�′, � ′) in the pullback A. Furthermore, the desired triangle

� ((!*�,�)

((�′, � ′) = C’
5 ((�* (5) , 5)= 5

commutes as desired, trivially. Finally, any (6, ℎ) : (!*�,�) → (�′, � ′) making it commute
must satisfy ℎ = 5 and '6 = *ℎ = * 5 . But '6 : *� = '!*� → '�′ is the transpose of 6,

so 6 must conversely be the transpose of '6 = * 5 , and hence (6, ℎ) = (�* (5), 5), proving
the desired uniqueness property.

It remains to prove that the canonical natural transformation

!*� = !*(� = !'+ �
Y'
+ �
−−−−−→ + �

is an identity. But by construction + � = + (!*�,�) = !*�, and Y'
!*�

= id!*� by (5.1),
hence the result.

Remark 5.8. The names, ℳ and �, stand for “monter” and “descendre”, “go up” and
“go down” in French.

Proposition 5.9. The forgetful functor � : Σ0 -Trans→ C is finitary and monadic.

Proof. This follows from the fact that transition Σ0-monoids are the algebras of an equa-
tional system over C in the sense of Fiore and Hur, to which [FH09, Theorem 6.1] ap-
plies.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 23

Notation 5.10. We denote by ℒ the left adjoint to �.

5.2. Operational semantics signatures. Similarly, we define abstract dynamic signa-
tures, which abstract over those of Definition 3.19:

Definition 5.11. Given a Howe context s, t : C1 → C0 and a pointed strong Σ0 : Ĉ0 → Ĉ0, a

dynamic signature Σ1 = (Σ
�
1 ,Σ

m
1
) over Σ0 consists of a finitary functor Σ�1 : Σ0 -Trans→ Ĉ1,

together with a natural transformation Σm
1
with components Σ�1 (-) → Σ0(-0)s × -0t.

Let us pack up the static and dynamic notions of signature.

Definition 5.12. An operational semantics signature (Σ0,Σ1) on a given Howe context
s, t : C1 → C0 consists of a pointed strong endofunctor Σ0 preserving sifted colimits, together
with a dynamic signature Σ1 over it.

Remark 5.13. Preservation of sifted colimits [ARV10a] is stronger than finitarity for Σ0.

We need it for Lemma 9.51 below. In a presheaf category like Ĉ0, if Σ0 preserves pullbacks
(for example, by familiality), it is equivalent to being finitary and preserving all epis, as
seen from the proof of [ARV10b, Theorem 18.1]. In [BHL20], we mistakenly only require
Σ0 to be finitary, which yields a gap in the proof of [BHL20, Lemma 5.13].

Example 5.14. The endofunctor Σ0(-) (=) = - (= + 1) + - (=)
2 on [F, Set] preserves sifted

colimits. This easily follows from the fact that sifted colimits are the ones commuting with
products in sets.

Let us now introduce the models of a dynamic signature. We start by fixing, for the rest
of this section, an operational semantics signature (Σ0,Σ1) on a Howe context s, t : C1 → C0.

Definition 5.15. Let Σ̌1 : Σ0 -Trans → Σ0 -Trans map any transition Σ0-monoid - to the
composite

Σ
�
1 (-)

(Σm
1
)-

−−−−−→ Σ0 (-0)s × -0t
a-0 s×-0t

−−−−−−−−→ -0s × -0t,

where a-0
denotes the Σ0-algebra structure of -0.

Proposition 5.16. The endofunctor Σ̌1 is finitary and makes the following triangle com-

mute. Σ0 -Trans Σ0 -Trans

Σ0 -Mon

Σ̌1

� �

Proof. Commutativity of the triangle holds by construction, and finitarity follows from
finitarity of Σ�

1
.

Definition 5.17. A Σ̌1-algebra structure Σ̌1(-) → - on an object - ∈ Σ0 -Trans is vertical
when its image under the forgetful functor Σ0 -Trans→ Σ0 -Mon is the identity. Let Σ1 -algv
denote the full subcategory of Σ̌1 -alg spanned by all vertical algebras.

Theorem 5.18. The forgetful functor Σ1 -algv → Σ0 -Trans is monadic, and furthermore
the initial Σ̌1-algebra ZΣ̌1

, or Z for short, may be chosen to be vertical, hence is also initial
in Σ1 -algv.

24 T. HIRSCHOWITZ AND A. LAFONT

Proof. For the first statement, vertical algebras may be specified as an equational system, in
the sense of [FH09], so the result follows by [FH09, Theorem 6.1]. For the second statement,
Z is the colimit of the initial chain

Z0
!
−→ Σ̌1(Z0)

Σ̌1 (!)
−−−−→ . . .

Σ̌=−1
1
(!)

−−−−−−→ Σ̌
=
1 (Z0) → . . .

(where Z0 is shorthand for ℳ(Z0), for readability, which is initial in Σ0 -Trans, by Proposi-
tion 5.6). The image of this chain in Σ0 -Mon is the everywhere-identity chain on Z0.

By construction, we have:

Proposition 5.19. We have �(Z) = Z0.

Let us readily annihilate any hope that vertical Σ1-algebras are monadic over C.

Lemma 5.20. Consider the operational semantics signature of _-calculus with Σ0 from (3.2)
and Σ1 from Example 3.20. Then, the composite forgetful functor Σ1 -algv → Σ0 -Trans→ C

is not monadic.

Proof. Let us draw inspiration from the classical example of a non-monadic composite of
monadic functors [BW05, p. 107], namely the composite Cat→ RGph→ Set, where RGph

denotes the category of reflexive graphs, and the forgetful functor to sets returns the set of
arrows. One may show that both functors are monadic, but that their composite is not. By
Beck’s monadicity theorem [Mac98, Theorem VI.7.1], it suffices to find a parallel pair - ⇒ .

in Cat whose image in sets admits an absolute coequaliser, and show that this coequaliser
is not created by the composite forgetful functor. The idea is to take . to consist of two
arrows

1
0
−→ 2 3

1
−→ 4,

and - = 1 + . to have an additional object, say 0. We then define D, E : - → . to be the
identity on . , and respectively map 0 to 2 and 3. The coequalisers in Cat (top) and Set

(bottom) look as follows, abbreviating each id� to just � for readability.

0 1 2 3 4 1 2 3 4 1 {2, 3} 4

0 1 0 2 3 1 4 1 0 2 3 1 4 1 0 {2, 3} 1 4

0 1 0 1 0

1◦0

1

D

E /

One easily proves that the one in sets is split, hence absolute. Because of the composite
arrow 1◦0 that the coequaliser in Catmust have but the one in sets does not, the coequaliser
is not created by the forgetful functor, thus contradicting monadicity.

For proving the lemma, we rely on the V-rule to mimick composition in constructing
the following parallel pair - ⇒ . in Σ1 -algv.

• . is the vertical Σ1-algebra defined as the _-calculus extended with two constants 0 and
1, unary operations : and ;, and an axiom 1 ⇓ ;(G);
• - is the vertical Σ1-algebra extending . with a constant 2;
• the Σ1-algebra morphisms D, E : - → . respectively map 2 to 1 and :(0).

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 25

The coequaliser � of these two morphisms computed in the presheaf category C is a quotient
of . by the equation 1 = :(0). It thus has as reductions [4] ⇓ [5] between equivalence
classes, for all reductions 4′ ⇓ 5 ′ between representatives 4′ ∈ [4] and 5 ′ ∈ [5]. E.g., it has
a reduction [:(0)] ⇓ [;(G)], since 1 ∈ [:(0)] and 1 ⇓ ;(G). However, � lacks a reduction
[(_G.:(G)) 0] ⇓ [;(G)]. Indeed, [(_G.:(G)) 0] has a unique representative, namely (_G.:(G)) 0,
whose evaluation in . gets stuck at :(0). However, the coequaliser in Σ1 -algv does have
such a reduction by applying the V-rule:

[_G.:(G)] ⇓ [:(G)] [:(0)] = [1] ⇓ [;(G)]

[(_G.:(G)) 0] ⇓ [;(G)]
·

Thus, the coequaliser is not created by the forgetful functor.
Finally, this coequaliser is split (hence absolute): the morphism E : - → . mapping 2

to :(0) has a section 5 : . → -, which maps :(0) to 2, and the coequaliser arrow 4 : . → �

has a section 6 : � → . mapping :(0) to 1. It is straightforward to check that this indeed
defines a split coequaliser, i.e., that 6 ◦ 4 = D ◦ 5 .

Remark 5.21. A crucial point is that 6 may (and does) map 0 and : to themselves (the
latter being necessary to preserve the target of (_G.:(G)) ⇓ :(G)), and :(0) to 1 ≠ :(0).
Indeed, 6 lives in C, as opposed to Σ0 -Trans, hence need not preserve substitution. All that
is required is naturality. But :(0), being closed, cannot be the target of any transition, and
by induction cannot be the source of any transition either, hence the result.

Also, let us stress that in . , (_G.:(G)) 0 does not evaluate, since :(0) itself does not.
Similarly, in �, which is not saturated by the evaluation rules, we do have the premises
(_G.:(G)) ⇓ :(G) and :(0) = 1 ⇓ ;(G), but not the conclusion (_G.:(G)) 0 ⇓ ;(G).

6. Substitution-closed bisimilarity

We have now introduced our notion of syntactic transition system, given by Σ0-transition
monoids in a Howe context, and explained how to generate such systems from operational
semantics signatures. In this section, we incorporate substitution into the notions of bisimu-
lation and bisimilarity introduced in §4.3, which yields substitution-closed bisimilarity. We
then state our main theorem, for which we include a high-level proof sketch.

In order to introduce substitution-closed bisimilarity, we first lift the notion of bisimu-
lation to Σ0-monoids, generalising §3.4:

Definition 6.1. A morphism in Σ0 -Trans is a functional bisimulation iff its underlying
morphism in C is. A span is a simulation iff its left leg is a functional bisimulation, and a
bisimulation iff both of its legs are functional bisimulations.

Let us readily prove the following characterisation by lifting, recalling from Nota-
tion 5.10 that ℒ : C→ Σ0 -Trans is left adjoint to the forgetful functor.

Proposition 6.2. A morphism in Σ0 -Trans is a functional bisimulation iff it has the right
lifting property w.r.t. ℒ(yB!) : ℒ(ys(!)) → ℒ(y!), for all ! ∈ C1.

Proof. By adjunction.

As seen in Example 3.16, we now want to go beyond bisimilarity, and introduce abstract
versions of substitution-closed bisimulation and bisimilarity. For this, let us give the general
definition of modules over a monoid.

26 T. HIRSCHOWITZ AND A. LAFONT

Definition 6.3. For any monoid " in a monoidal category �, let " -Mod denote the
category of algebras for the monad − ⊗ ".

An "-module thus consists of an object - equipped with an action - ⊗ " → - of "
satisfying straightforward coherence conditions.

Example 6.4. " itself is an "-module, with action given by multiplication.

Before going into substitution-closed bisimulation, let us record the following useful
properties of modules in a Howe context.

Proposition 6.5. In any Howe context, for all monoids " in Ĉ0,

• the forgetful functor " -Mod→ Ĉ0 creates all limits and colimits, and furthermore

• the category " -Mod is regular and the forgetful functor " -Mod → Ĉ0 creates image
factorisations.

Proof. For creation of limits and colimits:

• As algebras for the monad − ⊗ ", "-modules are closed under limits.
• They are also closed under all types of colimits preserved by − ⊗ ", i.e., all of them by
definition of Howe contexts.

Thus, " -Mod is complete and cocomplete, hence regularity reduces to showing that the
pullback of any regular epi is again a regular epi. So let us consider any pullback square

� �

� �

D

E

6

5

in " -Mod, with 5 a regular epi, and show that E must also be a regular epi. By creation,
hence preservation, of limits and colimits, the given pullback square is also a pullback in

Ĉ0 and 5 is a regular epi there too. So by regularity of the presheaf category Ĉ0, E is a

regular epi in Ĉ0. Equivalently, it is a coequaliser of its kernel pair. But by creation of
limits the kernel pair uniquely lifts to a kernel pair in " -Mod, and by creation of colimits
E is a coequaliser there too. This shows that " -Mod is regular.

Finally, given -, / ∈ " -Mod, let us consider any image factorisation -
4

.
<

/

in Ĉ0 of a morphism 5 : - → / in " -Mod, i.e., 4 is a regular epi and < is a mono in

Ĉ0. In this situation, 4 is the coequaliser of its kernel pair in Ĉ0, but, as we just saw, this
kernel pair lifts to a kernel pair in " -Mod, whose coequaliser is created by the forgetful
functor, hence 4 is a coequaliser, hence a regular epi in " -Mod. Finally, 5 also coequalises
the kernel pair, hence the existence of a unique mediating morphism . → / in " -Mod,

which must be < by faithfulness of the forgetful functor " -Mod → Ĉ0. Thus, < is also
a morphism in " -Mod. Finally, its monicity follows again by faithfulness of the forgetful
functor.

Let us now introduce substitution-closed spans, first in an arbitrary monoidal category,
and then in a Howe context. This then leads us to substitution-closed bisimulation.

Definition 6.6. In a monoidal category � with binary products, given a monoid " and
"-modules - and . , a substitution-closed span is a span ? : ' → - × . equipped with "-
module structure d : ' ⊗ " → ' on ', such that ? : ' → - × . is an "-module morphism.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 27

The last condition is equivalent to commutation of the following diagram.

' ⊗ " '

(- × .) ⊗ " (- ⊗ ") × (. ⊗ ") - × .

d

?⊗"

〈c1⊗",c2⊗" 〉 0-×0.

?

Definition 6.7. Consider any Howe context s, t : C1 → C0 and transition monoid " ∈ C.
Let -,. ∈ C be equipped with "0-module structure on -0 and .0. A substitution-closed
span is a span ' → - × . equipped with substitution-closed structure on '0 → -0 × .0.

Definition 6.8. For any Howe context s, t : C1 → C0 and transition monoid " ∈ C, a
substitution-closed simulation (resp. bisimulation) is a substitution-closed span ' → "2

(viewing "0 itself as an "0-module by Example 6.4) which is a simulation (resp. bisimula-
tion). Let Bisim⊗ (") denote the full subcategory of C/"2 spanned by substitution-closed
bisimulations.

Let us now prove the existence of substitution-closed bisimilarity.

Lemma 6.9. Substitution-closed simulation and bisimulation relations are stable under
unions.

Proof. By Lemma 4.21, the union of a family of substitution-closed simulation (resp. bisim-
ulation) relations is again a simulation (resp. bisimulation) relation. But by Proposition 6.5,
the union in C is again substitution-closed, which concludes the proof.

Proposition 6.10. For any Howe context s, t : C1 → C0 and monoid " ∈ C, the category
Bisim⊗ (") of substitution-closed bisimulations over " admits a terminal object ∼⊗

"
, called

substitution-closed bisimilarity.

Proof. Straightforward generalisation of the proof of Proposition 4.22 using the lemma.

Notation 6.11. When " = Z, we abbreviate ∼⊗
Z
to just ∼⊗.

We now want to state the abstract version of our main theorem, but we need an addi-
tional hypothesis, which we now introduce. The idea is essentially that Σ1 should preserve

functional bisimulations, which does not quite make sense, because the codomain of Σ�1 is Ĉ1,
where no notion of functional bisimulation has been defined yet. Recalling Proposition 4.17,
we work around this as follows.

Definition 6.12. A dynamic signature Σ1 = (Σ
�
1 ,Σ

m
1
) preserves functional bisimulations iff

for any functional bisimulation 5 : ' → - in Σ0 -Trans, the following square is a pointwise
weak pullback.

Σ�
1
(') Σ�

1
(-)

Σ0('0)s Σ0(-0)s

Σ�
1
(5)

c1◦(Σ
m
1
)'

Σ0 (50)s

c1◦(Σ
m
1
)-

(6.1)

Remark 6.13. It may not be obvious that the dynamic signature for call-by-name _-
calculus preserves functional bisimulations. We will come back to this in §7 by showing
that it satisfies a sufficient condition, cellularity.

Remark 6.14. It may seem linguistically inappropriate to say that Σ1 preserves functional
bisimulations, since Σ1 is not merely a functor, and we have not even defined fibrations in

28 T. HIRSCHOWITZ AND A. LAFONT

the codomain category Ĉ1 anyway. We will justify the terminology in Proposition 7.8, but
for now let us move on directly to the main result.

Theorem 6.15. If Σ1 preserves functional bisimulations, then substitution-closed bisimi-
larity is context-closed. More precisely, ∼⊗ is a transition Σ0-monoid, and ∼⊗ → Z2 is a
transition Σ0-monoid morphism.

Proof sketch (see §9 for the full proof). The proof takes inspiration from Howe’s original
method.

1. We first define the Howe closure �0 of substitution-closed bisimilarity ∼⊗
0
on states as

the initial Σ�0 -monoid for the pointed strong endofunctor Σ�0 on Ĉ0/Z
2 defined by Σ�0 (') =

Σ0(')+(';∼
⊗
0
). We then show that, by construction, �0 is a Σ0-monoid and both projections

are Σ0-monoid morphisms.

2. We then define the transition Howe closure � of (the full) substitution-closed bisimilarity
∼⊗, as an initial algebra for an endofunctor Σ�1 on a suitable category C�

Z
. Very roughly,

C�
Z

is the category of spans ' → Z2 whose projection is precisely �0 → Z2
0, and Σ�1 (') =

Σ̌1(') + (';∼
⊗). We show:

Lemma 6.16. There exists a span morphism i� : ∼⊗ → �.

3. Next comes the key lemma:

Lemma 6.17. If Σ1 preserves functional bisimulations, then the transition Howe closure
� is a substitution-closed simulation.

Remark 6.18. Since �0 is a Σ0-monoid by construction, � is easily seen to be substitution-
closed, so the lemma really is about it being a simulation.

The key lemma is proved by characterising � as an initial algebra for a different end-
ofunctor on a different category, whose initial chain involves iterated applications of Σ1

(preserving simulations by hypothesis) to c1 : ℳ(�0) →ℳ(Z0), which is trivially a simula-
tion.

4. In the standard proof method, the next step is to prove that the transitive closure of �0

is symmetric. But in our case �0 is a general span, not a relation. In order to avoid some
coherence issues, we introduce a suitable notion of relational transitive closure for general
spans, denoted by −+, which is equipped with a canonical map i+

'
: ' → '+ for each span '.

We then show:

Lemma 6.19. The relational transitive closure �0
+ of the Howe closure �0 on states is

symmetric.

As substitution-closed simulations are closed under transitive closure, we obtain

Corollary 6.20. �+ is a substitution-closed simulation which is symmetric on states.

We then use the following lemma (proved in §9.7).

Lemma 6.21. For any substitution-closed simulation ' such that '0 is symmetric, there
exists a substitution-closed bisimulation '′ and a span morphism i′

'
: '→ '′.

By terminality of ∼⊗, we thus get a unique morphism !�+′ : �
+′→ ∼⊗ over Z2.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 29

5. From the chain

∼⊗
i�

−−→ �
i+
�
−−→ �+

i′
'
−→ �+′

!
�+′

−−−→ ∼⊗

we get by terminality that ∼⊗ is a retract of a transition Σ0-monoid, namely �. The result
then readily follows from monadicity of transition Σ0-monoids (Proposition 5.9) and the
following result, taking - = �, . = ∼⊗, and / = Z2.

Lemma 6.22. Consider a monad) : � → � on any category �,)-algebras - and /, and

morphisms -
4

.
<

/ in � such that the composite is a)-algebra morphism, 4 is a
split epi, and < is monic. Then there is a unique)-algebra structure on . such that 4 and
< both are)-algebra morphisms.

Proof. Let B : . → - denote any section of 4. The desired structure is given by

) (.)
) (B)
−−−−→) (-) → -

4
. ,

where the middle morphism is the given) -algebra structure on -, and the rest follows by
monicity of <.

7. Preservation of functional bisimulations, and cellularity

Let us now consider the main hypothesis of Theorem 6.15, preservation of functional bisimu-
lations. In §7.1, we rephrase the condition in a way that makes more sense linguistically, i.e.,
by an actual preservation condition. We then work towards a characterisation in terms of
cellularity. In §7.2, we first briefly recall familial functors [Die78, CJ95, Web07a], and show
that the operational semantics signature for call-by-name _-calculus gives rise to two familial
functors, in a suitable sense. In §7.3, we restrict attention to the case where both components
of the dynamic signature give rise to familial functors in this sense, and show that preserva-
tion of functional bisimulations is then equivalent to a cellularity condition [GH18, BHL20],
which itself comes with a useful sufficient condition.

7.1. An alternative characterisation. Let us first give an alternative definition of dy-
namic signatures.

Definition 7.1. Let Ĉ1/Δs denote the following lax limit category.

Ĉ1/Δs

Ĉ0 Ĉ1

c2 c1

Δs

Concretely, an object consists of presheaves -1 and -0, together with a morphism

-1 → -0s. Just as C, Ĉ1/Δs is in fact a presheaf category:

Proposition 7.2. The category Ĉ1/Δs is isomorphic to the presheaf category over the lax
colimit Cs of the functor s : C1 → C0, as in

C1 C0

Cs.

s

8=1 8=0
B

30 T. HIRSCHOWITZ AND A. LAFONT

Proof. Similar to Proposition 4.9.

Remark 7.3. Concretely, Cs is the coproduct of C0 and C1, augmented with morphisms
B! : s(!) → ! for all ! ∈ C1, naturally in !.

Notation 7.4. In the case of call-by-name _-calculus, as in C (Notation 4.12), we call ⇓
the unique object coming from C1 = 1.

Definition 7.5. For any operational semantics signature (Σ0,Σ1), let Σs
1
: Σ0 -Trans →

Ĉ1/Δs map any -1 → -0s × -0t to the first leg Σ�1 (-) → Σ0(-0)s of (Σ
m
1
)- .

Proposition 7.6. For any operational semantics signature (Σ0,Σ1), the functor

Σ
s
1 : Σ0 -Trans→ Ĉ1/Δs

is finitary, and makes the following diagram commute,

Σ0 -Trans Ĉ1/Δs

Σ0 -Mon Ĉ0 Ĉ0

Σs
1

�

�0 Σ0

c2 (7.1)

where c2, as in Definition 7.1, maps any object -1 → -0s to -0.

Proof. Finitarity holds because it does pointwise, by assumption. The diagram commutes
by construction.

In Ĉs (or, through the isomorphism of Proposition 7.2, in Ĉ1/Δs), we may define func-
tional bisimulations by analogy with Definition 4.15.

Definition 7.7. A morphism 5 : - → . in Ĉs is a functional bisimulation, or a fibration,
iff it enjoys the (weak) right lifting property w.r.t. yB! : ys(!) → y! , for all ! ∈ C1.

Proposition 7.8 (Price for our linguistic mischief). A dynamic signature preserves func-

tional bisimulations (Definition 6.12) iff the induced functor Σs
1 : Σ0 -Trans→ Ĉ1/Δs does.

Proof. The functor Σs
1 maps any functional bisimulation 5 : '→ . to the square (6.1), and

just as in Proposition 4.17 a morphism in Ĉs is a functional bisimulation iff the corresponding

square in Ĉ1 is a pointwise weak pullback.

7.2. Familiality. In the previous sections, we have seen that functional bisimulations may

be defined by lifting both in Σ0 -Trans and Ĉ1/Δs. We now want to exploit this to obtain
a characterisation of preservation of functional bisimulations, which will then lead us to
useful sufficient conditions.

For this, let us briefly recall familial functors, and show that the functors Σ0 and

Σs
1 : Σ0 -Trans → Ĉ1/Δs induced by the dynamic signature for call-by-name _-calculus are

familial.
Familial functors are a generalisation of polynomial functors on sets, i.e., functors of

the form � (-) =
∑
>∈$ -

=> , where $ is a set of ‘operations’, and => ∈ N is the ‘arity’ of any
> ∈ $. We want to generalise this to presheaf categories.

Example 7.9. Consider for example the ‘free category’ monad) on Gph. Analysing and
abstracting over the definition of) , we will arrive at the notion of familial functor. Let us
first recall that graphs are presheaves over the category

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 31

[0] [1].
B

C

) does not change the vertex set, and an edge of) (�) is merely a path in �. Indexing this
by the length of the path, we obtain

) (�) [0] � Gph(y[0] , �) and) (�) [1] �
∑
=Gph([=], �),

where [=] denotes the filiform graph • → • . . . → • with = edges (which is consistent with
[0] and [1] through the Yoneda embedding). Furthermore, the source of a path [=] → �

is obtained as the composite

[0]
B=
−−→ [=] → �,

where the first morphism selects the first vertex of the path. Similarly the target is obtained
by precomposition with the morphism, say C=, selecting the last vertex.

From these observations, let us now explain how the whole of) may be derived from

• the graph) (1), which generalises the set of operations, and
• a functor el() (1)) → Gph, morally describing the arity of each operation,

where we recall from MacLane and Moerdijk [MM92]:

Definition 7.10. The category of elements el(-) of a presheaf - over any category C
has pairs (2, G) with G ∈ - (2) as objects, and a morphism 5 ↾ G ′ : (2, G) → (2′, G ′) for all
5 : 2→ 2′ such that - (5) (G ′) = G.

The graph) (1) has a single vertex, and as many paths as we can derive from a single
endo-edge on this vertex: N, because there is one for each length. The category of elements
of) (1) thus looks like the following,

([1], 0) ([1], 1) ... ([1], =) ...

([0], ★)B↾0
C↾0 B↾1

C↾1
C↾=

B↾=

and the assignments

([0], ★) ↦→ [0] ([1], =) ↦→ [=]

extend to a functor � : el() (1)) → Gph by mapping each source or target map ([0], ★) →
([1], =) to the corresponding map [0] → [=]. This functor may be visualised as

[0] [1] ... [=] ...

[0].
B0
C0 B1

C1
B=

C=

The promised expression of) in terms of) (1) and � is:

) (�) (2) �
∑

>∈) (1) (2)

Gph(� (2, >), �).

Definition 7.11. A functor � : � → Ĉ to some presheaf category is familial iff we have a
natural isomorphism

� (-) (2) �
∑

>∈$ (2)

� (� (2, >), -),

32 T. HIRSCHOWITZ AND A. LAFONT

for some presheaf $ ∈ Ĉ and functor � : el($) → �. The presheaf $ is called the presheaf
of operations, or the spectrum [Die78] of �, while � is called the arity, or exponent functor.

Remark 7.12. This definition is a bit elliptic, so let us make functoriality more explicit.

• Functoriality in - is by post-composition.
• For functoriality in 2, for any 5 : 2 → 3 in C and > ∈ $ (3), letting >′ = > · 5 , we get a
morphism 5 ↾ > : (2, >′) → (3, >) in el($), hence a morphism � (5 ↾ >) : � (2, >′) → � (3, >).
Precomposition by this morphisms yields a map

� (� (3, >), -) → � (� (2, >′), -).

Postcomposing with the obvious coproduct injections, and cotupling, we get the desired
map ∑

>∈$ (3)

� (� (3, >), -) →
∑

>′∈$ (2)

� (� (2, >′), -).

Remark 7.13. If � has a terminal object, we always have $ � � (1).

Example 7.14. Let us show that the endofunctor Σ0 : Ĉ0 → Ĉ0 from §3.1 for _-calculus is
familial, where we recall that C0 = Fop . Indeed, we then have

Σ0 (-) (=) = - (= + 1) + - (=)2

� Ĉ0(y=+1, -) + Ĉ0(2 · y=, -)

Thus, we choose:

$ (=) = {abs, app} � (=, abs) = y=+1
� (=, app) = 2 · y=.

These definitions can be straightforwardly upgraded to functors $ ∈ Ĉ0 and � : el($) → Ĉ0,
and we get the desired isomorphism.

Example 7.15. Let us now show that the functor Σs
1 : Σ0 -Trans→ Ĉ1/Δs for call-by-name

_-calculus is familial. By definition, it maps any - to the set-map -0(1)+�V (-) → Σ0(-0) (0)

defined in Example 3.20. Let us transfer this across the isomorphism Ĉ1/Δs � Ĉs (recalling
Remark 7.3), and show that Σs

1
may be expressed as in Definition 7.11, first for 2 ∈ F and

then for 2 =⇓.
For 2 = = ∈ F, we almost may proceed as for Σ0, except that the domain category

has changed (from Ĉ0 to Σ0 -Trans). But recalling that ℒ : C→ Σ0 -Trans denotes the left
adjoint to the forgetful functor �, we have

Σs
1(-) (=) = Σ0((�(-))0) (=)

� C(y=+1,�(-)) + C(2 · y=,�(-))
� Σ0 -Trans(ℒ(y=+1), -) + Σ0 -Trans(ℒ(2 · y=), -),

so we may (partially) define

$ (=) = {abs, app} � (=, abs) = ℒ(y=+1)

� (=, app) = ℒ(2 · y=).
(7.2)

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 33

Now, for 2 =⇓, remembering from Notation 7.4 that we call ⇓ ∈ Cs the unique object of
Cs coming from C1 = 1, on transitions, we have:

Σ
s
1(-) (⇓) = -0(1) + �V (-)

� C(y1,�(-)) + �V (-)

� Σ0 -Trans(ℒ(y1), -) + �V (-).

We thus need to find �V such that �V (-) � Σ0 -Trans(�V, -), and then we would complete
equations (7.2) with: $ (⇓) = {_-val, V-red} � (⇓, _-val) = ℒ(y1)

� (⇓, V-red) = �V.

Definition 7.16. The morphism j̄ : ℒ(y0) →ℒ(y1 + y0) is defined as follows.

• We start from :1(:0) ∈ �(ℒ(y1 + y0)) (0), where we recall from the rules below Proposi-
tion 3.4 that the presheaf �(ℒ(y1 + y0)) (0) has as states _-terms over a closed constant
:0, and a unary constant :1.
• We then let j̄ denote the mate of the morphism y0 → �(ℒ(y1 + y0)) corresponding to
:1(:0) by the Yoneda lemma.

Let now �V denote the following pushout,

ℒ(y0) ℒ(y1 + y0) ℒ(y⇓ + y0)

ℒ(y⇓) �V

j̄

ℒ (yB⇓)

ℒ (yC⇓+y0)

8=1

8=2

which exists because by Proposition 5.9 Σ0 -Trans is the category of algebras for a fini-
tary monad on a presheaf category, hence a locally finitely presentable category by [AR94,
Remark in §2.78], hence cocomplete.

Let us now show that �V (-) � Σ0 -Trans(�V, -) for any -: as Σ0 -Trans(−, -) turns
colimits into limits, we have the pullback

[�V, -] [ℒ(y⇓), -]

[ℒ(y⇓ + y0), -] [ℒ(y1 + y0), -] [ℒ(y0), -],[j̄,-]

[ℒ (yB⇓) ,-]

[ℒ (yC⇓+y0) ,-]

where j̄ is as in Definition 7.16, and we abbreviate Σ0 -Trans(−1,−2) to [−1,−2] for read-
ability. By Yoneda, this reduces to

[�V, -] - (⇓)

- (⇓) × - (0) - (1) × - (0) - (0),
- (C⇓)×- (0)

- (B⇓)

(C ,D) ↦→C [D]

which shows that we have �V (-) � [�V, -] as desired.

We have thus defined the actions of the functors $ ∈ Ĉs and � : el($) → Σ0 -Trans on
objects. On morphisms, the only non-obvious point is the image of B⇓ ↾ _-val and B⇓ ↾ V-red.
The former morphism is mapped to the identity on � (0, abs) = ℒ(y1) = � (⇓, _-val). The
latter is mapped to the composite

ℒ(2 · y0)
ℒ (yB⇓+y0)

−−−−−−−−→ℒ(y⇓ + y0)
8=2
−−→ �V. (7.3)

This achieves the desired isomorphism Σs
1(-) (2) �

∑
>∈$ (2) Σ0 -Trans(� (2, >), -).

34 T. HIRSCHOWITZ AND A. LAFONT

7.3. Cellularity. We now want to exploit familiality to obtain an alternative characterisa-
tion of preservation of functional bisimulations. The starting point is the observation that

when a functor � : � → Ĉ is familial, say as � (�) (2) =
∑
>∈$ (2) � (� (2, >), �), then any

morphism of the form 5 : y2 → � (�), corresponding by Yoneda and familiality to some pair
(>, q) with q : � (2, >) → �, factors as

y2
(>,id� (2,>))
−−−−−−−−−→ � (� (2, >))

� (q)
−−−−→ � (�).

Furthermore, the first component (>, id� (2,>)) is easily seen to be generic, in the following
sense.

Definition 7.17. Given any functor � : � →ℬ, a morphism b : �→ � (�) is �-generic (or
generic for short) whenever for all j, 5 , and 6 making the square below (solid) commute,

� � (�)

� (�) � (�)

j

b

� (5)

� (:)
� (6)

there is a unique lifting : (dashed) such that � (:) ◦ b = j and 6 ◦ : = 5 .

In fact, we have the following important alternative characterisation of familial functors
to presheaf categories.

Theorem 7.18. For any functor � : � → Ĉ such that � has a terminal object, � is familial
iff all morphisms 5 : - → � (�) factor as

-
b
−→ � (*)

� (q)
−−−−→ � (�),

with b generic.

Proof. This is [GH18, Proposition 3.8], using the remark just before it.

Remark 7.19. The factorisation is essentially unique.

The characterisation of familiality in terms of generic morphisms allows us to charac-
terise familial functors which preserve fibrations, as cellular functors, which we now intro-
duce.

Definition 7.20. A category with generating cofibrations is a category � equipped with a
set J of morphisms.

For any such (�,J), as in §1.6, we call fibrations all morphisms in J⋔, and cofibrations
all morphisms in ⋔ (J⋔).

Example 7.21. In Σ0 -Trans, with generating cofibrations consisting of all morphisms
ℒ(yB!), fibrations are precisely functional bisimulations, by Proposition 6.2.

Example 7.22. In Ĉs, with generating cofibrations consisting of all morphisms yB! , fibra-
tions are precisely functional bisimulations, by Definition 7.7.

Definition 7.23. For any categories with generating cofibrations (�,J) and (Ĉ,K), such

that C is small and � has a terminal object, a familial functor � : � → Ĉ is cellular iff for
all commuting squares

� �

� (-) � (.)

:

b

� (X)

j (7.4)

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 35

with : ∈ K and b and j generic, X is a cofibration (i.e., X ∈ ⋔ (J⋔)).

Before exploiting cellularity as promised, let us briefly pause to give an equivalent
characterisation of cellularity in suitably nice cases.

Definition 7.24. Let us consider any familial functor � : � → Ĉ, say as � (�) (2) =∑
>∈$ (2) � (� (2, >), �), such that C is small and � has a terminal object. Then, for any

operation > ∈ � (1) (3) and morphism B : 2 → 3 in C, the B-arity of >, or its boundary arity
when B is clear from context, is the morphism � (3, > ↾ B) : � (2, > · B) → � (3, >) in �.

Notation 7.25. Let j> denote the generic morphism y3 → � (� (3, >)) induced by any
operation > ∈ � (1) (3).

By construction, for any > and B as in the definition, if yB is a generating cofibration
(i.e., is in K), then the diagram

y2 y3

� (� (2, > · B)) � (� (3, >))

yB

j>·B

� (� (3,>↾B))

j>

is of the form (7.4) by construction. We thus have by definition:

Proposition 7.26. Let us consider any cellular � : � → Ĉ between categories with gener-

ating cofibrations (�,J) and (Ĉ,K) such that C is small and � has a terminal object. Then,
for any representable morphism yB : y2 → y3 in K, the B-arity of any operation > ∈ � (1) (3)
is a cofibration.

When all domains and codomains of generating cofibrations : ∈ K are representable,
say as yB : y2 → y3 , then all generic morphisms j : � → � (.), with � a codomain of some
generating cofibration, are isomorphic to some y3 → � (� (3, >)), for some operation > ∈

� (1) (3), and the morphism X must then be isomorphic to � (3, > ↾ B) : � (2, > · B) → � (3, >).
We thus get a partial converse to Proposition 7.26:

Proposition 7.27. For any categories with generating cofibrations (�,J) and (Ĉ,K), such
that C is small, � has a terminal object, and all domains and codomains of generating

cofibrations : ∈ K are representable, a familial functor � : � → Ĉ is cellular iff the boundary
arities of all operations are cofibrations.

Returning to the general case, let us now prove a first characterisation of preservation
of fibrations in terms of cellularity.

Lemma 7.28. For any categories with generating cofibrations (�,J) and (Ĉ,K) such that

C is small and � has a terminal object, a familial functor � : � → Ĉ preserves fibrations
iff it is cellular.

Proof. Let us first prove the ‘if’ direction. We must show that for any 5 : � → � in J⋔,
� (5) is in K⋔, i.e., that any commuting square

� � (�)

� � (�)

D

:

E

� (5) (7.5)

with : ∈ K and 5 ∈ J⋔ admits a lifting. But taking generic factorisations of both horizontal
morphisms and using genericness, any such square factors as the solid part of

36 T. HIRSCHOWITZ AND A. LAFONT

� � (-) � (�)

� � (.) � (�).

b

:

j

� (X)

� (q)

� (k)

� (;) � (5)

By cellularity, we have X ∈ ⋔ (J⋔). We thus find a lifting ; as shown, which makes � (;) ◦ j
into a lifting for the original square.

Conversely, let us assume that � preserves fibrations, and consider any square of the
form (7.4) with : ∈ K. We need to show X ∈ ⋔ (J⋔). But for any commuting square as below
left

- �

. �

q

X

k

5

� � (-) � (�)

� � (.) � (�)

b

:

j

� (X)

� (q)

� (k)

� (;) � (5)
W

with 5 ∈ J⋔, by pasting this square with our generic square (7.4), we obtain the solid part
above right. Finally, because � preserves fibrations, we find a lifting W as shown, which by
genericness of j (and then b) yields the desired lifting ;.

Corollary 7.29. For any categories with generating cofibrations (�,J) and (Ĉ,K), such
that C is small, � has a terminal object, and all domains and codomains of generating

cofibrations : ∈ K are representable, a familial functor � : � → Ĉ preserves fibrations iff
the boundary arities of all operations are cofibrations.

Proof. By Proposition 7.27 and Lemma 7.28.

Here is the announced characterisation of preservation of functional bisimulations, which
follows directly from Lemma 7.28 and Corollary 7.29.

Corollary 7.30. In any Howe context, for any operational semantics signature (Σ0,Σ1), let

Σs
1
: Σ0 -Trans→ Ĉs be familial with exponent � : el(Σs

1
(1)) → Σ0 -Trans. Then the following

are equivalent:

(i) Σs
1 preserves functional bisimulations;

(ii) Σs
1 is cellular;

(iii) the boundary arities of all operations are cofibrations, i.e., for all ! ∈ C1 and > ∈
Σs
1(1) (!), the morphism

� (B! ↾ >) : � (s(!), > · B!) → � (!, >)

is a cofibration.

This characterisation of preservation of functional bisimulations in terms of cofibrations
is easier to prove in practice, since cofibrations in turn admit the following well-known
characterisation.

Definition 7.31. Consider any set J of maps in a given category.

• A basic relative J-cell complex is any morphism 5 obtained by pushing out some morphism
from J along any morphism, as in

� �

� �.

9∈J

5

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 37

• A relative J-cell complex is a (potentially transfinite) composite of basic relative J-cell
complexes.

Proposition 7.32 [Hov99, Lemma 2.1.10]. For any set J of maps in a locally presentable
category, all relative J-cell complexes are cofibrations in the generated weak factorisation
system (⋔ (J⋔),J⋔).

8. Applications

In this section, we apply our results to show that substitution-closed bisimilarity is a con-
gruence in concrete examples.

8.1. Call-by-name. We have already specified the syntax (§3.1) and transitions (§3.3)
of call-by-name _-calculus. We have also seen (Example 7.15) that the induced functor

Σs
1 : Σ0 -Trans→ Ĉ1/Δs is familial. By Theorem 6.15, Corollary 7.30, and Proposition 7.32,

congruence of substitution-closed bisimilarity will follow if we prove that the boundary
arities � (B⇓ ↾ >) corresponding to both transition rules are relative cell complexes.

The boundary arity � (B⇓ ↾ _-val) is an identity, hence trivially a relative cell complex.
For the V-rule, it is not entirely trivial that the boundary arity � (B⇓ ↾ V-red) of the

second transition rule, defined as the composite (7.3), is a cofibration. But, as (essentially)
noted in [BHL20, Example 5.21], it is a relative cell complex by construction, as both
components are pushouts of ℒ(yB⇓), as should be clear from the following diagram, where
again j̄ is as in Definition 7.16.

ℒ(y0) ℒ(y⇓)

ℒ(y0 + y0) ℒ(y⇓ + y0) �V
ℒ (yB⇓+y0)

ℒ (yC⇓+y0)◦j̄

ℒ (yB⇓)

8.2. Call-by-value. Let us now treat the call-by-value variant of untyped _-calculus, es-
sentially as in [Ong92, Pit11]. In this setting, it is important to distinguish substitution
by values and by terms. Indeed, letting � denote the identity _G.G, the terms 4 = _G.� and
4′ = _G.((_H.�) G) are contextually equivalent, since during evaluation in any context, the
bound variable G will only be replaced with a value. However, if one defines applicative
bisimulation naively, i.e., requiring it to be closed under arbitrary substitution, then 4 and
4′ are not bisimilar, as � is not bisimilar to (_H.�) Ω – which diverges. We thus want to
restrict to value substitution – which our treatment in [BHL20] overlooks!

Here is one way of doing this. The idea is to have two sorts, one for values and the other

for general terms. We thus would like Ĉ0 to be equivalent to the category [Set2, Set2] 5 of
finitary endofunctors on Set2. But

[Set2, Set2] 5 ≃ [2 · Set
2
5 , Set] ≃ [2 · F

2, Set],

so we take C0 to be the opposite of 2 · F2. By the equivalence, composition of finitary

endofunctors equips Ĉ0 with monoidal structure, and we denote the two sorts by p and
v, respectively for “programs” and “values”. In the presheaf point of view, we denote by
(<, =)p and (<, =)v, respectively, objects in the first and second term of 2 × F2 = F2 + F2, so
that - (<, =) (2) in the finitary endofunctor world corresponds to - (<, =)2 in the presheaf

38 T. HIRSCHOWITZ AND A. LAFONT

world, for 2 ∈ {v, p}. We think of - (<, =)v (resp. - (<, =)p) as a set of values (resp. programs)
with < potential free program variables, and = potential free value variables.

Since abstraction should bind a value variable, the syntax

4, 5 ::= 4 5 | E

E ::= G | _G.4

is thus specified by

Σ0(-) (<, =) (p) = - (<, =) (p)
2 + - (<, =) (v) and Σ0(-) (<, =) (v) = - (<, = + 1) (p).

A model - of the syntax should thus in particular feature operations

abs<,= : - (<, = + 1) (p) → - (<, =) (v) app<,= : - (<, =) (p)
2 → - (<, =) (p)

val<,= : - (<, =) (v) → - (<, =) (p),

where the last operation requires that values should embed into programs.

Notation 8.1. We implicitly view any - ∈ [2 · F2, Set] as (some fixed, global choice of)
the corresponding functor Set2 → Set2. In particular, we write - (), for any ∈ Set2.
Accordingly, we view pairs (<, =) as objects of Set2. E.g., in this sense, (<, =+1) is isomorphic
to (<, =) + yv, where yv denotes the Yoneda embedding of v along 2→ F2 ↩→ Set2. So the
arity for abstraction in fact yields an operation - (+ yv) (p) → - () (v).

Denoting composition of finitary endofunctors by ⊗, we define a pointed strength for

Σ0 as follows. For any - ∈ Ĉ0, . ∈ �/Ĉ0, and ∈ F2:

• at p, we have

(Σ0(-) ⊗ .) () (p) = - (. ()) (p)
2 + - (. ()) (v) = Σ0(- ⊗ .) () (p),

so we take BC-,. , ,p to be the identity;
• at v, we have

(Σ0(-) ⊗ .) () (v) = - (. () + yv) (p) and Σ0(- ⊗ .) () (v) = - (. (+ yv)) (p),

so we define BC-,. , ,p by applying - (−)(p) to the copairing of . () → . (+ yv) and

yv → � (+ yv) → . (+ yv).

We then specify transitions, which we first recall:

_G1.4 ⇓ 4

41 ⇓ 4
′
1 42 ⇓ 4

′
2 4′1 [_G1.4

′
2] ⇓ 43

41 42 ⇓ 43
·

Remark 8.2. Here, we adopt the same convention as in the categorical picture, where terms
are implicitly considered as indexed over sets, say {G1, . . . , G=}, of potential free variables.
Furthermore, the evaluation relation again relates closed terms to terms over one potential
free variable G1.

In order to specify such transitions, we take C1 = 1, as in the call-by-name case, with s

and t mapping the unique object to (0, 0)p and (0, 1)p, respectively: transitions will relate
a closed program to a program with one value variable (morally the body of the obtained

abstraction). For any - ∈ C = Ĉ1/Δ � Set/Δ, We take Σ�1 (-) to be the coproduct

Σ
�
1 (-) = -0(0, 1) + �VE (-),

where �VE (-) denotes the set of valid premises for the second rule, i.e., triples (A1, A2, A3) ∈ -1
such that

A3 · B⇓ = (A1 · C⇓) [_(A2 · C⇓)].

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 39

Familiality of the induced functor Σs
1 : Σ0 -Trans → Ĉ1/Δs follows similarly to the call-

by-name case, from the fact that �VE (-) is isomorphic to [�VE , -], where �VE denotes the
following pushout.

ℒ(y0) ℒ(y⇓)

ℒ(y⇓ + y⇓) �VE

b

ℒ (yB⇓)

Here, b corresponds by adjunction and Yoneda to the closed term

(A1 · C⇓) [_(A2 · C⇓)] ∈ �(ℒ(y⇓ + y⇓)) (0),

where A1 and A2 denote the two transition constants generating y⇓ + y⇓.
By Theorem 6.15, Corollary 7.30, and Proposition 7.32, congruence of substitution-

closed bisimilarity will follow if we can prove that boundary arities � (B! ↾ >) of both
transition rules are relative cell complexes. This is again trivial for the first rule, while
for the second one we obtain the following morphism, which is a relative cell complex by
construction.

ℒ(y0) ℒ(y⇓)

ℒ(y0 + y0) ℒ(y⇓ + y⇓) �VEℒ (yB⇓+yB⇓)

b

ℒ (yB⇓)

8.3. Erratic non-determinism. In this section, we consider the non-deterministic _-
calculus investigated in [San94, §7]. Its syntax is that of pure _-calculus, augmented with
a unary operation ⊎, and its reduction rules [San94, on pages 125 and 142] are

⊎4 ⇒ 4 ⊎4 ⇒ Ω (_G.4) 5 ⇒ 4[5]

41 ⇒ 43

41 42 ⇒ 43 42 4 ⇒ 4

41 ⇒ 42 42 ⇒ 43

41 ⇒ 43
,

where Ω denotes any diverging term.
Let us start by giving a big-step presentation of this language. We consider a labelled

transition relation, i.e., we have two transition relations ⇓_ (between a closed term and a
term with one free variable, as before) and ⇓g (between closed terms), inductively generated
by the following rules.

⊎4 ⇓g 4 ⊎4 ⇓g Ω _G.4 ⇓_ 4

41 ⇓_ 43 43 [42] ⇓_ 44

41 42 ⇓_ 44

41 ⇓_ 43 43 [42] ⇓g 44

41 42 ⇓g 44

41 ⇓g 43

41 42 ⇓g 43 42 4 ⇓g 4

41 ⇓g 42 42 ⇓g 43

41 ⇓g 43

41 ⇓g 42 42 ⇓_ 43

41 ⇓_ 43
·

We have:

Proposition 8.3. A relation is an applicative bisimulation in Sangiorgi’s sense, say a
Sangiorgi bisimulation, iff its open extension is a substitution-closed bisimulation with the
new rules.

40 T. HIRSCHOWITZ AND A. LAFONT

Proof. This is an easy corollary of the following lemma.

Lemma 8.4. For all closed 41 and 42, and 43 with one potential free variable, we have

• 41 ⇒ 42 iff 41 ⇓g 42, and
• 41 ⇒ _(43) iff 41 ⇓_ 43.

Proof.

• All reduction rules also occur as some new rule for ⇓g , except the V-rule, which is easily
derivable. We thus have ⇒ ⊆ ⇓g.
• Similarly, if 41 ⇒ _(43), then by the previous point 41 ⇓g _(43), hence by the last rule
41 ⇓_ 43.
• Finally, let us prove both converse statements in one go by induction on the transition
proof.
– The first two axioms also are axioms in the original rules, hence easy.
– For the third axiom, we are given _(4) ⇓_ 4, hence clearly _(4) ⇒ _(4) as desired.
– For the first V rule, 41 = 44 45, and we know by induction hypothesis that 44 ⇒ _(46)

and 46 [45] ⇒ _(43). We thus get 44 45 ⇒ _(46) 45 ⇒ 46 [45] ⇒ _(43), hence the
desired result.

– The second V rule is similar, except that we get a chain 44 45 ⇒ _(46) 45 ⇒ 46 [45] ⇒ 42.
– The next three rules also occur as original rules, hence are easily dealt with by induction

hypothesis.
– For the last rule, we have by induction hypothesis 41 ⇒ 44 and 44 ⇒ _(43), hence
41 ⇒ _(43), as desired.

The syntax is easily modelled by taking Σ0(-) (=) = - (= + 1) + - (=)2 + - (=), and the
new rules are easily seen to fit into a Σ1 such that Σs

1 preserves functional bisimulations by
Corollary 7.30 and Proposition 7.32. Finally, substitution-closed bisimilarity in the initial
model coincides with Sangiorgi’s applicative bisimilarity, so we again deduce congruence of
applicative bisimilarity by Theorem 6.15.

8.4. Howe’s format. In this section, we show that, up to suitable encoding, our framework
covers languages complying with a format proposed by Howe [How96, Lemma 6.1] — or
rather a slight variant thereof (see Remark 8.27 below). We first introduce the format, and
then explain how to embed it into our framework. The format illustrates in which sense
cellularity is in particular an acyclicity condition. Furthermore, it would be easy, but much
more verbose, to extend the format to a simply-typed setting; we refrain from doing so in
this already quite long paper.

8.4.1. Recalling Howe’s format. Regarding syntax, Howe’s framework is parameterised by
the choice between call-by-name and call-by-value. His signatures are then much like stan-
dard binding signatures [Plo90]. We model this in a setting similar to the call-by-value set-
ting of §8.2, except that this time we build into the base category the fact that values embed
into terms. Specifically, we work with the monoidal category [Set2, Set2] 5 ≃ [2 × F2, Set],

where 2 denotes the walking arrow category v
]
−→ p. We think of an object of the base

category 2 × F2, which is a pair (B, 5 : < → =) with B ∈ {v, p}, as the index of terms of sort
B, with < value variables and = program variables, each 5 (8) being thought as the program
counterpart of 8 ∈ <.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 41

Let us first explain how the syntactic part of Howe’s format may be understood in
terms of pointed strong endofunctors. Howe’s notion of syntactic signature encodes a choice
between call-by-value and call-by-name, through the choice of a distinguished sort, v or p.

Notation 8.5.

• Given <, = ∈ F and B ∈ {v, p}, we denote any object (B, (<
5
−→ =)) of 2 × F2 by (<

5
−→ =)B,

and the particular morphism (], id) : (<
5
−→ =)v → (<

5
−→ =)p by].

• Given <, = ∈ F, we denote the object (<
8=1
−−→ < + =) of F2 by (<, =). Otherwise said, we

treat the corresponding embedding F2 ↩→ F2 as an implicit coercion.

• Accordingly, for any <, = ∈ F and B ∈ {v, p}, we denote (<
8=1
−−→ < + =)B by (<, =)B .

• Given) : 2 × F2 → Set and B ∈ {v, p}, we denote by)B : F2 → Set the functor mapping

(<
5
−→ =) to) (<

5
−→ =)B .

Remark 8.6. Through the equivalence [Set2, Set2] 5 ≃ [2 × F2, Set], composition of endo-
functors becomes a monoidal product defined by

(� ⊗ �) (<
5
−→ =)B = Lan� (�B) (� (<

5
−→ =)v

�]
−−→ � (<

5
−→ =)p),

where � : F2→ Set2 is the canonical embedding. The unit � is defined by

� (=v
5
−→ =p)B = =B .

for any object (=v
5
−→ =p)B. Intuitively, � merely returns the set of variables of each sort.

Howe distinguishes value operations4 from program operations:

Definition 8.7. A Howe binding signature consists of

• a binding sort BE ∈ {v, p},
• a set $p of program operations, equipped with a map #p : $p → N and a family 3p ∈∏

>∈$p
N#

p
> , and

• a set $v of value operations, equipped with two maps #+ : $v → N and #− : $v → N, and
a family 3− ∈

∏
>∈$v

N# −> .

Terminology 8.8. For any operation > ∈ $p (resp. $v), the sequence (3p
>,1
, . . . , 3

p

>,#
p
>
)

(resp. (0, . . . , 0, 3−
>,1, . . . , 3

−
>,# −>
), with #+> leading 0s) is called the (binding) arity of >. Typ-

ically, _-abstraction and pairing are value operations. The numbers #+> and #−> respectively
count

• active arguments which should be evaluated before reaching a value, as both arguments of
the pairing operation, and
• passive arguments which are not evaluated until the operation is destroyed, as the argu-
ment of a _-abstraction.

Active arguments are not allowed to bind any variable, hence the absence of a family 3+ in
signatures.

Despite their name, value operations may or may not return values, depending on the
status of their arguments: a pair 〈41, 42〉 is only a value when both 41 and 42 are. In
order to generate the right syntax in our strongly-sorted setting, we need to introduce two

4Value operations correspond to canonical operators in [How96].

42 T. HIRSCHOWITZ AND A. LAFONT

incarnations of each value operation, one for constructing values, the other for constructing
programs. Any Howe binding signature generates a pointed strong endofunctor, as follows.
We first define an auxiliary operation for adding bound variables in the right component —
as prescribed by the binding sort BE .

Notation 8.9. For any (<
5
−→ =) ∈ F2, ? ∈ F, and B ∈ {v, p} let (<

5
−→ =) +B ? denote

• (< + ?
5 +id?
−−−−−→ = + ?) if B = v, and

• (<
5
−→ = ↩→ = + ?) if B = p.

Definition 8.10. Given any Howe binding signature �, the generated endofunctor Σ�0 on

[2 × F2, Set] is defined by

Σ�0 (�) (<
5
−→ =)v =

∑
>∈$v

� ((<
5
−→ =)v)

+> ×
∏
8∈# −>

� ((<
5
−→ =) +BE 3

−
>,8
)p,

Σ�
0
(�) (<

5
−→ =)p =

∑
>∈$v

� ((<
5
−→ =)p)

+> ×
∏
8∈# −>

� ((<
5
−→ =) +BE 3

−
>,8
)p

+
∑
>∈$p

∏
8∈#

p
>
� ((<

5
−→ =) +BE 3

p

>,8
)p

for all � ∈ [2 × F2, Set] and <, = ∈ F, with obvious action on morphisms.

We now want to express Σ�0 as a familial functor. For this, we start by defining

• a functor �p
> : F2op → [2 × F2, Set] for each program operation > ∈ $p,

• a functor �v
> : (2 × F2)

op
→ [2 × F2, Set] for each value operation > ∈ $v,

in such a way that Σ�
0
(�) (<

5
−→ =)B =

∑
> [�

B
> (<

5
−→ =), �].

Definition 8.11. Given any Howe binding signature,

• for any program operation > ∈ $p, let the arity of > be the functor �
p
> : (F

2)
op
→

[2 × F2, Set] mapping (<
5
−→ =) to the coproduct of representable presheaves

�
p
> (<

5
−→ =) =

∑
8∈#

p
>

y
((<

5

−→ =)+BE 3
p

>,8
)p

;

• for any value operation > ∈ $v, let the arity of > be the functor �v
> : (2 × F2)

op
→

[2 · F, Set] mapping any object (<
5
−→ =)B to the coproduct of representable presheaves

�v
> (<

5
−→ =)B = #

+
> · y

(<
5

−→=)B

+
∑
8∈# −>

y
((<

5

−→=)+BE 3
−
>,8
)p

.

Remark 8.12. The arity functors are contravariant because the Yoneda embedding is, for
covariant presheaves.

By construction:

Proposition 8.13. The endofunctor Σ�0 is familial, with

• as spectrum the functor

(� � Σ
�
0 (1) � $p · y(0→0)p +$v · y(0→0)v ,

i.e.,

(� (<
5
−→ =)p = $p +$v

(� (<
5
−→ =)v = $v,

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 43

with obvious action on morphisms, so that

el((�) = $p · (F
2)

op
+ $v · (2 × F2)

op
,

• and as exponent the functor �� : el((�) → [2 × F2, Set] defined as the cotupling

[[�
p
>]>∈$p

, [�v
>]>∈$v

].

Proof. By mere calculation, using the Yoneda lemma.

Corollary 8.14. We have, for all � ∈ [2 × F2, Set] 5 and (<
5
−→ =) ∈ F2,

Σ
�
0 (�) ((<

5
−→ =)p) �

∑
>∈$p

[�
p
> (<

5
−→ =), �] +

∑
>∈$v

[�v
> (<

5
−→ =)p, �]

and

Σ
�
0 (�) (<

5
−→ =)v �

∑
>∈$v

[�v
> (<

5
−→ =)v, �].

We now describe the syntax generated by �.
Let��

0 be the monad induced by the monadic forgetful functor Σ�0 -Mon→ [2×F2, Set].

In order to define the format, we need to unfold ��
0 (), for a coproduct of repre-

sentable presheaves of the form y(=v ,=p)B . For a single such presheaf, by Proposition 3.4,

��
0 (y(=v ,=p)B) = `�.(� + Σ�0 (�) + y(=v ,=p)B ⊗ �). Unfolding the definition of tensor product

(Remark 8.6), noticing that the hom-set [B, B′]

• is empty iff B = p and B′ = v, and
• is otherwise a singleton,

we obtain the following result.

Proposition 8.15. We have, for all =v, =p, <, = ∈ N, B, B′ ∈ {v, p}, � : 2 × F2 → Set, and
5 : < → =:

(y(=v ,=p)B ⊗ �) (<
5
−→ =)B′ � [B, B′] × �=p (<

5
−→ =)p × �

=v (<
5
−→ =)v

�

{
∅ if B = p and B′ = v

�=p (<
5
−→ =)p × �

=v (<
5
−→ =)v otherwise.

Remark 8.16. Intuitively, this will entail that ��
0 (y(=v ,=p)B) extends the syntax generated

by Σ�0 with a new operation taking =p programs and =v values as arguments, and returning
a program or a value, depending on B. As usual, if the output is a value, by action of],
there is a corresponding program operation.

We now describe ��
0 (), for any coproduct of representable presheaves of the form

y(=v ,=p)B . Let us first introduce some notations.

Definition 8.17. A family of operation arities is a family 2 = (<8, =8 , B8)8∈� of triples
(<8, =8 , B8) ∈ N2 × {v, p}.

Notation 8.18. We think of any such triple 28 = (<8, =8 , B8) as an operation 28 : v
<8 ×p=8 →

B8 , hence denote any such family by (28 : v
<8 × p=8 → B8)8∈� . We in fact extend this notation

by

• writing v< × p= × B@ , to denote either v<+@ × p=, when B = v, or v< × p=+@, when B = p,
• omitting −= if = = 0 in the above product, e.g., v< → B denotes v< × p0 → B, and finally

44 T. HIRSCHOWITZ AND A. LAFONT

• writing 2 : B for 2 : v0 × p0 → B.

We furthermore denote the disjoint union of families of operation arities and ! by + !.
Given a family = (28 : v

<8 × p=8 → B8)8 of operation arities, we also denote by the
coproduct of representable presheaves

∑
8 y(<8 ,=8)B8 : 2 × F2→ Set.

Remark 8.19. By Notation 8.9, for <, =, ? ∈ F, (<, =) +B ? denotes (< + ?, =) if B = v, and
(<, = + ?) otherwise.

We now give an inductive description of ��
0 () on objects of the form (<, =)B (Nota-

tion 8.9). Letting <, = ⊢ 4 : B mean that 4 ∈ ��
0
() (<, =)B , for a family of operation

arities, the free Σ�0 -monoid over is inductively generated on objects of the form (<, =)B
by the following rules.

<, = ⊢ GB8 : B
(8 ∈ <)

<, = ⊢ 08 : p
(8 ∈ =)

<, = ⊢ 41 : v . . . <, = ⊢ 4<′ : v
<, = ⊢ 51 : p . . . <, = ⊢ 5=′ : p

<, = ⊢ : (41, . . . , 4<′; 51, . . . , 5=′) : B
((: : v<

′

× p=
′

→ B) ∈)

(<, =) +BE 3
p

>,1
⊢ 41 : p . . . (<, =) +BE 3

p

>,#
p
>
⊢ 4# p

>
: p

<, = ⊢ >(41, . . . , 4# p
>
) : p

(> ∈ $p)

<, = ⊢ 41 : B . . . <, = ⊢ 4# +> : B
(<, =) +BE 3

−
>,1 ⊢ 51 : p . . . (<, =) +BE 3

−
>,# −>

⊢ 5# −> : p

<, = ⊢ >B (41, . . . , 4# +> ; 51, . . . , 5# −>) : B
(> ∈ $v)

Remark 8.20. Program operations > ∈ $p only have one list of arguments. Furthermore,
they always return programs, so there is no need to annotate them. By contrast, value
operations >′ ∈ $v have two lists of arguments (active and passive arguments, see Terminol-
ogy 8.8), and may return values or programs, depending on the status of their active argu-
ments. Thus, e.g., any unannotated operation application >(41, . . . , 4=) must be a program
operation application, while any annontated operation application >B (41, . . . , 4<; 51, . . . , 5=)
must be a value operation application.

The action on morphisms is straightforward: for renaming, we rename (value and pro-
gram) variables accordingly; for], we replace each Gv

8
(resp. >v) with G

p

8
(resp. >p). For

morphisms → !, we proceed similarly.

Terminology 8.21. We think of elements : from as metavariables, while terms of the
form 08 or G

B
8
are mere variables.

Notation 8.22.

• Following [Ham04], for any (: : v< × p= → B) ∈ , we abbreviate : (Gv1, . . . , G
v
<; 01, . . . , 0=)

to just : when (<, =) is clear from context.
• For value operations >, we sometimes omit the subscript B in >B (. . .), when the expected
sort is clear from context.
• Similarly, we sometimes omit the exponent B in variables GB

8
.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 45

• In metavariable application : (41, . . . , 4<′; 51, . . . , 5=′), as well as in value operation appli-
cation >(41, . . . , 4?; 51, . . . , 5@), when one sequence is empty we omit it altogether, writing,
e.g., : (41, . . . , 4<′) or >(51, . . . , 5@). When both lists are empty we simply write :, resp.
>.

Thus, e.g., : may denote a nullary metavariable, or a non-nullary metavariable with identity
substitution.

Let us now introduce Howe’s notion of signature for evaluation rules, restricting atten-
tion to signatures satisfying the syntactic condition of [How96, Lemma 6.1]. Evaluation is a
binary relation between closed programs and closed values. By default, all value operations
> are considered as coming equipped with their canonical evaluation rule

41 ⇓ E1 . . . 4# +> ⇓ E# +>

>p (41, . . . , 4# +> ; 51, . . . , 5# −>) ⇓ >v (E1, . . . , E# +> ; 51, . . . , 5# −>) .
(8.1)

Howe’s signatures thus only need to specify evaluation of program operations. We now
successively introduce notions of premises, rules, and signatures.

We start by fixing a global choice of finite coproducts in both [2 · N2, Set] (families of
operation arities) [2 · F2, Set] (presheaves).

Definition 8.23. Given any families and ! of operation arities, a premise → ! consists
of a source program 0, 0 ⊢ 4 : p and a target value 0, 0 ⊢! E : v, where ! and E take one of
the following two forms:

• either ! = + (2 : v), extending with one closed value metavariable, in which case E = 2,

• or ! = + (U8 : v)8∈{1,... ,# +> } + (V8 : B
3−
>,8
E → p)8∈{1,...,# −> } for some value operation > ∈ $v,

in which case the target is >v (U1, . . . , U# +> ; V1, . . . , V# −>).

Notation 8.24. We write any premise (4, E) : → ! as
4⇓E
−−−→ !.

Definition 8.25. A rule consists of

• a head program operation >,

• a composable sequence of premises 0

41⇓E1
−−−−→ 1 → . . . → @−1

4@⇓E@
−−−−−→ @, where 0 =

(:8 : B
3
p

>,8
E → p)8∈{1,...,# p

> }
, and

• a tail metavariable (:E : v) in @ .

A Howe dynamic signature over a Howe binding signature is a family of rules.

Notation 8.26. Such a rule is denoted by

41 ⇓ E1 . . . 4@ ⇓ E@

>(:1, . . . , :# p
>
) ⇓ :E

.

The families of operation arities 0, . . . , @ are left implicit.

Remark 8.27. There are some discrepancies w.r.t. Howe’s original format [How96, Lemma
6.1].

• We restrict to rules with a finite number of premises5.
• We have a slightly different treatment of value vs. program variables and metavariables.

5We expect that our setting can be extended to account for rules with an infinite number of premises by
replacing the finitarity condition on Σ�1 with a weaker accessibility requirement.

46 T. HIRSCHOWITZ AND A. LAFONT

Definition 8.28. For any Howe binding signature �, and Howe dynamic signature � over
it, the evaluation, denoted by ⇓�,� , or ⇓ for short, is the binary relation between programs
and values, obtained inductively by instantiating the given rules together with the canonical
rules (8.1).

Let us now recall Howe’s general definition of applicative bisimulation, and its open
extension.

Definition 8.29. For any Howe binding signature �, and Howe dynamic signature � over
it, an applicative simulation is a binary relation ' in Set2 over the injection ��

0 (∅) (0, 0)v ↩→

��
0 (∅) (0, 0)p, such that for any closed programs 4 and 4′ such that 4 'p 4

′, and any tran-
sition 4 ⇓ >v (E1, . . . , E# +> ; 41, . . . , 4# −>), there exist E′

1
, . . . , E′

+>
, 4′

1
, . . . , 4′

−>
and a transition

4′ ⇓ >v (E
′
1
, . . . , E′

+>
; 4′

1
, . . . , 4′

−>
), such that E8 'v E

′
8
for all 8 ∈ #+

$
, and 4 9 [f] 'p 4

′
9
[f], for

all 9 ∈ #−> and closing substitutions f.
An applicative bisimulation is an applicative simulation whose converse relation also is

one.
Applicative bisimulations are closed under union, and we let ∼�,� , or ∼ for short, denote

the largest one.
Finally, the open extension '◦ of a relation ' is the largest substitution-closed relation

contained in ' on closed programs and values.

Remark 8.30. By definition, being a subobject of the injection

��
0 (∅) (0, 0)v ↩→ ��

0 (∅) (0, 0)p

in Set2, any applicative simulation is such that for any related values E 'v E
′, E and E′

should also be related as programs, i.e.,] · E 'p] · E
′.

8.4.2. Congruence by encoding in our framework. We now want to prove using Theorem 6.15
that ∼◦ is a congruence. For this, we could try to naively model evaluation rules as a
dynamic signature Σ1 over Σ�0 . However, substitution-closed bisimilarity in the obtained
system would not coincide with applicative bisimilarity in Howe’s sense. Furthermore, the

induced functor Σs
1 : Σ

�
0 -Trans → Ĉs would not be cellular. Indeed, consider for instance

the usual, call-by-name rule for application. In Howe’s format, it gives the following:

:1 ⇓ _(:3) :3(:2) ⇓ :4

:1 :2 ⇓ :4
,

where all :8 are metavariables.

Notation 8.31. For any = ∈ N, we use the abbreviation =B := ((0, 0) +BE =)B — because we
will mainly need tuples (=p, =v) with only =BE ≠ 0 from now on.

Letting � denote the exponent of the induced Σs
1, and > denote the element correspond-

ing to this rule in the spectrum, the boundary arity � (B⇓ ↾ >) : � (s(⇓), > · B⇓) → � (⇓, >) is
the bottom composite in the following diagram,

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 47

ℒ(y0p) ℒ(y⇓)

ℒ(y0v + y0p) ℒ(y1p + y0p)

ℒ(y0p + y0p) ℒ(y⇓ + y0p) � (⇓, >)
ℒ (yB⇓+y0p)

_(:1)+idℒ (y0p)

ℒ (yC⇓+y0p)

ℒ (yB⇓)

j̄

where

• j̄ is analogous to Definition 7.16;
• we implicitly use transposition, the Yoneda lemma, and canonical isomorphisms ℒ(�) +
ℒ(�) � ℒ(� + �).

This bottom composite is not a relative cellular complex, because _(:1) : ℒ(y0v) →ℒ(y1p)

is not of the form ℒ(yB⇓).
So we have two problems: substitution-closed bisimilarity is not as desired, and Σs

1 is not
cellular. The solution to both problems is to rectify this last point. Namely, we construct a
new signature from the evaluation rules, in such a way that we may observe each argument
of a value. For this, we first need to generalise the notions of premise, rule, and signature, as
well as the evaluation relation induced by a signature, which in turn requires us to introduce
the Howe context induced by a Howe dynamic signature over a Howe binding signature.

We fix a Howe binding signature � and a Howe dynamic signature � over it for the
rest of this section.

Definition 8.32. We define the Howe context induced by (�, �), as follows.

• For state types, we take C0 = (2 × F2)
op
, with the monoidal structure on Ĉ0 = [2×F2, Set]

specified in Remark 8.6.
• For transition types, we take

C1 = {⇓} ⊎
∑

>∈$v ,8∈#
+
>

{⇓+>,8} ⊎
∑

>∈$v , 9∈#
−
>

{⇓−>, 9 }.

• We define source and target as follows

s : C1 → C0

⇓ ↦→ 0p
⇓+
>,8
↦→ 0v

⇓−>, 9 ↦→ 0v

t : C1 → C0

⇓ ↦→ 0v
⇓+
>,8
↦→ 0v (> ∈ $v, 8 ∈ #

+
>)

⇓−>, 9 ↦→ (3−>, 9)p (> ∈ $v, 9 ∈ #
−
>)

We now introduce the new notions of premise, rule, and dynamic signature, which we
deem rigid to avoid confusion with the original.

Definition 8.33. A rigid premise consists of a family of operation arities , called the
source type, a transition type U ∈ C1 and a source term 0, 0 ⊢ 4 : s(U).

The target type of a rigid premise (, U, 4) is the family ! := + (: : B=E → B), where
t(U) = =B, and its target is the fresh metavariable : : B=E → B ∈ !.

We denote such a premise by
4U:
−−−→ !.

Definition 8.34. A rigid rule consists of

48 T. HIRSCHOWITZ AND A. LAFONT

• a head program operation >,

• a composable sequence of rigid premises 0
41U1:1
−−−−−−→ 1 → . . . → @−1

4?U@:@
−−−−−−→ @, where

 0 = (:8 : B
3
p

>,8
E → p)8∈{1,...,# p

> }
, and

• a tail metavariable (:E : v) in @ .

A rigid dynamic signature over a Howe binding signature is a family of rigid rules.

Definition 8.35. The labelled transition system induced by � any the rigid dynamic sig-
nature � ′ is defined by instantiating the given rigid rules, together with the canonical
rules (8.1), and the following new rules.

>v (E1, . . . , E# +> ; E
′
1, . . . , E

′
−>
) ⇓+>,8 E8 >v (E1, . . . , E# +> ; E

′
1, . . . , E

′
−>
) ⇓−>, 9 E

′
9

· (8.2)

We may now define the rigid signature induced by (�, �).

Definition 8.36. Let the rigid dynamic signature '(�, �) induced by (�, �) be obtained
as follows. For each rule in �, '(�, �) has a rule for the same program operation, whose

premises are obtained by replacing each original premise
4⇓>v (:1 ,...,:#+>

;:′
1
,...,:′

#−>
)

−−−−−−−−−−−−−−−−−−−−−−→ ! with
any linearisation (in the straightforward, suitable sense) of the following tree.

 ′ := + (:0 : v)

 ′ + (:1 : v) ′ + (: ′
−>

: B
3−
>,#−>
E → p)

 ′ + (:# +
0
: v) ′ + (: ′1 : B

3−
>,1
E → p)

4⇓:0

:0⇓
+
>,1
:1

:0⇓
+
>,#+>

:#+>
:0⇓

−
>,1
:′
1

:0⇓
−
>,#−>

:′
#−>

... ...

Let us show that the rigid signature '(�, �) is adequate.

Proposition 8.37. The open extension of applicative bisimilarity in the sense of (�, �)
coincides with substitution-closed bisimilarity in the labelled transition system generated by
'(�, �).

Proof. Let ∼′ denote substitution-closed bisimilarity in the sense of '(�, �).
First of all, ∼◦ is a substitution-closed bisimulation; indeed, ⇓ is the same relation in

both systems — by a straightforward induction — and by definition of applicative bisimula-
tion, for any >v (E1, . . . , E# +> , 41, . . . , 4# −>) ∼ >v (E

′
1, . . . , E

′
+>
, 4′1, . . . , 4

′
−>
), we have E8 ∼ E

′
8
and

4 9 ∼
◦ 4′

9
, for all 8 and 9 , which ensures that the new transitions ⇓+

>,8
and ⇓−

>, 9
are matched.

Thus, we have ∼◦ ⊆ ∼′.
Conversely, the new transitions ensure that ∼′ is an applicative bisimulation, hence

is contained in ∼ on closed terms. But it is substitution-closed, so we get ∼′ ⊆ ∼◦, as
desired.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 49

Finally, we show that the rigid signature '(�, �) straightforwardly gives rise to a dy-
namic signature Σ�,�

1
, such that the initial vertical Σ�,�

1
-algebra is isomorphic to the gener-

ated labelled transition system, and furthermore that the induced functor (Σ�,�
1
)s is cellular,

hence that by Proposition 8.37, Corollary 7.30, and Theorem 6.15, ∼◦ is a congruence.

Notation 8.38. We tend to abbreviate Σ
�,�
1

to Σ1, for readability.

Let us present the dynamic signature Σ
�,�
1

, which will consist of various components:
one dynamic signature Σ1,> for each value operation > ∈ $v, describing both kinds of
canonical rules (8.1) and (8.2), plus one dynamic signature Σ1,A for each other rule.

• For each value operation > ∈ $v, we define

Σ�
1,>
(-) (⇓) = - (⇓)#

+
> ×

∏
9∈# −>

- ((3−
>, 9
)p)

Σ�1,> (-) (⇓
+
>,8
) = - (0v)

+> ×
∏
9∈# −>

- ((3−
>, 9
)p)

Σ�1,> (-) (⇓
−
>,8) = - (0v)

+> ×
∏
9∈# −>

- ((3−>, 9)p)

with as Σ�1,> (-) → Σ�0 (-)s × -t:

– at ⇓: (A1, . . . , A# +> , 41, . . . , 4# −>) ↦→ (8=>p (A1 · B⇓, . . . , A# +> · B⇓, 41, . . . , 4# −>),

>v (A1 · C⇓, . . . , A# +> · C⇓, 41, . . . , 4# −>)),
– at ⇓+>,8 : (E1, . . . , E# +> , 41, . . . , 4# −>) ↦→ (8=>v (E1, . . . , E# +> , 41, . . . , 4# −>), E8),
– at ⇓−

>, 9
: (E1, . . . , E# +> , 41, . . . , 4# −>) ↦→ (8=>v (E1, . . . , E# +> , 41, . . . , 4# −>), 4 9).

• For each rigid premise ? = (
4U:
−−−→ !), we define the cospan induced by ? to be

ℒ()
ℓ
−→ �?

A
←−ℒ(!),

where the left-hand morphism ℓ is defined by the pushout

ℒ(ys(U)) ℒ()

ℒ(yt(U)) ℒ(yU) �?,

4

ℒ (yBU) ℓ

ℒ (yCU)

(8.3)

and the right-hand morphism

A : ℒ(!) = ℒ(+ yt(U)) � ℒ() +ℒ(yt(U)) → �?

is obtained by copairing ℓ and the bottom composite in (8.3).
• For each rigid rule

(:8 : B
3
p

>,8
E → p)8∈{1,...,# p

> }
= 0

41U1:1
−−−−−−→ 1 → . . .→ =−1

4=U=:=
−−−−−−→ =

>(:1, . . . , :# p
>
) ⇓ : ′′

,

say A, we define

Σ
�
1,A (-) (⇓) = [�?1 , -] ×[ℒ (1) ,-] . . . ×[ℒ (?−1) ,-] [�?= , -], (8.4)

where for all 8 ∈ =, ℒ(8−1)
B8
−→ �?8

C8
←− ℒ(8) denotes the cospan induced by the 8th

premise, with Σ�1,A (-) (⇓
+
>′,8) = Σ�1,A (-) (⇓

−
>′, 9) = ∅ for all >′ ∈ $v, 8 ∈ #+>′, 9 ∈ #−>′,

and again with the morphism Σ�1,A (-) → Σ�0 (-)s × -t mapping any compatible tu-

ple (d1, . . . , d=) ∈ Σ�1,A (-) (⇓) to (8=> (0), 1), where 0 ∈
∏
8∈#

p
>
- ((3

p

>,8
)p) corresponds by

Yoneda and adjunction to the morphism

ℒ(0)
B1
−→ �1

d1
−−→ -,

50 T. HIRSCHOWITZ AND A. LAFONT

and 1 ∈ - (0E) corresponds to

ℒ(y0v)
ℒ (8=2)
−−−−−−→ ℒ(=)

C=
−→ �=

d=
−−→ -.

• We let (Σ�,�
1
)� =

∑
>∈$v

Σ�
1,>
+
∑
A Σ

�
1,A

, with morphism to Σ�
0
(−)s×(−)t given by cotupling.

By construction, we have:

Proposition 8.39. The transition Σ�0 -monoid generated by the dynamic signature Σ
�,�
1

is
isomorphic to the rigid transition system '(�, �).

Furthermore, we observe:

Lemma 8.40. The induced functor (Σ�,�
1
)s is cellular.

Proof. The functor is familial by construction. By Corollary 7.30(iii) and Proposition 7.32,
it suffices to show that for any rule A whose conclusion is a transition of type U, the boundary
arity

� (BU ↾ A) : � (s(U), A · BU) → � (U, A)

is a relative cell complex. The arity of each canonical rule (8.1) is clearly a coproduct of
generating cofibrations. The arities of canonical rules (8.2) are identities, hence trivially
relative cell complexes. For any other rule A, by (8.4) the arity is the left-hand leg of cospan
obtained by composing all 8−1 → �8 ← 8 , which is thus by construction a composite of
pushouts of generating cofibrations, hence a relative cell complex.

We at last obtain:

Theorem 8.41. For any Howe binding signature � and dynamic signature �, the open
extension of applicative bisimilarity on the generated transition system is a congruence.

Proof. The open extension of applicative bisimilarity for (�, �) coincides with substitution-
closed bisimilarity for '(�, �) by Proposition 8.37, which further coincides with substitution-
closed for the transition system generated by Σ

�,�
1

by Proposition 8.39. Finally, the latter
is a congruence by Lemmas 7.28 and 8.40, and Theorem 6.15.

9. Congruence of substitution-closed bisimilarity

In this section, we elaborate on the proof sketch of Theorem 6.15 given in §6. The overall
structure remains the same, and the final part of the proof sketch is complete, so we mainly
elaborate on items (1)–(4).

9.1. Preliminaries on spans. In this section, we fix a locally finitely presentable category
�, recall some known tools about spans, and develop a few new ones, including categorified
notions of reflexivity, transitivity, symmetry, and transitive closure. As announced in §1.6,
we freely switch from spans - ← (→ . to their pairings (→ -×. in �/-×. . Furthermore,

Definition 9.1. Given any spans '
〈?1, ?2 〉
−−−−−−→ - × . and (

〈@1,@2 〉
−−−−−−→ . × /, their span, or

sequential, composition, denoted by '; (→ - × /, is the (or, rather, some global choice of)
following span obtained by pullback.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 51

'; (

' (

- . /

?1 ?2 @1 @2

Definition 9.2. A span ? : (→ -2 (a.k.a. a graph (⇒ -) is reflexive if there is a morphism

- (

-2
〈id- ,id- 〉

?

from the diagonal to (in �/-2. It is transitive if there is a morphism (; (→ (in �/-2.
Finally, it is symmetric if there is a morphism († → (, where (−)† denotes the functor

swapping projections, i.e., mapping any '
〈?1 , ?2 〉
−−−−−−→ -2 to '

〈?2 , ?1 〉
−−−−−−→ -2.

For potentially non-reflexive spans, we will use the following reflexive transitive closure.

Definition 9.3. The reflexive transitive closure (∗ of any span (→ -2 is the coproduct∑
=∈N (

;=, or for short
∑
=∈N (

= when the context is clear, where (;= denotes iterated span
composition of (with itself, inductively defined by (;0 = - and (;=+1 = (;=; (.

At some point, we will also use a more “relational” notion of transitive closure, which
we now introduce.

Definition 9.4. Given a span (→ -2, we denote by (the relation on - induced by the
image factorisation of (→ - × -.

Definition 9.5. The relational transitive closure (+ of a span (on - is the union
⋃
=>0 (

;=.

Remark 9.6. Unions of relations exist by Proposition 1.7, as we have assumed the ambient
category � to be locally finitely presentable.

We immediately observe the following.

Lemma 9.7. For all = ∈ N, spans (→ -2 and ' → -2, and families ((8 → -2)8∈� of
relations spans, we have

(1) († � (
†
,

(2) ('; ()† � (†; '†, hence ((†);= � ((;=)†, and

(3)
⋃
8∈� (

†
8
� (

⋃
8∈� (8)

†.

Proof. Let f := 〈c2, c1〉 : -
2 → -2.

• For (1), by definition each side of the isomorphism corresponds to one side of the exterior
of the following commuting pentagon.

((

(† -2

-2

〈c1 , c2 〉

〈c2 , c1 〉

f

52 T. HIRSCHOWITZ AND A. LAFONT

But, f being an isomorphism, both sides are strong epi-mono factorisations of the mor-
phism 〈c2, c1〉 : (→ -2, hence are isomorphic.
• The first point of (2) is clear. For the second one, we proceed by induction. The base
case is trivial, and assuming ((†);= � ((;=)†, we have

((†);=+1 � ((†);=; († � ((;=)†; († � ((; (;=)† � ((;=+1)†,

hence the result.

• For (3) we have
⋃
8∈� (

†
8
=
∑
8∈� (

†
8
and (

⋃
8∈� (8)

† = (
∑
8∈� (8)

†
� (

∑
8∈� (8)

† by (1), so it

suffices to show
∑
8∈� (

†
8
� (

∑
8∈� (8)

†. But, letting 18 : (8 → -2 denote each projection, the

former is (shorthand for) the morphism [f ◦ 18]8 :
∑
8 (8 → -2, and the latter is f ◦ [18]8,

which are in fact equal.

Corollary 9.8. For all spans (→ -2, we have (†+ � (+†.

Proof. We have (†+ =
⋃
=>0 ((

†);= � (
⋃
=>0 (

;=)† � (+†, by the lemma.

The following lemma will later be used to exploit preservation of sifted colimits by Σ0.

Lemma 9.9. If (is a reflexive span on -, then (+ is the (filtered) colimit of the chain

- → (� (; - → (; (� (; (; - → (; (; (→ . . .

Proof. Consider a colimiting cone for the given diagram, say to � ∈ �. Because the forgetful
functor �/-2 → � creates colimits, it is in fact a colimiting cocone in �/-2. Now, the
diagram consists of monic morphisms, hence by [AR94, Proposition 1.62(i)], so does the
colimiting cocone. Furthermore, by [AR94, Proposition 1.62(ii)], the mediating morphism
� → -2 is again monic. The cocone thus lifts to the category Rel(-) of (binary) relations
over -. Because the forgetful functor Rel(-) → �/-2 is fully faithful, the cocone remains
colimiting in Rel(-). Finally, Rel(-) is a preorder category, so the colimit of the considered,
directed diagram is equally a colimit of the underlying discrete diagram, which is (+ by
definition.

The next result will be useful to show that the relational transitive closure of the Howe
closure of substitution-closed bisimilarity is symmetric on states.

Lemma 9.10. For any reflexive span ' → -2, '+ is symmetric if there exists a span
morphism ' → '+†.

Proof. Given a morphism 9 : ' → '+†, we consider the composite

'+ =
⋃
=>0

';= →
⋃
=>0

('+†);= �
⋃
=>0

(('+);=)† →
⋃
=>0

'+† �
⋃
=>0

'+† � '+†,

where the first morphism is obtained from 9 , and the second one is obtained from morphisms
('+);= → '+.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 53

9.2. Howe closure on states. We fix an operational semantics signature (Σ0,Σ1) on a
Howe context s, t : C1 → C0, and recall

• from Notation 5.5 that Z0 denotes the initial Σ0-monoid,
• from Theorem 5.18 that Z denotes the initial vertical Σ̌1-algebra (hence in particular that
�(Z) = Z0), and
• from Notation 6.11 that ∼⊗ denotes substitution-closed bisimilarity on Z (hence in par-
ticular that �(∼⊗) = ∼⊗

0
is its state part).

Definition 9.11. Let Σ�0 : Ĉ0/Z
2
0 → Ĉ0/Z

2
0 map any span - → Z2

0 to

Σ0 (-) + (-;∼
⊗
0) → Σ0 (Z0)

2 + Z2
0 → Z2

0.

This functor Σ�0 is clearly inspired from the standard Howe closure. We now want to

prove that it is pointed strong, which requires us to equip Ĉ0/Z
2
0 with monoidal structure.

But Z2
0 is a monoid, and it is well-known [Web04, §2] that any slice of a monoidal category

over any monoid " is again monoidal. The tensor of - → " and . → " is simply
- ⊗ . → " ⊗ " → ", and the unit is � → ". We may thus state the following result.

Proposition 9.12. The functor Σ�0 is pointed strong.

For proving this, we first need the following.

Lemma 9.13. For any monoid - in any monoidal category � with finite limits, there is a
natural transformation with components X*,+ ,, : (*;+) ⊗, → * ⊗, ;+ ⊗ - in �/-2.

Proof. Let < : - ⊗ - → - denote multiplication. By tensoring the defining pullback of *;+
with , we obtain the back face below.

(*;+) ⊗, + ⊗,

(* ⊗,); (+ ⊗ -) + ⊗ -

* ⊗, - ⊗,

* ⊗, -

+ ⊗c2

c2⊗,

<◦(c2⊗c2)

<◦(-⊗c2)

c1⊗,

<◦(c1⊗-)

X*,+ ,,

By universal property of pullback, we then get the dashed arrow making all faces commute,
which gives our candidate X*,+ ,, . Naturality follows by universal property of pullback.

Proof of Proposition 9.12. Because the tensor preserves all colimits on the left, pointed
strong endofunctors are closed under coproducts, so it suffices to show that both terms of
the sum are pointed strong. The first one inherits the pointed strength of Σ0, while the
pointed strength of −;∼⊗

0
follows from Lemma 9.13 and substitution-closedness of ∼⊗

0
, like

so: (*;∼⊗
0
) ⊗ + → (* ⊗ +); (∼⊗

0
⊗ Z0) → (* ⊗ +);∼

⊗
0
.

Presheaf categories being well-known to be closed under the slice construction, we have
the following.

Lemma 9.14. The category Ĉ0/Z
2
0 is a presheaf category.

This allows us to deduce the following.

Proposition 9.15. The endofunctor Σ�0 is finitary.

54 T. HIRSCHOWITZ AND A. LAFONT

Proof. By commutation of filtered colimits with finite limits in presheaf categories.

By Proposition 9.12, Lemma 9.14, and Proposition 9.15, the following is legitimate.

Definition 9.16. Let �0 = ZΣ�
0

denote the initial Σ�0 -monoid. We denote by c1, c2 : �0 →

Z0 the left and right projections.

By Proposition 5.4, we also get the following for free.

Proposition 9.17. The object �0 → Z2
0 is an initial algebra for the endofunctor Ĉ0/Z

2
0 →

Ĉ0/Z
2
0 mapping any - → Z2

0 to � + Σ�0 (-) → Z2
0.

Proposition 9.18. The underlying object �0 is a Σ0-monoid.

Proof. Directly follows from the Σ�0 -monoid structure.

Next, we exhibit an alternative characterisation of �0, which relies on the following
result.

Lemma 9.19 (Packing lemma). Consider finitary endofunctors � and � on a cocomplete
category C, and let �★(�) � `(.(� + � (()) denote the ‘free �-algebra’ monad [Rei77, The-
orem 2.1]. Then we have `(.(� (() + � (()) � `(.�★(� (()).

Proof. Indeed, we have

`(.�★(� (()) � `(.`*.(� (() + � (*))

� `(.(� (() + � (()),

by the Diagonal rule [BBvGvdW95, Theorem 16].

Proposition 9.20. The object �0 → Z2
0 is an initial algebra for the endofunctor

Σ
�
0
′ : Ĉ0/Z

2
0 → Ĉ0/Z

2
0

mapping any - → Z2
0 to �;∼⊗∗

0
+ Σ0(-);∼

⊗∗
0
→ Z2

0.

Proof. Let � (() = � + Σ0(() and � (() = (;∼⊗
0
. We observe that � preserves coproducts

(because pullback along the first projection ∼⊗
0
→ Z0, as a left adjoint, preserves colimits),

so that �★(*) �
∑
= �

= (*). By commutation of coproducts with *;−, we thus have

�★(*) �
∑
=

�= (*) �
∑
=

*; (∼⊗0)
=
� *;

∑
=

(∼⊗0)
=
= *;∼⊗∗0 .

Thus, by Lemma 9.19, we get �★(� (()) � (� + Σ0(());∼
⊗∗
0
� (�;∼⊗∗

0
) + (Σ0(();∼

⊗∗
0
), as

desired.

9.3. Double categorical notation. Our next goal is to define the Howe closure on transi-
tions. For this, we appeal to Morton’s double bicategories [Mor09]. They are a refinement of
double categories, in which both the horizontal and vertical categories are bicategories. We
rely in particular on his Theorem 4.1.3, which (when dualised) states that for any category
� with pullbacks, there is a double bicategory 2Sp (�):

• objects are objects of �,
• both the vertical and horizontal bicategories are Span (�),

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 55

• cells, called double spans, are precisely commuting diagrams of the following form.

� � �

�′ �′ � ′

�′′ �′′ � ′′

(9.1)

We will not need the rest of the structure. All we need to know is that cells compose
horizontally and vertically just as in a weak double category. We will use the double

bicategories 2Sp (Ĉ0) and 2Sp (Ĉ1).

Notation 9.21. We use the following notational conventions.

• We denote cells 2Sp (Ĉ0) such as (9.1) above by

� �

�′′ � ′′.

�

�′

�′′

�′�′

• Furthermore, cells in Ĉ1 of the form below left will be denoted as below right.

-0s (0s .0s

-1 (1 .1

- ′0t (′0t . ′0t

-0 .0

- ′0 . ′0

(0

-1

(′
0

.1(1 (9.2)

Explicitly, spans of the form -0s← -1 → - ′0t are denoted by -0
-1

- ′0, while spans of

the form -0 ← (0 → .0 are still denoted by -0
(0

.0, but silently coerced by Δs or Δt

depending on context.
• For both types of cells, we collapse identity borders, as usual.
• When a span is trivial on one side, we use standard arrows for its borders, and a double
arrow for its middle arrow, all in the relevant direction. E.g., the diagram below left may
be depicted as below right.

� � �

�′ �′ � ′
0 1 2

� �

�′ � ′

�

0

�′

21

Cells of the form (9.2) live in 2Sp (Ĉ1), hence may be composed horizontally. Relevant
examples of vertical composition will be obtained by embedding cells of the form (9.1) along

Δs (resp. Δt), and vertically composing with cells of the form (9.2) in 2Sp (Ĉ1). This yields

a top (resp. bottom) action of 2Sp (Ĉ0), which we both denote by mere pasting.

Lemma 9.22. Given a composable pasting diagram made of cells of both types, any two
parsings agree up to isomorphism.

56 T. HIRSCHOWITZ AND A. LAFONT

Proof. By interchange of limits.

Let us end this subsection by generalising simulations to 2Sp (Ĉ1). By Proposition 4.17,

the span denoted by a cell (9.2, right) in 2Sp (Ĉ1) is a simulation iff the top left square in
the corresponding diagram (9.2, left) is a pointwise weak pullback. Abstracting over this:

Definition 9.23. A cell in any double bicategory of the form 2Sp (Ĉ) is a simulation iff its
top left square is a pointwise weak pullback.

Proposition 9.24. Simulations are closed under horizontal and vertical composition in any

double bicategory of the form 2Sp (Ĉ).

In order to prove this, we need the following weak analogues of the pullback lemma.

Notation 9.25. We denote weak pullbacks (in any category) by dashed corners.

Lemma 9.26. In any category (resp. presheaf category),

(i) for any commuting diagram

� � �

� � �,

if both squares are weak pullbacks (resp. pointwise weak pullbacks), then so is the
outer rectangle; and

(ii) for any commuting diagram

� � �

� � �,

if the right-hand square is a pullback and the outer rectangle is a weak pullback
(resp. pointwise weak pullback), then the left-hand square is a weak pullback (resp.
pointwise weak pullback).

Proof. Similar to the proof of the standard pullback lemma.

Proof of Proposition 9.24. Straightforward, using Lemma 9.26.

For vertical composition with cells from 2Sp (Ĉ0), as in Notation 9.21, we will also need
the following.

Proposition 9.27. Precomposition with s and t yields maps 2Sp (Ĉ0) → 2Sp (Ĉ1) between
cell sets, which preserve borders and simulations.

Proof. Both precomposition functors straightforwardly preserve pointwise weak pullbacks.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 57

9.4. Howe closure on transitions. Let us now define the Howe closure on transitions.
First, we delineate an ambient category C�

Z
. The idea is that objects of this category should

be transition systems (→ Z2 over Z2 whose image under the projection C/Z2 → Ĉ0/Z
2
0
is

precisely �0 → Z2
0
. Thus, an object of C�

Z
consists of an object (1 ∈ Ĉ1, equipped with a

dashed cone to the outer part of the diagram below.

Z0s �0s Z0s

Z1 (1 Z1

Z0t �0t Z0t

(9.3)

Equivalently, they are morphisms over the limit, so that we may defineC�
Z
as a slice category

by merely stating the following.

Definition 9.28. Let 'm� denote the limit of the outer part of (9.3).

Definition 9.29. C�
Z

is the category of cones over the outer part of (9.3), or equivalently,

it is the slice category Ĉ1/'
m� .

Furthermore, we denote by ��
Z
: C�

Z
→ C/Z2 the forgetful functor.

Proposition 9.30. The initial object in C�
Z

is the span Z ← �0 → Z, i.e., the one with
(1 = 0.

Definition 9.31. Let Σ�
1
: C�

Z
→ C�

Z
map any object Z← (→ Z to the coproduct of the

following two pastings.

Z0 Z0

Σ0 (Z0) Σ0(Z0)

Z0 Z0

�0

Σ0 (�0)

Σ�
1
(Z)

�0

Σ�
1
(Z)Σ�

1
(()

Z1 Z1

Z0 Z0 Z0

Z0 Z0 Z0

�0

Z1

�0

Z1

∼⊗
0

∼⊗
0

Z1(1 ∼⊗
1

�0

�0

(9.4)

Proposition 9.32. The functor Σ�1 : C�
Z
→ C�

Z
is finitary.

Proof. The forgetful functor C�
Z
� Ĉ1/'

m� → Ĉ1 creates colimits, so it suffices to show that

the composite C�
Z

Σ�
1

−−→ C�
Z
→ Ĉ1 is finitary. This functor maps any (to Σ�1 (() + (1;∼1

⊗,

hence is finitary because Σ�1 is and −;∼⊗
1
is cocontinuous.

The last result legitimates the following definition.

Definition 9.33. Let �Z denote the initial Σ�1 -algebra. We call � := ��
Z
(�Z) ∈ C/Z

2 the
Howe closure of substitution-closed bisimilarity.

We readily can prove the following.

Lemma 6.16. There exists a span morphism i� : ∼⊗ → �.

58 T. HIRSCHOWITZ AND A. LAFONT

Proof. By construction, the underlying object of � is in particular a Σ̌1-algebra, so by
initiality we obtain a unique span morphism Z → � — in other words � is reflexive.
Furthermore, again by construction, � is an algebra for the endofunctor −;∼⊗ on C/Z2.
We thus may form the composite ∼⊗ � Z;∼⊗ → �;∼⊗ → �.

9.5. Alternative characterisations of the Howe closure. In this section, we exhibit a
few alternative characterisations of the Howe closure on transitions. The definition in the
previous section is convenient for proving that the transitive closure is symmetric, while our
final alternative characterisation will enable a conceptual proof of the simulation property.

First of all, we have:

Lemma 9.34. The object �Z ∈ C
�
Z

is (isomorphic to) the initial algebra of the endofunctor

Σ�
1,pack

: C�
Z
→ C�

Z
mapping any Z← (→ Z to the following pasting.

Z0 Z0 Z0 Z0

Σ0(Z0) Σ0(Z0)

Z0 Z0 Z0 Z0

�0
∼⊗∗
0

Z1

Σ0 (�0)

Σ�
1
(Z)

�0

Σ�
1
(Z)

∼⊗∗
0

Z1

Σ�
1
(()

∼⊗∗
1

Z1

�0

�0

(9.5)

For the proof, we need an intermediate result, Corollary 9.36 below, which relies on the
following lemma.

Lemma 9.35. Consider any diagram

� �

ℬ ℬ

�

�

 ⇓U

of functors and natural transformations, such that � and � are finitary, and � and ℬ

are cocomplete. Let " be the induced endofunctor on the comma category �/ , mapping

0
5
−→ 1 to �0

� 5
−−−→ � 1

U1
−−→ �1. Then, given an object 5 : 0 → (1) of �/ , there is a

unique morphism 5 ∗ : �★0 → �★1 such that the following diagram commutes,

� (�∗(0)) �∗(0) 0

� ((�∗(1)) (� (�∗(1))) (�∗(1)) (1)

a�0

� (5 ∗)

U�∗ (1) (a�
1
)

5 ∗

[�0

5

 ([�
1
)

where a0 : � (�
∗(0)) → �∗(0) denotes the canonical �-algebra structure on �∗(0), and sim-

ilarly for �. Furthermore, the right-hand square above, viewed as a morphism 5 → 5 ∗

exhibits 5 ∗ as a free "-algebra on 5 .

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 59

Proof. Let us first observe that lifts to a functor : � -alg→ � -alg, which maps �G → G

to � G
UG
−−→ �G → G. This in particular equips (�∗(1)) with �-algebra structure. Let

us thus define 5 ∗, by universal property of �∗(0), to be the unique �-algebra morphism
�∗(0) → (�∗(1)) whose restriction to 0 is ([�

1
) ◦ 5 . This ensures in particular that the

required diagram commutes.
Let us finally show that 5 ∗ is an initial "-algebra. For this, we observe that "-

algebra structure on 5 : 0 → (1) means morphisms D and E making the following diagram
commute.

� (0) 0

� ((1)) (� (1)) (1)

D

� (5)

U1 (E)

5

Thus, "-algebra structure (D, E) on 5 is exactly the same as �-algebra structure D on 0,
�-algebra structure E on 1, and an �-algebra morphism 0 → (1). This shows that " -alg
is isomorphic to the comma category � -alg/ . But for any morphism, say (ℎ, :) from 5

to any 5 ′ : 0′ → (1′) in � -alg/ , by universal property of �∗(0) and �∗(1), we get maps
ℎ̃ and :̃, respectively in � -alg and � -alg, making both triangles commute in the following
diagram.

�∗(0) 0

0′

 (�∗(1)) (1)

 (1′)

[�0

5

ℎ

 ([�
1
)

:

5 ′

5 ∗
ℎ̃

 (:̃)

By functoriality of and uniqueness in the universal property of �∗(0), the left-hand square
also commutes, so (ℎ̃, :̃) is a morphism in � -alg/ , as desired. Finally, uniqueness follows
again by universal property of �∗(0) and �∗(1).

Corollary 9.36. Consider any diagram

� �

ℬ ℬ

� �

*

�

+

�⇓U

,

 ⇓V

of functors and natural transformations such that � has a right adjoint, � and � are
cocomplete, and * and , are finitary.

Furthermore, let " be the induced endofunctor on the comma category �/ , mapping

�0
5
−→ 2 to (�*0

U0
−−→ +�0

+ 5
−−−→ + 2

V2
−−→ ,2).

60 T. HIRSCHOWITZ AND A. LAFONT

Then, given an object 5 : �0 → 1 of �/ , there is a unique morphism 5 ∗ : �*★0 →
 ,★1 making the following diagram commute.

�**∗0 �*∗0 �0

+�*∗0

+ ,∗1

 ,,∗1 ,∗1 1

�a*0

U*∗0

+ 5 ∗

V, ∗1

 (a,
1
)

� ([*0)

5

 ([,
1
)

5 ∗

Furthermore, the right-hand square above exhibits 5 ∗ as a free "-algebra on 5 .

Proof. This follows from Lemma 9.35 with � = *, � = , , as ' where ' is the right

adjoint of �, by considering the mate U′ : *' → '+ of U : �* → +�, defined as *'
[*'
−−−−→

'�*'
'U'
−−−−→ '+�'

'+ Y
−−−−→ '+ , (where [and Y denote the unit and the counit of the adjunction

� ⊣ ') and composing it with V to get a natural transformation *' → ' , .

Proof of Lemma 9.34. Let us denote by " the endofunctor on C�
Z

mapping an object Z←
(→ Z to the the right pasting of Diagram 9.4:

"

©­­­­«
Z0 Z0

Z0 Z0

�0

Z1

�0

Z1(1

ª®®®®¬
=

Z0 Z0 Z0

Z0 Z0 Z0

�0

Z1

�0

Z1

∼⊗
0

∼⊗
0

Z1(1 ∼⊗
1

�0

�0

Now, by the packing lemma, it is enough to show that

"★

©­­­­«
Z0 Z0

Z0 Z0

�0

Z1

�0

Z1(1

ª®®®®¬
=

Z0 Z0 Z0

Z0 Z0 Z0

�0

Z1

�0

Z1

∼⊗∗
0

∼⊗∗
0

Z1(1 ∼⊗∗
1

�0

�0

To this end, we are going to organise C�
Z

as a comma category on which " acts, so as
to apply Corollary 9.36. Let � denote the category of objects (1 equipped with a span
Z1 ← (1 → Z1 and ℬ denote the product category ℬs ×ℬt, where ℬf is the category of
objects (1 equipped with a span Z0f ← (1 → Z0f.

Let � : � → ℬ denote the functor mapping Z1 ← (1 → Z1 to (Z0s← (1 → Z0s,Z0t←

(1 → Z0t), by postcomposing with the relevant morphisms. As the forgetful functor from a
category of spans creates colimits, � is cocontinuous and thus has a right adjoint by [AR94,

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 61

Theorem 1.66], since its domain is a locally presentable category. Let : 1 → ℬ be the
functor selecting the pair (Z0s← �0s→ Z0s,Z0t← �0t→ Z0t). Now, it is straightforward
to check that C�

Z
is isomorphic to the comma category �/ .

Next, we reconstruct " as acting on �/ through this isomorphism in order to fit the
setting of Corollary 9.36.

Let

• * : � → � denote the functor mapping Z1 ← (1 → Z1 to Z1 ← (1 ← (1;∼
⊗
1
→∼⊗

1
→ Z1;

• + : ℬ→ℬ denote the functor +s ×+t, where +f : ℬf →ℬf maps Z0f ← (1 → Z0f to
Z0f ← (1;∼

⊗
0
f → Z0f;

• , : 1→ 1 denote the identity endofunctor.

Now we apply Corollary 9.36 with suitable U : �* → +� and V : , → , so that
" corresponds to our endofunctor through the isomorphism C�

Z
� �/ . Since *★(Z1 ←

(1 → Z1) = (Z1 ← (1;∼
⊗∗
1
→ Z1), the only thing to check is that the proposed definition

for "★((1) indeed defines a "-algebra, and that (1 → *★((1) induces a morphism (1 →

"★((1), which is straightforward.

Let us now turn to our final characterisation of �, which relies on the following category,
which is a relaxation of C�

Z
, in which the left-hand object in (9.3) is only forced to coincide

with Z on Ĉ0.

Definition 9.37. Let C�
lax

denote the category whose objects consist of objects -1 and (1

in Ĉ1, equipped with dashed arrows making the following diagram commute.

Z0s �0s Z0s

-1 (1 Z1

Z0t �0t Z0t

(9.6)

Remark 9.38. Using the notation of §9.3, an object of C�
lax

is a cell of the form

Z0 Z0

Z0 Z0.

�0

-1

�0

Z1(1

Such an object may also be viewed as a span of the form - ← (→ Z in C, which projects

down to Z0 ← �0 → Z0 in Ĉ0.

Let us briefly relate C�
lax

to other useful categories.

Definition 9.39. Let 2 denote the free category on the graph 0→ 1, and C2/Z denote the
comma category

C2/Z 1

C2 C,
dom

Z

whose objects are spans of the form - ← (→ Z.

62 T. HIRSCHOWITZ AND A. LAFONT

Definition 9.40. We define a commuting diagram

C�
Z

C�
lax

C/Z2 C2/Z

C2

ℐ�

��
Z

	�

�

��
lax �

dom

(9.7)

of functors:

• ��
Z

and ��
lax

are the obvious forgetful functors,

• ℐ� and 	� are the obvious embeddings, and
• � and � are defined by composition with the domain functor dom.

Proposition 9.41. The initial object in C�
lax

is the span Z0 ← �0 → Z, i.e., the one with
-1 = (1 = 0.

Let us now introduce the endofunctor of which our characterisation of � will be an
initia algebra.

Definition 9.42. Let Σ�
1,lax

: C�
lax
→ C�

lax
map any object - ← (→ Z to the following

pasting.

Z0 Z0 Z0 Z0

Σ0(Z0) Σ0(Z0)

Z0 Z0 Z0 Z0

�0
∼⊗∗
0

Z1

Σ0 (�0)

Σ�
1
(-)

�0

Σ�
1
(Z)

∼⊗∗
0

Z1

Σ�
1
(()

∼⊗∗
1

Σ̌1 (-)1

�0

�0

(9.8)

Remark 9.43. The difference with Σ�
1,pack

is that, - being different from Z in general, we

cannot use any Σ̌1-algebra structure on the left.

Proposition 9.44. The functor Σ�
1,lax

: C�
lax
→ C�

lax
is finitary.

Proof. Just as Proposition 9.32.

Let us now work towards our final characterisation of �.

Definition 9.45. Let X denote the natural transformation

C�
Z

C�
lax

C�
Z

C�
lax

ℐ�

Σ�
1,pack

ℐ�

Σ�
1,laxX

whose component at any Z← (→ Z in C�
Z

is the following morphism in C�
lax

.

Σ̌1(Z) Σ̌1(();∼
⊗∗ Z

Z Σ̌1(();∼
⊗∗ Z

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 63

Furthermore, let
� : Σ�
1,pack

-alg→ Σ�
1,lax

-alg denote the induced lifting of ℐ� , as in

Σ�
1,pack

-alg Σ�
1,lax

-alg

C�
Z

C�
lax

,

�

ℐ�

where both vertical arrows denote forgetful functors.

Lemma 9.46. The Σ�
1,lax

-algebra
� (�Z) is initial. In other words, letting �lax denote

any initial Σ�
1,lax

-algebra, we have
� (�Z) � �lax .

Proof. In order to apply Corollary 9.36, we organise C�
lax

as a comma category �/C�
;
,

decomposing its left and middle/right parts, with � : C�A → C�
;

defined as follows:

• C�
;

= Ĉ1/Δ(Z0);

• C�A is the comma category

C�A 1

Ĉ1/Δ(�0) Ĉ1/Δ(Z0);

?AA

Ĉ1/Δ(c2)

Z

concretely, objects consist of a presheaf (1 ∈ Ĉ1, together with dashed maps making the
following diagram commute;

�0s Z0s

(1 Z1

�0t Z0t

c2s

c2t

(9.9)

• � is the composite

C�A
?AA
−−−→ Ĉ1/Δ(�0)

Ĉ1Δ(c1)
−−−−−−−→ Ĉ1/Δ(Z0);

concretely, � maps any object (9.9) to the following diagram.

Z0s �0s

(1

Z0t �0t

c1s

c1t

We note that � is cocontinuous since colimits are computed pointwise in C�
;

and C�A , and
thus has a right adjoint ', since its domain is locally presentable, by [AR94, Theorem 1.66].

Furthermore, C�
Z

is isomorphic to the comma category �/Z6.

We then define functors Σ�1,A and (Σ̌1) |Z0
and a natural transformation ℎ as in

6Note that this decomposition as a comma category differs from the one in the proof of Lemma 9.34.

64 T. HIRSCHOWITZ AND A. LAFONT

C�A C�A

C�
;

C�
;
,

Σ�
1,A

�

(Σ̌1) |Z0

�⇓ℎ

as follows:

• (Σ̌1) |Z0
is Σ̌1 restricted to the fibre of Ĉ1/Δ→ Ĉ0 over Z0, as in the left part of (9.8);

• Σ�1,A acts as the right part of (9.8);
• ℎ connects both parts using the left projection.

Now, we apply Corollary 9.36 twice with * = Σ�1,A , + = (Σ̌1) |Z0
and U = ℎ:

(1) for , = + , the identity endofunctor, V the identity natural transformation, and
5 = id∅ : � (∅) → ∅, the induced endofunctor " is precisely Σ�

1,lax
, and Corollary 9.36

yields a morphism, say 5 ∗, making the diagram below commute;

� (Σ�
1,A
((Σ�

1,A
)∗(∅))) � ((Σ�

1,A
)∗(∅)) � (∅)

(Σ̌1) |Z0
(� ((Σ�1,A)

∗(∅)))

(Σ̌1) |Z0
((Σ̌1)

∗
|Z0
(∅)) (Σ̌1)

∗
|Z0
(∅) ∅

� (a
Σ�
1,A
∅
)

ℎ
(Σ�

1,A
)∗ (∅)

(Σ̌1) |Z0 (5
∗)

a
(Σ̌1) |Z0
∅

5 ∗

� (!)

!

!(A)

(2) for : 1 → C�
;

selecting Z0s ← Z1 → Z0t, V induced by the +-algebra structure

on it, and 6 = !Z : � (∅) = ∅ → Z, the induced endofunctor # is precisely Σ�
1,pack

, and

Corollary 9.36 yields a unique morphism, say 6∗, making the diagram below commute.

� (Σ�1,A ((Σ
�
1,A)
∗(∅))) � ((Σ�1,A)

∗(∅)) � (∅)

(Σ̌1) |Z0
(� ((Σ�1,A)

∗(∅)))

(Σ̌1) |Z0
(Z)

Z Z Z

� (a
Σ�
1,A
∅
)

ℎ
(Σ�

1,A
)∗ (∅)

(Σ̌1) |Z0 (6
∗)

a
(Σ̌1) |Z0
∅

6∗

� (!)

!(B)

Both right-hand squares are trivial, and both left-hand hand squares are in fact the same, so
that 5 ∗ = 6∗. Finally, in terms of �/C�

;
, the statement claims that the "-algebra structure

of 5 ∗ decomposes as

(Σ̌1) |Z0
((Σ̌1)

∗
|Z0
(∅)) (Σ̌1) |Z0

(� ((Σ�1,A)
∗(∅))) � (Σ�1,A ((Σ

�
1,A)
∗(∅)))

(Σ̌1)
∗
|Z0
(∅) � (Σ�1,A ((Σ

�
1,A)
∗(∅)))

(Σ̌1)
∗
|Z0
(∅) � ((Σ�1,A)

∗ (∅)),

(Σ̌1) |Z0 (5
∗)

ℎ
(Σ�

1,A
)∗ (∅)

(Σ̌1) |Z0 (5
∗)

5 ∗

a
(Σ̌1) |Z0
∅

� (a
Σ�
1,A
∅
)

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 65

which in terms of spans yields exactly the desired form.

Corollary 9.47. We have 	� (�) � ��
lax
(�lax) in C2/Z.

Proof. We have 	� (�) = 	� (��
Z
(�Z)) = ��

lax
(ℐ� (�Z)) � ��

lax
(�lax) in C2/Z.

9.6. Simulation property. Our next goal is to prove the following.

Lemma 6.17. If Σ1 preserves functional bisimulations, then the transition Howe closure
� is a substitution-closed simulation.

The rest of this subsection is devoted to the proof.
For substitution-closedness, ∼⊗

0
is reflexive and by Lemma 6.16 we have a span morphism

∼⊗
0
→ �0, so we may form the composite

�0 ⊗ Z→ �0 ⊗ ∼
⊗
0 → �0 ⊗ �0 → �0,

where the last morphism is the monoid multiplication of �0, as established in Proposi-
tion 9.18.

For the simulation property, we will use the characterisation of � as ZΣ�
1,lax

. For this,

we need to lift the notion of simulation from C to C�
lax

. Recalling the functor � : C�
lax
→ C2

from Definition 9.40, which maps each span - ← (→ Z in C�
lax

to its left-hand leg - ← (,
we have:

Definition 9.48. An object - ← (→ Z of C�
lax

is a simulation iff its image by �, i.e.,
- ← (, is a functional bisimulation.

Next, we want to show that the computation of � as an initial chain in C�
lax

is preserved
by �. We intend to use this to apply Lemma 1.8, which will reduce our goal to proving
that each object of the chain is a functional bisimulation.

Lemma 9.49. All of the following functors are cocontinuous:

(i) any functor from the terminal category;

(ii) both functors Ĉ1/Δ(c8) : Ĉ1/Δ(�0) → Ĉ1/Δ(Z0), for 8 = 1, 2, which map any span
�0s← (1 → �0t to

Z0s
c8
←−− �0s← (1 → �0t

c8
−−→ Z0C;

(iii) the projection functor ?AA : C
�
A → Ĉ1/Δ(�0), mapping any object (9.9) to (the pair-

ing of) its left-hand border �0s← (1 → �0t;

(iv) the embedding Ĉ1/Δ(Z0) ↩→ Ĉ1/Δ = C;

(v) the embedding Ĉ1/Δ(�0) ↩→ Ĉ1/Δ = C; and
(vi) � : C�

lax
→ C2.

Proof.

(i) Trivial.
(ii) As post-composition functors, these have right adjoints.
(iii) C�A is by definition the comma category

C�A 1

Ĉ1/Δ(�0) Ĉ1/Δ(Z0),

?AA

Ĉ1/Δ(c2)

Z

66 T. HIRSCHOWITZ AND A. LAFONT

so by (i), (ii), and Proposition 1.1, the projection functor

〈?AA , !〉 : C
�
; → Ĉ1/Δ(�0) × 1 � Ĉ1/Δ(�0)

to the product preserves colimits.
(iv) In the commuting square

Ĉ1/Δ(Z0) Ĉ1/Δ

Ĉ1 × 1 Ĉ1 × Ĉ0,

〈?A1,!〉

Ĉ1×Δ(Z0)

〈?A1, ?A0 〉

both vertical functors (which are the canonical projection functors) create colimits.
Furthermore, the bottom functor preserves them, because
• colimits are pointwise in a product of cocomplete categories, and
• any functor from the terminal category is cocontinuous.
Thus, the top functor is cocontinuous, as desired.

(v) Same, with the square

Ĉ1/Δ(�0) Ĉ1/Δ

Ĉ1 × 1 Ĉ1 × Ĉ0.
Ĉ1×Δ(�0)

(vi) The functor � : C�
lax
→ C2 is induced by universal properties of lax limits as in

C�A Ĉ1/Δ(�0) Ĉ1/Δ

C�
lax

C�< C2

C�
;

Ĉ1/Δ(Z0) Ĉ1/Δ,

�
Ĉ1/Δ(c1)

?AA

U

where C�< is defined as the lax limit of Ĉ1/Δ(c1), and U, which is induced by universal

property of Ĉ1/Δ, has as component at any ? : - → Δ(�0) the morphism

- -

Δ(�0) Δ(Z0)

?

Δ(c1)

Δ(c1)◦?

in Ĉ1/Δ. For each lax limit, the given functor is cocontinuous, so the projection
functor to the product creates colimits. We thus get a diagram

C�
lax

C�< C2

C�A × C
�
;

Ĉ1/Δ(�0) × Ĉ1/Δ(Z0) (Ĉ1/Δ)
2

�

?AA×id

in which all vertical functors create colimits, and both bottom functors are cocontin-
uous by the previous points. Thus, the top functor� is cocontinuous as desired.

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 67

Our next step, in order to apply Lemma 1.8, is to prove that each object of the initial
chain for �Z is a simulation in C�

lax
. This will follow from the next result.

Lemma 9.50. If Σ1 preserves functional bisimulations and (∈ C�
lax

is a simulation, then

so is Σ�
1,lax
(().

Proof. The pasting (9.8) is isomorphic to the following.

Z0 Z0

Σ0(Z0) Σ0(Z0) Z0 Z0

Z0 Z0 Z0 Z0

�0

Σ0 (�0)

Σ�
1
(-)

�0

Σ�
1
(Z)

Z1

∼⊗∗
0

∼⊗∗
0

Z1Σ�
1
(() ∼⊗∗

1

Σ̌1 (-)1

�0

(9.10)

By Propositions 9.24 and 9.27, it suffices to show that all non-identity cells in (9.10) are
simulations if (is. Let us run through them, left-to-right, top-to-bottom:

• The top cell is a simulation because
– Z0 is the initial (� + Σ0)-algebra, so � → Z0 ← Σ0(Z0) is a coproduct diagram;
– similarly, by Proposition 9.20, �0 is the initial algebra for the endofunctor - ↦→ (�;∼

⊗∗
0
+

Σ0 (-);∼
⊗∗
0
), so �;∼⊗∗

0
→ �0 ← Σ0(�0);∼

⊗∗
0

is a coproduct diagram;

– so, by extensivity of Ĉ0, both squares in

�;∼⊗∗
0

�0 Σ0(�0);∼
⊗∗
0

� Z0 Σ0(Z0)

are pullbacks. The right-hand one is mapped by Δs (which, as a right adjoint, preserves
pullbacks) precisely to the top left square of the top cell.

• The first little cell Σ�1 (() is a simulation by hypothesis.
• The middle little cell is trivially a simulation.
• The third little cell ∼⊗∗

1
is a simulation because simulations are closed under transitive

closure.
• Finally, the bottom cell is trivially a simulation.

Finally:

Proof of Lemma 6.17. Let us start by observing that, because the domains and codomains
of all B! are representable, hence finitely presentable, functional bisimulations are closed
under filtered colimits in C2, by Lemma 1.8.

Now, the first projection Z0 ← �0 is trivially a functional bisimulation, since there are
no transitions in Z0, so by Proposition 9.41 the initial object ∅C�

lax
of C�

lax
is a simulation in

the sense of Definition 9.48. Hence, by induction, using Lemma 9.50, so are all objects of
the initial chain of Σ�

1,lax
. Thus, by Definition 9.48, � maps this initial chain to a chain of

functional bisimulations in C2 and so

� (�lax) := � (colim= (Σ
�
1,lax
)= (∅C�

lax
))

� colim=� ((Σ
�
1,lax
)= (∅C�

lax
)) (by Lemma 9.49)

68 T. HIRSCHOWITZ AND A. LAFONT

is a functional bisimulation by closedness of functional bisimulations under filtered colimits.
Finally, this entails that the left-hand leg �(�) of the Howe closure is a functional

bisimulation, because we have

�(�) = dom(� (�)) (by definition of �)
= dom(��

lax
(�lax)) (by Corollary 9.47)

= �(�lax) (by definition of �).

9.7. Symmetry of transitive closure. In this section, we prove the remaining Lem-
mas 6.19 and 6.21. Let us first recall the former:

Lemma 6.19. The relational transitive closure �0
+ of the Howe closure �0 on states is

symmetric.

By Lemma 9.10, Lemma 6.19 will follow if we construct a span morphism �0 → �
+†
0
.

As �0 is an initial algebra for � + Σ�0 (Proposition 9.17), it suffices to prove the following
lemma.

Lemma 9.51. The span �+†
0

has an algebra structure for (� + Σ�0).

This relies on the following lemmas, used in particular with � = Σ0. The first one is
well known:

Lemma 9.52. Given an endofunctor � on some category �, the forgetful functor � -alg→
� creates limits, and all colimits that � preserves.

Lemma 9.53. Given an endofunctor � on a regular category �, if � preserves reflexive
coequalisers, then the forgetful functor from the category of �-algebras creates image factori-
sations.

Proof. Suppose given an algebra morphism �
5
−→ �. The image factorisation is obtained

as the (reflexive) coequaliser of the kernel pair � × 5 � ⇒ �. The diagram of this reflexive
coequaliser lifts to � -alg, hence so does the coequaliser, by the previous lemma.

Proof of Lemma 9.51. We need to find algebra structures on �+†
0

for �, Σ0, and −;∼
⊗
0
. For

�, we have the morphism � → Z0 → �
†
0
→ �

+†
0
.

For Σ0, note that by Lemmas 9.9 and Corollary 9.8, �+†
0

is the colimit of the chain

Z0 → �
†
0
� �

†
0
;Z0 → �

†
0
;�†

0
� �

†
0
;�†

0
;Z0 → �

†
0
;�†

0
;�†

0
→ . . .

As it is filtered and thus sifted, and Σ0 preserves sifted colimits by hypothesis, by Lemma 9.52,

it is enough to show that each �†
0
; . . . ;�†

0
has a structure of Σ0-algebra (morphisms in the

above chain are then automatically algebra morphisms because the involved spans are re-
lations). But, Σ0 also preserves reflexive coequalisers (which are sifted colimits), so, by
Lemma 9.53, the forgetful functor from Σ0-algebras creates image factorisations. It is thus
enough to equip �†

0
; . . . ;�†

0
with Σ0-algebra structure, which is straightforward because �0

is already an algebra and algebras are stable under pullbacks (Lemma 9.52).

It remains to find a suitable morphism �
+†
0
;∼⊗

0
→ �

+†
0
, or equivalently, by applying −†,

a morphism ∼⊗†
0
;�+0 → �+0 . But by symmetry of ∼⊗

0
, we have the composite

∼
⊗†
0
;�+0 → ∼

⊗
0
;�+0 → �0;�

+
0 → �+0 .

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 69

Finally, it remains to prove:

Lemma 6.21. For any substitution-closed simulation ' such that '0 is symmetric, there
exists a substitution-closed bisimulation '′ and a span morphism i′

'
: '→ '′.

Proof. First, consider the relation ' induced by ' by the image factorisation ' ։ ' ↩→ Z×Z.
' is still a substitution-closed simulation and '0 is symmetric. Now, we define '′ as follows:

• '′0 = '0

• '′1 is the limit of the following diagram:

Z0s '′0s Z0s

Z1 '′1 Z1

Z0t '′0t Z0t.

More concretely, an element of '′1(21) is a pair of transitions at 21 with related sources and

targets. The morphism ' → '′ is obtained by the composite ' → ' → '′, where the last
morphism exploits the definition of '′1 as a limit. It is straightforward to check that '′ is a
substitution-closed simulation. Moreover, it is symmetric (even at the level of transitions),
so it is a bisimulation.

10. Conclusion

We have introduced the notion of Howe context, in which we have defined transition monoids,
an abstract notion of labelled transition system whose states feature some sort of substi-
tution. For them, we have introduced an abstract variant of applicative bisimilarity called
substitution-closed bisimilarity.

Furthermore, we have introduced operational semantics signatures as a device for speci-
fying syntax with variable binding and operational semantics. We have finally shown that if
the dynamic part of an operational semantics signature preserves functional bisimulations,
then substitution-closed bisimilarity on the generated transition monoid is a congruence.

This all follows the pattern of our previous work [BHL20], but simplifying the framework
and relaxing some hypotheses, as explained in the introduction.

We hope these simplifications pave the way for more abstract results in the same vein.
To start with, we would like to generalise our approach. Indeed, it fails to directly account
for some important applications of Howe’s method, notably to PCF [Gor99], algebraic
effects [LGL17], and higher-order process calculi [LS15]. Furthermore, methods similar to
Howe’s have been used for purposes other than congruence of applicative bisimilarity [Pit11,
LG19, GLN08]: it might be useful to design abstract versions of such results using our
methods.

References

[Abr90] Samson Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research Topics in
Functional Programming. Addison–Wesley, 1990.

[AF20] Nathanael Arkor and Marcelo Fiore. Algebraic models of simple type theories: A polynomial
approach. In Hermanns et al. [HZKM20], pages 88–101. doi:10.1145/3373718.3394771.

https://doi.org/10.1145/3373718.3394771

70 T. HIRSCHOWITZ AND A. LAFONT

[AHLM20] Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Reduction mon-
ads and their signatures. PACMPL, 4(POPL):31:1–31:29, 2020. doi:10.1145/3371099.

[AR94] J. Adámek and J. Rosicky. Locally Presentable and Accessible Categories. Cambridge Uni-
versity Press, 1994. doi:10.1017/CBO9780511600579.

[ARV10a] J. Adámek, J. Rosický, and E. Vitale. What are sifted colimits? Theory and Applications of
Categories, 23, 2010.

[ARV10b] J. Adámek, J. Rosický, and E. M. Vitale. Algebraic Theories: A Categorical Introduction
to General Algebra. Cambridge Tracts in Mathematics. Cambridge University Press, 2010.
doi:10.1017/CBO9780511760754.

[Bar04] Falk Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD the-
sis, Vrije Universiteit Amsterdam, 2004.

[BBvGvdW95] Roland Carl Backhouse, Marcel Bijsterveld, Rik van Geldrop, and Jaap van der Woude.
Categorical fixed point calculus. In David H. Pitt, David E. Rydeheard, and Pe-
ter T. Johnstone, editors, Proceedings of the 6th International Conference on Category
Theory and Computer Science, volume 953 of LNCS, pages 159–179. Springer, 1995.
doi:10.1007/3-540-60164-3_25 .

[Bén67] Jean Bénabou. Introduction to bicategories. Lecture Notes in Mathematics, 47:1–77, 1967.
[BGJS19] Martin Bodin, Philippa Gardner, Thomas Jensen, and Alan Schmitt. Skeletal semantics and

their interpretations. PACMPL, 3(POPL):44:1–44:31, 2019. doi:10.1145/3290357.
[BHL20] Peio Borthelle, Tom Hirschowitz, and Ambroise Lafont. A cellular Howe theorem. In Her-

manns et al. [HZKM20]. doi:10.1145/3373718.3394738 .
[BIM95] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the ACM,

42:232–268, 1995. doi:10.1145/200836.200876.
[BPR17] Henning Basold, Damien Pous, and Jurriaan Rot. Monoidal company for accessible functors.

In Filippo Bonchi and Barbara König, editors, Proc. 7th International Conference on Algebra
and Coalgebra in Computer Science, volume 72 of LIPIcs, pages 5:1–5:16. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.CALCO.2017.5.

[BW05] Michael Barr and Charles Wells. Toposes, triples, and theories. Reprints in Theory and
Applications of Categories, 12, 2005. Originally published by: Springer, 1985.

[CHM02] Andrea Corradini, Reiko Heckel, and Ugo Montanari. Compositional SOS and beyond: a
coalgebraic view of open systems. Theoretical Computer Science, 280(1-2):163–192, 2002.
doi:10.1016/S0304-3975(01)00025-1.

[CJ95] Aurelio Carboni and Peter Johnstone. Connected limits, familial representability
and Artin glueing. Mathematical Structures in Computer Science, 5(4):441–459, 1995.
doi:10.1017/S0960129500001183.

[Die78] Yves Diers. Spectres et localisations relatifs à un foncteur. Comptes rendus hebdomadaires
des séances de l’Académie des sciences, 287(15):985–988, 1978.

[FH09] Marcelo Fiore and Chung-Kil Hur. On the construction of free algebras
for equational systems. Theoretical Computer Science, 410:1704–1729, 2009.
doi:10.1016/j.tcs.2008.12.052.

[Fio02] Marcelo Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus. In
Proc. 4th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming, pages 26–37. ACM, 2002. doi:10.1145/571157.571161.

[Fio08] Marcelo P. Fiore. Second-order and dependently-sorted abstract syntax. In LICS, pages 57–
68. IEEE, 2008. doi:10.1109/LICS.2008.38.

[FPT99] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable
binding. In Proc. 14th Symposium on Logic in Computer Science IEEE, 1999.
doi:10.1109/LICS.1999.782615.

[FS17] Marcelo Fiore and Philip Saville. List objects with algebraic structure. In Dale Miller, editor,
Proc. 2nd International Conference on Formal Structures for Computation and Deduction,
volume 84 of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017. doi:10.4230/LIPIcs.FSCD.2017.16.

[FS20a] Marcelo Fiore and Philip Saville. Coherence and normalisation-by-evaluation for bi-
categorical cartesian closed structure. In Hermanns et al. [HZKM20], pages 425–439.
doi:10.1145/3373718.3394769.

https://doi.org/10.1145/3371099
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511760754
https://doi.org/10.1007/3-540-60164-3_25
https://doi.org/10.1145/3290357
https://doi.org/10.1145/3373718.3394738
https://doi.org/10.1145/200836.200876
https://doi.org/10.4230/LIPIcs.CALCO.2017.5
https://doi.org/10.1016/S0304-3975(01)00025-1
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.1145/571157.571161
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.1145/3373718.3394769

A CATEGORICAL FRAMEWORK FOR CONGRUENCE OF APPLICATIVE BISIMILARITY 71

[FS20b] Marcelo Fiore and Philip Saville. Relative full completeness for bicategorical carte-
sian closed structure. volume 12077 of LNCS, pages 277–298. Springer, 2020.
doi:10.1007/978-3-030-45231-5_15 .

[GH18] Richard H. G. Garner and Tom Hirschowitz. Shapely monads and analytic functors. Journal
of Logic and Computation, 28(1):33–83, 2018. doi:10.1093/logcom/exx029.

[GLN08] Jean Goubault-Larrecq, S lawomir Lasota, and David Nowak. Logical relations for
monadic types. Mathematical Structures in Computer Science, 18(6):1169–1217, 2008.
doi:10.1017/S0960129508007172.

[Gor99] Andrew D. Gordon. Bisimilarity as a theory of functional programming. Theoretical Com-
puter Science, 228(1-2):5–47, 1999. doi:10.1016/S0304-3975(98)00353-3.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach to the specifi-
cation, correctness and implementation of abstract data types. In R. Yeh, editor, Current
Trends in Programming Methodology, IV: Data Structuring, pages 80–144. Prentice-Hall,
1978.

[Ham04] Makoto Hamana. Free Σ-monoids: A higher-order syntax with metavariables. In Wei-Ngan
Chin, editor, Proc. 2nd Asian Symposium on Programming Languages and Systems, volume
3302 of LNCS, pages 348–363. Springer, 2004. doi:10.1007/978-3-540-30477-7_23.

[HHL20] André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. Modules over monads and oper-
ational semantics. In Zena M. Ariola, editor, Proc. 5th International Conference on Formal
Structures for Computation and Deduction, volume 167 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 12:1–12:23. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020. doi:10.4230/LIPIcs.FSCD.2020.12.

[Hir19a] Tom Hirschowitz. Cellular Monads from Positive GSOS Specifications. In 26th Inter-
national Workshop on Expressiveness in Concurrency and 16th Workshop on Struc-
tural Operational Semantics, volume 300, pages 1–18, Amsterdam, Netherlands, 2019.
doi:10.4204/EPTCS.300.1.

[Hir19b] Tom Hirschowitz. Familial monads and structural operational semantics. PACMPL,
3(POPL):21:1–21:28, 2019. doi:10.1145/3290334.

[Hov99] Mark Hovey. Model Categories, volume 63 of Mathematical Surveys and Monographs, Volume
63, AMS (1999). American Mathematical Society, 1999. doi:10.1090/surv/063.

[How96] Douglas J. Howe. Proving congruence of bisimulation in functional programming languages.
Information and Computation, 124(2):103–112, 1996. doi:10.1006/inco.1996.0008.

[HZKM20] Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors. Proc. 35th
ACM/IEEE Symposium on Logic in Computer Science ACM, 2020. doi:10.1145/3373718.

[JNW93] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation and open maps. In
Proc. 8th Symposium on Logic in Computer Science, pages 418–427. IEEE, 1993.
doi:10.1109/LICS.1993.287566.

[Kel89] G. M. Kelly. Elementary observations on 2-categorical limits. Bulletin of the Australian
Mathematical Society, 39:301–317, 1989.

[Laf22] Ambroise Lafont. Initial Sigma-monoids for skew monoidal categories in UniMath, June 2022.
doi:10.5281/zenodo.6622835.

[LG19] Ugo Dal Lago and Francesco Gavazzo. Effectful normal form bisimulation. In Lúıs Caires,
editor, Proc. 28th European Symposium on Programming, volume 11423 of LNCS, pages
263–292. Springer, 2019. doi:10.1007/978-3-030-17184-1_10.

[LGL17] Ugo Dal Lago, Francesco Gavazzo, and Paul Blain Levy. Effectful applicative bisimilarity:
Monads, relators, and Howe’s method. In Proc. 32nd Symposium on Logic in Computer
Science, pages 1–12. IEEE, 2017. doi:10.1109/LICS.2017.8005117.

[LS15] Serguëı Lenglet and Alan Schmitt. Howe’s method for contextual semantics. In Luca
Aceto and David de Frutos-Escrig, editors, Proc. 26th International Conference on
Concurrency Theory, volume 42 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 212–225. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.
doi:10.4230/LIPIcs.CONCUR.2015.212.

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate
Texts in Mathematics. Springer, 2nd edition, 1998. doi:10.1007/978-1-4757-4721-8 .

https://doi.org/10.1007/978-3-030-45231-5_15
https://doi.org/10.1093/logcom/exx029
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1016/S0304-3975(98)00353-3
https://doi.org/10.1007/978-3-540-30477-7_23
https://doi.org/10.4230/LIPIcs.FSCD.2020.12
https://doi.org/10.4204/EPTCS.300.1
https://doi.org/10.1145/3290334
https://doi.org/10.1090/surv/063
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1145/3373718
https://doi.org/10.1109/LICS.1993.287566
https://doi.org/10.5281/zenodo.6622835
https://doi.org/10.1007/978-3-030-17184-1_10
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.4230/LIPIcs.CONCUR.2015.212
https://doi.org/10.1007/978-1-4757-4721-8

72 T. HIRSCHOWITZ AND A. LAFONT

[MM92] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Universitext. Springer, 1992. doi:10.1007/978-1-4612-0927-0.

[Mor09] Jeffrey C. Morton. Double bicategories and double cospans. Journal of Homotopy and Related
Structures, 4(1):389–428, 2009.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I/II.
Information and Computation, 100(1):1–77, 1992. doi:10.1016/0890-5401(92)90008-4.

[Ong92] C.-H. L. Ong. The concurrent lambda calculus I: A general precongruence theorem for ap-
plicative bisimulation. In Proceedings on Seminars on Parallel Programming Systems, pages
139–164. Department of Information Systems and Computer Science, National University of
Singapore, 1992.

[Pit11] Andrew M. Pitts. Howe’s method for higher-order languages, chapter 5. Number 52 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2011.
doi:10.1017/CBO9780511792588.006.

[Plo90] Gordon Plotkin. An illative theory of relations. In R. Cooper et al., editors, Situation Theory
and its Applications, number 22 in CSLI Lecture Notes, page 133–146. Stanford University,
1990.

[Rei77] Jan Reiterman. A left adjoint construction related to free triples. Journal of Pure and Applied
Algebra, 10:57–71, 1977. doi:10.1016/0022-4049(77)90028-7.

[San94] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Information and
Computation, 111:120–153, 1994. doi:10.1006/inco.1994.1042.

[Sta08] Sam Staton. General structural operational semantics through categorical logic.
In Proc. 23rd Symposium on Logic in Computer Science, pages 166–177, 2008.
doi:10.1109/LICS.2008.43.

[SW01] Davide Sangiorgi and David Walker. The c-calculus – A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[Szl12] Kornel Szlachányi. Skew-monoidal categories and bialgebroids. Advances in Mathematics,
231:1694–1730, 2012. doi:10.1016/j.aim.2012.06.027.

[TP97] Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics.
In Proc. 12th Symposium on Logic in Computer Science, pages 280–291, 1997.
doi:10.1109/LICS.1997.614955.

[Web04] Mark Weber. Generic morphisms, parametric representations and weakly cartesian monads.
Theory and Applications of Categories, 13:191–234, 2004.

[Web07a] Mark Weber. Familial 2-functors and parametric right adjoints. Theory and Applications of
Categories, 18(22):665–732, 2007.

[Web07b] Mark Weber. Yoneda structures from 2-toposes. Applied Categorical Structures, 15:259–323,
2007. doi:10.1007/s10485-007-9079-2.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1017/CBO9780511792588.006
https://doi.org/10.1016/0022-4049(77)90028-7
https://doi.org/10.1006/inco.1994.1042
https://doi.org/10.1109/LICS.2008.43
https://doi.org/10.1016/j.aim.2012.06.027
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1007/s10485-007-9079-2

	1. Introduction
	1.1. Motivation
	1.2. Overview
	1.3. Related work
	1.4. Relation to conference version
	1.5. Plan
	1.6. Notation and preliminaries

	2. A brief review of Howe's method
	2.1. Applicative bisimilarity
	2.2. Howe's method
	2.3. Non-standard presentation

	3. Overview by example
	3.1. Syntax
	3.2. Transition systems and bisimilarity
	3.3. Operational semantics
	3.4. Substitution-closed bisimilarity

	4. Transition systems and bisimilarity
	4.1. Pre-Howe contexts and transition systems
	4.2. Transition systems as presheaves
	4.3. Bisimulation and bisimilarity

	5. Howe contexts for operational semantics
	5.1. Transition monoid algebras
	5.2. Operational semantics signatures

	6. Substitution-closed bisimilarity
	7. Preservation of functional bisimulations, and cellularity
	7.1. An alternative characterisation
	7.2. Familiality
	7.3. Cellularity

	8. Applications
	8.1. Call-by-name
	8.2. Call-by-value
	8.3. Erratic non-determinism
	8.4. Howe's format

	9. Congruence of substitution-closed bisimilarity
	9.1. Preliminaries on spans
	9.2. Howe closure on states
	9.3. Double categorical notation
	9.4. Howe closure on transitions
	9.5. Alternative characterisations of the Howe closure
	9.6. Simulation property
	9.7. Symmetry of transitive closure

	10. Conclusion
	References

