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ABSTRACT
Giant hydrothermal ore deposits form where fluids carrying massive amounts of metals 

scavenged from source rocks or magmas encounter conditions favorable for their localized 
deposition. However, in most cases, the ultimate origin of metals remains highly disputed. 
Here, we show for the first time that two metal sources have provided, in comparable amounts, 
the 8 Mt of lead of the giant McArthur River zinc-lead deposit (McArthur Basin, Northern 
Territory, Australia). By using high-resolution secondary ion mass spectrometry (SIMS) 
analysis of lead isotopes in galena, we demonstrate that the two metal sources were repeat-
edly involved in the metal deposition in the different ore lenses ca. 1640 Ma. Modeling of 
lead isotope fractionation between mantle and crustal reservoirs implicates felsic rocks of the 
crystalline basement and the derived sedimentary rocks in the basin as the main lead sources 
that were leached by the ore-forming fluids. This sheds light on the crucial importance of 
metal tracing as a prerequisite to constrain large-scale ore-forming systems, and calls for a 
paradigm shift in the way hydrothermal systems form giant ore deposits: leaching of metals 
from several sources may be key in accounting for their huge metal tonnage.

INTRODUCTION
More than a thousand giant ore deposits 

worldwide are recognized as containing ex-
ceptional accumulations of metals in restricted 
volumes (i.e., they store the metals equivalent 
in 1011 tons of continental crust in mean crustal 
or “Clarke” concentration; Laznicka, 2014). Hy-
drothermal ore deposits are a specific class of 
metallic deposits that form by a combination 
of (1) metal extraction from a source rock or 
magma by a hydrothermal fluid, (2) metal trans-
port by a hydrothermal fluid from the source to a 
focused discharge where metals precipitate and 
accumulate, and (3) metal precipitation and ac-
cumulation (e.g., McCuaig and Hronsky, 2014). 

Giant hydrothermal ore deposits form only when 
all of these processes are adequately combined 
in space and time (e.g., Richards, 2013) and 
when the volume of metalliferous fluid is suf-
ficient. While the conditions for metal transport 
and precipitation are relatively well understood, 
thanks to, among others, fluid inclusion studies 
and metal speciation and mineral solubility ex-
periments (e.g., Richard et al., 2012), the con-
ditions under which metals are extracted from 
their source, and more specifically the nature 
of the metal sources, are still the most disputed 
aspect of many ore-deposit models (e.g., Pettke 
et al., 2010). Several factors may underlie this 
controversy: (1) metal sources may occur at 
great distance from the ore deposit and may be 
hidden (e.g., Harlaux et al., 2018); (2) metal 

sources typically have large volumes but low 
concentrations of metal, meaning that the mass-
balance studies required to demonstrate large-
scale metal mobilization are highly challeng-
ing (e.g., Pitcairn et al., 2006); (3) a single ore 
deposit may form from several metal sources 
(e.g., Mercadier et al., 2013); and (4) fluid mix-
ing may play a role in subsequent dilution of 
the geochemical signature of the primary metal 
source(s).

In order to address the number and the nature 
of metal source(s) involved with the formation 
of a true giant hydrothermal ore deposit, we have 
targeted the McArthur River zinc-lead deposit 
(Northern Territory, Australia) and carried out 
a detailed in situ Pb isotope study of galena. 
This widely used method is a powerful tool for 
tracing metal sources and ages based on model 
ages because it combines three radioactive de-
cay systems (238U → 206Pb, 235U → 207Pb, and 
232Th → 208Pb; e.g., Deloule et al., 1986).

GEOLOGICAL SETTING
The McArthur River Zn-Pb deposit is one 

of many giant hydrothermal ore deposits of 
the sediment-hosted massive sulfide (SHMS) 
category (e.g., Large et al., 1998; Leach et al., 
2010). This deposit is situated in the Paleopro-
terozoic to Mesoproterozoic McArthur Basin, 
which unconformably overlies Paleoproterozoic 
crystalline basement units (Fig. 1; Fig. DR1 
in the GSA Data Repository1). This is one of 
the many giant ore deposits of the so-called *E-mail: josephine.gigon@gmail.com

1GSA Data Repository item 2020140, description of the parameters used for optical and scanning electron microscopy and secondary ion mass spectrometry; an 
extended discussion and an explanation of the different models presented in the main text; data tables; and supplemental figures, is available online at http://www.
geosociety.org/datarepository/2020/, or on request from editing@geosociety.org.
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“Carpentaria zinc belt” in the Northern Territory 
and Queensland (Large et al., 1998; McGold-
rick et al., 2010) and one of the most impor-
tant Zn-Pb deposits in the world (as of June 
2019: 172 Mt at 9.9% Zn, 4.6% Pb, 47 g/t Ag; 
NTGS, 2019). The McArthur River deposit is 
located 2 km west of the Emu fault, a major 
10-km-deep crustal structure (Rawlings et al., 
2004) that potentially acted as a fluid conduit 
for upward migration of 150–250 °C, oxidized, 
metal- and sulfate-rich basinal fluids (Cooke 
et al., 2000) in a sinistral strike-slip regime (Mc-
Goldrick et al., 2010). The eight ore lenses of 
the McArthur River deposit occur within the 
Pyritic Shale Member of the Barney Creek For-
mation, dated at 1639 ± 2 Ma (Page and Sweet, 
1998), which acted as a reduced geochemical 
trap for metal precipitation (Cooke et al., 2000). 
Most authors consider the formation of the 
McArthur River deposit as syn-sedimentary or 
sub-contemporaneous to the deposition of the 
upper Barney Creek Formation, and therefore 
consider 1639 ± 2 Ma as a reasonable estimate 
of the age of metal deposition (Huston et al., 
2006; Kunzmann et al., 2019).

SAMPLING AND ANALYTICAL 
METHODS

Samples span most of the ore sequence at the 
McArthur River mine site (16.436° S, 136.098° 
E, Geocentric Datum of Australia 1994) and are 
from four of the eight ore lenses and so-called 

lens 0 and 9, two sub-economic lenses located 
just below and above the main ore sequence, 
respectively (Fig. 2). Petrographic investigation 
by reflected-light optical microscopy and scan-
ning electron microscopy (SEM) shows that 
ores consist of sphalerite-galena-pyrite–rich 
bands interlayered with mudstones and quartz-
carbonate turbidites (Fig. 2; Large et al., 1998). 
Galena crystals 50 µm to 1 mm in size are typi-
cally poikilitic and contain numerous ∼10 µm 
inclusions of pyrite, sphalerite, and minor sili-
cates and carbonates. No growth, recrystalli-
zation, zoning, or alteration textures in galena 
were highlighted. Detailed mineral mapping 
using SEM was carried out in order to select 
the most favorable zones within galena grains 
(i.e., galena devoid of mineral inclusions) for 
in situ Pb isotope analyses. The lead isotopes 
were measured by secondary ion mass spec-
trometry (SIMS) with a radiofrequency source 
whose analytical capacity allows an excellent 
sensitivity and a high spatial resolution with 
a spot size of 10 µm. Analytical methods are 
detailed in the Data Repository.

RESULTS
The ranges of 206Pb/204Pb, 207Pb/204Pb, and 

208Pb/204Pb ratios are 16.10–16.22, 15.43–15.57, 
and 35.42–36.57 respectively (Fig. 3; Table 
DR1). In a 207Pb/204Pb versus 206Pb/204Pb dia-
gram, the data are distributed along a line whose 
slope is 1.42 with a mean square weighted devi-

ation (MSWD) of 4.1 (Fig. 3). Slopes are simi-
lar within the analytical error for the different 
lenses (Fig. DR2). Lenses 0, 3, 4, and 9 show a 
similar distribution of 206Pb/204Pb and 207Pb/204Pb 
ratios with modes around 16.2 and 15.55 re-
spectively, whereas lens 2 shows modes around 
16.16 and 15.49, respectively. The Pb isotope 

Figure 1.  Simplified geo-
logical map of McArthur 
Basin (Northern Ter-
ritory, Australia), with 
identification of major 
lithostratigraphic units: 
crystalline basement, 
McArthur Basin, and more 
recent sedimentary cover 
(Ahmad et al., 2013). Major 
faults and fault zones are 
indicated, including the 
Emu fault near the McAr-
thur River Zn-Pb deposit. 
Other Zn-Pb deposits and 
prospects are indicated. 
WA—Western Australia; 
NT—Northern Territory; 
QL—Queensland; SA—
S o u t h  Au s t r a l i a ; 
NSW—New South Wales.
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Figure 2.  Stratigraphy of sample location in 
the McArthur River Zn-Pb deposit (North-
ern Territory, Australia) and description of a 
typical sample. (A) Simplified stratigraphic 
succession of the McArthur River deposit with 
locations of different ore lenses (Large et al., 
1998). Sampled ore lenses (0, 2, 3, 4, 7, and 
9) are identified by different colors. (B) Hand 
sample from lens 2 with sulfide-rich laminae. 
(C) Backscattered electron scanning micros-
copy image of sulfide-rich lamina showing 
texture of galena (Gn, white), sphalerite (Sp, 
light gray), pyrite (Py, dark gray), and carbon-
ate (Cb, black) and size and emplacement of 
in situ Pb isotope analyses by secondary ion 
mass spectrometry (SIMS). For each SIMS 
spot, Pb isotopic ratios are indicated as fol-
lows: 206Pb/204Pb - 207Pb/204Pb.
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ratios exhibit similar variations at the grain and 
lens scales (e.g., 206Pb/204Pb values of 16.192 
and 16.132 for analytical spots 100 µm apart 
in a single grain; Figs. DR3–DR8). Previous 
Pb isotope compositions measured on mixed 
sulfides by thermal ionization mass spectrom-
etry (TIMS) are clustered in the lower range 
of the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb 
values obtained in this study (Fig. DR9). Al-
though they are compatible within error with the 
present data, they represent a mixed signature 
of several grains. The novelty here is that the 
in situ SIMS analyses have a high petrographic 
resolution and reveal the full range of Pb iso-
tope compositions.

DISCUSSION
Repeated Mixing between Two Lead 
Sources

The line along which all of the lead isotope 
data are distributed is discordant to isochrons 
linking rocks and minerals with the same mod-
el age (Fig. 3; Stacey and Kramers, 1975; Sun 
et al., 1996). The most simple explanation is 
that the data lie along a mixing line between two 
distinct Pb sources corresponding to two end 
members of the data distribution that we name, 
respectively, lead source 1 (207Pb/204Pb > 15.56 
and 206Pb/204Pb > 16.21) and lead source 2 
(207Pb/204Pb < 15.46 and 206Pb/204Pb < 16.14; 
Fig. 3). Assuming that (1) the two lead sources 
have compositions similar to those of the ex-
tremes of the mixing line and (2) the data are 
representative of the Pb isotopic composition 
of the ore fluid at the time of sulfide deposition, 
the relative contributions from the two sources 
can be calculated. Considering the modes of 
207Pb/204Pb and 206Pb/204Pb ratios in each lens, 

the relative proportion of Pb derived from each 
source in the different ore lenses is between 38% 
and 83% for lead source 1 and between 17% 
and 62% for lead source 2 (Fig. DR2). Thus, 
both Pb sources have been repeatedly involved 
in the formation of the different ore lenses, and 
their relative proportions are of the same order 
of magnitude.

Isotope Evolution Models for Lead Sources
Models of Pb lead isotope fractionation and 

evolution between the mantle and crustal reser-
voirs, together with existing chronostratigraphic 
constraints in the investigated area, are helpful 
in identifying the nature of lead sources 1 and 
2. The usual local model for the North Austra-
lian craton is based on the global “continuous 
growth-of-µ” model (where µ represents the 
238U/204Pb ratio of a given reservoir; Cumming 
and Richards, 1975), and uses Pb isotope ra-
tios obtained by TIMS at the McArthur River 
deposit as a control point for the 1640 Ma iso-
chron (Fig. DR9; Sun et al., 1996). However, 
because the new in situ SIMS data presented 
here show considerably more scattering com-
pared to previously obtained bulk TIMS data, 
the local model should now be treated with 
caution. Alternative models are proposed and 
discussed below (see Fig. 4, and the Data Re-
pository, for details).

The objective of the tested models is to ac-
count for distinct evolution of lead sources 1 and 
2 which were both leached by the ore-forming 
fluids at ca. 1640 Ma, by adjusting the number 
and timing of crust formation and differentiation 
events, the age of crystallization of Pb-bearing 
minerals, as well as the µ values of the differ-
ent Pb reservoirs. Because the composition of 

lead source 2 lies close to the 1640 Ma isochron 
of the usual global and local models (Fig. 3; 
Stacey and Kramers, 1975; Sun et al., 1996), 
we rely on the reasonable assumption that lead 
source 2 corresponds to a crustal reservoir that 
has evolved isotopically through 238U, 235U, and 
232Th decay until the time of the McArthur River 
deposit formation (ca. 1640 Ma). Model A as-
sumes that the model age of both lead sources 
is 1640 Ma. Back-calculation indicates the ex-
traction of a crustal reservoir from the mantle at 
3.83 Ga that evolved toward the composition of 
lead source 1 (µ1 = 10.21), followed at 3.65 Ga 
by the extraction of another crustal reservoir 
from the mantle that evolved toward the com-
position of lead source 2 (µ2 = 10.34; Fig. 4A). 
Model B assumes a single episode of extrac-
tion of two crustal reservoirs from the mantle. 
These two reservoirs evolved toward the com-
positions of lead sources 1 and 2 respectively 
(Fig. 4B). Back-calculation indicates that this 
episode would have occurred at 3.65 Ga, which, 
in turn, imposes µ1 = 11.12 and µ2 = 10.34, and 
that Pb isotope evolution of lead source 1 would 
have ceased at 1764 Ma (i.e., was devoid of U 
and Th to avoid the production of radiogenic 
Pb). Model C assumes an initial extraction of 
a crustal reservoir from the mantle at 3.7 Ga, 
followed by an episode of differentiation into 
two crustal reservoirs that evolved toward the 
compositions of lead sources 1 and 2 respec-
tively (Fig. 4C). Back-calculation indicates that 
crustal differentiation would have occurred be-
tween 3.65 and 3.0 Ga, which, in turn, imposes 
that Pb isotope evolution of lead source 1 would 
have ceased between 1895 and 1764 Ma, with µ1 
ranging between 11.12 and 12.92 and µ2 ranging 
between 10.34 and 10.67.

Potential Candidates for Lead Sources
It is noteworthy that all scenarios require 

elevated µ values (between 10.2 and 12.92) 
for the crustal reservoirs in order to account 
for the compositions of lead sources 1 and 2, 
ruling out mafic volcanics from the McArthur 
Basin as a plausible Pb source for the McArthur 
River deposit (e.g., Stacey and Kramers, 1975; 
Cooke et al., 1998; Hofmann, 2007). Models 
B and C require that lead source 1 would have 
stopped evolving isotopically between ca. 1895 
and 1764 Ma. This would be possible if lead 
source 1 consisted of galena or Pb-bearing feld-
spar crystallized within this age span. However, 
only small galena deposits of this age are known 
in the basin or basement in the area, and no felsic 
igneous rocks are recorded in the area between 
1815 (oldest age in the basin) and 1730 Ma (Ah-
mad et al., 2013). Therefore, according to Model 
C, lead source 1 should belong to or be derived 
from the youngest basement felsic units by ero-
sion and sedimentation. Lead sources 1 and 2 
could actually belong to separate units, or to the 
same unit if, in the latter, Pb was alternatively 

Figure 3.  Lead isotope 
composition of galena 
from the McArthur River 
Zn-Pb deposit (North-
ern Territory, Australia). 
In situ secondary ion 
mass spectrometry data 
from different ore lenses 
are identified by distinct 
colors as in Figure 2, and 
plotted with 1σ error bars. 
Slope of line along which 
all analyses plot and 
position of ellipses corre-
sponding to the probable 
ratios of lead sources 
1 and 2 are shown 
( c o n f — c o n f i d e n c e ; 
MSWD—mean square 
weighted deviation). Iso-
chrons (straight lines 
linking compositions of 
rocks or minerals having 
same model age) from dif-
ferent models (solid lines: 
Sun et al., 1996, dashed 
lines: Stacey and Kram-
ers, 1975) are indicated.
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leached from feldspar only or from all Pb-bear-
ing minerals including accessory uranium- and 
thorium-rich minerals. Several anorogenic fel-
sic intrusive and volcanic units in the crystal-
line basement are plausible candidates for lead 
sources 1 and 2 because they meet the age con-
straints from the above models and have vertical 
(>1 km) and lateral extents that could poten-
tially account for the Pb budget of the McArthur 
River deposit (Table DR3). This includes the 
ca. 1850 Ma Cliffdale and Scrutton volcanics 
located in the Murphy and Scrutton inliers re-
spectively (Fig. 1). Those anorogenic felsic units 
were likely among the sources of felsic-derived 
sediments in the McArthur Basin such as the 
black shales of the Barney Creek Formation, 
clastic units within carbonate-evaporite succes-
sions, or the regionally extensive and permeable 
conglomerates and sandstones in the basal units 

of the McArthur Basin where framework altera-
tion of detrital feldspar is documented (David-
son, 1998; Polito et al., 2011).

CONCLUSION
Altogether, our in situ SIMS Pb isotope data 

and isotope modeling provide, for the first time, 
a strong support for the previous assumption 
that the Pb-rich products of anorogenic felsic 
magmatism contributed to the Pb sources for 
some giant Proterozoic Zn-Pb deposits world-
wide (Sawkins, 1989). More generally, our work 
shows that if forming a giant hydrothermal ore 
deposit requires mobilizing metals from sev-
eral sources, the current models for scales, ge-
ometries, and dynamics of ore-forming hydro-
thermal systems should be revised. In turn, this 
would have a major impact on the estimation of 
metal endowment and exploration strategies in 

world-class metallogenic provinces, because the 
volume of metal sources and their metal concen-
tration define the total amount of metals avail-
able for ore deposits.
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