
HAL Id: hal-02966192
https://hal.science/hal-02966192

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Flapping of heavy inverted flags: a fluid-elastic
instability

Mohammad Tavallaeinejad, Michael Païdoussis, Manuel Flores Salinas,
Mathias Legrand, Mojtaba Kheiri, Ruxandra Botez

To cite this version:
Mohammad Tavallaeinejad, Michael Païdoussis, Manuel Flores Salinas, Mathias Legrand, Mojtaba
Kheiri, et al.. Flapping of heavy inverted flags: a fluid-elastic instability. Journal of Fluid Mechanics,
2020, 904, �10.1017/jfm.2020.758�. �hal-02966192�

https://hal.science/hal-02966192
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Flapping of heavy inverted flags:

a fluidelastic instability

Mohammad Tavallaeinejad1, Michael P. Païdoussis1, Manuel Flores Salinas2, Mathias Legrand1,
Mojtaba Kheiri3, and Ruxandra M. Botez2

1Department of Mechanical Engineering, McGill University, Montréal, Québec, Canada
2Laboratoire de recherche en commande active, avionique et aéroservoélasticité, École de Technologie Supérieure, Montréal,

Québec, Canada
3Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montréal, Québec, Canada

Abstract

Wind tunnel experiments are described in this paper, aiming to examine the global dynamics of
heavy inverted flags, with a specific focus on the underlying mechanism of large-amplitude flapping,
which occurs at sufficiently high flow velocities. This problem is of interest because no consensus
exists as to the mechanism, specifically whether it is a vortex-induced vibration or a self-excited

vibration – the answer being not only of fundamental interest, but also important for energy harvesting
applications.

The effect of vortex shedding from both leading and trailing edges was investigated via experiments
with flags modified by serrations to the leading edge and a long rigid splitter plate at the trailing edge,
so as to disrupt leading- and trailing-edge vortices and to inhibit interactions between counter-rotating
leading-edge vortices, if they exist. The relatively small quantitative changes in the critical flow
velocity, amplitude and frequency of oscillations, as well as the near-identical qualitative behaviour,
of plain and modified flags suggests that the global qualitative dynamics of heavy inverted flags is
independent of vortex shedding from the leading and trailing edges; i.e., periodic vortex shedding is
not the cause but an effect of large-amplitude flapping.

Additional experiments showed that the dominant frequencies of flapping and the lift force on the
flag are generally not synchronised, and multiple frequencies occur in the lift signal, reinforcing the
conclusion that vortex shedding is not the cause of flapping.

Our experimental results suggest that self-excited vibration through a fluidelastic instability, i.e.
flutter, is the underlying mechanism for the flapping of heavy inverted flags.

1 Introduction and background

The present work investigates the flow-induced vibration of a flexible thin plate in axial flow: a cantilevered
thin plate (or ‘flag’) of lengthL, heightH and thickness h subjected to a fluid flowing axially with velocity
U and directed from the free end towards the clamped one, otherwise known as an “inverted flag” as
shown in Figure 1 [5]. The dynamics of inverted flags is governed by four dimensionless parameters: (i)
mass ratio � D �fL=�ph, �f and �p being the mass density of the fluid and plate, respectively; (ii) aspect
ratioA D H=L, (iii) Reynolds number ReL D UL=�, � being the flow kinematic viscosity; and (iv)
dimensionless flow velocity … D

p

�fHL=DLU , D being the flexural rigidity of the flag.
The sequence of the dynamical states displayed by an inverted flag as the flow velocity is increased

from zero, as observed experimentally/theoretically by different researchers, is: stretched-straight [5] !

buckled with small deflections [13, 16] ! small-amplitude asymmetric deformed flapping [2, 13, 16]
! large-amplitude flapping [5] ! chaotic [11, 13] ! fully deflected [2, 5] ! flipped flapping with the
free-end pointing downstream [2, 13].

Sader et al. [11], using analytical modelling and experimental measurement, proposed for the first
time that the large-amplitude flapping motion of inverted flags is a vortex-induced vibration (VIV). The
flapping phenomenon was attributed to the periodic formation and synchronized shedding of vortices,
which is a characteristic of VIV, from the trailing and leading edges. The VIV mechanism also appeared
to be able to successfully explain other aspects of the dynamics of inverted flags under heavy fluid loading,
i.e. � & O.1/. Some examples are the Strouhal number independence from the Reynolds number and the
flapping occurrence above a minimum amplitude.
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Figure 1: Inverted flag in the large-amplitude flap-
ping regime with shedding leading-edge vortices
(LEVs) and trailing-edge vortices (TEVs) down-
stream.
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Figure 2: Experimental set-up for a serrated inverted
flag with a rigid splitter plate where the forces at the
flagpole are measured by a force balance.

However, Sader et al. [11] performed a scaling analysis and predicted that VIV cannot occur for
� � 1, even though large-amplitude flapping does. In addition, some studies published later showed
that inverted flags can perform large-amplitude flapping even under circumstances where regular vortex
formation and shedding from leading- and trailing-edges are either completely absent or weakened. For
example, in an experimental study, Pazhani [9] investigated the effect of leading-edge serrations, where
they found that the serrated flag does display large-amplitude flapping, even though the regular vortex
formation and shedding from the leading edge was disrupted. Gurugubelli and Jaiman [3] performed
direct numerical simulations for an inverted flag (� D 1) in the ReL D 3 � 104 flow regime. They
showed that the frequency of dominant vortex-induced forces may not be synchronised with the frequency
of the transverse flapping motion. Goza et al. [1] showed computationally that for sufficiently heavy (or
small mass ratios) flags, i.e. � � 1, large-amplitude flapping occurs even for ReL < 50, where vortex
shedding essentially does not occur; hence, neither large-amplitude nor small-amplitude flapping can be
attributed to the classical VIV mechanism. [3] performed simulations in which a long rigid splitter plate
was attached to the flag trailing edge, thus delaying trailing-edge vortex formation and shedding to large
distances from the flag and also eliminating the interactions between vortices detached from the leading
edge at the cycle extremities They found that the flags undergo large-amplitude flapping regardless – a
prediction not yet verified experimentally, which is, in fact, one of the objectives of the present paper.

Although the above-referenced studies showed that VIV is not always the underlying mechanism
for the large-amplitude flapping of inverted flags, they did not put forward an alternative physical
explanation. Motivated by this gap in knowledge, Tavallaeinejad [14, 15] developed mathematical models
for small-aspect-ratio and two-dimensional heavy inverted flags, i.e. � � 1, respectively, and showed
that a plausible explanation for large-amplitude flapping of heavy inverted flags is self-excited vibration

emanating from a fluidelastic instability. The model in [15] was able to explain several aspects of the
dynamics of heavy inverted flags observed experimentally or predicted computationally, such as the onset
and sequence of instabilities, based on principles used for developing governing equations for similar
fluid-structure systems, such as flexible wings and pipes conveying fluid, which are known to be subject
to fluidelastic instabilities.

The primary purpose of this paper, as also suggested by the title, is to explore experimentally the
underlying mechanism for large-amplitude flapping of heavy inverted flags. The correlation between
vortex shedding and the flapping mechanism, and more specifically, the qualitative and quantitative
effects of disruption of both leading-edge vortices (LEVs) and trailing-edge vortices (TEVs) on the
onset, frequency and amplitude of flapping are examined. In the present experiments, flags of mass ratio
� 2 Œ0:07 0:21� have been tested in the flow regime ReL 2 Œ3:4 � 104 2 � 105�.

The rest of the paper is organized as follows. First, experiments with a rigid splitter plate attached
to the trailing-edge of the inverted flag are described in §2.1, aiming to evaluate the importance of the
existence of TEVs and to examine the effects of forced disconnection between counter-rotating LEVs on
large-amplitude flapping. Second, experiments with inverted flags with a serrated leading-edge, similar to
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those used in [9], and with a splitter plate at the trailing edge are described in §2.2 (see Figure 2); these
experiments explore the effects of simultaneous disruption of LEVs and TEVs. Finally, the synchronization
of lift and displacement and phase dynamics on plain heavy inverted flags are studied in §2.3.

2 Results and discussion

2.1 Dynamics of inverted flags with a rigid splitter plate attached to the trailing edge

The experiments were conducted in a subsonic wind tunnel with a fairly large test-section and low (< 1 %)
turbulence intensity. The flow velocity in the test-section was incremented in small steps (� 0:5 m=s)
and the flag motion was recorded via a high-speed camera (80-280 fps) for each velocity. An image
processing technique was then utilized to extract the time history of oscillations (for more details, refer
to [13]). Brass and polycarbonate plates, i.e. ‘flags’, (0:5 �A � 4:0 and 0:07 � � � 0:20) were used in

(a) (b)

Figure 3: Experimental set-up for the inverted flag (a) without and (b) with the rigid splitter plate.

the experiments conducted with and without a rigid splitter plate; see Table 1 for flag dimensions and
other properties. The splitter plate was made from a plywood sheet of thickness hs D 10 mm, height

Flag Material L �H h A �

A Polycarbonate 150 � 225 1:02 1:5 0:15

B Polycarbonate 150 � 600 0:76 4:0 0:20

C Polycarbonate 160 � 160 0:76 1:0 0:20

D Polycarbonate 160 � 160 1:02 1:0 0:16

E Brass 198 � 101 0:38 0:5 0:07

Table 1: Labels and dimensions of inverted flags tested in experiments with and without rigid splitter plate.
Dimensions are in mm.

Hs D 610 mm, and length Ls D 1800 mm, and was secured firmly to the walls of the test section, as
pictured in Figure 3(b); no significant motion of the splitter plate was observed during the experiment,
even at very high flow velocities.

Figure 4(a) shows bifurcation diagrams for the tip rotation of flag C (circles) and flag D (diamonds)
with the rigid splitter plate (filled symbols) and without it (empty symbols). As shown, with increasing the
flow velocity, the flag reaches a critical point, beyond which it abruptly starts performing large-amplitude
symmetric flapping around the position of rest; for example, for flag C, the dimensionless critical flow
velocities (when sweeping the flow velocity up) are …i

f
D 1:77 and …i

f
D 1:69, with and without the

splitter plate, respectively. Figure 4(a) also shows that the critical flow velocities when sweeping up (black
markers) and down (red markers) are different, i.e. flapping emanates from a subcritical Hopf bifurcation.
As seen, flag D exhibits a stronger subcritical behaviour and larger hysteresis loop, compared to flag C.
The flapping amplitude increases with the flow velocity, while, as seen in Figure 4(b), the dimensionless
flapping frequency, Nf , slightly increases first, but then decreases with flow velocity. A slight reduction
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Figure 4: Experimental results for [ ] flag C, and [ ] flag D: (a) bifurcation diagram showing peak values of the
rotation angle of the free-end of the flag as a function of the dimensionless flow velocity, and (b) dimensionless
dominant frequency of oscillation as a function of the dimensionless flow velocity. Empty and filled markers
correspond to the flag dynamics with and without the splitter plate, respectively. Black and red markers
correspond to the flow velocity sweep up and down, respectively.

is noted for the flapping amplitude of the flag with a splitter plate. Similar observations were made
by Gurugubelli and Jaiman [3] who performed simulations on two-dimensional flags with � D 1 in the
intermediate-Reynolds-number flow regime (ReL D 3� 104). They observed that the inverted flag with a
splitter plate exhibits only two counter-rotating vortices shed from the leading edge over the flapping cycle.
Through a systematic analysis of vorticity distribution and the coupled flag dynamics, they showed that
the absence of trailing-edge vortices (or more precisely, their displacement farther away from the flag),
and the inhibition of vortex-vortex interaction lead to a larger pressure distribution at the trailing edge and
to a slightly smaller drag at the leading edge. This would then result in a smaller bending moment, which
in turn leads to a reduction in the curvature along the flag.

As seen in Figure 4(b), the frequency of oscillation is also reduced slightly when the splitter plate
is introduced. For instance, the maximum reduction in flapping frequency for flag D is at … ' 2:8,
where the frequency is reduced by almost 8 %. This may also be associated with the absence of trailing
edge vortices in close proximity to the flag, caused by the rigid splitter plate. Using the computational
results and observations provided by Gurugubelli and Jaiman [3], we hypothesise that, when there is no
splitter plate, the trailing-edge vortex formation and shedding accelerates the reduction in the pressure
distribution over the flag, which consequently leads to a faster transition of maximum deflection from one
side to the other, hence to a higher frequency. Such a hypothesis needs to be verified through careful flow
visualization and measurements.

Figure 5 shows that the onset of large-amplitude flapping for all flags tested (except for flag B)
is delayed when the splitter plate is added. This may be linked to the pressure reduction close to the

A B C D E
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Inverted flags

…
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Figure 5: Dimensionless critical flow velocity for the onset of large-amplitude flapping of different inverted
flags when sweeping up the flow velocity; [ ] with and [ ] without the rigid splitter plate.

leading edge of the inverted flag due to the splitter plate: the presence of the splitter plate is speculated to
introduce a small additional damping to the dynamical system. Consequently, the critical flow velocity for
large-amplitude flapping increases and the flapping amplitude and frequency become smaller at the onset
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of large-amplitude flapping.
However, all these differences are very slight. The main and most significant conclusion is that

introducing a splitter plate has a minimal influence on the critical flow velocity for large-amplitude
flapping, its amplitude and frequency. Since no PIV measurements were undertaken in the present
experiments, no information on the size, magnitude and dynamics of LEVs and TEVs can be provided.
Nevertheless, computational studies, for example [1, 2, 3, 10], as well as experimental studies [16], show
that LEV are as strong as TEV. Since LEV are formed at the leading-edge, compared to TEV, it is expected
that they have a much stronger effect on the fluid flow in the vicinity of the leading-edge and thus on
the overall dynamics of the flag. This might then be considered as a plausible explanation as to why
suppressing, or more precisely delaying, vortex shedding from the trailing-edge via a splitter plate does
not change the dynamics significantly.

2.2 Dynamics of inverted flags with leading-edge serrations and a splitter plate at the

trailing edge

In order to further understand the effects of vortex formation and shedding on the global dynamics
of inverted flags, a serrated leading-edge geometry (chevron) with height Hs D 10 mm and width
Ws D 10 mm was introduced to polycarbonate flags of 0:25 � A � 3; see Figure 2. Using flow
visualization techniques, Pazhani [9] has shown that the serrations (as if they were miniaturized delta
wings) produce small counter-rotating pairs of vortices which interact with the primary tip vortex and
disrupt its formation and periodic shedding from the leading edge.

The experiments with serrated flags performed by Pazhani [9] have been repeated in the present
study, with wider flags—to minimize the three-dimensionality of the flow caused by the side edges of
the flag—also using a rigid splitter plate at the trailing edge of the flag to impede interactions among the
separated shear layers. Mainly qualitative experiments were conducted. Insofar as the onset and amplitude
of large-amplitude flapping is concerned, the responses are similar to those of plain inverted flags. For
instance, the experimental results for flags ofA D 3:0 in Figure 6 show no notable differences in the
critical values of flow velocity, as well as the amplitude and the frequency of oscillation, with and without
the splitter plate and serrations. Our observations from the experiments with inverted flags modified by a
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Figure 6: Experimental results for polycarbonate inverted flags of aspect ratioA D 3:0: (a) peak values of
the rotation angle of the free-end of the flag, and (b) dimensionless dominant frequency of oscillations, as a
function of the dimensionless flow velocity; [ ] plain inverted flag and [ ] serrated flag with splitter plate at the
trailing edge. Black and red symbols correspond to flow velocity sweep up and down, respectively.

serrated leading edge and a splitter plate at the trailing edge confirm that the dynamical characteristics of
heavy inverted flags are not very sensitive to: (i) the periodic formation and shedding of vortices from the
leading and trailing edges, and (ii) vortex-vortex interactions (if any exist). Hence, a mechanism different
from VIV should be at work for large-amplitude flapping of heavy inverted flags; self-excited vibration

emerging from a fluidelastic instability is deemed to be a credible alternative able to explain many aspects
of the dynamics of heavy inverted flags. This will be discussed further in §2.3.
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2.3 Synchronization of lift and displacement and phase dynamics of heavy plain inverted

flags

Several experiments were conducted to measure simultaneously the forces acting on the flag (i.e. lift
and drag) and its motion. The phase difference between the time traces of the fluid forces and flag
displacements were examined. Moreover, the dominant frequencies of the fluid forces were obtained.

These experiments were motivated by an observation made by Goza et al. [1] for large-amplitude
flapping of heavy inverted flags. They reported that, compared to light flags, several additional vortices
are shed per cycle for heavy ones, resulting in additional peaks in the frequency spectrum of the lift signal.
Moreover, the frequency associated with the highest peak in the lift spectrum was different from that of
the displacement spectrum. This led Goza et al. [1] to refer to the large-amplitude flapping of massive
flags as “not-classical VIV.” An earlier similar observation was made by Gurugubelli and Jaiman [3] for
an inverted flag with � D 1.

In order to investigate experimentally the existence of synchronization between the lift force and
displacement for heavy inverted flags, stainless-steel flags of varying length (hence, varying mass ratio),
labelled S1 to S4, were tested (see Table 2). The transverse (lift) and streamwise (drag) components of the

Flag L.mm/ � A …=U
p

�fh=DL
2

S1 100 0:21 0:75 0:3653 0:0822

S2 70 0:15 1:07 0:2140 0:0403

S3 50 0:10 1:50 0:1292 0:0206

S4 35 0:07 2:14 0:0756 0:0101

Table 2: Stainless-steel inverted flags utilized in experiments; H D 75 mm and h D 0:08 mm. The dimension-
less frequency can be obtained as f � D f

p

�fh=DL
2.

fluid flow force were measured simultaneously at the flagpole, utilizing an in-house built aerodynamic
balance (Mini45-E Array Technology Incorporated Inc). Time traces of the lift, FL.0; t/, and the drag,
FD.0; t/, components (see Figure 2) were collected at 1000 Hz; the sampling rate for the tip transverse
displacement, w.L; t/, was 160 � 280 Hz (see [13] for more details).

2.3.1 Frequency characteristics

Figure 7 shows the time trace and power spectral density (PSD) plots for the dimensionless tip transverse
displacement, w.L; t/=L, and lift for flag S1 at different flow velocities: (a,b) U D 5:7 m/s (… D 2:08),
(c,d) U D 7:7 m/s (… D 2:81), and (e,f) U D 8:3 m/s (… D 3:03). In the PSD plots for the lift signal,
the peaks are labelled sequentially as fL1, fL2 etc. from low to high frequencies. As seen in Figure 7(b,d),
f1 D fL1, where f1 is the displacement dominant frequency. Also, from the lift PSD, fL1 has several
higher harmonics, such as fL2 and fL3, with comparable powers, while in the displacement PSD, only one
predominant frequency harmonic exists, supporting the observations by Goza et al. [1] discussed above.
By increasing the flow velocity, motion becomes chaotic-like at U D 8:3 m=s (… D 3:03). As seen from
the lift PSD, fL2 becomes the dominant frequency, while still f1 D fL1; the loss of 1:1 synchronization
with departure from a periodic behaviour can also be seen in Figure 7(e,f). One may conclude from
Figure 7(a-f) that by increasing the flow velocity, the dynamics of the flag and that of the flow become
more complex leading eventually to chaotic-like motion. This is evidenced by the increase of irregularity
in the time histories and the fact that the spectra show a broader range of frequencies with a distinct
subdominant peak in the PSD of lift. The increase of decoherence between the flag displacement and lift,
as the flow velocity is increased, should also be noted.

The spectrograms of the displacement and lift signals are presented in Figure 7(g,h), respectively,
showing an increase in the dynamic activity with increasing flow velocity. In particular, the lift spectrogram
shows the presence of multiple frequencies with comparable powers, which are distinguishable for most of
the flow velocity range. This suggests that the wake flow contains vortices of comparable strength, shed at
different frequencies (including the flapping frequency), indicating that the vortex shedding does not fully
control the flapping. Nevertheless, detailed studies of the flow dynamics, perhaps via PIV measurements,
are required to validate what was discussed above; such experiments are deferred to future investigations.
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Figure 7: (a,c,e) Time traces, (b,d,f) PSDs and (g,h) spectrograms for flag S1: [ ] tip transverse displacement
and [ ] normalized lift NFL; (a,b) U D 5:7 m=s (… D 2:08), (c,d) U D 7:7 m=s (… D 2:81), and (e,f)
U D 8:3 m=s (… D 3:03). Power spectrum in dB.

Figure 8 shows the time trace and PSD plots for (a,b) flag S2, (c,d) flag S3, and (e,f) flag S4,
respectively. Similarly to the discussion on Figure 7, the displacement PSDs show that the power is mostly
centred around one frequency (i.e. f1), while the lift PSDs show an almost evenly distributed power
over multiple frequencies. For example, as shown in Figure 8(d) for flag S3, the dominant displacement
frequency is f1 D 18 Hz, while that for the lift is fL3 D 36 Hz. There are also other peaks in the lift
PSD, which occur at fL1 D 14:1 Hz, fL2 D f1 D 18 Hz, fL4 D 3f1 D 54 Hz, and fL5 D 5f1 D 90 Hz;
however, no similarly strong peaks can be found in the displacement frequency content. This indicates that
vortex shedding may be synchronized to a higher displacement harmonic; in the present case, the vortex
shedding frequency is twice the flapping frequency, giving rise to a 1W2 synchronization. The difference
between the dominant (peak) frequencies of the lift and flapping for flag S2 is illustrated further through
spectrograms shown in Figure 8(g,h).

2.3.2 Phase dynamics

It is known that in the case of VIV-driven motion of a circular cylinder in cross-flow, as the flow velocity
is varied, sharp changes occur in the phase difference between the fluid forces and cylinder motion at
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Figure 8: (a,c,e) Time trace and (b,d,f) PSD plots for flags S2 to S4, respectively: [ ] tip transverse
displacement and [ ] normalized lift NFL; (a,b): U D 7:4 m=s (… D 1:58); (c,d): U D 14:4 m=s (… D 1:86);
and (e,f): U D 19:0 m=s (… D 1:44). (g,h) Spectrogram plots for flag S2. Power spectrum in dB.

resonance. In particular, the phase between the cross-flow force (i.e. lift) and the transverse displacement
of the cylinder jumps from nearly 0 to about � (see [4, 12, 17]).

In this paper, the instantaneous phase difference between the time series obtained for the transverse
displacement of the flag and the lift are calculated using the Hilbert transform [4, 6]. The instantaneous
phase is defined as �w.t/ D atanŒw.L; t/= Ow.L; t/� and �F.t/ D atanŒFL.0; t/= OFL.0; t/�, where Ow.L; t/

and OFL.0; t/ are the Hilbert transforms of w.L; t/ and FL.0; t/, respectively. Next, the instantaneous
phase difference, �d.t/, between lift and displacement is calculated as �d.t/ D �F.t/ � �w.t/.

Figure 9 shows the time-averaged phase difference �d as a function of the dimensionless flow velocity
for flags S1 to S4 listed in Table 2. In the all cases, the time-averaged phase difference never crosses 90°
and remains bounded in the Œ0° 50°� range over the large-amplitude flapping regime. The different values
of the phase difference may well be due to the effect of different structural damping for the different flags.
(Similar observations have been made by Seyed-Aghazadeh et al. [12] for triangular prisms in cross-flow,
who reported that no jump occurred from � 0 to � 180° in phase difference between flow forces and
body motion, hence concluding that the oscillation was of the galloping type.)

The above observations suggest that flag motion and vortex shedding influence each other reciprocally;
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Figure 9: Time-averaged phase difference between transverse force (lift) and transverse displacement for [ ]
flag S1, [ ] flag S2, [ ] flag S3, and [ ] flag S4 over the periodic large-amplitude flapping regime.

however, vortex shedding does not appear to be the cause for flapping of, at least, heavy inverted flags.
Instead, the large-amplitude flapping of heavy inverted flags accompanied by high-frequency vortex
shedding suggests that self-excited vibration may be the underlying mechanism, meaning that the time-
averaged movement-induced aerodynamic forces govern the motion. A similar conclusion has been
reached for slender prismatic bodies with bluff cross-section and sufficiently long afterbody in cross-flow
by Nemes et al. [8], Zhao et al. [17] and Seyed-Aghazadeh et al. [12], among others. The present
observations also agree well with the computational predictions of Goza et al. [1], who report that, for
heavy flags, the dominant frequency of lift (corresponding to the highest peak in the PSD plot) is greater
than that of the tip displacement, suggesting that the motion is not “classical VIV”.

Finally, it is recalled that according to a well-known classification by Naudascher and Rockwell [7],
flow-induced vibrations are divided into three types: (i) extraneously induced excitation, (ii) instability-
induced excitation, and (iii) movement-induced excitation (or self-excited vibration). Turbulence buffeting
and vortex-induced vibration are classical examples of the first and second types, respectively, while
flutter of an aircraft wing and of a cantilevered pipe conveying fluid are examples of the last type. If the
flapping of heavy inverted flags is not an extraneously induced excitation (since the turbulence intensity
was kept very low in our wind tunnel experiments) or an instability-induced excitation (as argued above);
then, by induction, it has to be a movement-induced excitation.

3 Conclusion

Some experiments were described in this paper, aiming to examine the global dynamics of heavy inverted
flags and, in particular, to evaluate the impact of periodic vortex shedding from the leading and trailing
edges thereon.

The effects of adding serrations to the leading edge and a long rigid splitter plate to the trailing edge
were investigated: only minor changes in the critical flow velocity, amplitude and frequency of oscillations
resulted thereby. The overall dynamics and its features remained unchanged, and large-amplitude flapping
was observed for all flags tested in the experiments, with or without the serrations and the splitter plate.
With the splitter plate, TEVs are formed and shed from the free end of the plate (that is far from the
flag), the effect of which on the flow field close to the flag is minimal; also, interactions between the two
counter-rotating LEVs (if they are not completely disrupted by serrations) are inhibited by the splitter
plate.

Force measurements provided some insight into the relationship between vortex shedding and large-
amplitude flapping; a difference between the dominant (peak) frequencies of the lift and flapping was
found in some cases. Moreover, it was shown that for heavier inverted flags, additional peaks, with
power as great as or larger than that matching the dominant motion frequency, appear in the lift frequency
spectrum. In addition, the lift and tip displacement were found to be desynchronised in the chaotic-like
flow regime.

The experimental results presented in §§2.1-2.3 suggest that self-excited vibration via a fluidelastic
instability may be the underlying mechanism for the flapping motion of heavy inverted flags. The nearly-
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identical qualitative behaviour of plain inverted flags and those with a serrated leading edge and a splitter
plate at the trailing edge suggests that the global (qualitative) dynamical characteristics of heavy inverted
flags are not governed by the unsteady vortex shedding from the leading and/or trailing edges. In other
words, periodic vortex shedding is not the cause, but an effect of large-amplitude flapping.

It is stressed that no flow visualization was carried out in the experiments with serrated flags and the
splitter plate, and thus no information can be provided regarding the vortex formation and shedding from
the leading and trailing edges. Nevertheless, PIV measurements conducted by Pazhani [9] showed that
complex three-dimensional flow near the serrations disrupts regular vortex formation and shedding from
the leading-edge—LEV become more stable and their periodic formation and shedding is delayed.

There are definitely potential correlations, yet to be discovered, between the phase dynamics and the
underlying mechanism for large-amplitude flapping. Further investigations would be desirable to better
clarify the distinction between VIV and the underlying mechanism for large-amplitude flapping of heavy
flags.
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